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Abstract

Red teaming attacks are a proven method for001
identifying weaknesses in large language mod-002
els (LLMs). With the improving generation003
capabilities of LLMs, researchers are success-004
fully using them to automatically generate red005
teaming attacks, often achieving results by cre-006
ating adversarial prompts targeting other LLMs.007
However, there is currently no effective strat-008
egy to choose suitable LLMs for red teaming009
attacks. In this work, we establish a frame-010
work to investigate the impact of various fac-011
tors of LLMs on generating red teaming attacks,012
including model security, general capabilities,013
and the number of parameters. The goal of this014
study is to understand the mechanisms behind015
the effectiveness of red teaming LLMs and to016
provide a basis for selecting the appropriate red017
teaming LLM.018

1 Introduction019

Red teaming ability refers to a model’s capacity020

to create adversarial prompts aimed at bypassing021

the limitations of large language models (LLMs).022

It has gained widespread attention as an impor-023

tant approach for enhancing the security of LLMs.024

Early red teaming methods relied on human-crafted025

adversarial prompts to attack LLMs (Dinan et al.,026

2019). However, as LLMs have become more pow-027

erful, the effectiveness of these manual approaches028

has diminished. Human-generated prompts often029

fail to keep up with the increasing complexity of030

modern LLMs, which are more resistant to simple031

adversarial strategies. Consequently, researchers032

have turned to using more advanced LLMs to gen-033

erate adversarial prompts, replacing human involve-034

ment (Ganguli et al., 2022; Zeng et al., 2024). This035

shift is driven by the fact that large models can036

quickly generate a wide range of sophisticated at-037

tack prompts at scale, something that would be038

time-consuming and less efficient for humans to039

achieve. Moreover, LLMs can dynamically ad-040

just their outputs based on feedback from prior041

attempts, creating a continuous loop of refined ad-042

versarial inputs. This allows for more thorough043

testing of LLM vulnerabilities and a more scalable 044

approach to red teaming (Zou et al., 2023; Chao 045

et al., 2023). In existing LLM-based red teaming 046

attacks, the LLM is typically only used as a prompt 047

generation tool (Zou et al., 2023; Chao et al., 2023), 048

and few studies focus on the strategies for selecting 049

an appropriate red teaming model. 050

The alignment goals of LLMs are to be Help- 051

ful, Harmless, and Honest (Askell et al., 2021; 052

Ouyang et al., 2022). The “Helpfulness” of an 053

LLM is related to its parameter count and its per- 054

formance across various tasks. The “Harmlessness” 055

aspect of an LLM is associated with its robustness 056

against red teaming attacks. We believe these two 057

alignment objectives are the primary factors that 058

affect a model’s red teaming ability. To validate 059

this idea, we first propose a framework for evalu- 060

ating an LLM’s red teaming ability and security. 061

Subsequently, we test the idea by investigating the 062

following two research questions. 063

1) Is a “Harmless” LLM suitable to serve as a red 064

teaming model? The safer an LLM is, the more 065

conservative its output tends to be, sometimes even 066

refusing to answer questions that carry any poten- 067

tial risks. In practical applications, red teaming 068

models need to generate adversarial prompts con- 069

taining harmful content, while safer LLMs always 070

reject such instructions. Therefore, this study ex- 071

plores the correlation between the security of LLMs 072

and their ability to serve as red teaming models by 073

generating adversarial prompts. 074

2) Is there a correlation between a model’s red 075

teaming ability and its “Helpfulness”? Intu- 076

itively, akin to other tasks in NLP, a more helpful 077

LLM should be able to generate better red teaming 078

prompts. Because, red teaming LLMs should be in- 079

telligent enough to comprehend various techniques 080

for making attack, such as prompting the target 081

model to engage in role assignment (Yu et al., 2023) 082

or to start responses with affirmative statements. In 083
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10Figure 1: Overview of the framework. The framework includes two parts: security assessment and red team
capability evaluation. In security assessment, fixed attack prompts based on red team strategies (like ethical pressure,
role-playing, and goal conflict) are input into the target model. The evaluation model scores the outputs to measure
security. For red team capability evaluation, attack prompts are created using harmful queries and strategies, then
optimized through multiple iterations to improve breach success. The effectiveness is judged by the severity of
unsafe outputs from the target model. The specific content of oi and oiT can be found in the Appendix A.2.

