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Abstract— Identifying predictive world models for robots
from sparse online observations is essential for robot task
planning and execution in novel environments. However, ex-
isting methods that leverage differentiable programming to
identify world models are incapable of jointly optimizing the
geometry, appearance, and physical properties of the scene. In
this work, we introduce a novel rigid object representation that
allows the joint identification of these properties. Our method
employs a novel differentiable point-based geometry repre-
sentation coupled with a grid-based appearance field, which
allows differentiable object collision detection and rendering.
Combined with a differentiable physical simulator, we achieve
end-to-end optimization of world models or rigid objects, given
the sparse visual and tactile observations of a physical motion
sequence. Through a series of world model identification tasks
in simulated and real environments, we show that our method
can learn both simulation- and rendering-ready rigid world
models from only one robot action sequence.

I. INTRODUCTION

An accurate internal model of a robot about how its
actions can affect the surrounding environment is essential
for robot planning and control. Such a model, which we
refer to as a world model, needs to render realistic raw
observations such as RGB images from arbitrary viewpoints
and predict consistent and accurate physical interactions.
However, constructing such a model from raw observations
in novel real-world environments remains challenging as it
requires the identification of the geometry parameters that
describe the shape of all objects (e.g. vertices and faces of
a mesh), appearance parameters that define how the objects
look when rendered (e.g. color and reflectance), and physical
parameters (e.g. mass) of the objects in the scene. These
parameters are usually partially observable, and robots are
typically limited in time and computational resources.

Recently, there has been growing interest in learning world
models from large offline datasets of action-labeled videos
using generative modeling techniques [1], [2], [3], [4]. How-
ever, these black-box models are susceptible to distribution
shifts and cannot infer properties such as the coefficient of
friction. In addition, they are not physically consistent and
cannot provide physical information such as contact forces,
which are essential for downstream tasks. Meanwhile, an
alternative approach that identifies the geometry, appearance,
and physical parameters (GAP) of the environment with
strong priors coming from knowledge of physics can result
in a generalizable and physically consistent world model.

Many existing works employ differentiable simulators as
strong physics priors that allow efficient identification of
physical parameters such as inertia and coefficient of fric-
tion [5], [6], [7]. Differentiable simulators allow the gradient-
based optimization of mass-inertial properties and frictional
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Fig. 1. From the visual and tactile observations of a single robot push
(top), our method jointly optimizes the shape, appearance, and physical
parameters of a world model consisting of rigid objects in the form of a
rigid body simulator (bottom, the robot arm is not rendered in this picture
and the end-effector is treated as a floating blue sphere robot).

coefficients to match a physical motion sequence to sparse
robot observations. However, these works assume known
geometries and appearances of the objects in the scene and
do not allow the algorithm to adapt the GAP simultaneously.

On the other hand, we have witnessed recent advances in
learnable geometry and appearance models, such as Neural
Radiance Fields (NeRF) [8] and Gaussian Splatting (GS) [9].
These methods build the rendering equation into a learnable
representation to enable the identification of geometries and
appearances from raw observations. However, rigid body
simulators [10] typically require the use of volumetric rep-
resentations with a clear definition of object surfaces such
as convex hulls to detect collisions and penetration depths.
Unfortunately, NeRF and GS are incompatible with the
requirements of rigid body simulators since NeRF represents
objects with a continuous neural field and GS with individual
3D Gaussians. To the best of the authors’ knowledge, no
existing method allows the simultaneous identification of the
GAP properties of a world model of rigid objects from sparse
robot observations.

To address these challenges, this work presents a rigid
object representation that is compatible with general-purpose
rigid body simulators and allows the joint optimization of
GAP. As shown in Fig. 1, based on this representation, our
work enables the identification of a rigid world model in
the form of a full-fledged rigid body simulator from the
observations of one robot push. Our proposed representation
is the combination of a recently proposed point-based shape
representation Shape-as-Points (SaP) [11] and a grid-based
appearance field. SaP parameterizes an object’s geometry and
topology using a set of surface points along with normal
directions. It then uses differentiable Poisson reconstruction



to recover a smooth indicator field of object occupancy,
which can be converted to a mesh using a differentiable
marching cubes algorithm [12]. The texture of the vertices
of the mesh is then obtained by interpolating the appearance
grid. Employing the mesh in a differentiable rigid body simu-
lator [13] that provides gradients for the physical parameters
and contact points of the objects, our method constructs a
fully differentiable pipeline for jointly optimizing the GAP.
We evaluate our method on identification problems in both
simulated and real-world environments. The results show that
our method can infer accurate world models from a single
episode of robot interactions with the environment.

