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Multi-Scale Multi-View Deep Feature Aggregation
for Food Recognition
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Abstract— Recently, food recognition has received more and
more attention in image processing and computer vision for its
great potential applications in human health. Most of the existing
methods directly extracted deep visual features via convolutional
neural networks (CNNs) for food recognition. Such methods
ignore the characteristics of food images and are, thus, hard to
achieve optimal recognition performance. In contrast to general
object recognition, food images typically do not exhibit distinctive
spatial arrangement and common semantic patterns. In this
paper, we propose a multi-scale multi-view feature aggregation
(MSMVFA) scheme for food recognition. MSMVFA can aggre-
gate high-level semantic features, mid-level attribute features,
and deep visual features into a unified representation. These three
types of features describe the food image from different granular-
ity. Therefore, the aggregated features can capture the semantics
of food images with the greatest probability. For that solution,
we utilize additional ingredient knowledge to obtain mid-level
attribute representation via ingredient-supervised CNNs. High-
level semantic features and deep visual features are extracted
from class-supervised CNNs. Considering food images do not
exhibit distinctive spatial layout in many cases, MSMVFA fuses
multi-scale CNN activations for each type of features to make
aggregated features more discriminative and invariable to geo-
metrical deformation. Finally, the aggregated features are more
robust, comprehensive, and discriminative via two-level fusion,
namely multi-scale fusion for each type of features and multi-
view aggregation for different types of features. In addition,
MSMVFA is general and different deep networks can be easily
applied into this scheme. Extensive experiments and evaluations
demonstrate that our method achieves state-of-the-art recogni-
tion performance on three popular large-scale food benchmark
datasets in Top-1 recognition accuracy. Furthermore, we expect
this paper will further the agenda of food recognition in the
community of image processing and computer vision.

Index Terms— Food recognition, ingredient knowledge, feature
aggregation, convolutional neural networks.
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I. INTRODUCTION

HUMANS have historically faced the task of identifying
food to further gather food for their survival. In recent

years, food recognition has attracted increasing attention
in image processing and computer vision [1]–[6]. It is of
paramount importance for analyzing and understanding food
images from different perspectives, such as health, culture and
marketing. Automatically recognizing food can also enable
various applications, such as mobile visual food diary [4] and
self-service restaurants [7].

Like generic object recognition, the key of food recog-
nition is to extract discriminative visual features. Early
researches on food recognition mainly extracted hand-crafted
features [1], [3], [8]. For example, Yang et al. [1] first used
a semantic texton forest to compute the distribution over
ingredients for each pixel in the image, and then constructed
multi-dimensional histogram features as the visual repre-
sentation. Bettadapura et al. [8] combined different types
of feature descriptors, such as original SIFT [9] and their
variants into fused features for food recognition. Recently,
there have been more attempts to utilize deep learning in
food recognition. For example, Meyers et al. [4] used the
GoogLeNet network to train a multi-label classifier to pre-
dict the type of food present in the meal. Martinel et al.
[10] proposed a wide-slice residual network to capture the
vertical structure from food images. Deep learning based
approaches generally obtain better performance than hand-
crafted features because of their advantage in representation
learning.

However, as a special object recognition task, food recogni-
tion has not been fully addressed due to the following reasons.
First, different from general object recognition, many types of
food do not exhibit distinctive spatial layout and configuration.
They are typically non-rigid, and the structure information can
not be easily exploited. Therefore, standard object recognition
approaches probably perform poorly on this task. Existing food
recognition methods such as [1], [10] are only limited to food
types with certain visually distinctive spatial arrangement,
such as vertical structures (e.g., hamburgers). Second, food
recognition can be considered as fine-grained recognition [11].
The first step of fine-grained object recognition is generally
to discover fixed semantic parts of certain object, such as
birds and cars. However, common semantic parts do not
exist in many types of food images. Therefore, it is hard to
capture semantic information from food images via existing
fine-grained methods. Third, similar to object recognition,
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Fig. 1. Some food images with different geometrical deformations.

Fig. 2. Some food examples from VireoFood-172 [15].

food images have also various geometrical variants, such as
different viewpoints, rotation and scales. Fig. 1 shows some
food images from some existing datasets. It requires that food
recognition methods should have the geometrical invariance
to robustly recognize food images. Existing food recogni-
tion methods [4], [12] generally used the CNNs to directly
extract visual features from the whole food image, and may
fail when geometric variants are larger. This is because the
CNNs can only process images with small-scale deformations
through max-pooling. Fourth, in spite of recent development
in food recognition, it does not receive enough attention
for researchers like object recognition and scene recognition.
There are no trained models available like ImageNet [13]
and PlacesNet [14] to help advance its development in the
computer vision community.