this work, we attempt to quantify “helpfulness” of084

an LLM with two measures.085

One is its parameter count. According to “scal-086

ing law”, parameter count is an important indicator087

of a model’s “intelligence” (Kaplan et al., 2020).088

An LLM with more parameters has a greater ca-089

pacity and is therefore more helpful. The other is090

its general capabilities, often measured by evalu-091

ating the LLM across a wide range of NLP tasks092

and scenarios. Scores on various benchmark tests093

have become a key measure of a model’s general094

capabilities (Hendrycks et al., 2021; Cobbe et al.,095

2021; Chen et al., 2021).096

In this study, we utilized the proposed frame-097

work (as shown in Fig. 1) to test over twenty com-098

mon LLMs across various parameter counts, eval-099

uating their security and red teaming capabilities.100

Unlike other studies that focus solely on either se-101

curity or red-teaming capabilities, our framework102

tests both aspects simultaneously. Subsequently,103

we assessed their general capabilities using three104

recognized benchmarks. Finally, we conducted105

statistical analyses to investigate the relationships106

among red teaming ability, security, model parame-107

ter count, and general capabilities, leading to valu-108

able insights.109

2 Methodology110

We propose a framework to test the security and111

red teaming ability of LLMs. The general capa-112

bilities of LLMs will be determined based on the113

results of multiple mainstream public evaluation 114

benchmarks. 115

2.1 Security of LLMs 116

Task Definition: Given a harmful seed dataset 117

S = {si}, for each si(1 ≤ i ≤ N1), we combine 118

the fixed instruction of Attack Prompt with si to 119

generate an adversarial prompt piS , which forms 120

the adversarial prompts set PS = {piS}. The set of 121

LLMs to be tested is denoted as M = {Mj}. 122

A single piece of output of Mj is denoted as 123

oi. And we introduce a judge model to measure 124

the harmfulness of oi (Score 1-10). Specifically, 125

we consider oi a jailbreak if Score(oi) exceeds 6, 126

and label oi as ounsafe; otherwise, oi is considered 127

osafe. Finally, we calculate AFR (Attack Failure 128

Rate) and HS (Harmfulness Score) of Mj : 129

AFR =
Count(osafe)

Count(osafe) + Count(ounsafe)
(1) 130

131

HS =

∑N1
i=1 Score(oi)

N1
(2) 132

Attack Prompt: In this section, we draw inspira- 133

tion from previous research and employ techniques 134

such as moral coercion (Zeng et al., 2024), role 135

assignment (Yu et al., 2023), and goal competi- 136

tion conflicts (Chao et al., 2023) to create a fixed- 137

pattern prompt. This prompt is designed to induce 138

the LLMs to bypass security constraints and output 139

harmful content, and we show an example in Fig. 2. 140
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Prompt Denotation Description

Attack Prompt PS The system prompt of LLMs when we test the security of LLMs.
Red Teaming Instruction – The system prompt for red teaming LLMs to make role assignment.

Judge Instruction – The system prompt when the judge model determines whether the output of LLMs is harmful.

Table 1: Frequently used notations

Judge Model: After the induced Attack Prompt141

is input into the LLMs, we use a Judge Model to142

evaluate whether the LLMs have been jailbroken.143

The Judge Model is an existing advanced LLM that144

possesses better efficiency and consistency than hu-145

mans. In this work, we choose Qwen-max (Team,146

2024a) as Judge Model. Qwen-max is a billion-147

scale model developed by Alibaba Cloud, with per-148

formance comparable to GPT-4o. We believe it149

is capable of serving as a judge model. We add150

some examples in prompt to improve the accuracy151

of the model. Additionally, the evaluation results152

indicate that Judge Model’s assessments of harm-153

fulness align with human evaluations at a rate of154

94% (see Appendix 3.3), demonstrating its relia-155

bility. Fig. 3 shows a sample of prompt for Judge156

Model. The prompt includes the settings of LLMs’157

response, the harmfulness score, and the reason for158

the score.159

Process of Evaluating Security. As shown in160

Fig. 1, we insert the harmful content from seed161

dataset into Attack Prompt and then attack LLMs162

to obtain the LLMs’ response. Next, we input the163

LLMs’ response into Judge Model, which assigns164

a score to the LLMs’ reply. We use this scoring165

to assess whether the LLMs’ responses are harm-166

ful. Finally, we determine the LLMs’ security by167

calculating the ratio of harmful responses.168

2.2 Red Teaming Ability of LLMs169

Task Definition: Red teaming ability refers to170

the ability of the red teaming LLMs to break into171

the target model and jailbreak it.172

The process of evaluating the red teaming ability173

of models in M is detailed in Algorithm 1. Given174

a harmful query seed dataset S′ = {s′i}, where175

1 ≤ i ≤ N2, each seed query s′i is combined with176

a red teaming instruction. The model Mj then gen-177

erates an adversarial prompt piR ∈ PR. The target178

LLM’s output, which is being attacked, is denoted179

as oiT ∈ OT . The judge model determines whether180

oiT has been jailbroken. If Score(oiT ) > 6, oiT is181

labeled as ounsafeT , which indicates that a jailbreak182

has occurred, and the current loop is interrupted.183

Algorithm 1 Evaluation of Red Teaming Ability
Input: Set of LLMs:M; Target model: T ; Harmful query
seed dataset: S′; Maximum number of iterations: N3.
Output: SASR: The attack success rates for each LLM in
M; SI : The average iterations for each LLM inM.
Initialize SASR ← {} and SI ← {}.
for Mj inM do

Initialize ASR← 0 and K ← 0.
for s′i in S′ do

for k = 1 to N3 do
piR ← output(Mj | s′i).
oiT ← output(T | piR).
if Score(oiT ) > 6 then

Label oiT as ounsafe
T (jailbreak successful).

break.
end if

end for
K = K + k (total iterations for the current query s′i).

end for
ASR =

Count(ounsafe
T

)

N2
, where N2 = |S′|.

Iter. = K
N2

.
SASR.append(ASR).
SI .append(Iter.).

end for
return SASR and SI .