II. PROBLEM DEFINITION

In this section, we describe our formulation of world
model identification. We assume the environment consists of
a rigid object and rigid terrain, whose physical properties and
appearances are parameterized by θ. A robot, equipped with
joint encoders and end-effector force sensors, interacts with
the object at T time instances: t1,⋯, tT , with a fixed time
step δt. At each time step, the robot observes its end-effector
pose et ∈ SE(3) and contact force f t ∈ R3. Further, the robot
is equipped with an RGB-D camera with known intrinsics
that observes the object through image ot ∈ RH×W×4 at cam-
era pose ct ∈ SE(3). We further assume an image segmen-
tation mask mt ∈ RH×W×4 is provided for the object, robot,
and terrain. Therefore, the robot observations are a sequence
O = {⟨t, et, f t, ot, ct,mt⟩}, and our goal is to estimate θ from
the set of sparse observations O. We formulate this problem
as a physics-constrained optimization by introducing a full-
fledged physics simulator function qi+1, q̇i+1 = g(qi, q̇i, ui, θ)
that can differentiate through objects’ appearance, geometry,
and physical parameters. Here, qt and q̇i+1 are the object
and robot end-effector poses and velocities at timestep i and
ui is the applied robot force at the end-effector, which is
equal in magnitude to the sensed contact force but opposite
in direction.

Given such a simulator, the world model identification
problem is formulated as solving the following optimization:

argmin
θ

tT

∑
t=t1

L(ôt(qt(θ), θ), ot)

s.t. qi+1, q̇i+1 = g(qi, q̇i, ui, θ) ∀t = 1,⋯, T − 1.

(1)

The optimization is solved over a physical motion sequence
of T timesteps, with the objective function L encourages the
simulated observation ôt(qt(θ), θ) to match the ground-truth
observation ot.

III. METHOD

A. Differentiable Object Representation

An ideal object representation for world model identifica-
tion needs to be flexible to allow learning of complex object
geometries, topologies, and appearance properties while be-
ing compatible with rigid body simulators for collision detec-
tion. Topology-agnostic geometries such as point clouds [14]
and GS [9] do not allow one to calculate the penetration

depth between bodies. On the other hand, meshes [15] do
not allow large geometric and topological changes.

We find that the SaP framework [11], when augmented by
additional appearance properties poses an ideal representa-
tion for our purpose. Briefly, this framework represents the
object using a point cloud with normals on the object surface,
denoted as P = {(p ∈ R3, n ∈ R3)}. These normal directions
induce a discrete vector field v(x) = ∑⟨p,n⟩∈P nI[x = p].
SaP then uses Poisson reconstruction [16] to recover an
underlying implicit indicator field χ(x) that describes the
occupancy of the solid geometry, i.e. whether x is inside
or outside the geometry, and matches its gradient field with
v(x) by solving the variational problem:

argmin
χ

∫
Ω
∥∇χ(x) − v(x)∥2,

which amounts to solving the Poisson equation ∆χ = ∇v̇.
SaP discretizes the indicator field χ on a uniform grid
domain Ω, which allows the efficient solution of χ via GPU-
accelerated Fast Fourier Transform (FFT) with well-defined
derivatives. We use a 128 × 128 × 128 discretized grid χ for
all the experiments in this paper.