On the bright side, there are additional ingredient informa-
tion available associated with food images from the web. Like
the importance of objects for the scene, ingredients within
food images are also very important for food recognition as
mid-level attributes. Fig. 2 shows some food examples with
ingredients from VireoFood-172 [15]. Although Fig. 2(a) and
Fig. 2(b) belong to the same class, their visual appearance has
larger difference. However, they have many common ingredi-
ents. Such mid-level ingredient attributes can help recognize
them. Similarly, the visual appearance of Fig. 2(a) is similar to
Fig. 2(c). However, they do not belong to the same food type.

We can distinguish them via their ingredients. For example,
the scrambled egg is one representative ingredient of Yangzhou
fried rice. Hence, mid-level ingredient attribute learning can
provide another clue, which is helpful for food recognition.
Besides mid-level ingredient representation, high-level food
semantic distribution and deep visual features from CNNs
can also provide complementarity information from different
perspectives and granularity. If we aggregate these three types
of features together, we can capture semantic information from
food images with the greatest probability.

Furthermore, although food typically does not exhibit dis-
tinctive spatial arrangement, we can explore image patches
from different scales and then fuse them into multi-scale repre-
sentation. Such representation can fuse patch features from the
coarse scale to the fine scale, and thus their features contain
information from discriminative image regions. In addition,
multi-scale fusion can be more robust to the geometrical
deformation. Some works such as [16], [17] have verified
the effectiveness of multi-scale features in classification and
retrieval tasks.

Taking these factors into consideration, in this paper,
we proposed a Multi-Scale Multi-View Feature Aggrega-
tion (MSMVFA) scheme for food recognition, where multi-
view means different types of feature sets. Different types
of features with different granularity are jointly utilized
in MSMVFA. Particularly, MSMVFA consists of two-level
fusion, namely multi-scale fusion for each type of features
and multi-view aggregation for different types of features.
Considering food typically does not exhibit distinctive spatial
arrangement, we utilize multi-scale fusion methods for each
type of features. The coarsest scale is the whole image, so the
global spatial layout is preserved, and the finer scales allow
us to capture more local, fine-grained details of the food
image. Therefore, such fused features are more robust and
invariable to the geometrical deformation. Based on multi-
scale representation for each type of features, MSMVFA
can further aggregate high-level semantic features, mid-level
attribute features and deep visual features into a unified
representation. These three types of features describe food
images from different granularity. Therefore, the aggregated
features can capture semantic information with the greatest
probability. For that solution, we utilize additional ingredient
information to fine-tune the deep network to extract mid-
level attribute features. The high-level semantic features and
deep visual features are extracted from class-supervised deep
neural network. The resulting representation is more robust,
comprehensive and discriminative as generic features for food
recognition.

MSMVFA is general and different types of CNNs can
be applied into this framework. We benchmark several deep
learning networks including VGG-16 [18], ResNet-152 [19]
and Densenet-161 [20] in MSMVFA on three large-scale food
datasets and the released trained model1 for furthering the
agenda of food recognition and other food-related study.

The contributions of our paper can be summarized as
follows:

1http://isia.ict.ac.cn/dataset/MSMVFA-Models.html

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 07,2022 at 07:22:15 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: MULTI-SCALE MULTI-VIEW DEEP FEATURE AGGREGATION FOR FOOD RECOGNITION 267

• We propose a Multi-Scale Multi-View Feature Aggre-
gation (MSMVFA) scheme for food recognition, which
can conduct two-level fusion, namely multi-scale fusion
for each type of features and multi-view aggregation for
various types of features with different granularity to
produce more robust, discriminative and comprehensive
fine-grained representation.

• We conduct comprehensive experimental evaluation on
three popular food benchmark datasets, and the exper-
imental results demonstrate our approach achieves the
state-of-the-art performance in food recognition on all
these three food benchmark datasets for the Top-1
accuracy.

• We benchmark several deep learning networks in our
proposed framework on three different food datasets.
It could further the agenda of food-related study in the
community of image processing and meanwhile forms a
contribution to other food-related fields, such as compu-
tational gastronomy and food science.

The rest of this paper is organized as follows. Section II
reviews related work. section III elaborates the proposed food
recognition framework. Experimental results and analysis are
reported in Section IV. Finally, we conclude the paper and give
future work in Section V.

II. RELATED WORK

Our work is closely related to two research fields: (1) food
recognition and (2) multi-scale visual recognition.

A. Food Recognition

Food recognition is one of the promising applications in
visual recognition. After we recognize the category of the
meal, we can further conduct various health-related appli-
cations, e.g., mobile food diary [4] and self-restaurant ser-
vice [7]. For these reasons, we have seen an explosion of
food recognition algorithms in image processing and com-
puter vision [1]–[5]. A more comprehensive survey of food
recognition and food-related works is provided in [21]. In the
earlier years, they extracted various hand-crafted features
from food images for recognition [1], [3], [22]. For example,
Yang et al. [1] calculated pairwise feature statistics between
local features computed over a soft pixel-level image segmen-
tation to exploit spatial relationships between ingredients for
food recognition. Bossard et al. [3] adopted random forests
to mine discriminative patches of food images as the visual
representation. Some works such as [23] combined different
types of hand-crafted features to represent the food image.

