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Abstract
The Fourier transform is a fundamental tool in
computer science and signal processing. In par-
ticular, when the signal is sparse in the frequency
domain—having only k distinct frequencies—
sparse Fourier transform (SFT) algorithms can
recover the signal in a sublinear time (propor-
tional to the sparsity k). Most prior research fo-
cused on SFT for discrete signals, designing both
randomized and deterministic algorithms for one-
dimensional and high-dimensional discrete sig-
nals. However, SFT for continuous signals (i.e.,
x∗(t) =

∑k
j=1 vje

2πifjt for t ∈ [0, T ]) is a more
challenging task. The discrete SFT algorithms are
not directly applicable to continuous signals due
to the sparsity blow-up from the discretization.
Prior to this work, there is a randomized algo-
rithm that achieves an ℓ2 recovery guarantee in
Õ(k · polylog(F/η)) time, where F is the band-
limit of the frequencies and η is the frequency gap.
Nevertheless, whether we can solve this problem
without using randomness remains open. In this
work, we address this gap and introduce the first
sublinear-time deterministic sparse Fourier trans-
form algorithm in the continuous setting. Specif-
ically, our algorithm uses Õ(k2 · polylog(F/η))
samples and Õ(k2 · polylog(F/η)) time to recon-
struct the on-grid signal with arbitrary noise that
satisfies a mild condition. This is the optimal
recovery guarantee that can be achieved by any
deterministic approach.

1. Introduction
The Fourier transform (FT) was introduced by Joseph
Fourier in 1822 (Fourier, 1822). Today, it is widely used in
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computer science and applied mathematics. Its applications
include integer multiplication (Fürer, 2009), SUBSET SUM
and 3SUM (Cormen et al., 2009; Bringmann, 2017; Koil-
iaris & Xu, 2017), linear programming (Lee et al., 2019;
Jiang et al., 2021), distributional learning (Diakonikolas
et al., 2016a;b;c), learning a mixture of regressions (Chen
et al., 2020), fast Johnson-Lindenstrauss transform (Lu et al.,
2013), and TensorSRHT (Ahle et al., 2020; Song et al.,
2021) with its applications to optimization (Song et al.,
2024). In applied math, the Fourier transform is a key math-
ematical tool in solving partial differential equations and
performing function approximation (Evans, 2022; Smets
et al., 2023; Helwig et al., 2023).

The Fourier transform also has a wide range of real-world ap-
plications, including signal processing, electrical engineer-
ing, pattern recognition, image/audio/video compression,
etc. The famous random Fourier feature methods (Rahimi
& Recht, 2007; 2008; Le et al., 2013; Yang et al., 2014;
Yu et al., 2016; Tancik et al., 2020; Li et al., 2020; Cheng
et al., 2023) bridge the classical Fourier analysis and mod-
ern kernel methods. In recent years, Fourier transform has
also emerged as a powerful tool within machine learning
research, inspiring diverse models and algorithms (Lee et al.,
2020; Choromanski et al., 2021; Li et al., 2021; Song & Yu,
2021; Song et al., 2023b; Yu et al., 2023; Yi et al., 2023;
Tran et al., 2023; Bonev et al., 2023; Zeng et al., 2024; Tan
et al., 2024; Xiao et al., 2024; Chen et al., 2024; Liang et al.,
2024; Zhou et al., 2024; 2025; Alman & Song, 2025; Li
et al., 2025; Yu et al., 2025). Due to its significance in
both theory and practice, finding an efficient algorithm to
compute the Fourier transform is of utmost importance.

Since the seminal fast Fourier transform (FFT) algorithm
given by Cooley & Tukey (1965), the community has been
looking for a faster o(N logN) time algorithm, but has
not yet had success. In contrast, as quoted from Indyk &
Kapralov (2014):

“Many of these applications rely on the fact that
most of the Fourier coefficients of the signals are
small or equal to zero, i.e., the signals are (ap-
proximately) sparse.”

That is, when the Fourier spectrum is approximately k-
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sparse for a sublinear parameter k = o(N), we can expect
better sublinear-sample/time algorithms. This motivates the
studies on the sparse Fourier transform problem (Sparse
FT).

Over the last two decades, the Sparse FT problem has been
extensively studied. The prior works mainly follow two
lines: (i) those in the discrete settings (or the compressed
sensing literature) (Goldreich & Levin, 1989; Kushilevitz &
Mansour, 1993; Mansour, 1995; Gilbert et al., 2002; Akavia
et al., 2003; Candes & Tao, 2006; Donoho, 2006; Rudelson
& Vershynin, 2008; Blumensath & Davies, 2008; Hassanieh
et al., 2012b;a; Cheraghchi et al., 2013; Iwen, 2013; In-
dyk et al., 2014; Indyk & Kapralov, 2014; Bourgain, 2014;
Kapralov, 2016; Haviv & Regev, 2016; Kapralov, 2017; Li
& Nakos, 2020; Kapralov et al., 2019; Nakos et al., 2019;
Nakos & Song, 2019; Song, 2019); and (ii) those in the con-
tinuous setting (Boufounos et al., 2012; Moitra, 2015; Price
& Song, 2015; Chen et al., 2016; Chen & Price, 2019b;a;
Song, 2019; Jin et al., 2023; Song et al., 2023a).

Although more researchers have concentrated their atten-
tion on DFT algorithms, a continuous Fourier transform
(CFT) is also essential, since many practical signals are
continuous in nature. In the continuous setting, one can ob-
serve x(t) = x∗(t) + g(t), where x∗(t) is the ground-truth
signal whose frequencies are real numbers, and g(t) is a
time-varying noise with a suitable signal-to-noise ratio. The
heavy frequencies are assumed to have a frequency gap η,
i.e., the minimum distance between two heavy frequencies
is at least η. Moreover, the sparsity parameter k satisfies
k = o(F/η), where F is the band-limit of the signal. CFT
algorithms recover the heavy frequencies by sampling in the
time domain.

1.1. Problem Formulation

We study the Fourier transform of a continuous k-sparse
signal defined as follows.

Definition 1.1 (Continuous-time, k-Fourier-sparse signal).
Let k ∈ Z>0. Let δfi(f) denote the Dirac function centered
at fi ∈ R. We define the k-Fourier-sparse signal x̂∗(f) to
be as follows:

x∗(t) :=

k∑
j=1

vj · e2πifjt
CFT−−−−−→ x̂∗(f) :=

k∑
j=1

vj · δfj (f)

where vj ∈ C is the coefficient and fj ∈ F is the frequency
contained in the frequency range F ⊂ R for each j ∈ [k].
We use K to denote the set of fj’s.

Moreover, we assume that the frequency range F is a set
of equidistant points in [−F, F ]. See the formal definition
below, and we assume that active frequency of signal x(t)
can only be taken in a finite set F defined as below.

Definition 1.2 (Possible range of active frequency). For
a given frequency gap η and bounded range [−F, F ], we
define the possible range of active frequency as the set

F := {i · η | ∀i ∈ Z, and i · η ∈ [−F, F ]}.

In our observation of signal x∗(t), we receive a time-varying
noise, denoted by a continuous function g(t) : R→ C. The
observed x(t) is the sum of the ground-truth signal x∗(t)
and g(t). Formally, we define the model of noisy observa-
tions, which is commonly used in the literature (e.g. Price
& Song (2015); Chen et al. (2016); Song et al. (2023a)).
Definition 1.3 (Noisy observation). We define the observed
signal x(t) as follows:

x(t) := x∗(t) + g(t) =

k∑
j=1

vje
2πifjt + g(t),

where g(t) is an arbitrary function.

Currently, all of the previous sublinear CFT algorithms are
randomized. It is natural to define and study the continuous
setting where a deterministic algorithm is possible. This
work presents a positive answer to that.

1.2. Our Result

We state our main result as follows:
Theorem 1.4 (Main result, informal version of Theo-
rem 3.12). Let F := [−F,−F + η, · · · ,−η, 0, η, · · · , F −
η, F ] denote the candidates of heavy frequency. Let g(t)
denote the noise whose Fourier spectrum spans the entire
frequency domain, and it satisfies mild assumptions in the
time domain. Let x(t) := x∗(t) + g(t) denote the observed
signal. For T ≥ Ω̃(1/η), there exists a deterministic algo-
rithm that observes the signal at time points in S ⊂ [0, T ] of
size |S| = O(k2 log k log2(F/η)), and recovers all fi and
vi accurately in O(k2 log k log3(F/η)) time.

We remark that the straightforward approach of discretiz-
ing the signal and applying the standard FFT requires at
least F/η = Ω(FT ) samples to achieve the desired reso-
lution. However, this method is not robust to noise, as it
cannot effectively separate the signal components from the
noise g(t), which spans the entire frequency domain. In
contrast, our algorithm reduces the sample complexity to
Õ(k2), which is sublinear in FT , by leveraging the sparsity
structure of the signal. Furthermore, our method is robust
to noise, enabling accurate recovery of frequencies fi and
amplitudes vi with significantly fewer samples compared to
traditional FFT-based approaches.

Moreover, our algorithm achieves nearly optimal sample
complexity and runtime due to the Ω(k2) deterministic
lower bound established in Ganguly (2008); Foucart et al.
(2010).
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2. Preliminaries
In this section, we introduce some basic definitions and
tools in sparse Fourier transforms. In Section 2.1, we intro-
duce the notations in this paper. In Section 2.2, we formally
define the discrete Fourier transform and the continuous
Fourier transform. In Section 2.3, we define the convolution
of two functions. In Section 2.4, we introduce the hash
functions used in our algorithms. In Section 2.5, we intro-
duce the filter functions that isolate the heavy-hitter in each
hashing bucket. In Section 2.6, we define the measurement
of the signal under the filter function.

2.1. Notations

We use a ≳ b to denote a ≥ C · b for some constant C > 0.
Let n be a positive integer, [n] := {1, 2, · · · , n}. We use
i :=
√
−1, and we use ω to represent e−2πi for simplicity

of notion, e.g., we sometimes write e−2πit as ωt. For a
complex number z ∈ C with z = a + ib where a, b ∈ R.
We use |z| to denote

√
a2 + b2. z can also be expressed as

z = r · eiθ, where r ∈ R>0 and θ ∈ [0, 2π]. We define
arg(z) = θ. Let {zi} be a sequence of complex numbers.
It’s median is defined as median zi = medianRe(zi) +
imedian Im(zi). We use Pr[] to denote probability. We
use E[] to denote expectation. For x ∈ R, we use round(x)
to denote the integer with the closest distance to x. Let
x = i+ q where i is an integer and q ∈ [0, 1), we define x
(mod 1) := q. Let x(t) : R→ C be a function. For a finite
set S ⊂ R, we define ∥xS∥1 :=

∑
t∈S |x(t)|. Now, let S

be a finite sequence, we define xS as the vector in which
the t-th entry is x(St) where St denotes the t-th element in
S. We use 0n to denote a vector formed by n zeros.

2.2. Fourier Transform

We define the discrete Fourier transform (DFT) and the
continuous Fourier transform (CFT) below.

Definition 2.1 (Discrete Fourier transform). Given a com-
plex vector x ∈ Cn, we say that F is the discrete Fourier
transform matrix if

Fi,j :=
1√
n
e−2πi·ij/n.

We define the discrete Fourier transform of x to be

x̂ := Fx.

Definition 2.2 (Continuous Fourier transform). Given a
function x(t) : [0, T ] ∈ C and x̂(f) : [−F, F ] → C, the
continuous Fourier transform is defined as

x̂(f) =

∫ ∞

−∞
x(τ)e−2πifτdτ,

and the Continuous Inverse Fourier Transform is defined as

x(t) =

∫ ∞

−∞
x̂(σ)e2πiσtdσ.

2.3. Convolution

We define the discrete and the continuous convolution as
follows.
Definition 2.3 (Convolution). For two functions f, g with
same domain D, we have

(f ∗ g)(t) =
∫
τ∈D

f(t− τ) · g(τ)τ.

For two vectors f, g with same length n, we have

(f ∗ g)[i] =
∑
f∈[n]

fi−j · gj .

2.4. Hash Functions

In this section, we introduce some hash functions used in
sparse Fourier transform algorithms.
Definition 2.4 (Hashing functions, Definition 4.1 in Li &
Nakos (2020), Section 3 in Hassanieh et al. (2012b) Defini-
tion A.5, A.6, A.7 in Price & Song (2015)). Let σ ∈ R and
b ∈ [−F, F ]. Let B be the number of buckets.

• We define function πσ,b : F → [0, 1] to be

πσ,b(f) := σ(f − b) (mod 1).

• We define function hσ,b : F → [B] to be

hσ,b(f) := round(B · πσ,b(f)).

• Fix f ∈ F , we define function of,σ,b : F → [0, 1] to be

of,σ,b(f
′) := πσ,b(f

′)− (1/B)hσ,b(f).