The indicator field χ is then transformed to a triangle mesh
M with a differentiable marching cubes algorithm [12].
Collision detection can then be easily achieved with standard
techniques for meshes. To enable appearance modeling, we
further augment with a grid of appearance properties, with
the same grid resolution as the one storing the indicator
field χ. The appearance property is then propagated to
the mesh vertices via tri-linear interpolation. In this work,
we only store and render the color field, denoted as ψ,
but other appearance properties can be incorporated in the
same manner as required by more advanced differentiable
rendering equations. The mesh can then be rendered using
any differentiable renderer framework such as [17], [18],
for which we use the open source implementation in Py-
Torch3D [19]. Specifically, at the time instance t, we invoke
the renderer with the object transformed to qt and the camera
transformed to ct. Our parametrization of the object’s physics
and appearance is defined as θ ≜ ⟨M(qi), µ,P, ψ⟩, where the
first two parameters are mass-inertial properties and frictional
coefficients, and the last two parameters are the oriented
point cloud for SaP and color field.

For the terrain, we simply use an oriented and colored
point cloud Pt to represent the terrain as we do not need
to simulate interactions between 2 terrains. The terrain is
rendered from the colored point cloud with an alpha com-
positor [20] also using the PyTorch3D library and we set the
radius of each point to be 0.015 m.

B. Differentiable Simulator

For our application, we only consider unconstrained rigid
body dynamics with dry frictional contacts. Note that addi-
tional physical constraints for describing objects such as soft
bodies and articulated objects can be potentially incorporated
into our framework and its differentiation has been well-
studied, e.g. in [21]. Since differentiable simulation for rigid
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Fig. 2. Overview of the proposed fully differentiable pipeline for world model identification from sparse robot observations. Our object representation
couples an oriented point cloud P and a 3D appearance grid ψ. Through a differentiable Poisson solver and differentiable marching cubes, the oriented
point cloud is converted to an indicator grid χ and then a mesh, whose vertex textures are interpolated from the appearance grid ψ. Feeding the object
mesh, physical parameters M and µ, the terrain point cloud Pt, and the robot pushing trajectory and control ⟨et, ut⟩ into a differentiable rigid body
simulator and renderer, the predicted scenes can be rendered. Calculating the loss against observed RGB-D images, the scene shape, appearance, and
physical parameters are jointly optimized with gradient descent.
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Fig. 3. The experiment setups for the simulation (left) and physical (right)
experiments. 9 objects are used for simulation with the PyBullet simulator,
including 8 YCB objects and a green box. For the real-world experiments,
three YCB objects (Drill, Mustard, and Sugar) are used. A UR5e
arm equipped with a pusher and a ATI Gamma F/T sensor and an overhead
Realsense D435 RGB-D camera are used. Note that only the circled object
in the real-world setup is the object of interest and everything else is treated
as the static terrain.

bodies with Coulomb friction is a well-studied area, we leave
a detailed treatment in Appendix II.

C. World Model Identification

Even with our jointly differentiable physical and appear-
ance models, solving Eqn. 1 can still be rather challenging.
This is mainly because our initial guess can be very poor,
especially in the occluded region. As a result, the naı̈ve
gradient descent method can take many iterations and is
prone to converging to poor local minima. To mitigate this,
we use two stages of optimization, and we further leverage
3D foundation models trained on web-scale data to generate
reasonable initial guesses of the rigid object in the scene
from partial visual observations.

Please refer to Appendix III for the details on the two-
stage training.

IV. EXPERIMENTS AND RESULTS

To validate our method, we first conduct experiments with
simulated data, and then in the real world.

A. Simulation Experiments

Shown in Fig. 3, we conduct all the simulated experiments
using data collected with the PyBullet simulator [23]. We use
a simple green box object (Box) and 8 objects (Gelatin,
RubiksCube, Spam, TunaCan, Mustard, Bleach,
Drill, and Sugar) from the YCB object dataset [24],
which covers diverse shapes, sizes, and textures. The objects
are placed on a flat surface with checker patterns and pushed
by a floating sphere robot, while a static overhead camera
takes pictures. The world model is optimized on one push
and tested on 23 diverse pushes that are drastically different.
The detailed setups and hyperparameters for the simulation
experiments are discussed in Appendix IV.

