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Abstract

This work studies the infinite-width limit of deep feedforward neural networks
whose weights are dependent, and modelled via a mixture of Gaussian distribu-
tions. Under this model, we show that each layer of the infinite-width neural
network can be characterised by two simple quantities: a non-negative scalar pa-
rameter and a Lévy measure on the positive reals. If the scalar parameters are
strictly positive and the Lévy measures are trivial at all hidden layers, then one
recovers the classical Gaussian process (GP) limit, obtained with iid Gaussian
weights. More interestingly, if the Lévy measure of at least one layer is non-
trivial, we obtain a mixture of Gaussian processes (MoGP) in the large-width limit.
The behaviour of the neural network in this regime is very different from the GP
regime. One obtains correlated outputs, with non-Gaussian distributions, possibly
with heavy tails. We illustrate some of the benefits of the MoGP regime over the
GP regime in terms of representation learning and compressibility on simulated,
MNIST and Fashion MNIST datasets.

1 Introduction

Two decades after the seminal work of Radford Neal [1996], the last few years have seen a re-
newed and growing interest in the analysis of (deep) neural networks, with random weights, in the
infinite-width limit. When the weights are independent and identically distributed (iid), and suit-
ably scaled Gaussian random variables, the random function corresponding to this random neural
network converges to a Gaussian process [Neal, 1996, Lee et al., 2018, Matthews et al., 2018, Yang,
2019, Bracale et al., 2021]. The connection to Gaussian processes has deepened our understand-
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ing of large-width neural networks, and motivated both the use of Bayesian or kernel regression
inference methods [Lee et al., 2018] as well as the development of kernel methods for training via
gradient descent in the infinite-width limit [Jacot et al., 2018].

While insightful, the Gaussian process connection also highlights some of the limitations of large-
width neural networks with iid Gaussian weights. As already noted by Neal [1995], “with Gaussian
priors the contributions of individual hidden units are all negligible, and consequently, these units
do not represent ‘hidden features’ that capture important aspects of the data.” Moreover, the dif-
ferent dimensions of the output of the neural network become independent Gaussian processes in
the infinite-width limit, which is generally undesirable. Finally, from a Bayesian perspective, the
Gaussian independence assumption on weights is often seen as unrealistic: estimated weights of
deep neural networks generally exhibit dependencies and heavy tails [Martin and Mahoney, 2019,
Wenzel et al., 2020, Fortuin et al., 2021], and thus a family of prior distributions which allow for
heavy tails is desirable. To alleviate some of these limitations, iid non-Gaussian random weights
have been considered, either assuming stable [Neal, 1996, Der and Lee, 2006, Favaro et al., 2020],
or more generally light-tailed/heavy-tailed distributions [Jung et al., 2023]. However, due to the
same iid assumption, some of the above limitations pertain, such as independence of the dimensions
of the output.

We consider a more structured distribution on the weights of the neural network. We assume that
weights emanating from a given node are dependent, where the dependency is captured via a scale
mixture of Gaussians. More precisely, for a weight W (l+1)

jk between node j = 1, . . . , pl at hidden
layer l and node k = 1, . . . , pl+1 at hidden layer l + 1, we assume that

W
(l+1)
jk =

√
λ
(l)
pl,j

V
(l+1)
jk (1)

where λ(l)pl,j
, for j = 1, . . . , pl, are nonnegative iid random variance parameters, one for each node

j = 1, . . . , pl at layer l, and V (l+1)
jk are iid centred Gaussian random variables with variance σ2

v > 0.

The per-node variance term λ
(l)
pl,j

induces some dependency over the weights W (l+1)
j1 , . . . ,W

(l+1)
jpl+1

connected to node j. This assumption has been considered by a number of authors for training
(finite) neural networks either (i) as a prior for Bayesian learning and pruning of neural networks,
or (ii) as an implicit prior where a regularised empirical risk minimiser with group-sparse penalty
is interpreted as a maximum a posteriori estimator, or (iii) as a random weight initialisation scheme
for stochastic gradient descent.