In contrast, deep features learned by deep networks have
been confirmed to be far more effective than hand-crafted
features in food recognition because of its powerful expressive
capacity. For example, Kagaya et al. [12] adopted the AlexNet
network [13] to extract deep visual features for food detection
and recognition. There are also some works [4], [24], [25],
which combined deep visual features and other context infor-
mation, such as GPS and restaurant information to improve the
performance of food recognition. For example, Xu et al. [24]
leveraged the geolocation and external information about

restaurants for geolocalized modeling. Myers et al. [4] took
the GoogLeNet deep network to extract deep visual features to
recognize the content of the meal from one image. The GPS
information is further introduced for predicting their nutri-
tional content. Zhou and Lin [5] exploited rich relationships
among ingredients, food category and restaurant information
through the bi-partite graph for food image classification. Dif-
ferent from existing works, we aggregate high-level semantic
features, mid-level ingredient features and deep visual features
together for food recognition. Such feature aggregation is
capable of capturing the semantic information with the greatest
probability. In addition, we further consider multi-scale feature
fusion on each type of features to obtain more robust and
discriminative feature representation to achieve the state-of-
the-art performance.

In addition, our work is also relevant to recipe
analysis [6], [26]–[29]. For example, some works [15], [28]
adopted a multi-task deep learning architecture such as CNNs
or Deep Boltzmann Machines [30] for simultaneous ingre-
dient and food recognition, where the ingredients are fully
exploited as supervised information for fine-tuning the net-
work. Min et al. [29] combined topic model and deep learning
methods to discover topics of ingredient bases and visualize
them to conduct cross-region recipe analysis. Salvador et al.
[6] released a new large-scale dataset with over 1 million
cooking recipes and 800K food images for cross-modal image-
recipe retrieval.

B. Multi-Scale Visual Recognition

It has been shown that in addition to the entire image,
it is consistently better to extract CNN features from multi-
scale local patches arranged in regular grids to improve
the performance of image recognition [16], [17], [31]. For
example, Wu et al. [17] proposed an architecture in which
dense sampling of patches is replaced by region proposals
and discriminative patch mining. Herranz et al. [32] analyzed
multi-scale CNN architectures and showed that careful multi-
scale combinations of ImageNet-CNNs and Places-CNNs can
improve the performance of scene recognition. In our work,
we also utilize multi-scale feature fusion for the task of food
recognition to handle the geometrical deformation.

In addition, our work is also relevant to fine-grained clas-
sification [11], [33], [34], which aims to distinguish among
different breeds or species. They generally first discover fixed
semantic parts, and then fuse features extracted from these
semantic parts as the final representation. For example, in the
bird classification, some semantic parts, such as head and
breast should be first localized. However, they are not directly
used into food recognition. The reason is that the concepts of
common semantic parts do not exist in many types of food
images, and there are no fixed semantic parts or patterns for
many types of food images.

III. OUR APPROACH

Food images have more sophisticated visual complexities
than general object images, including vague spatial arrange-
ment, larger food deformations, severe intra-class variations
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Fig. 3. Our proposed Multi-Scale Multi-View Feature Aggregation (MSMVFA) framework.

Fig. 4. Some food examples from three datasets.

and smaller inter-class variations, and thus require more
elaborate solutions. In order to solve this, we propose a Multi-
Scale Multi-View Feature Aggregation (MSMVFA) frame-
work for food recognition. Two key technologies are exploited
in MSMVFA. First, we aggregate high-level semantic features,
mid-level attribute features and deep visual features into uni-
fied representation. Different types of features describe food
images from different granularity. Therefore, the aggregated
features can capture semantic information of food images with
the greatest probability. Second, unlike general objects, food
typically does not exhibit distinctive spatial patterns. In order
to solve this, for each type of features, multi-scale patches
based feature fusion is utilized to obtain more robust and
discriminative representation. such multi-scale feature repre-
sentation not only contains ones from discriminative image
regions, but also is insensitive to geometrical deformation.

As shown in Fig. 3, given an input image, MSMVFA is
capable of extracting and aggregating three types of features
with various scales and different granularity. For that solu-
tion, two types of deep neural networks are introduced in
MSMVFA, namely ingredient network and category network.
We can use any one of existing popular neural networks,
such as VGG [18], ResNet [19] and DenseNet [20] as one
basic network for these two types of networks. Through the
category network, we can extract category-oriented semantic
distribution and more abstract deep visual features with multi-
scales. In order to obtain mid-level attribute features, we uti-
lized additional ingredient information and also designed the
ingredient network to extract mid-level attribute features with
multi-scales. Compared with food category, ingredients from
each food category can describe food images at fine-grained
and local level. Therefore, ingredient network can extract
region-oriented mid-level attribute features compared with

global semantic distribution. For each type, the features from
different scales are then fused via multi-scale fusion. The fused
features from three different types are further normalized and
aggregated into the final representation via multi-view feature
aggregation. The classifier based on aggregated features is
finally trained for food recognition. In the following sections,
we introduce main components of MSMVFA in details.