We first evaluate whether our method can identify the
shape and physical parameters accurately, such that it gen-
eralizes well to new physical interactions. We compare our
method against a recently proposed method that represents
the world jointly with Gaussian splats and physical particles
and allows it to perform both novel-view rendering and
physics-based trajectory predictions [22]. We refer to this
method as PhysGS. We report the quantitative results for dy-
namics parameter estimation and novel trajectory predictions
for all objects in the simulation experiments in Table I, which
are the average across all objects. The dynamics parameter
estimation error from the training trajectory, the average pose
error, the unilateral Chamfer distance, and the translational
velocity error at the end of the testing trajectories are
reported. We also show some qualitative examples that are



Fig. 4. The predicted and ground-truth poses of the 5 different objects at the end of sampled testing trajectories for the simulation experiments. After
training, the predicted poses are obtained by applying the control forces from the initial pose and integrating forward in time. The predicted object poses
are highlighted with a yellow silhouette and overlaid with the ground-truth object, blue floating spherical robot, and background. [Best viewed in color.]

Dynamics Parameter Error Trajectory Prediction Error

Method mass (kg) µ Unilateral Chamfer (mm) Pos. (mm) Rot. (○) Trans. Vel. (m/s2)

Ours 0.0728 0.106 8.69 15.5 16.7 0.0351
PhysGS [22] 0.225 0.400 24.2 42.8 31.8 0.436

TABLE I
AVERAGE DYNAMICS PARAMETER IDENTIFICATION AND TRAJECTORY PREDICTION ERRORS FOR ALL OBJECTS IN THE SIMULATION EXPERIMENTS

Fig. 5. Results of three example testing trajectory of the physical
experiments. The predicted object and robot poses with the optimized θ
highlighted with a yellow silhouette are overlaid with the ground-truth
object, robot, and background. [Best viewed in color.]

Initial Optimized Initial Optimized
Fig. 6. The initial guess and optimized shape of the Box object in simulated
experiments and the Sugar object in physical experiments during stage 1.
The algorithm is able to correct the bulging on the underside of the Box that
would intersect the terrain. On the other hand, the initial mesh of Sugar
is too thin and does not touch the terrain. Our algorithm is able to optimize
the shape so that it satisfies physics constraints.

representative of the average errors in Fig. 4. The final pose
and velocity of the objects are obtained by applying the
control forces and integrating forward in time. Our method
identifies the dynamics parameters accurately and shows low
trajectory prediction errors. On the other hand, PhysGS gen-
eralizes very poorly to the testing trajectories. While this is
partially because of the lack of proper dynamics parameters
and physics-based shape estimation, we also find that the
particle-based simulator is extremely sensitive to simulator
parameters and have poor physical fidelity, especially for
rigid objects. We also show an example of the initial and
optimized geometries of the Box object in Fig. 6 (left), which
demonstrate the ability of our method to adjust occluded
geometry based on the physics. We also evaluate the quality
of the novel-view synthesis of our method, and present the
results in Appendix V.

B. Physical Experiments

We leave the details of the physical experiment to Ap-
pendix VI. On average across all testing trajectories and
testing objects, our method achieves a mass identification
error of 0.186 kg and 6.10 mm of unilateral chamfer distance
between the observed object point cloud and the predicted
object at the last frame of the trajectory. Note that we only re-
ported the mass identification error because the ground truth
is very easy to measure while measuring the surface friction
requires a specialized setup. Since we do not have access to
the ground-truth object poses and only have access to the
raw observations, we report the unilateral Chamfer distances
between the observed object point cloud and the predicted
object geometry. The train and test prediction results for three
sample trajectories are visualized in Fig. 5. Overall, the errors
are comparable to those from the simulated experiments. In
addition, we show the initial and optimized shape of the
Sugar object in Fig. 6 on the right, where the initial shape is
too thin and does not contact the terrain below. Our algorithm
modifies the occluded geometry to satisfy the physics.

V. CONCLUSION

We propose a novel algorithm to solve the task of identify-
ing objects’ physical properties as well as the geometry and
appearance, a crucial step in downstream robot manipula-
tion tasks. To the best of our knowledge, this is the first
method that allows the joint optimization of all of these
properties. Our method combines the merit of SaP object
representation [12], differentiable collision detection [25],
and differentiable simulation [13]. We state the limitations
and future directions of our work in Appendix VII.
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APPENDIX I
RELATED WORK

Our work is closely related to differentiable rigid body
simulators, learnable geometry and appearance models, and
identifying world models, and we review these areas of study
in this section.