2 Main contributions

The objective of this work is to analyse the infinite-width properties of feedforward neural networks
with dependent weights of the form in Equation (1). Our work shows that the choice of the distribu-
tion of the per-node variance is crucial and can lead to fundamentally different infinite-width limits.
Our main assumption is that, at each hidden layer l,

pl∑
j=1

λ
(l)
pl,j

d→ Λ(l) as the width pl →∞, (2)

where d→ refers to convergence in distribution and Λ(l) is some nonnegative random variable,
which may be constant. This assumption is natural as it implies that the activations and
outputs of the neural network are almost surely finite in the infinite-width limit. Note that∑pl

j=1 Var
(
W

(l+1)
jk

∣∣∣ (λ(l)pl,j
)j≥1

)
= σ2

v

∑pl

j=1 λ
(l)
pl,j

. Hence, the assumption in Equation (2) is simi-
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lar to the commonly made assumption, in the iid case, that the sum of the variances of the incoming
weights to a node converges to a constant in the infinite-width limit [Glorot and Bengio, 2010, He
et al., 2015]. The iid Gaussian case indeed arises as a special case by setting λ(l)pl,j

= c
pl

for all
j = 1, . . . , pl for some c > 0. Note that Λ(l) = c is deterministic in this particular case.

The nonnegative random variable Λ(l) is necessarily infinitely divisible, and parameterised by

(i) a location parameter a(l) ≥ 0 and
(ii) a Lévy measure ρ(l) on (0,∞).

We prove that, if a(l) > 0 and the Lévy measures are trivially zero (that is
∫∞
0
ρ(l)(dx) = 0)

at all hidden layers l, then the limit is a Gaussian process (GP), as in the iid Gaussian case. As
a consequence, all weights are uniformly small, with maxj=1,...,pl

|W (l+1)
jk | → 0 in probability.

We show that this GP limit arises with a few models proposed in the literature, such as the group
lasso [Scardapane et al., 2017, Wang et al., 2017] and inverse gamma [Ober and Aitchison, 2021]
priors. These neural network models therefore are asymptotically equivalent to a model with iid
Gaussian weights in the infinite-width limit.

More interestingly, if at least one of the Lévy measures is non-trivial, we obtain a very different
behaviour, and the limit is now a mixture of Gaussian processes (MoGP), with a given random
covariance kernel. In other words, any m-dimensional output at layer l has the limiting form

E

 ⊗
k=1,...,m

N (0,Σ(l))


where the expectation is taken over the randomness of a random covariance matrix Σ(l) which is
determined by a random kernel. Here, the size of Σ(l) is n × n, where n is the number of inputs.
Under the MoGP regime, we show that the following results hold in the infinite-width limit, none of
which hold for the iid Gaussian case.

• maxj=1,...,pl
|W (l+1)

jk | converges in probability to a random variable which is not degen-
erately 0. That is, some weights remain non-negligible asymptotically. It is natural to
interpret this as being connected to nodes representing important hidden features.

• The different dimensions of the output are dependent.
• The outputs are non-Gaussian, and may exhibit heavy tails depending on the behaviour of

the Lévy measures at infinity.
• Pruning the network according to the variance parameter λ(l)pl,j

at some level ε > 0 suffi-
ciently small, provides a finite, non-empty neural network with positive probability.1 The
resulting error associated to the pruned network can be related to the location parameter
and the behaviour of the Lévy measure near 0.

• If in addition, the location parameters satisfy a(l) = 0 for all l, then the network is com-
pressible: when pruning the network by removing a fixed proportion (1 − κ) ∈ (0, 1) of
nodes at each layer according to the variance parameter λ(l)pl,j

, the difference between the
outputs of the pruned and unpruned networks converges to 0 in probability in the infinite-
width limit.

• The random kernels which determine the Σ(l) come from a Markov sequence, in l. More-
over, the distribution of the lth kernel can be recursively defined.

1Note that there is always some small probability of pruning everything and leaving an empty network.
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Model Limit Depend. Distribution Tail of Number of max |W (2)
jk | Tail of (W

(2)

(j)k
)2 Compressible

process outputs of Z(2)
k (x, p1) Z

(2)
k (x, p1) active nodes

pr→ 0 of W (2)
jk decrease in

iid GP No Gaussian Expon. ∞ Yes Expon. – No
(a) GP No Gaussian Expon. ∞ Yes Expon. – No
(b) MoGP Yes Compound Poisson Expon. Poisson(2) No Expon. – Yes
(c) MoGP Yes Normal-gamma Expon. ∞ No Expon. O(e−cj) Yes
(d) MoGP Yes Cauchy Power-law ∞ No Power-law O(j−2) Yes

Table 1: Summary of the properties of the neural network models for four different distributions on
the per-node variances.

3 Some illustrative examples

We now briefly present some illustrative examples in the case of a simple feedforward neural net-
work with one hidden layer, din-dimensional input x = (x1, . . . , xdin)T , 2-dimensional output
(Z

(2)
1 (x;p), Z

(2)
2 (x;p))T , no bias, σv = 1 and rectified linear unit (ReLU) activation function.