A. Multi-View Feature Aggregation

1) Mid-Level Attribute Representation: Food classification
belongs to fine-grained classification and is very challenging
because of its visual complexities. Exploring only food class
information is probably not enough for food recognition.
Fortunately, there is rich ingredient information associated
with food images. As shown in Fig. 4, many ingredients
can describe visual attributes of food images at local level.
Therefore, ingredient-based representation provides more fine-
grained feature representation for food images.

To obtain such mid-level representation, we should design
an ingredient network to extract ingredient-level represen-
tation. Different types of deep attribute networks can be
adopted, such as PANDA [35] and cascading CNN [36].
PANDA combines part-based models and CNNs for human
attribute prediction while cascading CNN first localizes face
regions and then conducts face attribute prediction based on
localized regions. Actually, among these attribute networks,
one simple method for the ingredient network is to directly
fine-tune the deep network using multi-label ingredient infor-
mation as supervised information for each scale, and then
fuse ingredient-level attribute features from all the scales into
unified representation. Therefore, our method is similar to
PANDA, but the difference is that PANDA first fuses the
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features from all the scales and the fused features are then
fed into the classifier for attribute learning.

Particularly, we consider one scale, namely the whole image
as one example. Through the ingredient network, we can
obtain the attribute representation for each image x as one
vector. â = (̂a1, ..., âm , ..., âM ), where M is the size of
ingredient vocabulary. âm ∈ [0, 1] is predicted probability for
attribute m, and is calculated via a sigmoid activation function
as follows:

âm = P(am |x) = 1

1 + exp(− f (x))
(1)

where f (·) denotes the final features from the ingredient
network we adopted and the groundtruth ingredient labels are
binary representation a = (a1, ..., am, ..., aM ):: whether this
image has this ingredient m or not.

We consider multi-label ingredient attribute learning with
M ingredients as M binary attribute classification tasks. Cor-
respondingly, the loss function with the cross-entropy function
L is used as follows for single image x .

L I = −
M∑

m=1

(am log(̂am) + (1 − am) log(1 − âm)) (2)

which allows to have multiple highly activated outputs. For
other types of ingredient networks, some additional terms
probably need to be added.

Through the ingredient network, we can obtain predicted
ingredient distribution â = (̂a1, ..., âm , ..., âM ) as mid-level
representation for each image.

2) High-Level Semantic Representation: The output layer of
a category network, namely the prediction layer is a semantic
probability distribution, and it generally denotes high-level
semantic information. High-level semantic representation is
very useful and has been verified in some tasks, such as
[33]. In order to obtain high-level semantic representation,
we fine-tune one deep network, such as VGG using the food
class label as supervised information. In this category network,
CNNs typically use the softmax activation in the last layer.
The softmax function allows to obtain a semantic probability
distribution for the input sample x over all possible output
classes, and thus predicts the most probable outcome, ŷ =
arg maxy P(y|x). The softmax activation is usually combined
with the categorical cross-entropy loss function Lc during
model optimization, which penalizes the model when the
optimal output value is far away from 1:

Lc = −
∑

x

log(P(y|x)) (3)

After fine-tuning the category network, we can predict class-
probability distribution ŷ = (̂y1, ..., ŷc, ..., ŷC) as high-level
semantic features for each test image x , where C is the number
of categories.

3) Deep Visual Feature Representation: The layers of a
deep neural network close to the output layer also contain
independent class-relevant information that is not contained in
the output layer [37]. Therefore, besides high-level semantic
features, deep visual features should also be extracted. For this
type of features, we can directly extract deep visual features

ĥ = (̂h1, ..., ĥd , ..., ĥD) from the category network, where D
is the number of feature dimensions. For example, we extract
4096-D features of the FC-layer from the VGG-16 network as
the deep visual features.

4) Multi-View Feature Aggregation: After obtaining all
types of features, we next aggregate them into unified repre-
sentation. Considering different types of features have different
range of values, we first normalize each type of features via
Norm(·) and then obtain the aggregated representation via the
aggregating operator Agg(·):

F = Agg(Norm(̂a), Norm(̂y), Norm(̂h)) (4)

where Norm(·) can be certain normalization operation, such
as l2 and z-score. Similarly, the aggregation operator Agg(·)
can be one of many aggregation methods, such as simple con-
catenation [33] and deep feedforward networks [38]. Without
loss of generality, in our experiment, z-score normalization is
used and simple concatenation aggregation method is adopted.