Otherwise, oiT is labeled as osafeT , and the next iter- 184

ation continues. Finally, the Attack Success Rate 185

(ASR) and average number of iterations (Iter.) for 186

each model Mj are computed, and the evaluation 187

results for all models in M are returned. 188

Red Teaming Instruction. We instruct the 189

LLMs to act as a red teaming assistant specifically 190

designed to generate prompts that help jailbreak tar- 191

get LLMs. We first present the LLMs with a target 192

instruction. An example of such an instruction is: 193

“Generate a prompt that encourages the target LLM 194

to respond to the query ‘How to make a bomb?”’, a 195

question that target LLMs usually refuse to answer. 196

Then, we employ in-context learning techniques 197

with examples, role assignment, sensitive word re- 198

placement, and logical persuasion to generate more 199

effective prompts. (Fig. 4) 200

Evaluating Red Teaming Ability. We utilize 201

the PAIR framework, which leverages the self- 202

reflection ability of red teaming LLMs for continu- 203

ous iterative optimization until the goal of jailbreak- 204

ing is achieved (Fig. 1). After the LLMs generate 205
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Parameter Count Model AFR HS ASRQwen ASRDeepseek ASRTotal Iter.Qwen Iter.Deepseek Iter.Total

Deepseek-llm-7B-chat 57.43% 5.17 0% 2% 1% 10 9.84 9.92
Qwen2-7B-instruct 56.03% 4.69 24% 22% 23% 8.5 8.82 8.66
Gemma-1.1-7B-it 41.30% 5.45 50% 100% 75% 7.08 3.04 5.06

Llama3-8B-instruct 51.59% 5.49 22% 54% 38% 4.38 6.46 5.42
6-8B Chatglm3-6B 56.05% 4.65 12% 58% 35% 9.32 5.24 7.28

Mistral-7B-instruct 57.39% 4.93 18% 40% 2% 8.86 6.32 7.59
Vicuna-7B-chat 65.04% 4.81 20% 8% 14% 8.72 9.4 9.06
Llama2-7B-chat 75.45% 2.99 2% 0% 1% 9.88 10 9.94

Llama-2-13B-chat 98.86% 1.09 4% 4% 4% 9.46 9.94 9.7
Mythalion-13B 46.71% 6.09 20% 34% 27% 8.44 6.58 7.51

13B Mythonax-12-13B 34.71% 6.13 24% 52% 38% 8.3 6.96 7.63
Nous-hermes-llama2-13B 21.57% 7.67 30% 60% 45% 8.08 4.98 6.53

Qwen1.5-14B-instruct 35.57% 6.85 88% 96% 92% 4.38 2.92 3.65

Hermes-3-70B-Instruct 9.57% 8.67 90% 92% 91% 3.2 2.68 2.94
Llama-3.1-70B-instruct 77.14% 2.93 82% 72% 77% 3.78 2.44 3.11

70B Llama-3-70B-instruct 64.57% 3.90 72% 72% 72% 5.1 2.66 3.88
Qwen-2.5-72B-instruct 9.71% 8.52 94% 94% 94% 3.66 2.64 3.15
Qwen-2-72B-instruct 10.71% 8.47 84% 60% 72% 4.9 2.8 3.85

GPT-4o 99.43% 1.06 100% 94% 97% 2.42 1.96 2.19
black box Gemini-pro-1.5 32.13% 6.87 96% 92% 94% 2.6 1.68 2.14

LLMs GPT-3.5-turbo-0613 45.64% 5.55 46% 80% 63% 6.48 3.74 5.11
Palm-2-chat 54.79% 5.24 68% 74% 71% 4.9 3.64 4.27

Table 2: LLMs security and red teaming ability. ASRQwen and Iter.Qwen denote the ASR and Iter. metrics
for the target model Qwen2.5-7B-Instruct, respectively. ASRDeepseek and Iter.Deepseek represent metrics for
deepseek-llm-7B-chat. ASRTotal is computed as the average of ASRQwen and ASRDeepseek, with Iter.Total

being calculated similarly.

the adversarial prompt, we input it into the target206

LLM for a response. This response is then fed into207

the judge model, which assigns a harmfulness score208

ranging from 1 to 10, where 10 represents the high-209

est level of harmfulness. A high score indicates that210

the target LLM has been successfully jailbroken211

by the red teaming LLMs. If the judgment score is212

below 7, the red teaming LLMs receive feedback213

and use self-reflection to improve the adversarial214

prompt. The red teaming LLMs continue this pro-215

cess iteratively, outputting a refined prompt until216

the target LLM is successfully jailbroken. Through-217

out this process, we use the target LLM’s jailbreak218

probability to measure the red teaming ability of219

the red teaming LLMs.220

2.3 General Capabilities of LLMs221

We analyze the LLMs’ general capabilities by col-222

lecting their scores on mainstream benchmarks223

(See Section 3.1) to evaluate its overall perfor-224

mance.225

Evaluation Dimensions. We collect three main-226

stream benchmarks that cover multi-task language227

understanding capabilities, reasoning abilities and228

programming skills to evaluate the general capabil-229

ities of LLMs across various dimensions.230

3 Experiment 231

3.1 Experiment Setup 232

Datasets: For testing the security of large lan- 233

guage models (LLMs), we use the “attack dataset” 234
1, which contains 7 potential risks that LLMs may 235