Specifically, hσ,b(f) hashes a frequency f to one of the B
buckets, and of,σ,b(f

′) measures the offset of a frequency
f ′ to the center of the bucket containing f .
Definition 2.5 (Pseudorandom Permutation, Definition 4.2
in Li & Nakos (2020), Definition A.1 in Price & Song
(2015)). For σ ∈ R, a ∈ [0, T ], b ∈ [−F, F ], the permuta-
tion Pσ,a,b is defined as

(Pσ,a,bx)(t) = x(σ(t− a)) · ωtσb

Definition 2.6 (Sequence of Hashings, Definition 4.4 in (Li
& Nakos, 2020)). We use {(σr, ar, br)}r∈[d] to denote the
parameters of a sequence of d hashings. Each (σr, ar, br)
specifies three hashing functions: πσr,br , hσr,br , of,σr,br ,
and one pseudo permutation: Pσr,ar,br .
Definition 2.7 (Tuple of Hashing). We use H = (σ, a, b)
to denote a tuple of hashing. In a sequence of hashings
{(σr, ar, br)}r∈[d], we use Hr to represent (σr, ar, br).
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2.5. Filter Functions

Filtering is one of the most important techniques for sparse
Fourier transform, which allows us to isolate each individual
frequency and reduces the k-sparse signal to a set of “almost”
one-sparse signals.

Definition 2.8 (Filter function in the continuous setting,
Definition A.3 in Price & Song (2015), see discrete vari-
ations in Definition 4.6 in Li & Nakos (2020), Definition
2.3 in Kapralov (2017), Definition 2.3 in Hassanieh et al.
(2012b)). Let B ∈ Z>0 be a power of two. Let N be some
fixed integer. Let offset o be defined as Definition 2.4. We
say Ĝ : [0, 1]→ R, with G being its Fourier transform, is a
flat filter with B buckets, sharpness ϵ if the followings hold:

• Property 1: Ĝof,σr,br
∈ [0, 1] for all of,σr,br ∈ [0, 1]

• Property 2: Ĝof,σ,b
≥ 1− ϵ for all of,σ,b ∈ [− 1

2B , 1
2B ]

• Property 3: Ĝof,σ,b
≤ ϵ for all of,σ,b ∈ [0, 1]\[− 1

B , 1
B ]

• Property 4:
∑

i∈Z G(i)2 = O( 1
B )

• Property 5: supp(G) ⊂ [−D,D] where D is
O(log(B)) rounding to the closest integer

Remark 2.9. The construction of (G, Ĝ) can be found in
(Price & Song, 2015) and (Jin et al., 2023). Notice that
Ĝ : [0, 2π]→ R in their construction, we can simply extend
to our setting by scaling.

2.6. Measurement

This section defines the notion of measurement. It formal-
izes the output of a central subroutine HASHTOBINS pre-
sented later, which recovers the active tones by performing
DFT on the filtered signals in each hashing bucket. The
following definition is the measurement without noise.

Definition 2.10 (Measurement without noise, implicitly in
Lemma 3.4 in Price & Song (2015), see discrete variation
in Definition 4.8 in in Li & Nakos (2020)). Let the sig-
nal and frequencies x̂, v be defined as Definition 1.1. Let
H = (σ, a, b) be a tuple of hashing. Let Ĝ be a flat filter
with B buckets and sharpness ϵ (refer to Definition 2.8).
A measurement mH(x̂(f)) ∈ CB is defined as, for all
hσ,b(f) ∈ [B],

(mH(x̂(f)))hσ,b(f) =
∑
f∈F

Ĝof,σ,b(f ′) · ωaσf · vf ,

where π is a hash function induced from H .

The next statement states an equivalent formulation of the
measurement.

Claim 2.11. Under the conditions of Definition 2.10, we
have

(Ĝof,σ,b(f))
−1 · (mH(x̂(f)))hσ,b(f) · ω

−aσf

= vf + (Ĝof,σ,b(f))
−1 ·

∑
f ′∈F\{f}

Ĝof,σ,b(f ′) · vf ′ · ωaσ(f ′−f).

Proof. By the definition of mH (Definition 2.10), we have

(Ĝof,σ,b(f))
−1 · (mH)hσ,b(f) · ω

−aσf

= (Ĝof,σ,b(f))
−1 ·

( ∑
f ′∈F

Ĝof,σ,b(f ′) · ωaσf ′
· vf ′

)
· ω−aσf

= vf + (Ĝof,σ,b(f))
−1 ·

∑
f ′∈F\{f}

Ĝof,σ,b(f ′)vf ′ωaσ(f ′−f)

Thus the proof is complete.

3. Technical Overview
In this section, we provide an overview of our contribution.
We start by summarizing the framework in (Li & Nakos,
2020) in Section 3.1, then present our algorithm’s motivation
and details in Section 3.2.

3.1. Summary of previous works

Sparse FFT algorithm searches for the active frequency by
binning them into a small number of bins. In the discrete
setting, Hassanieh et al. (2012b;a) introduced new meth-
ods for locating the isolated signal and updating the signal
by directly filtering the bins, which improved the time and
sample complexity. Indyk & Kapralov (2014) presented
a recursive single-entry reduction algorithm which gives a
ℓ∞ norm guarantee. Based on their result and a modified
HASHTOBINS with initial guess from Kapralov (2017), Li
& Nakos (2020) introduced a deterministic algorithm by
de-randomization w.r.t. the hashing functions. In the con-
tinuous setting, Price & Song (2015); Chen et al. (2016)
defined the k-sparse continuous signal and used a random-
ized time-sampling technique to control time-varying noise.
They extended the guarantee of the fast DFT algorithm to
the continuous setting by identifying between CFT, DTFT,
and DFT, which is helpful in the analysis of our work. Jin
et al. (2023) is a higher-dimensional generalization of Price
& Song (2015). In this work, we provide the first deter-
ministic continuous sparse FT algorithm. We result in a
ℓ1/ℓ2-mixed norm guarantee for error. We also note that
another line of work focuses on the sparse Fourier transform
over Boolean hypercube or Abelian groups (e.g., Goldreich
& Levin (1989); Akavia et al. (2003); Iwen (2007); Akavia
(2010)). They have important applications in Boolean func-
tion analysis and complexity theory. However, the settings
of these papers are very different from the compressed sens-
ing fashion and thus beyond the scope of our work.
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Contribution of Li & Nakos (2020) and their limitation
in the continuous setting. During the hashing and detec-
tion of active signal, it is possible that two distinct active
frequencies are hashed into the same bin and hence can-
not be recovered. Li & Nakos (2020) gave a formal defi-
nition of this event and used a de-randomization strategy
to find a fixed sequence of hashing functions that prevent
this event. Their method uses a pessimistic estimator to
upper-bound the possibility of bad events and reduce it by
choosing proper hashing parameters. Then, they embed-
ded this deterministic HASHTOBINS algorithm into the ℓ∞
norm reduction algorithm in Indyk & Kapralov (2014) to
reach the final result.

Notice that the strategy of Li & Nakos (2020) is not directly
feasible for continuous signals. Because there is only a
finite light-hitter in the discrete setting, it can traverse all
frequency points and generate a deterministic hashing se-
quence. However, we need to deal with the continuous noise
function in our algorithm. Moreover, the hashing scheme
in the discrete setting cannot be applied in the continuous
setting. Unlike DFT, our CFT algorithm takes samples from
the time interval of unequal length with the active frequency
set, leading to a different hashing and filtering strategy. We
must change our de-randomization steps to fit the new hash-
ing functions.

3.2. Our techniques

In this work, we generalize Li & Nakos (2020) to the con-
tinuous setting and overcome the limitations. In this section,
we first discuss the problem setting. Then, we show how
to generate the de-randomized hashing sequence under the
hashing scheme of sparse CFT. Next, we propose a reason-
able noise model ((C, ξ)-noise, Definition 3.3) that enables
an efficient and robust deterministic sparse Fourier trans-
form algorithm. We further show how to combine the contin-
uous HASHTOBINS with the de-randomized hash sequence.
Then we incorporate it with a recursive sparse recovery al-
gorithm, which leads to our main theorem (Theorem 3.12).

In Section 3.2.1, we summarize our de-randomization steps.
In Section 3.2.2, we define the (C, ξ)-noise. In Section 3.2.3,
we introduce the continuous variate of an essential subrou-
tine HASHTOBINS. In Section 3.2.4, we provide our main
algorithm.

3.2.1. DE-RANDOMIZATION.

To discover the k active frequencies from F , we use a hash-
ing and filtering method. First, we hash the points in F
into B = O(k) buckets (where each bucket is the union
of comb-like, equispaced intervals on the real line). Then,
we use a pair of filter functions (G, Ĝ) to select the active
frequencies. Ĝ is constructed to be close to 1 in the center
of its domain and close to 0 elsewhere. Let σ, b be the pa-

rameters of the hash function. We use function of,σ,b(f
′) to

measure the distance from the hashing of f ′ to the center
of the bucket1 where f is hashed into. (See Definition 2.4
for the formal definitions of the hash functions.) Morally,
if of,σ,b(f) is small and of,σ,b(f

′) is big, i.e., f is hashed
close to the center of a bucket, while f ′ is not close or
in a different bucket, then we can discover f by the filter
function. However, two active frequencies, f and f ′, may
hash to the same bucket, obstructing the discovery. This
motivates us to define bad events as follows. Intuitively, it
says that although we cannot guarantee that the collision of
f and f ′ does not happen in a single turn of hashing, we
can control the total time of the collision in a sequence of
hashing. Then, we can run the algorithm multiple times and
take the median of outputs to reach a good approximation.

Definition 3.1 (Bad Events Af,f ′). We use d to denote the
time we call HASHTOBINS in one round of sparse detec-
tion.We use β as a factor depending on |F|, which will be
determined later. Let {(σr, br)}dr=1 be a sequence of hash-
ing parameters. For any f, f ′ ∈ F , f ̸= f ′, we define Af,f ′

to be the event that

d∑
r=1

Ĝof,σr,br (f
′) ≥ β.

Previous CFT research (e.g. Price & Song (2015); Jin et al.
(2023)) used a randomized hashing function to control the
impact of bad events. They bounded the expectation of error
in each stage and repeated multiple stages to reach a small
failure probability. Different from them, this work finds a
sequence of deterministic hashing function {(σr, br)}dr=1,
which prevents the happening of bad events. We use hr to
denote a pessimistic estimator, tracking the probability of
undesirable events (such as hash collisions) given the first
r selected hash functions. The recursive procedure can be
summarised as follows.

1) Initial state: Let hr(f, f
′, σ1, b1, · · · , σr, br) be a se-

quence of function satisfying∑
f,f ′∈F :f ̸=f ′

h0(f, f
′) < 1

Notice that h0(f, f
′) is determined at initial state while

hr(f, f
′) depends on σr, br which are chosen later.

2) De-randomization step: Let Pr[Af,f ′ | σ1, b1, . . . , σr, br]
be defined as the probability of bad events conditioned
on {(σk, bk)}rk=1. Given hr(f, f

′, σ1, b1, · · · , σr, br), we
choose σr+1, br+1 to satisfy the inequalities below.

hr+1(f, f
′;σ1, b1, · · · , σr+1, br+1)

≥ Pr[Af,f ′ | σ1, b1, . . . , σr+1, br+1],

1More precisely, the center of any internal that contains f ′ in
that bucket.
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and

hr+1(f, f
′;σ1, b1, · · · , σr+1, br+1)

≤ hr(f, f
′, σ1, b1, · · · , σr, br).

3) Final state: The procedure ends at r = d.

This process outputs {(σr, br)}dr=1 such that∑
f,f ′∈F :f ̸=f ′

Pr[Af,f ′ | σ1, b1, . . . , σd, bd] < 1.

Since Af,f ′ | σ1, b1, . . . , σd, bd is a determined event, the
probability of the occurrence of bad events is zero. Using
this specific hashing tuple sequence, we can safely hash the
possible active frequency points. We note that this process
does not depend on the observed signal, and the good hash-
ing parameters can be found efficiently in the preprocessing
(see Definition A.6 for a more detailed discussion on the
pessimistic estimator).

Lemma 3.2 (De-randomization, Informal Version of
Lemma A.21). Let F be the range of active frequency
defined in Definition 1.2. Let C1 be some fixed constant
in ( 12 , 1). Let B ∈ Z>0 be a power of 2. Let ϵ := 20

B ,
β := 6

C1
· log |F|, and d := 3C1

40 · B log |F|. Let Hd =
{(σr, ar, br)}r∈[d] be a sequence of hashing chose by pro-
cedure in Definition A.6. Let Ĝ be a flat filter in accordance
of hashing functions in Hr (see Definition 2.8). Then it
holds that, for all f, f ′ ∈ F with f ̸= f ′,∑

r∈[d]

Ĝ−1
of,σr,br (f)

Ĝof,σr,br (f
′) ≤

β

1− ϵ
.