B. Multi-Scale Feature Fusing

Different types of features work better at different scales.
For example, we probably extract more discriminative mid-
level ingredient features at smaller scales. In addition, many
types of food images have no distinctive spatial arrangement.
Fusing on various scales for each type of features is also
one way to circumvent this problem. Furthermore, various
multi-scale fusion methods have been proposed, and have been
verified as one effective way for robust feature representation
in many tasks, such as scene recognition, image retrieval and
image restoration [16], [31], [39].

For each type of features, we can adopt multi-scale CNNs
to extract features for each scale, and then fuse features
from different types into unified representation. Take mid-
level ingredient representation as one example, Let l denote
certain scale. l = 1 means the whole food image while l = N
means the finest scale. For each scale, we take the multi-label
ingredient information as supervised information to extract
intermediate attribute features. For the first scale, we generally
train the ingredient network for the whole image to obtain
the feature representation. For the remaining small scales,
we train the network using these local patches, and extract
the features from each patch of one image. Next, we fuse
the activations of these multiple patches to summarize these
scales such as mean-pooling, max-pooling or other fusion
methods. Finally, we obtain corresponding the representation
from different scales {̂al}N

l=1. Similarly, we can obtain multi-
scale high-level semantic features and deep visual features
from the category network {̂yl}N

l=1 and {̂hl}N
l=1.

After we obtain features at each scale, we next fuse them
into multi-scale representation via Fus(·). The fused features
for three types are listed as Fus({̂hl}N

l=1),Fus({̂al}N
l=1) and

Fus({̂yl}N
l=1). Before multi-scale fusion, the normalization

should also be applied like multi-view aggregation. Similar to
Agg(·), the fusion operator Fus(·) can be one of many fusion
methods, such as simple concatenation and deep feedforward
networks.
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C. Multi-Scale Multi-View Feature Aggregation

Our final feature representation is obtained from two-level
fusion, namely multi-scale fusion for each type of features and
multi-view aggregation for different types of features via

F = Agg(Norm(Fus({̂hl}N
l=1)), Norm(Fus({̂al}N

l=1)),

Norm(Fus({̂yl}N
l=1)))

(5)

For the first level fusion, we conduct multi-scale fusion to
make fused features contain ones from discriminative regions
of food images and insensitive to the geometrical deformation.
For the second level fusion, we fuse three different types of
features to capture semantic features of food images with the
biggest probability. Therefore, our proposed two-level fusion,
namely multi-scale multi-view feature aggregation is suitable
for food images.

In the test stage, a softmax classifier [40] is first trained
based on aggregated representations for each image from the
training dataset. Given one test image, we first obtain predicted
mid-level attribute representation, predicted high-level seman-
tic representation and deep visual features, and then aggregate
these different types of features into the final representation
via MSMVFA. Finally the aggregated features are fed them
into the classifier to obtain predicted results. Considering
excising food recognition methods adopt CNN based methods.
They all use an end-to-end CNNs for classification, where the
sigmoid layer is generally adopted for classification. For the
technical consistency in classification and fair comparison in
the following experiment, we thus adopt the softmax classifier
to classify final fused representations.

D. The Analysis of MSMVF

The advantage of MSMVF can be derived from two-
fold. First, MSMVF can obtain different types of deep fea-
tures under different supervised signals. Category-supervised
deep network can provide high-level semantic features while
ingredient-supervised deep network can provide fine-grained
attribute features. They are complementarity from different
perspectives and granularity. Second, MSMVF can explore
discriminative image regions with different scales. Fusing
these regional features from the coarse scale to the fine
scale contain discriminative information with the greatest
probability. In addition, such fused features can also be more
robust to the geometrical deformation. The final fused features
from MSMVF are thus comprehensive, complementarity and
discriminative. MSMVF for each food image is summarized
in Algorithm 1.

IV. EXPERIMENT

A. Dataset

To evaluate the performance of MSMVFA, we conduct
extensive experiment on three large-scale datasets, including
two benchmark datasets, namely ETH Food-101 [3] and
VireoFood-172 [15], and recently released large-scale Chi-
nese food dataset ChineseFoodNet [41]. The details of three
datasets are described below:

Algorithm 1 Visual Representation via MSMVF

ETH Food-101. It consists of 101,000 images with 101 cat-
egories. For each class, there are 1,000 images including
750 training images and 250 test images. Furthermore, Ingre-
dients101 [42] provides the ingredient vocabulary with the size
of 227 for this dataset2.

VireoFood-172. It contains 110,241 food images from
172 categories with 353 ingredients. For each food category,
60% of images are randomly selected for training, 10% for
validation and the remaining 30% for testing.