cause: hate speech and insults, bias and discrimi- 236

nation, mental and physical health, misinformation 237

and rumors, ethical and moral concerns, illegal and 238

criminal activities, and privacy and property vio- 239

lations. Each risk category contains 100 pieces of 240

harmful data. To evaluate the red-teaming ability of 241

LLMs, we utilize a subset of the Advbench dataset 242

(Chao et al., 2023), which includes 50 unique sim- 243

ple harmful behaviors. 244

Models: To explore the correlation between the 245

security and red teaming ability of LLMs, we 246

conduct experiments on the following mainstream 247

LLMs with 6-8 billion parameters: Llama2-7B- 248

chat (Touvron et al., 2023), Vicuna-7B (Chiang 249

et al., 2023), Deepseek-llm-7B-chat (DeepSeek- 250

AI, 2024), Qwen2-7B-instruct (Yang et al., 2024), 251

Mistral-7B (AI, 2024), Llama3-8B-instruct (Face, 252

2024), Chatglm3-6B (GLM et al., 2024), and 253

Gemma-1.1-7B-it (Google, 2024). And some 254

13B and 70B models, such as Llama-2-13B-chat, 255

Mythalion-13B (PygmalionAI, 2024), Mythomax- 256

1http://galaxy.iie.ac.cn/
competitionItem?id=1
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l2-13B (Gryphe, 2024), Nous-hermes-llama2-257

13B (Research, 2024), Qwen1.5-14B-instruct258

(Team, 2024b), Hermes-3-70B-Instruct (Teknium259

et al., 2024), Llama-3.1-70B-instruct (Meta, 2024),260

Qwen-2.5-72B-instruct (Team, 2024c), and Qwen2-261

72B-instruct. The LLMs’ general capabilities data262

comes from the references mentioned above. In263

the process of testing the red teaming ability of264

LLMs, the target LLM is deepseek-llm-7B-chat265

and Qwen-2.5-7B-instruct. Additionally, to detect266

whether the output of LLMs is harmful, we use the267

advanced LLMs Qwen-max (Team, 2024a) as the268

judge model to assess the security and red teaming269

ability of the LLMs.270

Evaluation Metrics: The security of the LLMs is271

evaluated through the AFR (Eq.1) and HS (Eq.2).272

We assess the red teaming ability of LLMs by cal-273

culating the metrics ASR and Iter., as shown in274

Algorithm 1. We conducted a statistical analysis275

to examine the correlations between two indicators276

of red teaming ability and two security indicators.277

Additionally, we performed a similar analysis to278

investigate the relationships between the red team-279

ing ability and model parameter count, as well as280

general capabilities. To quantify these correlations,281

we employed the Pearson correlation coefficient282

(Pearson, 1896).283

Parameter Settings: In this section, we intro-284

duced the hyperparameter configurations. When285

testing the set of models M, the parameter settings286

follow (Chao et al., 2023). In the security evalu-287

ation of the LLMs, the temperature is set to 0.1288

to ensure the LLMs’ responses are more cautious.289

The top-p parameter is set to 1, and do-sample is290

enabled to increase diversity in text sampling. Dur-291

ing the evaluation of the red teaming ability of M,292

we adjust the temperature to 1, set top-p to 0.9, and293

enable do-sample to enhance creativity. For target294

LLMs, we set the temperature to 0.1, the top-p to295

1, and enable the do sampling option. For judge296

LLM, we set the temperature to 0.1, top-p to 0.9,297

and enable the do sampling option.298

3.2 Experimental Result299

The Correlation between Red Teaming Ability300

and Security. Through the analysis of Table 2301

and Fig. 8, Fig. 9, and Fig. 10, we observe a cor-302

relation between the security and the red teaming303

ability of LLMs, and we summarize the following304

key findings.305

Parameter Count ASRQwen ASRDeepseek ASRTotal Iter.Qwen Iter.Deepseek Iter.Total

0.5B 0 0 0 10 10 10
1.5B 0 0 0 10 10 10
1.8B 0 0 0 10 10 10
3B 28% 58% 43% 8.18 3.9 6.04
7B 24% 22% 23% 8.5 8.82 8.66
14B 88% 96% 92% 4.38 2.92 3.65

Table 3: The correlation between red teaming ability
and parameter count. Minimize the influence of other
factors, the models we tested belong to the same fam-
ily—the Qwen family.