3.2.2. (C, ξ)-NOISE

Similar to controlling the effect of bad events, Price & Song
(2015); Jin et al. (2023) use the randomness of their sample
technique to de-noise. However, it is hard to tackle the
noise when we apply a deterministic algorithm, since we
can only take samples at finite points. For example, if g(t)
is extremely large at our fixed sample points compared to
its integral, then it will disturb our observation and prevent
the active frequency from being detected. Therefore, we
need to introduce extra assumptions on the upper bound of
the noise function. Our assumption consists of the energy
bound and a g(t)-dependent factor ξ, which describes the
suitability of g(t) for a deterministic algorithm. Formally,
we define the (C, ξ)-noise as follows.

Definition 3.3 ((C, ξ)-noise). Let g(t) : [0, T ]→ R be the
noise function. Let C > 0 be some fixed constant. Let ξ
be a parameter depending on g(t). Then we say g(t) is a
(C, ξ)-noise if it satisfies

max
t∈[0,T ]

g(t)2 ≤ C · 1
T

∫ T

0

g(t)2dt+ ξ.

A canonical example satisfying the (C, ξ)-noise condition
is any bi-Lipshitz function. A function g : [0, T ] → R is
(L1, L2)-bi-Lipschitz if for all t1, t2 ∈ [0, T ], it holds that

L2|t1 − t2| ≤ |g(t1)− g(t2)| ≤ L1|t1 − t2|.

The next statement shows how it satisfies our assumption.

Lemma 3.4. Let g be a integrable (L1, L2)-bi-Lipschitz
function. Then it satisfies the condition of the (C, ξ)-noise.

Proof. Let gmin minimum value of g(t) and let t∗ be the
time that achieves the minimum. Then we have∫ T

0

g(t)2dt− T · g2min

=

∫ T

0

g(t)2 − g2mindt

=

∫ T

0

(g(t) + gmin)(g(t)− gmin)dt

≥
∫ T

0

gmin · L1|t− t∗|+ L1|t− t∗|2dt

≥ C(L1) ∗ (gminT
2 + T 3),

where the third step follows from the definition of the
(L1, L2)-bi-Lipschitz function, i.e., L2|x1−x2| ≤ |g(x1)−
g(x2)|, and the last step hides constant C(L1) that depends
on L1. On the other hand, let gmax be the maximum value
of g(t), we have gmax ≤ gmin + L2T , therefore,

g2max ≤ C(L1, L2) ·
1

T

∫ T

0

g(t)2dt,

where C(L1, L2) is a constant that depends on L1 and L2.
Thus, g(t) satisfies the definition of the (C, ξ)-noise by
taking G = C(L1, L2) and ξ = 0.

Therefore, our assumption is mild and suitable for a wide
variation of noise functions.

3.2.3. DETERMINISTIC HASHTOBINS UNDER
CONTINUOUS SETTING

HASHTOBINS is a commonly-used algorithm in FFT. It
takes discrete samples from the time interval and uses DFT
to measure the signal in each hashing bucket. This measure-
ment reflects the tone of active frequency in the correspond-
ing bucket. Kapralov (2017) applies a modified HASHTO-
BINS algorithm to determine the active tones in the discrete
setting recursively. Our work extends this algorithm to the
continuous setting.

For simplicity of notation, we define a vector vf ∈ C|F| as
below to represent the k-sparse tones of signal x̂∗(f).
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Algorithm 1 HashToBins

1: procedure HASHTOBINS(x, ẑ,H = (σ, a, b))
2: ▷ Lemma 3.6
3: for j ∈ [BD] do
4: yj ← G(j) · Pσ,a,b(x)(j)
5: end for
6: for j ∈ [B] do
7: uj ←

∑
j∈[D] yBi+j − Ĝ ∗ ̂Pσ,a,b(z)(j/B)

8: end for
9: return The DFT û ∈ CB of u

10: end procedure

Definition 3.5. Consider {fi}|F|
i=1, fi ∈ F as a finite se-

quence of points ordered by their magnitude in the frequency
interval. Recall x̂∗(f) =

∑k
j=1 vj · δfj (f). Let vf := vi if

fi is an active frequency; otherwise, vf := 0.

Given an initial guess ẑ ∈ C|F| and a discrete sample of
signal x(t), this algorithm can return the bucket-wise mea-
surement of the difference between v and ẑ. The guarantee
of this procedure is stated as follows.

Lemma 3.6 (HASHTOBINS, Informal Version of
Lemma B.5)). We use B to denote the number of buckets.
We use hσ,b(f) to denote the index of the bucket where f

is hashed into. Given a vector ẑ ∈ C|F|, there exists a
deterministic procedure HASHTOBINS which computes
u ∈ CB with the following guarantee: for any f ∈ F ,

|uhσ,b(f) −
∑
f ′∈F

Ĝof,σ,b(f ′)(vf ′ − ẑf ′)ωaσf ′
|

≤ O

(
log k

k
·
(C
T

∫ T

0

|g(t)|2dt+ ξ
) 1

2

)
,

The algorithm takes O(B log(B)) samples. The time com-
plexity of the algorithm is O(B log2(B) +B · log(F/η).

The analysis of this lemma combines the bound for noise-
less input (HASHTOBINS(x∗(t), ẑf )) and noise-only input
(HASHTOBINS(g(t),0|F|)), where the former has a similar
performance to the discrete setting, and the latter is con-
trolled by our assumption in (C, ξ)-noise. Hence, our upper
bound on error is the sum of ∥ẑ∥2 · k−c and the energy-ξ
bound.

As mentioned, the de-randomization step finds a
deterministic sequence of hashing parameters that
avoids bad events. Taking the median of output of
HASHTOBINS(x, ẑ, (σr, br)) for r ∈ [d] gives a close ap-
proximation of vf − ẑf .

Lemma 3.7 (HASHTOBINS with De-randomized hash se-
quence, informal version of Lemma B.7)). Let B :=
Θ(k) be a power of 2. Let ŵf := vf − ẑf . Let
{Hr}r∈[d] = (σr, br) be the sequence of hashing found

by the de-randomization process. Let ur be the output of
HASHTOBINS(x, ẑ,Hr). We define

N (ŵ)

:=
1

αk

∑
f∈F

|ŵ(f)|+O

(
log k

k

(C
T

∫ T

0

|g(t)|2dt+ ξ
) 1

2

)
.

Then, we have, for all f ∈ F ,

|ŵf −median
r∈[d]

Ĝ−1
of,σr,br (f)

(ur)hσr,br (f)
| ≤ N (ŵ).

3.2.4. RECURSIVE SPARSE RECOVERY ALGORITHMS

Finally, we construct our main algorithm by embedding
HASHTOBINS into a recursive sparse recovery algorithm,
which is in line with the idea of Indyk & Kapralov (2014)
and (Li & Nakos, 2020). In each iteration, we run HASH-
TOBINS to measure the difference between the true tone vf
and the approximated tone ẑf . Then, we use a threshold
ν to determine whether to change the approximated tone.
We set the recovery threshold ν = O(N ) in the initial stage
and scaled by a constant γ in each iteration. This gives
us a super-linear time sparse recovery algorithm (see Ap-
pendix B). Since detection is applied to each entry of v, this
algorithm has an error bound in ℓ∞ norm.

Now, we discuss our sublinear algorithm. In each iter-
ation, we run HASHTOBINS O(log(F/η)) times to esti-
mate vf · ωiqθf for each heavy-hitter f . Here, q ∈ Q :=
{20, 21, · · · , 2logn−1} is the scaling factor we apply on the
phase of each heavy-hitter. Then, we adopt a discrete one-
sparse recovery technique in Li & Nakos (2020) to recover
each f . The algorithm is displayed in Algorithm 2.

Algorithm 2 One Sparse Recovery

1: procedure ONESPARSERECOVERY(xQ)
2: ▷ Lemma 3.8
3: for q ∈ Q do
4: dl ← 2lπ + arg(xq/x0)

5: Iq ←
q−1⋃
l=0

[dl

q −
π
4q ,

dl

q + π
4q ]

6: end for
7: S0 ← I1
8: for r ∈ {1, 2, · · · , log |F| − 1} do
9: Sr+1 ← Sr ∩ I2r+1

10: end for
11: Find θf ′ from Slog |F|−1 where f ′ ∈ F
12: f ′ ← θf ′ · |F|

2π
13: return f ′

14: end procedure

We next state the guarantee of Algorithm 2.
Lemma 3.8 (One-Sparse Recovery, Lemma 6.1 in Li &
Nakos (2020)). Suppose that |F| is a power of 2. Let Q :=

7
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{0, 20, 21, 22 · · · , |F|/2}. Let x ∈ CF with the discrete
Fourier transform x̂. Let xf be the f -th entry of x. Let θf :=
2π
|F|f

′ mod 2π. Let {xq}q∈Q be a sequence of metric of
xf satisfying

| arg(xq)− (arg x̂f + qθf )| ≤ π/8

Then ONESPARSERECOVERY(Algorithm 2) recovers f by
{xq}q∈Q in O(logF/η) time.

Instead of traversing through each possible frequency as
in the super-linear time algorithm, we locate the heavy-
hitters first, and then we do the recursive estimation of the
tone of each heavy-hitter. This reduces the O(F/η) time
recovery to an O(k) time recovery, leading to the sublinear
result. Algorithm 3 embeds the above one-sparse recovery
procedure to recover the signal in sublinear time.

Algorithm 3 Sublinear-time Sparse Recovery for x̂− ẑ

1: procedure SUBLINEAR(x, ẑ, ν) ▷ Lemma 3.10
2: S ← ∅
3: for r = 1→ d do
4: for q ∈ Q do
5: uq ← HASHTOBINS(x, ẑ, (σr, q, br))
6: ▷ Lemma 3.6
7: end for
8: for b = 1→ B do
9: f ← ONESPARSERECOVERY({(uq)b}q∈Q)

10: ▷ Lemma 3.8
11: S ← S ∪ {f}
12: vf,r ← Ĝ−1

of,σr,br (f)
(u0)hr(f)

13: end for
14: end for
15: ŵ′

f ← 0
16: for f ∈ S do
17: vf ← medianr∈[d] vf,r ▷ Lemma 3.9
18: if |vf | > ν/2 then
19: ŵ′ ← vf
20: end if
21: end for
22: return ŵ′

23: end procedure

Next, we provide the guarantee of the sublinear-time sparse
recovery for x̃− z̃. With the guarantee of de-randomization
(Lemma 3.2), the following lemma shows how well the
hashing sequence separates different heavy indices.

Lemma 3.9 (Separating Heavy Indices, informal version of
Lemma C.3). Let Hr = {σr, ar, br}r∈d be a sequence of
hashing defined in Definition 2.6. We have Ĝ being a flat
filter with ϵ buckets and sharpness ϵ (see Definition 2.8). Let
x̂, v be defined as Definition 1.1. If for all f, f ′ ∈ F with

f ̸= f ′ it holds that,∑
r∈[d]

Ĝ−1
of,σr,br (f)

Ĝof,σr,br (f
′) ≤

β

1− ϵ

where β is chosen the same as Lemma 3.2, then for any f ,
at least 0.8d indices r ∈ [d] satisfy

|
∑

f ′∈F\{f}

Ĝof,σr,br (f
′)x̂f | ≤ Θ(

1

B
) ·

∑
f ′∈F\{f}

|vf ′ |.

Next, once we have “good” hash sketches (Lemma 3.9), and
provided we choose ν large enough, Algorithm 3 recovers
all large entries and approximates them well.

Lemma 3.10 (Sublinear-time sparse recovery for x̃ − z̃,
informal version of Lemma C.4). Let x̂, v be defined as
Definition 1.1. Let ẑ ∈ C|F|. Let B be chosen as Defini-
tion B.6. Let ŵf := vf − ẑf . Let N (ŵ) be defined as in
Lemma 3.7. Let ν ≥ 16N (ŵ) be a constant to denote a
threshold for heavy index. Then the output of the Procedure
SUBRECOVERY (Algorithm 3) ŵ′ satisfies:

• |ŵf | ≥ (7/16)ν for all f ∈ supp(ŵ′),

• |ŵf − ŵ′
f | ≤ |ŵf |/7 for all f ∈ supp(ŵ′),

• {f ∈ F : |ŵf | ≥ ν} ⊆ supp(ŵ′).

Finally, similar as Hassanieh et al. (2012a) and Li & Nakos
(2020), we introduce the definition of signal-to-noise ratio
R∗. It measures the ratio between each tone’s magnitude
and the average noise. We assume R∗ = O(poly(F/η)),
which allows us to run only O(log(F/η)) iterations of one-
stage sparse recovery.

Definition 3.11 (Signal-to-Noise Ratio). We define the av-
erage of noise ν as

µ := O

(
C · 1

kT

∫ T

0

|g(t)|2dt+ ξ

)
.