A. Differentiable Rigid Body Simulator

Rigid body simulators are essential tools in robotics and
engineering for testing, verification, perception, control, and
planning. Traditional rigid body simulators are not differen-
tiable, but there have been many recently proposed differ-
entiable rigid body simulators [13], [26], [15], [21], [27],
[28] for facilitating downstream system identification, robot
planning, and policy optimization tasks. Different strategies
are adopted to enable the calculation of gradients for the

http://pybullet.org


underlying non-differentiable contact dynamics, including
employing a smooth contact model [28], [15], [21], using
sub-gradients of the linear complementarity problem [26],
and implicit gradients of nonlinear optimization [13], [27].
However, most of these methods do not provide gradients
with respect to the geometry, with the exception of [27],
[13], [15]. In this work, we adopt the simulator proposed by
Strecke et al. [13] for its physical realism, numerical stability,
and fast computation from GPU acceleration.

B. Learnable Geometry and Appearance Models

Learning 3D geometry and appearance models from 2D
raw images is vital to robots’ understanding of the phys-
ical world. Earlier research has focused on learning only
the 3D geometries without appearance, including point-
cloud-based [14] models, convex-hull-based [29] models,
and learning implicit signed distance functions [30]. Neural
radiance fields (NeRF) is the first method that enables a
continuously learnable model for the full 3D appearance of
objects and scenes, which uses neural networks to parameter-
ize the spatial appearance properties and implicitly learn the
3D geometry. More recently, Kerbl et al. proposed Gaussian
Splatting (GS) [9], a non-parametric method that represents
the appearance of the scene with 3D Gaussians and sig-
nificantly improves the training and rendering speeds due
to their fit for fast GPU/CUDA-based rasterization. These
algorithms are capable of learning detailed 3D object and
scene appearances from sparse image-based observations.
However, NeRF and GS lack a clear definition of rigid object
surfaces as NeRF represents objects with a neural field and
GS with individual 3D Gaussians. Therefore, while there are
some initial attempts at integrating them with rigid body
simulators [31], [32], research for robust, physically correct,
and differentiable collision detections with these models is
still ongoing. In addition, NeRF and GS require many diverse
views of an object, which is unrealistic in typical robotic
manipulation applications.

Compared to standard 3D representations such as point
clouds, which do not allow volumetric collision detection, or
meshes, which do not allow large geometric and topological
changes during optimization, our SaP-based methods enjoy
the best of both worlds. Combined with a differentiable
renderer, our object representation then achieves end-to-end
image-based shape optimization.

C. World Models

Traditional system identification methods [33] identify
only the dynamics parameters from full state information.
However, to support diverse downstream robot tasks in
the real world, world models need to be built from raw
observations and support both accurate dynamics prediction
and photorealistic novel view synthesis. While existing works
have identified world models from raw image observations
using differentiable simulators [27], [13], [15], none supports
simultaneous optimization of GAP. Another line of work
closely related to ours is image-based generative world mod-
eling. These works aim to predict the next RGB frame based

on the current frame and action. These models are learned
by training on diverse datasets with generative modeling
techniques such as variational autoencoders [1], [2] and
diffusion [3], [4]. The key differences between our method
and these works are that our simulation, grounded in physics,
is always physically consistent and is a general-purpose
rigid simulator that can provide physical information such as
contact forces. Purely data-driven world models generalize
poorly to novel scenarios and their lack of physical infor-
mation severely limits their application to downstream robot
tasks. Finally, a recent work [22] proposed a method to use
Gaussian Splatting along with a particle-based simulator to
track and reconstruct a moving scene. Instead of identifying
the physical parameters of the scene, the method opti-
mizes virtual forces attached to each particle such that they
match the observed object trajectory. Therefore, although the
method can be used as a world model for prediction, the
accuracy is severely limited. We include this method as a
baseline in our experiments in Sec. IV and demonstrate the
limitation of this method.