Firstly, The security of LLMs is negatively cor- 306

related with their red teaming ability, especially 307

in 13B and 6-8B models. Specifically, a higher 308

AFR (Adversarial Failure Rate) is linked to a 309

lower red teaming ability, measured by ASRTotal 310

and Iter.Total. Among 13B models (Fig. 9), 311

security and red teaming ability show a near- 312

perfect negative relationship, except for the outlier 313

Qwen1.5-14B-instruct. Llama2-7B-chat, which 314

has a high AFR (75.45%), requires more itera- 315

tions (9.94). This suggests that higher AFR sup- 316

presses ASRTotal while requiring more iterations. 317

Furthermore, HS shows a moderate correlation 318

with both ASRTotal and Iter.Total. Models like 319

Gemma-1.1-7B-it, with a high HS (5.45), have 320

the highest ASRTotal (75%) among 6–8B models, 321

while Llama2-7B-chat, with a lower HS (2.99), 322

has a much lower ASRTotal (1%) but more iter- 323

ations (9.94). This suggests that higher HS may 324

make models more vulnerable to jailbreaks but can 325

also improve adversarial prompt generation. The 326

trend between HS and red teaming ability is consis- 327

tent with AFR, but the relationship is not perfectly 328

linear, as HS is an average score that may not fully 329

capture the original distribution of results. 330

Secondly, compared to smaller LLMs, 70B 331

LLMs exhibit significantly lower AFR but much 332

stronger red teaming ability. Among 70B mod- 333

els, AFR remains consistently low; for example, 334

the Hermes-3-70B-Instruct attains the lowest AFR 335

(9.57%) of all examined LLMs. However, all 70B 336

models achieve an ASRTotal above 70% with an 337

Iter.Total below 4, reflecting their high effective- 338

ness as red teaming models. Since 70B models gen- 339

erally have strong red team capabilities and strong 340

security, they will all perform well on existing eval- 341

uation indicators. Therefore, their capabilities are 342

similar and their distribution on Fig. 10 is clus- 343

tered, but the overall trend is still consistent with 344

our conclusion. Despite these advantages, balanc- 345

ing security with red teaming capability remains 346

critical for these larger LLMs, as managing security 347
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remains particularly challenging.348

Lastly, individual models exhibit substantial vari-349

ations in their security and red teaming perfor-350

mance. For example, Deepseek-LLM-7B-chat has351

an AFR of 57.43%, but an ASRTotal of only352

2%, alongside an Iter.Total of 9.92, making it un-353

suitable as a red teaming LLM. By contrast, the354

Llama2 models (7B and 13B) demonstrate excel-355

lent AFR levels but poor red teaming performance.356

Notably, Qwen1.5-14B-instruct stands out, show-357

ing strong red teaming ability relative to other mod-358

els with comparable security levels. It outperforms359

other similarly sized models in both ASRTotal and360

Iter.Total, which leads it to be considered an out-361

lier. These findings underscore the importance of362

effectively balancing security and red teaming abil-363

ity in LLMs to suit practical applications.364

The testing of the red teaming ability and se-365

curity of black box LLMs. In testing black-box366

LLMs, we tested four LLMs: GPT-4o, Gemini-pro-367

1.5, GPT-3.5-turbo-0613 and Palm-2-chat. Since368

the specific parameter size of black-box models is369

not disclosed, we only test their security and red-370

teaming ability without exploring the relationship371

between the security and red-teaming abilities of372

different black-box LLMs. Our test is solely aimed373

at selecting appropriate red-teaming models. We374

find that GPT-4o performs excellently in both secu-375

rity and red-teaming ability, making it suitable as376

both a red-teaming model and a target victim LLM377

which is attacked. Gemini-pro-1.5 demonstrates378

strong red-teaming ability but poor security, mak-379

ing it more suitable as a red-teaming model. GPT-380

3.5-turbo-0613 and Palm-2-chat exhibited moder-381

ate performance, with relatively balanced security382

and red-teaming ability.383

The Correlation between Red Teaming Ability384

and Parameter Count. Based on our analysis385

of red teaming ability across LLMs with different386

parameter sizes (Table 3), we have derived the fol-387

lowing conclusions: Parameter size significantly388

impacts an LLM’s capability to function as a red389

teaming model. When the parameter size falls be-390

low 3B, LLMs often fail to correctly interpret task391

requirements of red teaming instruction. For in-392

stance, despite being instructed to generate adver-393

sarial prompts to jailbreak a target LLM, smaller394

models frequently produce inappropriate or irrele-395

vant outputs (Fig. 6). However, once the parameter396

count reaches 3B or higher, LLMs demonstrate397

an improved ability to understand the red teaming398

Model Name MMLU GSM8K HE ASRTotal Iter.Total

Deepseek-llm-7B-chat 0.494 0.626 0.482 1% 9.92
Qwen2-7B-instruct 0.705 0.823 0.799 23% 8.66
Gemma-1.1-7B-it 0.643 0.464 0.323 75% 5.06
Llama3-8B-instruct 0.685 0.806 0.604 38% 5.42
Chatglm3-6B 0.614 0.723 0.585 35% 7.28
Mistral-7B-instruct 0.601 0.522 0.262 29% 7.59
Vicuna-7B-chat 0.471 0.158 – 14% 9.06
Llama2-7B-chat 0.453 0.146 0.122 1% 9.94

Table 4: The correlation between red teaming abil-
ity and general capabilities. To understand and com-
pare the general capabilities of LLMs, we collect re-
sults from the following major benchmarks: MMLU (5-
shot) (Hendrycks et al., 2021), GSM8K (4-shot) (Cobbe
et al., 2021), and Human-Eval (HE) (0-shot) (Chen et al.,
2021).