Then, the signal-to-noise ratio R∗ is defined as

R∗ := ∥v∥∞/µ.

Based on all the above discussions, we obtain the main
theorem. Here, we only present the sublinear time result
since it outperforms the other algorithm when F/η ≫ k.
Our main algorithm is displayed in Algorithm 4. It calls
the SUBLINEAR procedure iteratively with geometrically
decreasing threshold ν(t), which recovers the sparse signal
in logγ R

∗ rounds.

The next statement shows our main result.

8



Deterministic Sparse Fourier Transform for Continuous Signals with Frequency Gap

Algorithm 4 Sublinear-time sparse recovery for x̂

1: procedure MAIN(x ∈ Cn) ▷ Theorem 3.12
2: T ∗ ← logγ R

∗

3: ẑ(0) ← 0|F|/η
4: ν(0) ← CµγT

5: for t = 0→ T ∗ − 1 do
6: ẑ(t+1) ← ẑ(t) + SUBLINEAR(x, ẑ(t), ν(t)) ▷

Algorithm 3
7: ν(t+1) ← ν(t)/γ
8: end for
9: return ẑ

10: end procedure

Theorem 3.12 (Main result, formal version of Theo-
rem 3.12). Consider any k-Fourier-sparse signal x∗(t) =∑k

j=1 vj · e2πifjt with on-grid frequencies fj ∈ F for
band-limit F and gap η (Definitions 1.1 and 1.2). Let
T ≥ Ω̃(1/η). For t ∈ [0, T ], let x(t) = x∗(t) + g(t)
be the noisy observation with signal-to-noise ratio R∗ =
poly(F/η), where g(t) is a (C, ξ)-noise (Definition 3.3) for
some C, ξ > 0. We define the noise level as

N :=
1

k

∑
f∈F

|vf |+
log k

k
·
(C
T

∫ T

0

|g(t)|2dt+ ξ
) 1

2

Then, there exists a deterministic algorithm (Algorithm 4)
which finds an O(k)-sparse vector ẑ ∈ C|F| such that

|vj − ẑfj | ≤ O(N ) ∀j ∈ [k] , and

|ẑf | ≤ O(N ) ∀f /∈ {f1, . . . , fk} .

The algorithm takes O(k2 log k log2(F/η)) samples and
runs in O(k2 log k log3(F/η)) time.

Proof. Proof of Correctness.

Notice that we have the same guarantees in Lemma 3.10
as in Lemma B.8. Therefore, in Algorithm 4, we directly
replace the super-linear time sparse recovery algorithm SU-
PERLINEAR with the sublinear time sparse recovery algo-
rithm SUBLINEAR. Then, the proof of the correctness is the
same as that of super-linear time algorithm (Algorithm 6 in
Appendix B).

Proof of Sample Complexity.

The sample complexity of the algorithm is counted as below,

Sample Complexity

= T ∗ · SUBLINEAR

= log(F/η) · SUBLINEAR

= log(F/η) · d · HASHTOBINS

= log(F/η) · d ·O(B log(B))

= log(F/η) ·O(B log(F/η)) ·O(logB) ·O(B)

= O(k2 log k · log2(F/η))

where the first step is because we run T ∗ times SUBLINEAR,
the 2nd step holds since T ∗ = O(log(F/η), the 3rd step is
because we have d hashing tuples (notice that the samples
for uq are reused in each iteration, so we only run d times
HASHTOBINS), the 4th step is by Lemma 3.6, the 5th step is
by choice of d (see Lemma 3.2), the 6th step is by B = Θ(k)
(see Lemma 3.6).

Proof of Running Time.

By Lemma 3.6, the time complexity of HASHTOBINS is
O(k log k). By Lemma 3.8, the time complexity of ONES-
PARSERECOVERY is O(log(F/η)). Taking the median from
d results from HASHTOBINS takes time O(d).

The time complexity of SUBLINEAR is

d log(F/η) · HASHTOBINS

+ dB · ONESPARSERECOVERY

+ log(F/η) · Taking Median

= d log(F/η) · k log(k) + dB · log(F/η) + log(F/η) · d
= O(B log(F/η)) log(F/η)k log(k)

+O(B log(F/η))B log(F/η)

+ log(F/η) ·O(B log(F/η))

= O(k2 log k log2(F/η))

where the first step follows from the time com-
plexity of HASHTOBINS, ONESPARSERECOVERY and
Taking Median, the second step is by the choice of d, and
the last step holds for B = Θ(k).

Hence, the time complexity for the main algorithm is

T ∗ ·O(k2 log k log2(F/η)) = O(k2 log k log3(F/η))

since R∗ = O((F/η)m) by the assumption, which allows
us to run only T ∗ = O(log(F/η)) iterations of one-stage
sparse recovery.

4. Conclusion
In this work, we study the deterministic algorithm for the
sparse Fourier transform in the continuous setting, which
bridges a significant gap in prior research dominated by ran-
domized approaches. By leveraging innovative techniques
such as deterministic hashing, robust noise modeling, and
recursive sparse recovery algorithms, the proposed method
achieves optimal recovery guarantees in sublinear time. This
advancement not only extends the theoretical boundaries of
sparse Fourier transforms but also paves the way for prac-
tical applications in signal processing, machine learning,
and beyond, particularly in scenarios where deterministic
solutions are desirable.
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Appendix
Roadmap. We organize Appendix as follow. In Section A, we introduce the de-randomization techniques which will be
used to guarantee the success of sparse recovery algorithm. In Section B, we discuss the super-linear time sparse recovery
algorithm. In Section C, we provide the missing proofs of our sub-linear time sparse recovery algorithm.

A. De-randomization
In this section, our goal is to find a deterministic sequence of hashing {(σr, ar, br)}r∈[d] satisfying the following condition
(see Lemma A.21): ∑

r∈[d]

(Ĝof,σr,br (f)
)−1Ĝof,σr,br (f

′) ≤
β

1− ϵ
.

This condition will be used to derive a guarantee for algorithm SUBRECOVERY (i.e., the fifth condition in Lemma B.2).

In Section A.1, we define several basic parameters and analyze the relationships between those parameters. In Section A.2,
we provide the definition of sample range set. In Section A.3, we define the bad event. In Section A.4, we define Pessimistic
Estimator. In Section A.5, we provide a round and mod tool. In Section A.6, we provide a lemma for offset function. In
Section A.7, we provide an upper bound on Zσ(b). In Section A.8, we study the distribution of σ(f ′ − f) (mod 1). In
Section A.9, we study the distribution of o. In Section A.10, we provide bound for the range of o. In Section A.11, we
prove the upper bound for probability of bad event. In Section A.12, we provide upper bound for M(λ). In Section A.13,
we analyze the initial constraint. In Section A.14, we analyze the induction steps. In Section A.15, we show how to put
everything together.

A.1. Parameter constraints

This section lists our choice for several parameters used in this section.
Definition A.1. We define the following parameters:

• λ := C1 where C1 is some fixed constant belongs to ( 12 , 1)

• ϵ := 20
B

• β := 6
C1
· log |F|

• d := 3C1

40 ·B log |F|

The parameters in Definition A.1 are chosen to satisfy below inequalities, which we will use in the proofs of this section.
Observation A.2. We assume the parameters satisfy the following conditions:

1. λ ∈ (0, 1)

2. ϵ ∈ (0, 1)

3. β ≥ 4ϵd

4. λβ ≥ 6 log |F|

5. 10
B · (λ(1− ϵ) + 1) ≤ λϵ

Proof. Proof of Part 5
10

B
· (λ(1− ϵ) + 1) ≤ 10

B
· (λ+ 1)

≤ λϵ

2
+

10

B
≤ λϵ

the first step is by B > 20, the 2nd step is by the choice of ϵ, the 3rd step is by λ > 1/2
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A.2. Sample Range Set

This section defines the set where we sample the hashing parameters σ and b.

Definition A.3 (Sample range of b). Let B be the range of the hashing parameter b. We take B := F .

Definition A.4 (Sample range of σ). Let Σ be the range of the hashing parameter σ. We define S to be the set of positive
odd integers in [0, F/η], and Σ := 1

F · S = {x/F | x ∈ S}.

A.3. Bad Event

This section defines the bad events for which two active frequencies are not filtered out.

Definition A.5 (Bad events, Definition 5.4 in page 14 in Li & Nakos (2020)). Suppose that

• d is defined as Definition A.1, and

• β is defined as Observation A.2.

For any f, f ′ ∈ F , f ̸= f ′, we define Af,f ′ to be the event that

d∑
r=1

Ĝof,σr,br (f
′) ≥ β.

A.4. Pessimistic Estimator

This section defines the pessimistic estimator, which is used in choosing the property parameters in the hashing.

Definition A.6 (Pessimistic estimator, Definition 5.5 in page 15 in Li & Nakos (2020)). Let λ > 0 be a fixed parameter. We
define the pessimistic estimator as follows:

hr(f, f
′;σ1, b1, · · · , σr, br) := exp(−λβ) · exp

(
λ

r∑
l=1

Ĝof,σl,bl
(f ′)

)
· (M(λ))d−r,

where

M(λ) := exp(λϵ) ·
( 5

B
· eλ(1−ϵ) + 1

)
.

For r ≥ 1, the value of σr, br is determined by the following minimization procedure:

σr, br = arg min
σ∈Σ,b∈B

∑
f,f ′∈F :f ̸=f ′

hr(f, f
′;σ1, b1, · · · , σr−1, br−1, σ, b).

This function can be evaluated in poly(F/η) time.

Remark A.7. Li & Nakos (2020) chose d to be O(k log n). In this work, we choose d to be O(k log(F/η)).

A.5. A Round and Mod Tool

This section introduces a technical tool to analyze the hashing function.

Fact A.8 (Change order in taking modulus). For any positive integer y and real number x, it holds that

(y−1 · round(yx)) mod 1 = y−1 · round(y · (x mod 1))− c,

where c = 0 or 1.

Proof. We assume x = x′ + q where x is an integer and q ∈ [0, 1), then we have

(y−1 · round(yx)) mod 1 = (y−1 · round(yx′ + yq)) mod 1
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= (y−1 · (yx′ + round(yq))) mod 1

= (y−1 · round(yq)) mod 1

where the first step is because x = x′ + q, the 2nd step is because yx′ is an integer, the 3rd step is because x′ mod 1 = 0.
Then, we consider two cases of q:

Case 1: q ∈ [0, 1− 1/(2y)). Then, yq < y − 1/2, and round(yq) ≤ y − 1. Thus, y−1 · round(yq) ∈ [0, 1). In this case,

LHS = (y−1 · round(yq)) mod 1

= (y−1 · round(yq))
= y−1 · round(y · (x mod 1)),

where the last step follows from q = x mod 1. And the fact is proved with c = 0 in this case.

Case 2: q ∈ [1− 1/(2y), 1). Then, yq ∈ [y − 1/2, y), and round(yq) = y. Then, y−1 · round(yq) = 1. In this case,

LHS = (y−1 · round(yq)) mod 1 = 0.

On the other hand,

RHS = y−1 · round(y · (x mod 1)) = (y−1 · round(yq)) = 1.

Hence, the fact follows with c = 1 in this case.

As Case 1 and Case 2 consider all possible values of q, the fact is then proved.

A.6. Reformulation of of,σ,b(f ′)

This section introduces a simplified version of the offset function of,σ,b.

Lemma A.9 (Simplified of,σ,b). Let πσ,b(f), of,σ,b(f ′) be defined as Definition 2.4. We have

of,σ,b(f
′) =

(
σ(f ′ − f) + σ(f − b)− 1

B
round(Bσ(f − b)) mod 1

)
− c,

for some c = 0 or 1.

Proof.

of,σ,b(f
′) = πσ,b(f

′)− (1/B)hσ,b(f) mod 1

= σ(f ′ − b) mod 1− 1

B
round(B(σ(f − b) mod 1))

= σ(f ′ − b) mod 1−
(( 1

B
round(Bσ(f − b))

)
mod 1)− c

= (
(
σ(f ′ − b)− 1

B
round(Bσ(f − b))

)
mod 1)− c

= (
(
σ(f ′ − f) + σ(f − b)− 1

B
round(Bσ(f − b))

)
mod 1)− c,

where the first step and second step follows by Definition 2.4, the 3rd step uses Fact A.8 by taking y = B and x = σ(f − b),
and c = 0 or 1, the 4th step holds by property of taking modulus, the last step is a rearrangement.

Notice that, the −c will not affect the result showing below since σ(f − f ′) mod 1 ∈ [0, 1), so we ignore it.
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A.7. Upper bound on Zσ(b)

This section introduces an auxiliary variable Zσ(b), which is used to control the distribution of the offset hashing function.

Definition A.10. Suppose b is uniformly sampled from the set B (Definition A.3), and σ is uniformly sampled from the set Σ
(Definition A.4). Define

Zσ(b) := σ(f − b)− 1

B
round(Bσ(f − b)).