APPENDIX II
DIFFERENTIABLE SIMULATOR

The governing equation of motion for rigid bodies and the
time discretization method are well-established, and we refer
the readers to Anitescu et al. [34] for details. The equation
is summarized as follows:

M(qi)q̈i = C(qi, q̇i) + J iui + J⊥τ⊥ + J∥τ∥, (2)

with M(qi) being the generalized mass matrix, C(qi, q̇i)
being the centrifugal, Coriolis, and gravitational force,
J i, J⊥, J∥ being the Jacobian matrix for the external, normal,
and tangent contact forces at all the detected contact points,
respectively. Finally, τ⊥, τ∥ are the contact forces. At each
time step, a mixed linear complementarity problem (LCP) is
solved to calculate the constraint forces τ⊥, τ∥, yielding the
final acceleration q̈i, and we then integrate the configuration
forward in time [35], [36] as:

q̇i+1 = q̇i + q̈iδt qi+1 = qi + q̇iδt, (3)

with δt being the timestep size. The mixed LCP problem is
formulated as:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 ≤ τ⊥ ⊥ J⊥T q̇i+1 ≥ 0

0 ≤ τ∥ ⊥ λe + J∥T q̇i+1 ≥ 0

0 ≤ λ ⊥ µτ⊥ − eT τ∥ ≥ 0,

(4)

with e being the unit vector and µ being the frictional
coefficient. λ is an auxiliary variable encoding the stick or
slip frictional state. To differentiate through the simulator,
we adopt the differentiation technique proposed by [26],
[13], where the result of the LCP is made differentiable by
solving with a primal-dual method and performing sensitivity
analysis at the solution to yield derivatives with respect to
the problem data. In this way, the derivatives propagate the
gradient information to the Jacobian matrix J⊥,∥, and finally
to the object geometric parameters P . In summary, Eqn. 2,3,4



defines our differentiable simulator function g. In particular,
we adopt the differentiable simulator proposed by Strecke et
al. [13] for its fast implementation on GPU.

APPENDIX III
TWO-STAGE OPTIMIZATION

We note that while the initial guess can deviate signif-
icantly from our observations, deviations in geometry and
appearance can be largely corrected by considering only the
first observation, i.e. ⟨t1, et1 , f t1 , ot1 , ct1 ,mt1⟩. Therefore,
our first stage considers only the first time instance and
optimizes θ using the following loss:

L(ôt1 , ot1) =c1Lrgb(ô
t1 , ot1) + c2Ldepth(ô

t1 , ot1)+

c3Lpcd(o
t1 , θ) + c4Lpen(θ) + c5Lbalance(θ)+

c6Lreg(θ, θ0) + c7Lsmooth(P),

with (c1, . . . , c7) denoting weight terms. Here, ôt1 is the
rendered RGB-D image at t1. Lrgb is a loss on the RGB
images, defined as a weighted sum of l1 distance and D-
SSIM terms: Lrgb = (1 − λ)L1 + λLSSIM, where we set
λ = 0.2. Ldepth is the l1 distance on the depth images.
When calculating the three loss terms L1,SSIM,depth, the robot
is masked out according to the segmentation mask mt1 .
Lpcd is a unilateral Chamfer distance between the point
cloud generated from the observed RGB-D image pixels
belonging to the object and the mesh vertices generated
from P , which is defined as the average of the minimum
distance between each point on the observed point cloud and
any mesh vertex. The use of a unilateral Chamfer distance
as opposed to the regular Chamfer distance is necessary
since the observed object point cloud only includes points
on the object surfaces visible from the camera viewpoint.
The terms Lpen and Lbalance encourage the object to achieve
static force equilibrium while having no penetrations. Lpen
penalizes the object mesh penetrations in the terrain, and
Lbalance = ∑

k
1 ∥p

i+t1
o − pt1o ∥1 is the sum of the positional

changes of the object from the initial position pt1o over k
steps by simulating forward with no robot actions. In the
case where the initial guess of the object geometry does
not come in contact with the terrain at t1, Lbalance allows
the computation of the gradient information to expand the
geometry towards the terrain once the object falls due to
gravity and contacts the terrain during the k steps. We use
k = 3 for all the experiments in this paper. These two terms
provide a strong hint for the occluded part of the object. For
example, when an object is lying on the table, our RGB-D
observation will not cover the bottom of the object. However,
our model will guide SaP to fill the bottom-side geometries
by encouraging the object to settle on the table. Finally, the
last two terms regularize the object shape, where Lreg is the
L2 norm between the SaP points and the initial SaP points
and Lsmooth is the Laplacian smoothing objective on the
object mesh.