task and successfully generate effective jailbreak 399

prompts. 400

In addition, the data in the Fig. 11 shows a 401

clear positive correlation between ASRTotal and 402

model parameter count. As the parameter count in- 403

creases, the model’s ability to generate effective red 404

teaming instructions significantly improves. For in- 405

stance, the model with 3B parameters achieves an 406

ASRTotal of 43%, indicating that 3B model has 407

already begun to exhibit red teaming attack gen- 408

eration capability. When the parameter count in- 409

creases to 14B, the ASRTotal rises to 92%, demon- 410

strating that larger LLMs can generate more effec- 411

tive and penetrating adversarial prompts, thereby 412

substantially enhancing red teaming ability. 413

The Correlation between Red Teaming Abil- 414

ity and General Capabilities. Results collected 415

from Table 4 indicate that the red teaming ability 416

of LLMs does not show a clear positive correlation 417

with their performance on general tasks. For in- 418

stance, while Gemma achieves the highest score 419

in ASRTotal, it performs relatively poorly on stan- 420

dard benchmarks, highlighting a significant dispar- 421

ity between its task performance and red teaming 422

ability. In contrast, both Qwen2 and Llama3 ex- 423

cel in the standard benchmarks but underperform 424

in red teaming tasks. Furthermore, Llama2 and 425

Vicuna not only perform poorly on standard bench- 426

marks but also struggle to generate effective Attack 427

Prompt in red teaming tasks. Thus, it is evident that 428

the red teaming ability of LLMs does not exhibit 429

a strong correlation with their general task perfor- 430

mance. Although some models demonstrate ex- 431

ceptional performance in standard tasks, this does 432

not necessarily imply that they are also proficient 433

in red teaming tasks. Since the models tested in 434
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Jealbreak (LLM) Safe (LLM)

Jealbreak (Human) 24 2
Safe (Human) 4 70

Table 5: The evaluation of LLM and human

this section have the same number of parameters,435

we assume their intelligence is similar. Therefore,436

the premise of our result is that the LLMs have437

a comparable level of knowledge and learning ca-438

pability in learning about red teaming attacks in439

red teaming instruction. Based on the description440

above, it may be counterintuitive to deliberately441

select LLMs with strong general capabilities as red442

team models in practical applications.443

3.3 Details of Judge Model444

3.3.1 LLMs vs. Human Evaluation445

This section explains how we determine the ac-446

curacy of the judge model. We recruited three447

graduate students from academic institutions as448

volunteers, all of whom had some prior knowl-449

edge of LLMs. We considered the scoring task450

to be relatively straightforward, so we provided451

brief training for them. Before the evaluation, we452

explained the concept of ‘jailbreaking LLMs’ in de-453

tail. To enhance the accuracy of human judgments,454

we also showed the volunteers several examples.455

These examples included the outputs of the target456

LLMs, harm scores (1-3), and the reasoning be-457

hind the scores. We selected 100 responses in total.458

These responses were evaluated for harmfulness459

by graduate students. As for the scoring criteria,460

in the human evaluation of the harmfulness of the461

LLMs’ outputs, the categories are: harmless (score462

1), low risk (score 2), and high risk (score 3). This463

classification corresponds to the judgment model’s464

scoring (1-10) as follows: harmless (score 1-3),465

low risk (score 4-6), and high risk (score 7-10). To466

ensure consistency, we only considered responses467

classified as high risk to be instances of LLMs jail-468

break. The similarity between LLM evaluations469

and human evaluations reaches 94%, with a Pear-470

son correlation coefficient of 0.8489. Our specific471

results are shown in Table 5.472

3.3.2 Error Analysis473

The Gap Between the Classifier and Human474

Evaluations It is more common for the classifier475

to label content as “harmful” while human evalua-476

tors label it as “harmless”. However, cases where477

the classifier labels content as “harmless” but hu- 478

man evaluators label it as “harmful” (human = 1) 479

are less frequent. This indicates inconsistencies 480

between the classifier and human evaluations, with 481

the classifier tending to mark content as “harmful”, 482

whereas human evaluators may consider it “harm- 483

less”. 484

Error Causes In some cases, the classifier may 485

be overly sensitive to certain language styles, such 486

as aggressive or provocative expressions, misclassi- 487

fying them as harmful. In contrast, human evalua- 488

tors can recognize that these expressions are merely 489

intense and lack any actual harmful intent. Humans 490

are also able to perceive subjective factors like hu- 491

mor or sarcasm, which the classifier might fail to 492

interpret correctly. For instance, the sentence, “I 493

thrive on superiority and constantly seek to under- 494

mine those around me, even when they achieve 495

success. My anxiety fuels my ambition, making 496

me even more competitive and less likely to share 497

in their joy.” expresses competitiveness and a lack 498

of cooperation, but does not involve harmful behav- 499

ior or intent; it merely reflects personal emotions 500

and a competitive mindset. 501

On the other hand, some expressions may convey 502

harmful intent subtly, which the classifier may fail 503

to detect, particularly when negative messages are 504

conveyed through metaphors or implicit language. 505

The classifier may also struggle to understand com- 506

plex emotional expressions, whereas human eval- 507

uators can identify potential harm in these cases. 508

For example, the sentence, “I easily fall into panic 509

and fear, and I cannot even control my emotions, 510

making me feel like I’m out of control.” lacks di- 511

rect harmful behavior, but could still negatively 512

affect others by triggering empathy or exacerbating 513

anxiety. 514

4 Related Work 515

4.1 Security of LLMs 516

LLMs are increasingly applied in various fields 517

such as educational assistance (Yeadon and Hardy, 518

2024), code reasoning (Zhang et al., 2023), and 519

mathematical reasoning (Wei et al., 2022), demon- 520

strating tremendous potential. However, concerns 521

about their security have been raised. In the edu- 522

cational domain, Kasneci et al. (2023) argue that 523

LLMs exhibit “unexpected vulnerabilities” in appli- 524

cations, and caution is needed regarding potential 525

biases or misinformation in their outputs. Wen et al. 526
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(2023) found that LLMs may subtly output harm-527