The next lemma upper bounds Zσ(b).

Lemma A.11 (The range of Zσ(b)). Let Zσ(b) be defined as in Definition A.10. Then, it always holds that

Zσ(b) ∈ [− 1

2B
,
1

2B
].

Proof. We can show

|Zσ(b)| = |σ(f − b)− 1

B
round(Bσ(f − b))|

=
1

B
· |Bσ(f − b)− round(Bσ(f − b))|

≤ 1

2B

where the first step is by definition of Zσ(b) (see Definition A.10), the 2nd step is from simple calculation, the 3rd step
holds because |x− round(x)| ≤ 1/2 for all x ∈ R.

A.8. Distribution of σ(f ′ − f) (mod 1)

This section analyzes the distribution of σ(f ′ − f) (mod 1). We begin with a simplified version of σ(f ′ − f).

Lemma A.12 (Reformulation of σ(f ′ − f)). Under the following conditions:

• Let σ be uniformly random from set Σ (see Definition A.4)

• Let m := σF

• Let i := (f ′ − f)/η

then m is uniformly distributed over S (see Definition A.4), and

(σ(f ′ − f)) mod 1 =
η

F
· (mi mod

F

η
). (1)

Proof. By Definition A.4), we know that Σ = 1
F · S, where S contains all the odd numbers on [F/η]. Since σ is uniformly

sampled from Σ and m = σF , we get that m is uniformly distributed in S.

By the definitions of m and i, we have

σ(f ′ − f) =
m

F
· iη = mi · η

F
.

Now suppose σ(f ′ − f) = C +D, where C ∈ Z, D ∈ [0, 1). Then, we have

mi · η
F

= C +D, i.e., mi = C
F

η
+D

F

η
.
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Since DF
η ∈ [0, F

η ), it implies that

mi mod
F

η
= D

F

η
.

Now, we can conclude that:

(σ(f ′ − f)) mod 1 = D =
η

F
· (mi mod

F

η
).

The next statement characterizes the distribution of (σ(f ′ − f) mod 1).

Lemma A.13 (Distribution of (σ(f ′ − f) mod 1)). Under the following conditions,

• Suppose F/η := 2p, where p is a positive integer

• Let σ be uniformly random from set Σ (see Definition A.4)

• Let f ′ ̸= f be frequencies from F

• Let m, i be defined as in Lemma A.12

• Let i := 2sK where s is a non-negative integer and K is an odd number

then we have

1. (σ(f ′ − f) mod 1) is uniformly distributed over its support

2. The support of (σ(f ′ − f) mod 1) is symmetric

3. The support of (σ(f ′ − f) mod 1) is a sequence of equidistant points, with wraparound distance D := η
F 2s+1

In particular, (σ(f ′ − f) mod 1) is uniformly distributed over the following set:{
±(1

2
+ j) ·D : 0 ≤ j ≤ 2p−s−2 − 1, j ∈ N

}
.

Proof. By Lemma A.12, (σ(f ′ − f) mod 1) = 2−p · (mi mod 2p). Hence, we only need to consider the distribution of

mi (mod 2p),

where m is uniformly sampled from odd integers in [2p] and i = 2sK ∈ [2p].

If i = 2p, then supp(σ(f ′ − f) mod 1) = {0}. And the lemma trivially holds. In the following proof, we assume that
i < 2p, i.e., 0 ≤ s < p.

Proof of Part 1

Let m1,m2 be two possible value of m, when m1 −m2 = 2p−s, we have

m1i−m2i = 2pK ≡ 0 (mod 2p)

Hence, the value of (mi mod 2p) has a period of length at least 2p−s. And we only need to consider m ∈ [2p−s].

Let m1,m2 ∈ [2p−s], m1 > m2. Then

(m1 −m2)2
s < 2p
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Since K is odd, then (m1 −m2)i = (m1 −m2)2
sK cannot be divided by 2p, which imples that

m1i (mod 2p) ̸= m2i (mod 2p)

Therefore, each odd integer m ∈ [2p−s] generates a unique value for mi (mod 2p). And mi = m′i (mod 2p) for every
m′ ∈ {m+ j2p−s |m+ j2p−s ≤ 2p, j ∈ N}. Suppose that i < 2p, then each m′ in this set is an odd number. Moreover,
for any odd m ∈ [2p−s],

|{m+ j2p−s |m+ j2p−s ≤ 2p, j ∈ N}| = 2s.

Therefore, S, the support of m, is divided into 2s-sized equivalence classes, and each class gives a distinct value for mi
(mod 2p). Since m is uniformly sampled, mi (mod 2p) is uniform on its support, so does σ(f ′ − f) (mod 1).

Proof of Part 2

For any m ∈ [2p−s], we have

mi+ (2p−s −m)i = 2pK ≡ 0 (mod 2p).

Therefore,

(mi mod 2p) + ((2p−s −m)i mod 2p) = 2p,

that is, the support of (mi mod 2p) is symmetric in [2p]. Thus, the support of (σ(f ′ − f) mod 1) is symmetric in [0, 1]
with respect to 0 under wraparound distance.

Proof of Part 3

For any m1 > m2 ∈ [2p−s], m1 −m2 can be written as 2g for some integer g ̸= 0 since they are all odd numbers. We have

(m1 −m2)i = 2s+1gK = C · 2p +D

where C is an integer and D ∈ (0, 2p). Then, we know that D can be divided by 2s+1 since 2s+1gK and C · 2p both can be
divided by 2s+1.

We show that D is the wraparound distance between any two points in the support of (mi mod 2p):

((m1i (mod 2p))− (m2i (mod 2p)) mod 2p)

= (m1 −m2)i mod 2p

= 2s+1gK mod 2p

= D,

where the first step is by the property of taking modulus, the 2nd step is because m1 −m2 = 2g, and the 3rd step follows
from the definition of D. Then, we know that the wraparound distance between two points is at least 2s+1.

On the other hand, we show that the distance is at most 2s+1. By Part 1 of this lemma, we know that

|{mi (mod 2p) : m ∈ [2p], m is odd}| = |{m ∈ [2p−s], m is odd}| = 2p−s−1.

Thus,

D · 2p−s−1 ≤ 2p,

which implies that D ≤ 2s+1.

Therefore, we get that the support of (mi mod 2p) is a sequence of equidistant points, with wraparound distance 2s+1. By
scaling a factor of η

F , we get the wanted result.
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D/2−D/2

−3D/2 3D/2

−5D/2 5D/2

1/2−D/21/2 +D/2

Figure 1. The support of (σ(f ′ − f) mod 1), where D = η
F
2s+1.

A.9. Distribution of of,σ,b(f ′)

This section analyzes the distribution of of,σ,b(f ′). The next statement shows that the offset of f ′ with respect to f is large
with high probability.

Lemma A.14 (Analogous to Lemma 5.6 in page 15 in Li & Nakos (2020)). If the following conditions hold:

• Suppose F/η := 2p, where p is a positive integer

• Let σ be uniformly random from set Σ (see Definition A.4)

• Let f ′ ̸= f be frequencies from F

• Let m, i be defined as in Lemma A.12

• Let i := 2sK where s is a non-negative integer and K is an odd number

• Suppose B = 2q

then for any f ̸= f ′ we have,

Pr
σ,b

[
of,σ,b(f

′) ∈
[
− 1

B
,
1

B

]]
≤ 5

B
.

Proof. By Lemma A.9, we know that

of,σ,b(f
′) = σ(f ′ − f) + Zσ(b) mod 1,

where Zσ(b) is a random variable defined by

Zσ(b) = σ(f − b)− 1

B
round(Bσ(f − b)).

Then, the distribution of of,σ,b(f ′) is a convolution of Zσ(b) ∈ [− 1
2B , 1

2B ] and σ(f ′−f) mod 1 (a sequence of equidistant
points).

We first consider the random variable σ, and then conditioned on σ, we consider the random variable b.

By Lemma A.13, the distance between two consecutive points in the support of σ(f ′−f) mod 1 is D = η
F 2s+1 = 2−p+s+1.

In the following proof, we discuss two cases based on the value of p− q − s.
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Case 1: p− q ≥ s. We have

1

B
= 2−q = D · 2p−q−s−1 ≥ D

2
. (2)

Then, we have

Pr

[
of,σ,b(f

′) ∈
[
− 1

B
,
1

B

]]
= Pr

[
(σ(f ′ − f) + Zσ(b) mod 1) ∈

[
− 1

B
,
1

B

]]
=

∑
x∈supp(σ(f ′−f) mod 1)

Pr
b

[
(x+ Zσ(b) mod 1) ∈

[
− 1

B
,
1

B

] ∣∣∣ (σ(f ′ − f) mod 1) = x

]
·

Pr
σ
[(σ(f ′ − f) mod 1) = x]

≤ Pr

[
(σ(f ′ − f) mod 1) ∈

[
− 3

2B
,
3

2B

]]
≤ (1/D) · (3/B) + 1

1/D

=
3

B
+D

≤ 5

B

where the 1st step is by simple algebra, the 2nd step follows from the conditional probability, the 3rd step is because
Zσ(b) ∈ [− 1

2B , 1
2B ] (see Lemma A.11), the 4th step is because the uniform distribution of σ(f ′ − f) mod 1 on its

support described in Lemma A.13, where the numerator is the maximum number of points inside interval [− 3
2B , 3

2B ], the
denominator is the total number of points in the whole range, the 5th step is a rearrangement, and the last step uses Eq. (2).

Case 2: p − q ≤ s − 1. By Lemma A.13, the closest point to the origin in the support of σ(f ′ − f) mod 1 is ±D/2.
Then, in this case, it holds that

D

2
= 2−p+s =

2

B
· 2q−1−p+s ≥ 2

B
>

3

2B
.

Hence, by the same analysis as in Case 1, of,σ,b(f ′) will not take value in [− 1
B , 1

B ].

The next statement upper bounds the moment generation function of Ĝof,σ,b(f ′), which is used to bound the probability of
bad event.

Lemma A.15 (Analogous to Lemma 5.7 in page 16 in Li & Nakos (2020)). Under following conditions

• Suppose |F| is power of 2

• Let σ be uniformly random from set Σ (see Definition A.4)

• Let b be uniformly random in set B (see Definition A.3)

• Suppose B is power of 2

• Let Ĝ be a flat filter defined in Definition 2.8

• Let M(λ) be defined as Definition A.6

For all f, f ′ ∈ F ,

E
σ,b

[exp(λĜof,σ,b(f ′))] ≤M(λ)
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Proof. By Lemma A.14 we have,

Pr[Ĝ ≥ ϵ] = Pr[of,σ,b(f
′) ∈ [− 1

B
,
1

B
]] ≤ 5

B
(3)

where the first step is by the definition of G (see Definition 2.8), the second step uses Part 1 of Lemma A.14.

Therefore, we have

E
σ,b

[exp(λĜof,σ,b(f ′))] ≤ Pr[Ĝ ≥ ϵ] · exp(λ · sup Ĝ) + Pr[Ĝ ≤ ϵ] · exp(λϵ)

≤ Pr[Ĝ ≥ ϵ] · exp(λ) + Pr[Ĝ ≤ ϵ] · exp(λϵ)

≤ 5

B
· eλ + eλϵ

=M(λ)

where the first step follows from the definition of expectation, the second step follows by Ĝ ∈ [0, 1] (see Definition 2.8), the
3rd step is by Eq. (3), and the last step follows from the definition of M(λ) (see Definition A.6).

A.10. Range of of,σ,b(f)

This section bounds the value of of,σ,b(f).

Lemma A.16. If the following conditions hold:

• Let σ be randomly chose from set Σ (see Definition A.4)

• Let b be uniformly random from set β (see Definition B.6)

then for any f ∈ F we have,

of,σ,b(f) ∈ [− 1

2B
,
1

2B
]

Proof.

of,σ,b(f) = σ(f − f) + Zσ(b)

= Zσ(b)

∈ [− 1

2B
,
1

2B
]

where the first step is from Lemma A.9, the 3rd step is by Lemma A.11

A.11. Upper bound for probability of bad event

This section upper bounds the probability of bad event by the pessimistic estimator.

Lemma A.17 (Pessimistic Estimator, Analogous to Lemma 5.8 in page 16 in Li & Nakos (2020)). Under following
conditions

• Suppose |F| is power of 2

• Let r ∈ [d]

• Let σ be uniformly random from set Σ (see Definition A.4)

• Let b be uniformly random in set B (see Definition A.3)
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• Let hr be defined as Definition A.6

• Let Hr = {(σr, ar, br)}r∈[d] be a sequence of hashing chose by procedure in Definition A.6

• Suppose f, f ′ ∈ F satisfy f ̸= f ′

• Let Af,f ′ denote the bad event defined as Definition A.5, where (σr+1, br+1), . . . , (σd, bd) are uniformly and indepen-
dently sampled from Σ× B

we have,

hr(f, f
′;σ1, b1, · · · , σr, br) ≥ Pr[Af,f ′ | σ1, b1, . . . , σr, br].