In addition, the use of both Ldepth and Lpcd is necessary.
When only Ldepth is used, if the estimated mesh is smaller
than the ground-truth object geometry, the predicted depth

pixels that are supposed to reach the ground-truth mesh
do not hit the estimated mesh, and there is no gradient
information for expanding the geometry. Similarly, Lpcd
does not inform the SaP to not expand over the observed
point cloud, and Ldepth prevents the object geometries from
occupying the supposed background.

After the first stage, we have tuned our model to match
the first observation. When we move on to the second stage,
we incorporate all timesteps by applying the robot controls.
To make sure the geometry and appearance of the object
stay close to that in the first time step, we still use the
loss from the first stage on the first time frame, except
for the penetration and balance losses. For the rest of the
time frames, we use the loss L = c8Lpcd + c9Lrobot, where
the first term has the same definition as in the first stage
and Lrobot is the squared distance between the ground-truth
and predicted robot end-effector positions. To calculate this
loss, we apply the robot control forces from the initial state,
integrate forward in time, and render two intermediate and
the last frames, instead of every time frame for computational
efficiency. During our optimization, the chain of gradients is
back-propagated through the following recursive rule:

dL(ôti , oti)

dθ
=
∂L

∂θ
+
∂L

∂qi
[
∂qi

∂θ
+

∂qi

∂qi−1
dqi−1

dθ
] ,

where the first two terms ∂L/∂θ, ∂L/∂qi is the derivatives
of the rendering equation, and the remaining terms in the
bracket are the derivatives of the simulator.

1) Geometry Prior: Our method relies on a reasonable
initial guess. Imagine the case with an object settling on the
edge of a table and the camera does not observe the contact
between the two. The initial guess of the occluded part of the
object could be very short and cause the object to directly fall
down without touching the table. This cannot be recovered
by our optimization since the object never hits the table and
there are no gradients for correcting the geometries. To obtain
a reasonable initial guess of the geometries and appearance
of the rigid object of interest from partial visual observations,
we take advantage of large reconstruction models [37] that
predict object 3D models from a single RGB image, trained
on web-scale data. In particular, we use TripoSR [38] in
our experiments with the segmented RGB image of the
object as the input image. Since the generated mesh is scale-
and transform-agnostic, we apply RANSAC and the scale-
aware iterative closest point algorithms with Open3D [39] to
register the mesh to the partial object point cloud, computed
from the RGB-D image at the first time instance.

Finally, in all the experiments of this work, we assume that
the occluded terrain by the object is flat, and complete the
terrain by fitting a plane of points, where the colors match
the nearest visible points of the terrain. In addition, in all
the experiments, we do not optimize the point cloud position
of the terrain and optimize only the colors. Although these
settings are simplifying, we believe a similar approach could
be adopted that predicts the geometry of the occluded rigid
terrain from a geometry prior model and optimizes for the
terrain geometry simultaneously, although more online data



View 1 View 2 View 3
Fig. 7. The ground-truth (left) and predicted (right) RGB images of 3 novel views of the Drill in simulation. The optimized mesh shape and geometry
match the ground truth well, although lacking the fine details that can not be observed from the top view. The terrain checkers are not as sharp as the
ground truth due to the use of point rendering of the colored terrain point cloud.

Fig. 8. The pushing trajectories used in the experiments. Left: The 8
starting locations of the floating spherical robot pushing trajectories and 3
pushing directions towards the robot at one of the starting locations for the
Drill object in the simulation experiments. Middle and right: the training
trajectory and 2 sample testing trajectories, with the first and last frames
shown. [Best viewed in color.]

may be required to resolve the ambiguities of the contacts
between two occluded geometries.