ChineseFoodNet. It consists of 185,628 images with
208 Chinese food categories. The whole dataset is split into
145,065, 20,253 and 20,310 images for training, validation and
testing, respectively. However, the label information for the
test set is not provided. Therefore, we divide the validation set
into two parts: about 20% (4,050) is used as the validation set
and the remaining 80% (16,503) as the test set. This dataset
does not provide associated ingredient information. Consid-
ering that both ChineseFoodNet and VireoFood-172 belong
to Chinese cuisine, we simply use the ingredient list from
VireoFood-172 for this dataset.

Fig. 4 shows some food images from different datasets.
We can see that there are overlapped food categories for
VireoFood-172 and ChineseFoodNet, such as Shredded cab-
bage. This is because these two datasets both belong to
Chinese cuisine.

B. Implementation Details

VGG [18], ResNet [19] and DenseNet [20] are currently
three basic and also popular CNN architectures. In order to val-
idate the effectiveness and robustness of our proposed method,

2http://www.ub.edu/cvub/ingredients101/
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TABLE I

THE PERFORMANCE COMPARISON IN % OF DIFFERENT COMBINATIONS OF SCALES FOR DEEP VISUAL FEATURES, MID-LEVEL ATTRIBUTE FEATURES
AND HIGH-LEVEL SEMANTIC FEATURES ON THE ETH FOOD-101 USING VGG-16, WHERE L1 CORRESPONDS TO THE GLOBAL CNN

REPRESENTATION AND L1 + L2 + L3 CORRESPONDS TO THE COMBINATION AMONG L1, L2 AND L3. FD MEANS

THE FEATURE DIMENSION. THE SAME FOR THE FOLLOWING TABLES

TABLE II

THE PERFORMANCE COMPARISON IN % OF DIFFERENT COMBINATIONS OF SCALES FOR DEEP VISUAL FEATURES, MID-LEVEL ATTRIBUTE FEATURES

AND SEMANTIC FEATURES ON THE ETH FOOD-101 USING RESNET-152

we conduct experiments on all these three basic CNN archi-
tectures. Without loss of generality, VGG-16, ResNet-152 and
DenseNet-161 are selected in our framework. The learning rate
of VGG-16 is set to 0.0001 while the learning rate of both
ResNet-152 and DenseNet-161 is set to 0.001 initially. They
are divided by 10 after 10 epochs on both category network
and ingredient network. The batch size of VGG-16, ResNet-
152 and DenseNet-161 is 48, 8 and 8, respectively. The train-
ing epochs are 30 for each network. For VireoFood-172 and
ChineseFoodNet, we select the model with the highest vali-
dation accuracy as the best model for testing. For Food-101,
there is no the validation dataset, and we select the model when
the training loss no longer changes. All the deep networks are
optimized using the stochastic gradient descent with momen-
tum of 0.9 and weight decay of 0.0001. We implemented all
the deep networks via the Caffe platform [43] on Nvidia GPUs
Titan X. Each model is pre-trained on the ImageNet.

In our experiment, we adopt three different scales [16],
corresponding to the global 256 × 256 images(L1), 128 ×
128 patches (L2) and 64×64 patches (L3), respectively. For
the global scale, we directly use the whole image to fine-
tune the model. As for the L2 scale, one image is divided
into four patches, and they share the same food category or
ingredient labels. We use all the patches that are resized to
256 × 256 to fine-tune the model. Similar strategy is adopted
for the L3 scale. For multi-scale fusion Fus(·) and multi-view
aggregation Agg(·), we both adopt simply concatenation oper-
ation. In addition, for the feature fusion from different patches
at certain scale, we adopt max-pooling. Note that although
other choices for types of scales and feature fusion methods

are possible, in this work, we emphasize the contribution of
our proposed framework.

For deep visual features, we extract 4096-dimensional acti-
vations from the FC7 layer of VGG-16, 2048-dimensional
activations from the ResNet-152, 2208-dimensional activa-
tions from the DenseNet-161. We extract high-level semantic
features at the category prediction layer from the category
network. Similarly, we extract mid-level attribute features at
the ingredient prediction layer from the ingredient network.

Similar to [10], we adopt both Top-1 and Top-5 accuracy
as the evaluation metrics.

C. Performance Analysis on ETH Food-101

In this subsection, we first conduct the performance com-
parison on feature fusion from different scales, and then the
performance comparison on multi-view feature aggregation.
Finally, we give the comparison with the state-of-the-art.