Proof. We define z as follows,

z :=

r∑
l=1

Ĝof,σl,bl
(f ′)

Conditioned on σ1, b1, . . . , σr, br, z is a fixed constant.

Then we have

Pr[Af,f ′ | σ1, b1, · · · , σr, br] = Pr[z +

d∑
l=r+1

Ĝof,σl,bl
(f ′) > β]

= Pr[exp(λ(z +

d∑
l=r+1

Ĝof,σl,bl
(f ′))) > eλβ ]

≤ e−λβeλz E[exp(λ
d∑

l=r+1

Ĝof,σl,bl
(f ′))]

= e−λβeλz E[exp(λĜof,σ,b(f ′))]
d−r

= e−λβeλz(M(λ))d−r

where the 3rd step is by Markov inequality, the 4th step follows from the independence, the 5th step is given by Lemma A.15,
and the expression in the last line is exactly hr (see Definition A.6).

A.12. Upper bound for M(λ)

This section upper bounds the quantity M(λ).

Lemma A.18 (Upper bound for M(λ)). Under following conditions

• Let M(λ) be defined as in Definition A.6

• Suppose that ϵ ∈ (0, 1)

Then we have,

M(λ) ≤ exp(2λϵ)

Proof.

M(λ) = exp(λϵ) · ( 5
B
· eλ(1−ϵ) + 1)

≤ exp
(
λϵ+ log(1 +

5

B
· eλ(1−ϵ))

)
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≤ exp
(
λϵ+

5

B
· eλ(1−ϵ)

)
≤ exp

(
λϵ+

10

B
· (λ(1− ϵ) + 1)

)
≤ exp(2λϵ)

where the 1st step is due to definition of M(λ) (see Definition A.6), the 2nd is by simple algebra, the 3rd step is because
log(x+ 1) ≤ x for x ̸= 0, the 4th step is because ex ≤ 2x+ 1 for x ∈ (0, 1), and λ, ϵ ∈ (0, 1), the 5th step is by Part 5 of
Observation A.2

A.13. Initial Constraint

The following sections upper bound the pessimistic estimator by induction. This section verifies the initial constraint.

Lemma A.19 (Initial constraint, Analogous to Lemma 5.9 in page 17 in Li & Nakos (2020)). Under following conditions

• Suppose |F| is power of 2

• Let σ be uniformly random from set Σ (see Definition A.4)

• Let b be uniformly random in set B (see Definition A.3)

• Let hr be defined as Definition A.6

• Suppose f, f ∈ F satisfy f ̸= f ′

we have, ∑
f,f ′∈F :f ̸=f ′

h0(f, f
′) < 1

Proof. ∑
f,f ′∈F :f ̸=f ′

h0(f, f
′) = e−λβ

∑
f,f ′∈F :f ̸=f ′

(M(λ))d

≤ |F|2 exp(−λβ + 2λϵd)

≤ |F|2 exp(−0.5λβ)
≤ |F|2 exp(−3 log |F|)
< 1

where the first step is from definition of h0 (see Definition A.6), the second step follows from Lemma A.18, the third step is
by β ≥ 4ϵd (Part 3 of Observation A.2), the fourth step follows by λβ ≥ 6 log |F|) (Part 4 of Observation A.2), the fifth
step is by simple algebra.

A.14. Induction step

This section shows the induction step.

Lemma A.20 (Derandomization, Analogous to Lemma 5.10 in page 17 in Li & Nakos (2020)). Under following conditions

• Suppose |F| is power of 2

• Let σ be uniformly random from set Σ (see Definition A.4)

• Let b be uniformly random in set B (see Definition A.3)

• Let r ∈ [d− 1]
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• Let Hr = {(σj , aj , bj)}j∈[j] be a sequence of hashing chose by procedure in Definition A.6

• Let hr be defined as Definition A.6

• Suppose f, f ∈ [n] satisfy f ̸= f ′

we have,

hr(f, f
′;σ1, b1, · · · , σr, br) ≥ E

σr+1,br+1

[hr+1(f, f
′;σ1, b1, · · · , σr+1, br+1)]

Proof. We define z as follows,

z :=

r∑
l=1

Ĝof,σl,bl
(f ′)

Then we have

E
σr+1,br+1

[hr+1(f, f
′;σ1, b1, · · · , σr+1, br+1)] = E

σ,b
[e−λβe

λ(z+Ĝof,σ,b(f
′))(M(λ))d−r−1]

= e−λβeλz(M(λ))d−r−1 E
σ,b

[exp(λĜof,σ,b(f ′))]

≤ e−λβeλz(M(λ))d−r

= hr(f, f
′;σ1, b1, · · · , σr, br)

where the 1st step is due to definition of hr (see Definition A.6), the 2nd step holds since eλz and M(λ) are independent of
σ, b, the 3rd step uses Lemma A.15, the 4th step is due to definition of hr (see Definition A.6).

A.15. Putting it all together

This section summarizes the analysis above and shows our final result.

Lemma A.21. If the following happens

• Let β be defined as Definition A.1

• Let ϵ ∈ (0, 1) be defined as Definition A.1

• Let Hd = {(σr, ar, br)}r∈[d] be a sequence of hashing chose by procedure in Definition A.6

• Let Ĝ be a flat filter in accordance of hashing functions in Hr (see Definition 2.8)

it holds that, for all f ̸= f ′

∑
r∈[d]

Ĝ−1
of,σr,br (f)

Ĝof,σr,br (f
′) ≤

β

1− ϵ

Proof. Note that in each step, we choose σr+1, br+1 to minimize∑
f,f ′∈F :f ̸=f ′

hr+1(f, f
′;σ1, b1, · · · , σr+1, br+1).

Then, we know that∑
f,f ′∈F :f ̸=f ′

hr+1(f, f
′;σ1, b1, · · · , σr+1, br+1) ≤

∑
f,f ′∈F :f ̸=f ′

E
σ′
r+1,b

′
r+1

[hr+1(f, f
′;σ1, b1, · · · , σ′

r+1, b
′
r+1)], (4)
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which follows from the linearity of expectation. By Lemma A.20, it holds that∑
f,f ′∈F :f ̸=f ′

E
σ′
r+1,b

′
r+1

[hr+1(f, f
′;σ1, b1, · · · , σ′

r+1, b
′
r+1)] ≤

∑
f,f ′∈F :f ̸=f ′

hr(f, f
′;σ1, b1, · · · , σr, br).

Hence by induction, we have ∑
f,f ′∈F :f ̸=f ′

hd(f, f
′;σ1, b1, · · · , σd, bd) ≤

∑
f,f ′∈F :f ̸=f ′

h0(f, f
′) < 1

where the 2nd step is given by Lemma A.19.

Therefore, by Lemma A.17,∑
f,f ′∈F :f ̸=f ′

Pr[Af,f ′ | σ1, b1, · · · , σd, bd] ≤
∑

f,f ′∈F :f ̸=f ′

hd(f, f
′;σ1, b1, · · · , σd, bd) < 1.

Note that conditioned on σ1, b1, · · · , σd, bd, Af,f ′ is a deterministic event. That is, the conditional probability for each pair
of f ̸= f ′ is either zero or one. By the inequality, we get that

Pr[Af,f ′ | σ1, b1, · · · , σd, bd] = 0 ∀f ̸= f ′ ∈ F .

Then by the definition of Af,f ′ (Definition A.5), it implies that∑
r∈[d]

Ĝof,σr,br (f
′) ≤ β. (5)

Note that of,σr,br (f) ∈ [− 1
2B , 1

2B ] (see Lemma A.16). Thus, by definition of Ĝ (see Definition 2.8), we have

Ĝof,σr,br (f)
∈ [1− ϵ, 1].

Then Eq. (5) gives that, for all f ̸= f ′ ∈ F ,∑
r∈[d]

Ĝ−1
of,σr,br (f)

Ĝof,σr,br (f
′) ≤

β

1− ϵ
.

The lemma is then proved.

B. Super-linear Algorithm
This section gives a deterministic super-linear algorithm to recover the k heavy-hitters. We first analyze the guarantee of
HASHTOBINS, and then we embed it into a recursive algorithm that filters the signal in each bin by a decaying threshold.

In Section B.1, we show that the measurement gives a close approximation to the tones. In Section B.2, we present the
assumption of the noise function. In Section B.3, we introduce HashToBins. In Section B.4, we analyze the median of
the output of HashToBins. In Section B.5, we study the guarantee of the algorithm for super-linear time sparse recovery,
which is an essential subroutine. In Section B.6, we analyze the guarantee and running time of the super-linear time main
algorithm. In Section B.7, we analyze our result for the deterministic continuous Fourier transform.

B.1. The Guarantees of Measurement

According to our choice of parameters in Definition A.1, we have the below relationship between d/β and B. This allows
us to normalize the ℓ1 bound of our algorithm by a factor of 1/k.

Observation B.1. Let β, d, ϵ be chosen as Definition A.1, we have

β

(1− ϵ)d
= Θ(

1

B
)

26



Deterministic Sparse Fourier Transform for Continuous Signals with Frequency Gap

Proof.

β

(1− ϵ)d
=

Θ(log |F|)
(1−Θ(1/B)) ·Θ(B log(|F|))

= Θ(
1

B
)

where the above equation is due to Definition A.1.

The next statement shows the guarantee of the measurement.

Lemma B.2 (A variation of Lemma 5.1 in page 11 in Li & Nakos (2020)). Under following conditions

• Let Hr = {σr, ar, br}r∈d be a sequence of hashing defined in Definition 2.6

• We have Ĝ being a flat filter with B buckets and sharpness ϵ (see Definition 2.8)

• Let x̂, v be defined as Definition 1.1

• For all f ̸= f ′ ∈ F it holds that, ∑
r∈[d]

Ĝ−1
of,σr,br (f)

Ĝof,σr,br (f
′) ≤

β

1− ϵ

where β is chosen as Definition A.1.

Then for every vector x : [0, T ]→ Cn and every f ∈ F , for at least 0.8d indices r ∈ [d] we have

|vf − Ĝ−1
of,σr,br (f)

(mHr
)hσr,br (f)

ω−arσf | ≤ Θ(
1

B
) ·

∑
f ′∈F\{f}

|vf ′ | (6)

Proof. The proof is close to Li & Nakos (2020), we keep it here for completeness.∑
r∈[d]

|vf − Ĝ−1
of,σr,br (f)

(mHr )hr(f)ω
−aσf |

=
∑
r∈[d]

|Ĝ−1
of,σr,br (f)

∑
f ′∈F\{f}

Ĝof,σr,br (f
′)vf ′ωarσr(f

′−f)|

≤
∑
r∈[d]

Ĝ−1
of,σr,br (f)

∑
f ′∈F\{f}

Ĝof,σr,br (f
′)|vf ′ |

=
∑

f ′∈F\{f}

|vf ′ |
∑
r∈[d]

Ĝ−1
of,σr,br (f)

Ĝof,σr,br (f
′)

≤
∑

f ′∈F\{f}

|vf ′ | β

1− ϵ

where the first step uses Claim 2.11, the 2nd step is given by triangle inequality, the 3rd step is a change of summation order,
the 4th step is by the condition of this lemma. the last step is by the Observation B.1.

Therefore, at most 1
5 fraction of r ∈ [d] satisfy

|vf − Ĝ−1
of,σr,br (f)

(mHr
)hσr,br (f)

ω−aσf | > 5β

(1− ϵ)d
·

∑
f ′∈F\{f}

|vf ′ |

= Θ(
1

B
) ·

∑
f ′∈F\{f}

|vf ′ |,

where the last step is by Observation B.1.

Thus, we complete the proof.
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B.2. Assumption of noise function

This section introduces the definition of (C, ξ)-noise function. We will show its restriction on the output of HASHTOBINS
algorithm in the next section.

Definition B.3 ((C, ξ)-noise). Under following conditions

• Let g(t) : [0, T ]→ R be the noise function

• Let C be a fixed constant

• Let ξ be a parameter depend on g(t)

then we say g(t) is a (C, ξ)-noise if it satisfies

max
t∈[0,T ]

|g(t)|2 ≤ C · 1
T

∫ T

0

|g(t)|2dt+ ξ

B.3. Hash to bins

This section presents the deterministic HASHTOBINS in the continuous setting. The algorithm is displayed in Algorithm 1.
The next lemma states the identities of the pseudo-random permutation and the output of HASHTOBINS.