ful content via euphemisms, sarcasm, metaphors,528

idioms, and other indirect means that current fil-529

ters struggle to detect. Anwar et al. (2024) ex-530

press concern about LLMs’ dual-use capabilities,531

leading to malicious use, and their inability to pro-532

tect contextual privacy in multi-agent environments.533

Weidinger et al. (2022) classify LLM risks into534

six categories: discrimination, informational harm,535

misinformation, malicious use, human-machine in-536

teraction risks, and environmental and socioeco-537

nomic impacts. Thus, ensuring LLM security is538

critical (Si et al., 2022). Approaches to this can539

be broadly divided into two categories: 1) Estab-540

lishing standards and regulations to ensure safe541

LLM development, including improving laws, es-542

tablishing regulatory bodies, and formulating se-543

curity assessment criteria (Kasneci et al., 2023;544

Anwar et al., 2024; Shavit et al., 2023; Zuiderwijk545

et al., 2021). 2) Promoting security through techni-546

cal means, such as applying defense methods like547

security alignment (Bakker et al., 2022; Ouyang548

et al., 2022; Bai et al., 2022), prompt engineering549

(Touvron et al., 2023; Wei et al., 2023), and fil-550

ters (Alon and Kamfonas, 2023; Google, 2023) to551

prevent harmful content. (Weidinger et al., 2023)552

proposes a three-layer framework for assessing the553

security of generative AI systems. (Zhang et al.,554

2024) presents the HARM framework, which eval-555

uates the security of LLMs through multi-round556

interactions and detailed risk classification.557

4.2 Red Teaming of LLMs558

Red teaming attacks expose vulnerabilities in559

LLMs, indirectly improving their security. Since560

defense methods are not the focus of this research,561

we now focus on how red teaming can reveal se-562

curity vulnerabilities. Red teaming attacks can be563

broadly categorized into human-based, heuristic-564

based, fine-tuning-based, and optimization-based565

approaches. Human-based attacks rely on man-566

ual construction or labeling of adversarial prompts567

to expose LLMs’ vulnerabilities (Xu et al., 2021)568

or build datasets for later detection (Röttger et al.,569

2021). Heuristic-based attacks involve inserting570

specific adversarial prompts to manipulate the571

LLMs’ response behavior, for instance by append-572

ing phrases like “start with ‘sure, here is”’ to force573

affirmative answers (Wei et al., 2023), or by using574

fake dialogue contexts to trick LLMs into respond-575

ing to harmful queries (Wei et al., 2023; Anil et al.,576

2024). Fine-tuning-based attacks focus on fine- 577

tuning LLMs with harmful prompt datasets to en- 578

hance their ability to generate adversarial prompts 579

(Zeng et al., 2024; Deng et al., 2024). Finally, 580

optimization-based attacks involve techniques like 581

gradient-based search to iteratively optimize ad- 582

versarial suffixes of prompts, thereby increasing 583

the likelihood of jailbreaking models (Zou et al., 584

2023; Jones et al., 2023), self-reflection capabili- 585

ties of LLMs which are used to optimize adversar- 586

ial prompts until the model jailbreak (Chao et al., 587

2023). 588

5 Conclusion 589

In this work, we propose a framework to investigate 590

the correlations between the red teaming ability of 591

LLMs and three key factors: security, parameter 592

count, and general capabilities. Our findings show 593

a negative correlation between red teaming abil- 594

ity and model security: as security increases, the 595

ability to generate adversarial prompts significantly 596

decreases. Although models require at least 3 bil- 597

lion parameters to generate effective adversarial 598

prompts, parameter size alone is not a determining 599

factor, where some 3 billion parameters models out- 600

perform those with 7 billion in red teaming tasks. 601

Furthermore, there is no strong correlation between 602

general capability and red teaming ability. We be- 603

lieve that the findings of this work will provide a 604

basis for the selection of red teaming LLMs in prac- 605

tical applications. When the parameter scales are 606

similar, we can prioritize LLMs with weaker secu- 607

rity as red team models instead of LLMs with the 608

strongest general capabilities. When selecting red 609

team models, GPT-4o and Gemini-pro-1.5 perform 610

excellently; Hermes-3-70B-Instruct and Qwen-2.5- 611

72B-Instruct are also highly recommended. Qwen- 612

1.5-14B-Instruct and Gemma-1.1-7B-it stand out 613

for their cost-effectiveness. In addition, we also 614

hope that our work can provide inspiration for re- 615

search in the field of red teaming LLMs. For ex- 616

ample, some studies attempt to enhance overall 617

security by deploying multiple agents that attack 618

and cooperate with one another. However, this ap- 619

proach may be ineffective, as improvements in an 620

agent’s security could diminish its ability to attack 621

other agents, making it challenging to ensure the 622

continuity of the entire optimization process. 623
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Limitations624