APPENDIX IV
SIMULATION EXPERIMENT SETUP

The objects are placed on a flat surface with checker
patterns and pushed by a floating sphere robot, while a
static overhead camera takes pictures. As shown in Fig. 8,
24 pushing trajectories are adopted, where one is used to
optimize the world model and the rest for evaluating the
optimized model. To make sure that the pushes are diverse,
we pick 2 starting locations on each of the four sides of
the object, and push in three directions that are 20○ apart at
each of these 8 locations toward the object. Similar pushes
are used for all the other objects where the starting locations
are adjusted based on the size of the objects. The trajectories
push the objects up to 12 cm and 80○. All the trajectories have
T = 30 time steps with δt = 0.01 s. We use the following
weights for optimization: [c1, c2, c3, c4, c5, c6, c7, c8, c9] =
[10,500,2000,100,100,100,4000,500,100]. These terms
are not carefully tuned and are set such that each term has
a similar order of magnitude at the start of optimization for
our experiments. The physical parameters we optimize for
include the mass, surface coefficient of friction, the center
of mass, and the rotational inertial. The center of mass is
initialized at the geometry center of the initial shape guess.
The rotational inertia is initialized by treating the object as
a box, whose dimensions are the bounding box of the initial
geometry guess. We assume that the rotational inertia only
has diagonal terms. For all experiments including simulations
and real-world experiments, the surface coefficient of friction
is initialized at 0.2 and the mass is initialized at 0.2 kg.

A. PhysGS Baseline

The PhysGS method performs simulation with a particle-
based simulator [40]. In the original paper, the physical pa-

rameters of the particles are arbitrarily set, and virtual forces
are optimized to match the observations and predictions on
the training trajectory. To allow more accurate prediction for
new trajectories, we optimize the total mass and coefficient
of friction of the object particles with grid search using the
partial Chamfer distance between the observed object point
cloud and the predicted object particles on the last time frame
in the trajectory

APPENDIX V
NOVEL VIEW SYNTHESIS RESULTS FOR SIMULATION

EXPERIMENTS

For each of the testing objects, we evaluate the synthesized
RGB images from 10 novel viewpoints around the scene, and
our method achieves 0.00225 of mean squared error (MSE),
0.965 of structural similarity index measure (SSIM) and 26.5
of peak signal-to-noise ratio (PSNR). We also show some
examples of novel view synthesis of the Drill object in
Fig. 7, which matches the ground truth very well.

APPENDIX VI
PHYSICAL EXPERIMENT SETUP

Shown in Fig. 3, we conduct physical experiments with a
UR5e robot arm equipped with an ATI Gamma F/T sensor
and a pusher with a semispherical end, and a static overhead
RealSense D435 RGB-D camera. We use similar pushing
trajectories to those for the simulation experiments, but only
use 6 trajectories with two different starting locations from
one side of the object. We then use one trajectory for
training and the rest for evaluation with 3 YCB objects:
power drill (Drill), sugar box (Sugar), and mustard bottle
(Mustard). We use a total of T = 48 time steps with
δt = 0.03 s. We use the same optimization settings as the
simulated experiments.

APPENDIX VII
LIMITATIONS AND FUTURE DIRECTIONS

Our method assumes ground-truth object masks from
the scene, which might not always be possible even with
advanced foundational segmentation models. In addition, our
method does not consider more advanced appearance models,
lighting sources, and shadows. As a result, the rendered
scenes could have artifacts that do not match the real-world
observations. Currently, each optimization run is completed
in under 15 mins on a standard PC with an Intel i9-13900KF
CPU, 64 GB of RAM, and a GeForce RTX 4090 GPU.
While this is not ideal for online robotics applications, we



intend to reduce the runtime by using better initial guesses
of geometry and physical parameters from data-driven pre-
trained models and more efficient implementation. Finally,
our method currently struggles on objects whose rotation can
not be properly identified from a surface point cloud, such
as a cylinder. We aim to explore tracking methods that also
leverages surface textures for pose tracking in future work.

Although our method has several limitations, it opens
doors to a rich spectrum of future research topics. Some
potential future directions include extending our method to
identify multi-body dynamic systems with additional con-
straints, more advanced appearance models, and physics-
based perception to correct for wrong object masks.
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