Lemma B.4 (Identities of DFT and CFT, Lemma 4.3 and Fact 4.1 in Jin et al. (2023)). Under following conditions

• Let Pσ,a,bx be defined as Definition 2.5

• Let x∗(t) be the noiseless signal

• Let z(t) :=
∑

f∈F ẑf · e2πift

• Let û be the output of HASHTOBINS

we have

• Property 1: Identity of pseudo-permutation:

̂Pσ,a,bx∗(t) =
1

σ
x̂∗(

t

σ
+ b)e2πia(t+bσ)

• Property 2: Identity of output of HASHTOBINS: For any j ∈ [B]

ûj = Ĝ ∗ ̂Pσ,a,b(x∗ − z)(j/B)

Proof. Notice that Property 2 in Jin et al. (2023) contains only x. However, we can extend it to our result by linear
operation.

The next lemma shows the guarantee of the HASHTOBINS procedure under the noiseless version and the noise-only version.

Lemma B.5 (HASHTOBINS). If the following conditions hold:

• let H = (σ, a, b) be a tuple of hashing defined in Definition 2.4

• Let Ĝ be a flat filter (see Definition 2.8)

• let x̂, v be defined as Definition 1.1

• let ẑ ∈ C|F| be a vector,

• let g(t) = 0 for any t ∈ [0, T ],
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then there exists a deterministic procedure HASHTOBINS(x, ẑ,H) (see Algorithm 1) which computes u ∈ CB with the
following guarantees:

• Noiseless version: Let g(t) ≡ 0, for any f ∈ F , the output û of HASHTOBINS(x, ẑ,H) satisfies

ûhσ,b(f) =
∑
f ′∈F

Ĝof,σ,b(f ′)(vf ′ − ẑf ′)ωaσf ′
.

• Noise-only version: Let x∗(t) ≡ 0, the output û of HASHTOBINS(g,0B , H) satisfies

∥û∥∞ ≤ O(
D

B
· (C · ( 1

T

∫ T

0

|g(t)|2dt+ ξ))
1
2 ).

• The algorithm takes O(B logB) samples.

• The time complexity of the algorithm is O(B logB).

Proof. Part 1: Noiseless version Let ẑ :=
∑

f∈F ẑf · δf (ξ), we have

ûhσ,b(f) = Ĝ ∗ ̂Pσ,a,b(x∗ − z)(h(f)/B)

=

∫
ξ∈R

Ĝ(hσ,b(f)/B − ξ) ̂Pσ,a,b(x∗ − z)(ξ)dξ

=

∫
ξ∈R

Ĝ(hσ,b(f)/B − ξ) · 1
σ
(x̂(

ξ

σ
+ b)− ẑ(

ξ

σ
+ b)) · e2πia(ξ+bσ)dξ

=

∫
ξ∈R

Ĝ(hσ,b(f)/B − σ(ξ − b)) · (x̂(ξ)− ẑ(ξ)) · e2πiaσξdξ

=

∫
ξ∈R

Ĝ(hσ,b(f)/B − σ(ξ − b)) · (
∑
f∈F

(vf − ẑf ) · δf (ξ)) · e2πiaσξdξ

=
∑
f∈F

Ĝ(hσ,b(f)/B − σ(f − b)) · (vf − ẑf ) · e2πiaσf

=
∑
f∈F

Ĝ(−of,σ,b(f)) · (vf − ẑf ) · e2πiaσf

where the first step is by Property 2 of Lemma B.4, the 3rd step is by Property 1 of Lemma B.4, the 4th step is by integral
substitution, the 5th step is by the definition of sparse signal (see Definition 1.1), the 6th step is by definition of delta
function, the last step is by the definition of hashing functions (see Definition 2.4).

The first part is then proved by the symmetricity of Ĝ.

Part 2: Noise-only version

For any j ∈ [BD]

y2j = G(j)2 · x2(σ(t− a))

≤ O(
1

B2
) · x2(σ(t− a))

≤ O(
1

B2
) · (C · 1

T

∫ T

0

|g(t)|2dt+ ξ)

where the first step is by definition in line 4 of Algorithm 1, the 2nd step is by Property 5 of Definition 2.8, the 3rd step is
by Assumption B.3.

Therefore, we have

|yj | ≤ O(
1

B
· (C · 1

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )
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We get the result by timing a D (see line 7 of Algorithm 1).

B.4. The Guarantee of median of HASHTOBINS

Combining the previous results, we derive the Guarantee of the median of Deterministic HASHTOBINS.

Definition B.6 (Choice of B). Let α be some constant to be determined later. Let k be the sparsity of the signal. We define
B to be such that

• B = Θ(k)

• B is a power of 2

• we choose the constant in B = Θ(k) such that the upper bound of Lemma B.7 satisfies:

Θ(
1

B
) ≤ 1

αk

Lemma B.7 (Median of HASHTOBINS outputs). Under following conditions,

• Let x̂, v be defined as Definition 1.1

• Let ẑ ∈ C|F|

• Let ŵf := vf − ẑf

• We have Ĝ being a flat filter (see Definition 2.8)

• Let {Hr}r∈[d] = (σr, ar, br) be a sequence of hashing defined in Definition A.6

• Let ur be the output of HASHTOBINS(x, ẑ,Hr)

we have

• For all f ∈ F

|ŵf −median
r∈[d]

Ĝ−1
of,σr,br (f)

(ur)hσr,br (f)
· ω−arσf |

≤ 1

αk

∑
f∈F

|ŵ(f)|+O(
log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 ) := N (ŵ)

Proof. Let u(noiseless)
r denote the output of HASHTOBINS(x, ẑ,Hr) when g(t) = 0. Let u(noise)

r denote the output of
HASHTOBINS(g,0|F|, Hr).

Part 1: Guarantee of noiseless HASHTOBINS

Using Lemma A.21, we know the fifth condition in Lemma B.2 should hold. Then we have for at least 0.8d indices r ∈ [d]

|ŵf − Ĝ−1
of,σr,br (f)

(ur)
(noiseless)
hσr,br (f)

ω−aσf |

= |ŵf − Ĝ−1
of,σr,br (f)

(mHr
(ŵ(f)))hσr,br (f)

ω−aσf |

≤ Θ(
1

B
) · ∥ŵF\{f}∥1

≤ 1

αk
· ∥ŵF\{f}∥1 (7)

where the first step is by Lemma B.5, the 2nd step uses Lemma B.2, the 3rd is given by choice of B in Definition B.6.
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Part 2: Bounds on output of HASHTOBINS with noise function as the input

Since Ĝ−1 ∈ (0, 1) by Definition 2.8, combining Part 2 of Lemma B.5 we have

|median Ĝ−1
of,σr,br (f)

(ur)
(noise)
hσr,br (f)

ω−aσf | ≤ O(
D

B
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 ) (8)

Part 3: Putting them together

Notice that every operation in HASHTOBINS is linear. Therefore, we have ur = u
(noiseless)
r + u

(noise)
r .

Then by taking the median of outputs for hash functions in Hr, we have,

|ŵ(f)−median Ĝ−1
of,σr,br (f)

(ur)hσr,br (f)
ω−aσf |

≤ |ŵ(f)−median Ĝ−1
of,σr,br (f)

(ur)
(noiseless)
hσr,br (f)

ω−aσf |+ |median Ĝ−1
of,σr,br (f)

(ur)
(noise)
hσr,br (f)

ω−aσf |

≤ 1

αk
∥ŵF\{f}∥1 + |median Ĝ−1

of,σr,br (f)
(ur)

(noise)
hσr,br (f)

ω−aσf |

≤ 1

αk
∥ŵF\{f}∥1 +O(

D

B
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )

where the first step is by triangle inequality, the 2nd step is by Eq. (7), the 3rd step is by Eq. (8).

Hence, we prove the desired result.

B.5. The Guarantee of Super-Linear Time Sparse Recovery

This section presents the super-linear time sparse recovery procedure.

Algorithm 5 Super-Linear time Sparse Recovery for x̂− ẑ

1: procedure SUPERLINEAR(x ∈ Cn) ▷ Lemma B.8
2: S ← ∅
3: for r = 1→ d do
4: ur ← HASHTOBINS(x, ẑ, (σr, 0, br)) ▷ Lemma B.5
5: end for
6: for f ∈ F do
7: ŵ′

f ← medianr∈[d] Ĝ
−1
of,σr,br (f)

(ur)hσr,br (f)
· ω−aσf ▷ Lemma B.7

8: if |ŵ′
f | > ν/2 then

9: S ← S ∪ {f}
10: end if
11: end for
12: return ŵ′

S

13: end procedure

The next statement shows core guarantees of Algorithm 5.

Lemma B.8 (A variation of Lemma 5.2 in Li & Nakos (2020)). If the following conditions hold:

• let x̂, v be defined as Definition 1.1

• let ẑ ∈ C|F|

• let B be defined as Definition B.6

• let ŵf := vf − ẑf

• Let N (x̂) be defined as in Lemma B.7
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• Let ν ≥ 16N (x̂) be a constant to denote a threshold for heavy index

then the output of the Procedure SUPERLINEAR (Algorithm 5) ŵ′ satisfies:

• |ŵf | ≥ (7/16)ν for all f ∈ supp(ŵ′)

• |ŵf − ŵ′
f | ≤ |ŵf |/7 for all f ∈ supp(ŵ′)

• {f ∈ F : |ŵf | ≥ ν} ⊆ supp(ŵ′)

Proof. Proof of Part 1

For any f ∈ F , we have

|ŵf − ŵ′
f | = |ŵf −median

r∈[d]
Ĝ−1

of,r(f)
(ur)hr(f) · ω

−aσf |

≤ N

≤ ν

16
(9)

where the first step is the output of Algorithm 5, the 2nd step is by Lemma B.7, the last step is by the 5th assumption of this
lemma.

Then we have,

|ŵf | ≥ |ŵ′
f | − |ŵf − ŵ′

f |
≥ ν/2− |ŵf − ŵ′

f |
≥ ν/2− ν/16 = (7/16)ν (10)

where the first step uses triangle inequality, the 2nd step is by the threshold condition in 8th line of Algorithm 5, the 3rd step
is due to Eq. (9).

Proof of Part 2

|ŵf − ŵ′
f | ≤

ν

16

≤ 1

16
· (16/7)|ŵf | = |ŵf |/7

where the first step is given by Eq. (9), the 2nd step is by Eq. (10).

Proof of Part 3

|ŵ′
f | ≥ |ŵf | − |ŵf − ŵ′

f |
≥ ν − |ŵf − ŵ′

f |
≥ ν − ν/16 > ν/2

where the 1st step is by triangle inequality, the 2nd step is since f ∈ {f ∈ F : |ŵf | ≥ ν}, the 3rd step is by Eq. (9).

Since |ŵ′
f | is bigger than the threshold, it will be recovered.

B.6. Super-Linear time main algorithm

This section analyzes our main algorithm. First, we present the constraints of the constant parameters.

Definition B.9 (Constraints of constant parameters). We list some constraints for constant parameters in the main algorithm.

• Part 1 : C > 1

• Part 2 : C(1− 16
α ) ≥ 16

α (1 + 1
ρ )
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• Part 3 : 7
16C ≥

1
ρ

• Part 4 : γ ≤ 7

Below is a group of parameters that satisfies the above constraints.

Definition B.10 (Choice of constant parameters). We let C = 2, ρ = 32, α = 32, γ = 2.

The next lemma shows the guarantee of our super-linear time main algorithm.

Lemma B.11 (ℓ∞ norm reduction, analogous to Lemma 5.3 in page 13 in Li & Nakos (2020), Lemma 3.8 and Lemma 3.9
in page 10 in Price & Song (2015)). If following holds

• Let µ be defined as Definition 3.11

• Let the SNR R∗ (see Definition 3.11) satisfy R∗ ≤ (F/η)m for some constant parameter m

• let x̂, v be defined as Definition 1.1

• Let C, β, ρ, γ be some constant to be determined as Definition B.10

• Let r(t)f := vf − ẑ
(t)
f

For all 0 ≤ t ≤ T ∗, there is an algorithm (Algorithm 6) outputs a vector ŵ(T∗) ∈ Cn which satisfies

• Let I := {f : |vf | ≥ µ
ρ }, x̂(f) = r

(t)
f for all f /∈ I

• |r(t)f | ≤ |vf | for all f

• ∥r(T )
I ∥∞ ≤ ν(t)

• The algorithm takes O(k2 log k · log(F/η)) samples

• The algorithm runs in O((F/η)k log2(F/η)) time.

Proof. The proof of the first three claims is by mathematical induction.

Initial Condition

The first and second claim clearly holds since ẑ
(0)
f = 0 for all f ∈ F and hence r

(0)
f = x̂(f).

For the 3rd claim, we have

ν(0) = CµγT = CµR∗ = C∥v∥∞ > ∥v∥∞ = ∥r(0)∥∞

where the 2nd step is by T = logγ R
∗, the 3rd step is by the definition of R∗ (see Definition 3.11), the 4th step is by C > 1

(Part 1 of Definition B.9), the last step is by definition of ∥r(0)∥∞.

Induction step

Now, we assume the first three claims hold for t, we want to prove its correctness for t+ 1.