1) Performance Comparison on Multi-Scale Feature
Fusion: The results on ETH Food-101 from three types of
network architectures are displayed in Table I, Table II and
Table III, respectively. We can see that (1) For single scale
based method, L2 (128 × 128 patches) works better than
L1 and L3 for deep visual features for all three types of
networks. The reason is that different types of features works
better at different scales. When adopting the deep visual
features, L2 may contain more discriminative information
compared with L1 and L3. The large scale probably contains
much background while L3 scale contains incomplete
appearance and patterns for deep visual features. (2) In
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TABLE III

COMPARISON OF TOP-1 AND TOP-5 ACCURACY IN % FROM DIFFERENT COMBINATIONS OF SCALES FOR DEEP VISUAL FEATURES, MID-LEVEL
ATTRIBUTE FEATURES AND SEMANTIC FEATURES ON THE ETH FOOD-101 USING DENSENET-161

Table I, the performance of the combination among two
scales is higher than single scale based method for all three
types of features in many cases. Concatenating all three
scale levels gives the best performance over any subset in
Top-1 accuracy. We can also see similar trends when adopting
different networks in Table II and Table III. Note that the
better result benefits from the complementary advantages
from three different scales. Multi-scale fusion can improve
the recognition performance. (3) For three types of networks,
the performance of multi-scale fusion on the DenseNet is
best for its unique network architecture and efficient training
method.

2) Performance Comparison on Multi-View Feature Fusion:
In our experiment, three types of features, namely deep visual
features, mid-level attribute features and high-level semantic
features are used. Table IV shows the experimental results
from different combinations of different types of features,
where F1 denotes deep visual features with multi-scale fusion.
F2 and F3 denote mid-level attribute features and high-
level semantic features with multi-scale fusion, respectively.
Considering different types of features are in different range
of values, we first normalize each type of features and then
concatenate them. In our experiment, each type of features
is normalized to the [0, 1] interval, then standardized using
z-score method. From Table IV, we can see that (1) The
performance of the combination among two or three types of
features is generally higher than single type based method for
all three networks. Concatenating all three types of features
gives the best performance over any subset for all three types
of networks in both Top-1 and Top-5 accuracy. We can con-
clude that the features from different types describe food from
different aspects, and are thus very complementary. (2) The
performance of final features via two-level fusion is better than
ones via multi-scale fusion for all three types of networks.
This verifies MSMVFA can obtain more satisfactory results
through two-level fusion. (3) For three types of networks, the
performance of multi-scale multi-view feature aggregation on
the DenseNet-161 is best. Therefore, we use the DenseNet
as the basic network for another two datasets VireoFood-172
and ChineseFoodNet in the following experiment.

3) Comparison With the State-of-the-Art: We compare
against the state-of-the-art. Table V shows the results achieved
by existing methods and our method on the ETH Food-
101. The performance on different neural networks including
AlexNet, Inception V3, ResNet-200 and WRN is listed. From
Table V, we can see that (1) The performance of WRN is better

TABLE IV

COMPARISON OF TOP-1 AND TOP-5 ACCURACY IN % FROM MULTI-
VIEW FEATURE AGGREGATION UNDER THREE DIFFERENT NETWORK

ARCHITECTURES ON ETH FOOD-101. F1, F2 AND F3 DENOTE
DEEP VISUAL FEATURES, MID-LEVEL ATTRIBUTE FEATURES

AND HIGH-LEVEL SEMANTIC FEATURES FROM THE COMBI-
NATION OF THREE DIFFERENT SCALES, RESPECTIVELY.

F1 + F2 + F3 CORRESPONDS TO THE COMBINATION
AMONG F1, F2 AND F3

TABLE V

COMPARISON OF TOP-1 AND TOP-5 ACCURACY IN % OF OUR MODEL AND
OTHER METHODS ON THE ETH FOOD-101. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD TYPE

than other single networks. (2) WISeR [10] improved WRN by
adding the other slice branch network with slice convolutional
layers, which is used to capture specific vertical food layers.
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TABLE VI

COMPARISON OF TOP-1 AND TOP-5 ACCURACY IN % FROM DIFFERENT COMBINATIONS OF SCALES FOR DEEP VISUAL FEATURES, MID-LEVEL
ATTRIBUTE FEATURES AND SEMANTIC FEATURES ON THE VIREOFOOD-172 USING DENSENET-161

TABLE VII

COMPARISON OF TOP-1 AND TOP-5 ACCURACY IN % FROM DIFFERENT COMBINATIONS OF SCALES FOR DEEP VISUAL FEATURES, MID-LEVEL

ATTRIBUTE FEATURES AND SEMANTIC FEATURES ON CHINESEFOODNET USING DENSENET-161

TABLE VIII

THE RESULTS IN % FROM MULTI-VIEW FEATURE AGGREGATION FROM

DENSENET-161 ON VIREOFOOD-172 AND CHINESEFOODNET

The output of two branches is fused via the concatenation and
then fed to two fully connected layers for food classification.
(3) When using general ResNet, MSMVFA(ResNet)has better
performance than WISeR in Top-1 accuracy. When adopting
the DenseNet network, MSMVFA achieved the best perfor-
mance in Top-1 accuracy, and can improve the Top-1 perfor-
mance of WISeR specifically designed for food recognition
by 0.3%. Although marginal, MSMVFA achieves the state-of-
the-art food recognition performance of Top-1 accuracy. This
again verifies the effectiveness of MSMVFA.