For k = 1, 2, the output is such that

Z
(2)
k (x; p1) =

p1∑
j=1

√
λ
(1)
p1,j

V
(2)
jk max

(
0,

1√
din

din∑
i=1

V
(1)
ij xi

)
.

More general deep neural networks and other examples are considered in the full paper [Lee et al.,
2022]. As mentioned above, it is well known (see for instance [Lee et al., 2018]) that, if λp1,j =
2
p1

(iid Gaussian weights, or He initialisation [He et al., 2015]), the outputs are asymptotically
independent Gaussian processes with, for k = 1, 2,(

Z
(2)
k (x; p1)

Z
(2)
k (x′; p1)

)
d→ N

(
0,

(
K(2)(x,x) K(2)(x,x′)

K(2)(x,x′) K(2)(x′,x′)

))
as p1 →∞ (3)

where the (deterministic) covariance kernel K(2)(x,x′) is defined by

K(2)(x,x′) =
‖x‖‖x′‖
din

× 1

π

(√
1− ρ2x,x′ +

(π
2

+ arcsin ρx,x′
)
ρx,x′

)
, (4)

with correlation ρx,x′ = xTx′

‖x‖‖x′‖ .

Consider now the following models for p1 ≥ 2:

(a) λ(1)p1,j
∼ IG

(
2, 2

p1

)
(b) λ(1)p1,j

∼ Bernoulli
(

2
p1

)
(c) λ(1)p1,j

∼ Beta
(

1
p1
, 12

)
(d) λ(1)p1,j

= π2 U2
j

p2
1

where Uj ∼ Cauchy+(0, 1)

where IG(β1, β2) denotes the inverse gamma distribution with shape β1 > 0 and scale β2 > 0, and
Cauchy+(0, 1) denotes the half-Cauchy distribution with pdf

f(u) =
2

π(1 + u2)
× 1{u>0}. (5)

For all the above models (a-d), we have λ
(1)
p1,j

→ 0 in probability as p1 → ∞. For (a-c),

E[
∑

j λ
(1)
p1,j

] → 2 as p1 → ∞ (the expectation is infinite for example (d)), as in the iid Gaussian
case. However, the infinite-width limits are all very different.

Under the inverse gamma model (a), the infinite-width limit is the same as the iid Gaussian case. Un-
der models (b-d), the infinite-width limit is a mixture of Gaussian processes, i.e. a Gaussian process
with a random covariance kernel. These models illustrate some of the benefits of the MoGP regime.
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The outputs are now dependent in the infinite-width limit. The models (b-d) are compressible in the
sense that the difference between the output of the pruned network and the output of the unpruned
network vanishes in the infinite-width limit. This is not the case for the iid Gaussian model, nor
for model (a). The weights as well as the outputs can have an exponential tail (b-c) or a power-law
tail (d). The properties of the different models are summarised in Table 1.

3.1 Examples from related works

More general deep neural networks and other examples are considered in the full paper [Lee et al.,
2022]. Let us briefly point out some examples of distributions for the random variance λ(l)pl,j

that have
already appeared in the literature. Examples include the Bernoulli [Jantre et al., 2021], the horse-
shoe [Louizos et al., 2017, Ghosh et al., 2018, 2019, Popkes et al., 2019], the gamma [Scardapane
et al., 2017, Wang et al., 2017], the inverse gamma [Ober and Aitchison, 2021], and the improper
Jeffrey distributions [Louizos et al., 2017]. The review paper [Fortuin, 2021] also discusses several
examples in the context of a Bayesian framework for neural networks.

Bayesian priors are also related to non-Bayesian estimators based on regularised empirical risk min-
imisation, where the estimator can be interpreted as a maximum a posteriori estimator under these
priors. A typical example is the group lasso penalty on the weights of a neural network, used in a
number of articles [Murray and Chiang, 2015, Scardapane et al., 2017, Wang et al., 2017, Ochiai
et al., 2017], which can be interpreted as a negative log-prior on the weights when λ(l)pl,j

follows a
gamma distribution.

Finally, random weights of the form in Equation (1) have been used to initialise weights in stochastic
gradient descent algorithms, departing from the standard iid Gaussian initialisation commonly used
for training deep neural networks [Glorot and Bengio, 2010]. Blier et al. [2019] use per-node random
learning rates in stochastic gradient descent. This is equivalent to using the prior in Equation (1)
at initialisation, and then learning V (l+1)

jk while keeping the variances fixed after initialisation. A
similar approach was considered by Wolinski et al. [2020], using deterministic variances.

References
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