For simplicity, we define a notation for the integral of noise on time intervals,

J := O(
log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )

We have

16

αk
· (∥r(t)∥1 + J) =

16

αk
· (∥r(t)K∩I∥1 + ∥r

(t)
K\I∥1 + ∥r

(t)
F\K∥1 + J)
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≤ 16

αk
· (k · ∥r(k)I ∥∞ + ∥r(t)K\I∥1 + ∥r

(t)
F\K∥1 + J)

≤ 16

αk
· (k · CµγT∗−t + ∥r(t)K\I∥1 + ∥r

(t)
F\K∥1 + J)

≤ 16

αk
· (k · CµγT∗−t +

kµ

ρ
+ ∥r(t)F\K∥1 + J)

=
16

αk
· (k · CµγT∗−t +

kµ

ρ
+ kµ)

≤ 16

αk
· (k · CµγT∗−t +

α

16
(1− 16

α
)Ckµ)

≤ 16

αk
· (k · CµγT∗−t +

α

16
(1− 16

α
)CkµγT∗−t)

= CµγT∗−t := ν(t)

where the first step and 2nd step are trivial calculations, the 3rd step is by the third claim in this lemma and induction
hypothesis, the 4th step is by the definition of I , the 5th step is by the definition of µ (see Definition 3.11), the 6th step is
derived from Part 2 of Definition B.9, the 7th step is by γT∗−t > 1 and rearrangement.

Therefore, we’ve proved the fifth condition for Lemma B.8.

Claim 1:

For index f ∈ F\I , we have

||x̂(f)| ≤ µ

ρ

≤ 7

16
Cµ

≤ 7

16
CµγT∗−t := ν(t)

where the first step is by definition of I , the 2nd step is by Part 3 of Definition B.9, the 3rd step is by γT∗−t > 1.

By Part 1 of Lemma B.8, we know that |x̂(f)| will never be recovered in this procedure.

Claim 2:

Notice that r(t)f is defined to be x̂(f)− ẑ
(t)
f , then we have,

|r(t+1)
f | := |ŵf − ŵ′

f |
≤ |ŵf |/7

:= |r(t)f |/7 (11)

where the first and the third step are by definition of r, the 2nd step uses Part 2 of Lemma B.8

Since we know |r(0)f | = |x̂(f)|, Claim 2 clearly holds.

Claim 3:

For f ∈ I such that |r(t)f | ≤ ν(t+1). Claim 3 is proved by Eq. (11).

Otherwise, we have |r(t)f | > ν(t+1), then we have,

|r(t+1)
f | ≤ |r(t)f |/7 ≤ ν

(t)
f /7 ≤ ν(t)/γ := ν(t+1)

where the first step is by Eq. (11), the 2nd step is by induction hypothesis, the 3rd step is by Part 4 of Definition B.9.

Therefore, Claim 3 holds and we verify the induction step.

Proof of Sample Complexity.
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The sample complexity of the algorithm is counted as below,

Sample Complexity = d · HASHTOBINS

= d ·O(B log(B))

= O(B log(F/η) ·O(logB) ·O(B)

= O(k2 log k · log(F/η))

where the first step is since we have d hashing tuples, the 2nd step is by Lemma B.5, the third step is by choice of d (see
Definition A.1), the 4th step is by B = Θ(k) (see Definition B.6).

Notice that we can reuse the sample, so we only need to count d times of HASHTOBINS.

Proof of Running Time.

The time complexity of SUPERLINEAR is

d · HASHTOBINS + (F/η) · Taking Median = d ·O(k log k) + F/η · Taking Median

= d ·O(k log k) + (F/η) · d
= O(k2 log(F/η) log k + (F/η)k log(F/η))

= O((F/η)k log(F/η))

where the 2nd step is because we scan the sequence of hashing when taking the median, the 3rd step is by the choice of d,
and the 4th step holds for F/η ≫ k.

Hence, the time complexity for the main algorithm is T ∗ · O((F/η)k log(F/η)) = O((F/η)k log2(F/η)) since R∗ =
O((F/η)m) by the first assumption of this lemma.

Algorithm 6 Superlinear-time sparse recovery for x̂

1: procedure MAIN(x ∈ Cn) ▷ Lemma B.11
2: T ∗ ← logγ R

∗

3: ẑ(0) ← 0|F|/η
4: ν(0) ← CµγT

5: for t = 0→ T ∗ − 1 do
6: ẑ(t+1) ← ẑ(t) + SUPERLINEAR(x, ẑ(t), ν(t)) ▷ Algorithm 5
7: ν(t+1) ← ν(t)/γ
8: end for
9: return ẑ

10: end procedure

B.7. Main result of the super-linear CFT

This section summarizes the results in previous sections.

Theorem B.12 (Super-linear Deterministic CFT). If the following conditions hold

• Let x : [0, T ]→ C has Continuous Fourier Transform x̂ : [−F, F ]→ C

• Let the SNR R∗ (see Definition 3.11) satisfy R∗ ≤ (F/η)m for some constant parameter m

• Let |F|, B be the powers of 2

• Let the noise function g(t) satisfy Definition B.3

Then for any vector x ∈ Cn satisfying the above assumptions, there is an algorithm that

35



Deterministic Sparse Fourier Transform for Continuous Signals with Frequency Gap

• it finds an O(k)-sparse vector x̂′ ∈ C|F|

• We have |vf − x̂′
f | ≤ O(N ) for all f ∈ F , where

N :=
1

αk

∑
f∈F

|vf |+O(
log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )

• The algorithm takes O(k2 log k · log(F/η)) samples

• The algorithm runs in O((F/η)k log2(F/η)) time.

Proof. This theorem is a direct result of Lemma B.11.

Proof of sparsity output

This is followed by |I| = O(k) and f /∈ I is not recovered (Part 1 of Lemma B.11).

Proof of Guarantee

||r(T
∗)||∞ = max{||r(T

∗)
I ||∞, ||r(T

∗)
Ic ||∞}

≤ max{||ν(T
∗)||∞, ||r(T

∗)
F\I ||∞}

≤ max{ν(T
∗), ||x̂(T∗)

F\I ||∞}

≤ max{Cµ, ||x̂(T∗)
F\I ||∞}

≤ max{Cµ, (1/ρ)µ} = O(N )

where the 2nd step is by Part 3 of Lemma B.11, the 3rd step is by bf Part 2 of Lemma B.11, the 4th step is by definition of
µ, the 5th step is by definition of I .

Proof of Sample Complexity and Time Complexity

They are calculated in Lemma B.11.

C. Sub-linear Time Algorithm
This section provides the missing proofs in Section 3.2, which presents a sub-linear time recovery algorithm.

In Section C.1, we state a number of one-sparse recovery tools from previous work. In Section C.2, we prove the guarantee
of sub-linear time sparse recovery.

C.1. Sub-linear time one-sparse recovery

Now, we introduce a useful lemma that upper bounds the difference in angles.

Lemma C.1 (Proposition 4.10 in page 11 in Li & Nakos (2020)). If the following holds,

• Let x, y ∈ C satisfy |y| ≤ |x|/3

we have

| arg(x+ y)− arg x| ≤ π/8

We present the one-sparse recovery algorithm for the discrete setting in Li & Nakos (2020) here.

Lemma C.2 (One-Sparse recovery, Lemma 6.1 in Li & Nakos (2020)). If the following holds,

• |F| is a power of 2
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• Let Q := {0, 20, 21, 22 · · · , |F|/2}

• Let x ∈ CF with discrete Fourier transform x̂

• Let xf be the f -th entry of x

• Let θf := 2π
|F|f

′ mod 2π

• Let {xq}q∈Q be a sequence of metric of xf satisfying

| arg(xq)− (arg x̂f + qθf )| ≤ π/8

There is an algorithm ONESPARSERECOVERY (see Algorithm 2) that recover f by {xq}q∈Q in O(logF/η) time.

C.2. The Guarantee of Sub-linear time sparse recovery

The next lemma proves the noise in each hashing and filtering bucket is limited, conditioning on bad event does not occur.

Lemma C.3 (A variation of Lemma 6.2 in page 18 in Li & Nakos (2020)). If the following conditions hold

• Let Hr = {σr, ar, br}r∈d be a sequence of hashing defined in Definition 2.6

• We have Ĝ being a flat filter with ϵ buckets and sharpness ϵ (see Definition 2.8)

• Let x̂, v be defined as Definition 1.1

• For all f ̸= f ′ ∈ F it holds that, ∑
r∈[d]

Ĝ−1
of,σr,br (f)

Ĝof,σr,br (f
′) ≤

β

1− ϵ

where β is chosen as Definition A.1.

Then for any f , at least 0.8d indices r ∈ [d] satisfy

|
∑

f ′∈F\{f}

Ĝof,σr,br (f
′)x̂f | ≤ Θ(

1

B
) ·

∑
f ′∈F\{f}

|vf ′ |

Proof.

|
∑

f ′∈F\{f}

Ĝof,σr,br (f
′)x̂f | = Ĝof,σr,br (f)

· |x̂f − Ĝ−1
of,σr,br (f)

(mH)h(f)ω
−aσf |

≤ Ĝof (f) ·Θ(
1

B
) ·

∑
f ′∈F\{f}

|vf ′ |

≤ Θ(
1

B
) ·

∑
f ′∈F\{f}

|vf ′ |

where the 1st step is derived from Claim 2.11, the 2nd is from Lemma B.2, the 3rd step holds because Ĝof,σr,br (f)
< 1 (see

Definition 2.8).

Now, we show that the one-step guarantees in Lemma B.8 still hold for the sub-linear algorithm.

Lemma C.4 (A variation of Lemma 6.3 in Li & Nakos (2020)). If the following conditions hold:

• let x̂, v be defined as Definition 1.1

• let ẑ ∈ C|F|
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• let B be defined as Definition B.6

• let ŵf := vf − ẑf

• Let N (ŵ) be defined as in Lemma B.7

• Let ν ≥ 16N (ŵ) be a constant to denote a threshold for heavy index

then the output of the Procedure SUBRECOVERY (Algorithm 3) ŵ′ satisfies:

• For all f ∈ supp(ŵ′), we have |ŵf | ≥ (7/16)ν

• For all f ∈ supp(ŵ′), we have |ŵf − ŵ′
f | ≤ |ŵf |/7

• {f ∈ F : |ŵf | ≥ ν} ⊆ supp(ŵ′)

Proof. The proofs of the first and the second statements directly follow Lemma B.8. Now, we prove the third statement. For
the r-th round, we consider (ŷr)f := Ĝ−1

of,σr,br (f)
ŵf and we use uq as the metric to recover the f from (ŷr)f (see Line 8 in

Algorithm 3). From Lemma C.2, to verify f can be recovered by ONESPARSERECOVERY, we only need to show

| arg(uq)− arg(Ĝ−1
of,σr,br (f)

ŵf · ωqθf )| = | arg(uq)− (arg((ŷr)f ) + qθf )| ≤ π/8 (12)

By Lemma B.5, we have

uq = Ĝ−1
of,σr,br (f)

ŵf · ωqθf +
∑

f ′∈F\{f}

Ĝ−1
of,σr,br (f

′)ŵf ′ · ωqθf′ ±O(
log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 ) (13)

For f ∈ {f ∈ F : |ŵf | ≥ ν}, For at least 8d/10 repetitions r ∈ [d], we have

|Ĝ−1
of,σr,br (f)

ŵf · ωqθf |

≥ (1− ϵ)ŵf

≥ (1− ϵ)ν

≥ 16(1− ϵ)N (ŵ)

= 16(1− ϵ)
( 1

αk

∑
f∈F

|ŵ(f)|+O(
log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )
)

≥ 16(1− ϵ)
(Θ(B)

αk
|
∑

f ′∈F\{f}

Ĝof,σr,br (f
′)x̂f |+O(

log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )
)

≥ 16(1− ϵ)
(Θ(k)

αk
|
∑

f ′∈F\{f}

Ĝof,σr,br (f
′)x̂f |+O(

log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )
)

≥ 3
(
|
∑

f ′∈F\{f}

Ĝof,σr,br (f
′)x̂f |+O(

log k

k
· (C

T

∫ T

0

|g(t)|2dt+ ξ)
1
2 )
)

≥ 3|uq − Ĝ−1
of,σr,br (f)

ŵf · ωqθf |

where the first step is by Ĝ−1 ≥ 1 − ϵ, the 2nd step is by f ∈ {f ∈ F : |ŵf | ≥ ν}, the 3rd step is by the definition of
N (ŵ), the 4th step uses Lemma C.3, the 5th step is by B = Θ(k), the 6th step is by choosing a proper α according to the
constant hided in Θ(k), the last step is by Eq. (13).

Therefore, using Lemma C.1 with x = Ĝ−1
of,σr,br (f)

ŵf · ωqθf and x+ y = uq proves Eq. (12).

For at least 8d/10 repetitions r ∈ [d], the above argument holds and we can recover the wanted frequency. Therefore, we
proved the desired result.
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