D. Performance Analysis on VireoFood-172 and Chinese
FoodNet

The classification accuracy from multi-scale feature fusion
on VireoFood-172 is summarized in Table VI. Different

TABLE IX

COMPARISON OF TOP-1 AND TOP-5 ACCURACY IN % OF OUR MODEL

AND OTHER METHODS ON THE VIREOFOOD-172 DATASET. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD TYPE

TABLE X

COMPARISON OF TOP-1 AND TOP-5 ACCURACY IN % OF OUR MODEL AND

OTHER METHODS ON THE CHINESEFOODNET DATASET. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD TYPE

from Food-101, VireoFood-172 belongs to Chinese cuisine.
As shown in Table VI, for each type of features, we obtain the
highest Top-1 and Top-5 recognition accuracy by leveraging
the power of feature ensemble, which integrates three different
scales compared with single or two-scale fusion. Table VII
shows the classification accuracy from multi-scale feature
fusion on ChineseFoodNet. The number of categories and
samples from ChineseFoodNet is larger than VireoFood-172.
Because the ChineseFoodNet does not provide the ingredients,
we directly extracted the ingredient features from ingredient
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Fig. 5. The detailed comparison over each individual food category for MSMVFA via the confusion matrix. The column denotes the true food category and
the row denotes estimated category (best viewed under magnification).

Fig. 6. Some confused food categories from three datasets.

model of VireoFood-172. Again, we can see that concatenating
all three scale levels gives the best performance over any
subset in Top-1 and Top-5 accuracy.

Table VIII shows experimental results of multi-view fusion
on two datasets VireoFood-172 and ChineseFoodNet, respec-
tively. In VireoFood-172, the performance of fusing three types
of features achieves the best performance in Top-1 accuracy.
In ChineseFoodNet, the performance of fusing three types
of features is comparable with the best performance. The
possible reason is that we simply adopted the features from the
ingredient model of VireoFood-172 and the ingredient features
are not best for ChineseFoodNet.

Finally, we compared our method with other baselines
on both VireoFood-172 and ChineseFoodNet. The recogni-
tion results on VireoFood-172 are summarized in Table IX.
MultiTaskDCNN [15] is multi-task method with two types
of output layers, one is classification layer and the other is
ingredient prediction layer. For fair comparison, we realized
the version of MultiTaskDCNN based on the DenseNet-161
network. As Table IX shown, although VireoFood-172 is
far different from ETH Food-101, similar results have been
observed, our methods also achieve the best performance.
Similar results can also be observed on ChineseFoodNet in
Table X.

E. Discussions

To our knowledge, our proposed framework has achieved
the state-of-art performance for food recognition on three
popular large-scale food datasets. However, there are still some
food images, which are hard to recognize. This section lays
out additional observations that follow from our results to find
the probable reasons.

Fig. 5 showed the confusion matrix of MSMVFA over each
individual food category. We can see that our method still
does not provide perfect accuracy for some food categories.
We further observe some confused food categories based on
Fig. 5, and Fig. 6 shows some confused food categories from
three datasets. We can see that these food categories are very
similar in the visual appearance and texture. Even the humans
are not easy to distinguish among these food categories.
We probably need to design more fine-grained visual feature
learning methods to classify these food categories.

V. CONCLUSION

In this paper, we propose a Multi-Scale Multi-View Fea-
ture Aggregation (MSMVFA) scheme for food recognition.
MSMVFA incorporates both food images and ingredient con-
text information to aggregate high-level semantic features,
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mid-level attribute features and deep visual features into the
unified representation to capture the semantics of food images
with the greatest probability. Besides, by multi-scale fusion of
deep convolutional activation features for each type of features,
MSMVFA is able to learn more robust and discriminative
features to handle geometric deformation. By aggregating
features via two-level fusion, namely multi-scale feature fusion
for each type of features and multi-view feature aggregation
among three types of features, MSMVFA can generate more
robust, discriminative and comprehensive representation to
cope with sophisticated visual complexities unique for food
images. Extensive experimental results have demonstrated that
MSMVFA outperforms all the baseline models on all popular
large-scale benchmark food datasets in Top-1 accuracy.

In the future, we plan to conduct the research on four
directions: (1) We plan to introduce the attention mecha-
nism [38] into our scheme to localize discriminative regions
rather than fixed patch division to improve the performance
of food recognition. Also salient features can be learned from
different methods, such as compressive sensing [50] and vari-
ational auto-encoder [51] for the performance improvement.
(2) Existing multi-scale methods should predefine the number
of regions, and we can utilize the deep reinforcement learning
method [52] to automatically detect discriminative regions for
food recognition, such as [53]. (3) We can extend our scheme
to the problem of multiple items in one food image. (4) We
generalize the proposed scheme to other fields such as social
images with rich attributes to enable social image recognition.
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