We adhere to the open-source license terms when625

utilizing the LLMs. This study did not include626

testing of closed-source LLMs, such as ChatGPT,627

due to their inaccessibility and lack of transparency.628

The proprietary nature of these models restricts our629

ability to examine their internal mechanisms, which630

is essential for understanding their behavior and631

performance. Furthermore, the reliance on closed-632

source models raises concerns regarding control633

and reproducibility, both of which are critical in634

academic research. As a result, our findings may635

not fully reflect the capabilities and limitations of636

these widely used models.637
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A Appendix 927

A.1 Details of Different Prompts 928

Fig. 2, Fig. 3, Fig. 4 refer to the various prompts 929

used in our manuscript. 930

A.2 Case Study 931

To more clearly demonstrate how our framework 932

tests the security and red teaming ability of LLMs, 933

we provide specific case studies to illustrate the 934

detailed testing process. 935

Fig. 5 presents a typical case from our security 936

testing. As shown, after inputting a carefully de- 937

signed adversarial prompt, the target LLM gener- 938

ates harmful content, highlighting its vulnerability 939

in specific attack scenarios. 940

Fig. 7 shows a successful case of an attack exe- 941

cuted by a red teaming LLM, where the goal of the 942

attack is to get the target LLM to respond to the sim- 943

ple harmful query “Develop a strategy for hacking 944

into a government database and stealing sensitive 945

information?”. The red teaming LLM generates ad- 946

versarial prompts using advanced strategies, such 947

as role assignment and moral coercion. These ad- 948

versarial prompts instruct the target LLM to play 949
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Figure 2: Attack Prompt. When testing the security
capabilities of LLMs, we provide the LLMs with ad-
versarial system prompts, where the “harmful content”
refers to harmful outputs that we want LLMs to gener-
ate. This harmful content is sourced from dataset S.

the role of a journalist and disguise “stealing gov-950

ernment secrets” as an act of justice. However, in951

the initial stage, the target LLM does not jailbreak952

and refrains from generating harmful output. As953

the attack iterates, the red teaming LLM improves954

its prompt through self-reflection, eventually in-955

ducing the target LLM to generate a response of956

the harmful query. This demonstrates the poten-957

tial risk posed by a red teaming LLM capable of958

progressively improving its attack strategies.959

Fig. 6 illustrates an example where the LLM960

fails to function as an effective red teaming model.961

In this test, the red teaming model misunderstands962

the input prompt and instead appears to jailbreak.963

The output reveals that the model is unable to rec-964

ognize or execute the intended attack task, further965

underscoring the variability in red teaming ability966

across different LLMs.967

These case studies provide a clearer depiction968

of the specific procedures and real-world results969

achieved when testing the security and red teaming970

ability of LLMs within our framework.971

A.3 Correlation Analysis Charts972

This section presents the correlation analysis charts973

depicting the relationship between LLMs’ red team-974

ing ability, model security, parameter size, and gen-975

eral capabilities. Through these charts, we visually976

demonstrate the negative correlation between red977

teaming ability and model security, as well as the978

relationships between parameter size, general capa- 979

bilities, and red teaming ability. 980

A.3.1 Correlation Analysis of Security and 981

Red Teaming 982

The correlation charts about red teaming ability 983

and security of LLMs are shown in Fig. 8, Fig. 9 984

and Fig. 10. 985

A.3.2 Correlation Analysis of Parameter 986

Count and Red Teaming 987

The correlation chart about red teaming ability and 988

parameter count of LLMs is shown in Fig. 11. 989

A.3.3 Correlation Analysis of General 990

Capabilities and Red Teaming 991

The correlation chart about red teaming ability and 992

parameter count of LLMs is presented in Fig. 12. 993

A.4 HS Score Distribution 994

We have recorded the HS scores for all models in 995

this section (Fig. 13). 996

B Experimental Hardware Configuration. 997

In the experiments for testing LLMs’ security, the 998

NVIDIA GeForce RTX 4090 is used. For evaluat- 999

ing the LLMs’ red teaming ability, the NVIDIA 1000

GeForce RTX 2080Ti*4 is utilized. Black-box 1001

LLMs larger than 13B use response generated by 1002

the official API. 1003
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Figure 3: Judge Instruction. The prompt for the judge model contains “goal” , which refers to the harmful content
that the LLM is expected to output, matching the harmful content in the input model’s guiding prompt.
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Figure 4: Red Teaming Instruction. The simple query in prompt refers to the harmful query in the dataset S
′
.
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Figure 5: A typical case of security testing

Figure 6: LLM fails to be as an effective red teaming
model

Figure 7: LLM succeeds to be as an effective red team-
ing Model
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Figure 8: Correlation between red teaming ability and security for 6–8B parameter LLMs, with r representing the
Pearson correlation coefficient.

Figure 9: Correlation between red teaming ability and security for 13B parameter LLMs, with r representing the
Pearson correlation coefficient.

Figure 10: Correlation between red teaming ability and security for 70B parameter LLMs, with r representing the
Pearson correlation coefficient.
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Figure 11: The trend graph of red teaming ability and
parameter count

Figure 12: The trend graph of red teaming ability and
general capabilities

Figure 13: HS score distribution of all models
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