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Abstract

As the number of publications is growing001
tremendously, it is more and more a challenge002
for researchers to read all related literature to003
find the "white space" in a specific research do-004
main. Automatic scientific discovery has been005
proposed to help researchers identify new re-006
search ideas, but it has generally been limited007
to finding new combinations of concept pairs008
using link prediction in a knowledge graph. In009
this paper, we propose the combinatorial scien-010
tific discovery task: predicting combinations011
of more than two concepts. We standardize012
the task by providing benchmark datasets and013
initial models. Our solutions demonstrate the014
challenge but also the value of the task to find015
new, meaningful scientific ideas and its advan-016
tage over simple link prediction.017

1 Introduction018

In the past years, the number of new publications019

has grown tremendously, especially in AI. This020

leads to many challenges for researchers: (I) What021

papers outside my research area should I read?022

(II) What research questions should I investigate023

based on the recent literature? (III) What new024

solutions can I use for potential problems? All025

these questions are related to the scientific discov-026

ery problem. In this paper, we define scientific027

discovery as finding new research ideas in some028

scientific domain. We approach this problem in029

terms of finding new combinations of scientific030

concepts worth to study.031

Despite of the importance of the scientific dis-032

covery problem has been recognized recently,1 the033

studies on this problem are rather limited. Previous034

works mostly focus on predicting unknown links035

between two concept nodes in a constructed knowl-036

edge graph. For example, in the biomedical do-037

main, Luo et al. (2018) extracted a graph of concept038

nodes (e.g., “chronic infection”, “malnutrition”)039

1https://www.iarai.ac.at/science4cast/

Figure 1: Example of combinatorial scientific dis-
covery. A new idea (NAACL paper “Discriminative
Reranking for Grammatical Error Correction with Sta-
tistical Machine Translation”) consisting of three con-
cepts. A single link between any two of them does not
fully capture the idea, thus a standard link predictor de-
tecting only pairwise combinations cannot be applied
to predict this new research idea.

connected by rather domain-specific so-called in- 040

fluence links (e.g., “causes”, “activates”) from the 041

Pubmed corpus, added several hand-crafted fea- 042

tures (e.g., degree, similarity scores) to the nodes, 043

and then did link prediction using basic classifiers 044

(e.g., Random Forests). Further, the small size of 045

the data (~5k positive samples) makes it less useful 046

for deep learning. Wang et al. (2019) also gener- 047

ated new ideas based on link prediction and went 048

further generating paper drafts. 049

However, real scientific discovery goes beyond 050

link prediction. In many cases, the combination of 051

only two concepts cannot capture the exact mean- 052

ing of a new idea (see Figure 1). The search for 053

new concept combinations should not be restricted 054

to pairs of concepts, and we claim that new models 055

and evaluation scenarios are needed to generate 056

more realistic ideas that are high-order combina- 057

tions. We call this new task "combinatorial scien- 058

tific discovery". In this paper, we provide a basis 059

for studying combinatorial scientific discovery in 060

the AI community.2 061

2repository-link-removed-for-review
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CSD-NLP CSD-CV

# papers considered 7,605 19,877
# concept nodes 9,819 36,172
# correlation links 18,227 65,139
# train/valid/test papers 5,641/774/484 13,466/2,055/2,969
# train/valid/test papers w/ concepts S, |S|>2 4,141/578/384 10,937/1,713/2,579

Table 1: Statistics about our datasets. The last line shows the importance of concept combinations beyond pairs.

• We created two datasets, CSD-NLP & CSD-CV,062

built from papers in NLP and CV conferences,063

which allow to study the Combinatorial Scientific064

Discovery problem (see Table 1 for an overview).065

For each dataset, we extracted the concepts in066

these corpora and constructed a scientific knowl-067

edge graph. We extracted the facts about high-068

order concept combinations in the graph and then069

split the data for training, validation and testing.070

Together with the data, we also make available071

all necessary scripts so that similar datasets can072

be build in only minutes.073

• We use a pre-trained BERT language model and074

graph neural networks to create concept embed-075

dings and explore different solutions based on076

those, which may serve as baselines: one stan-077

dard link prediction model and four combinato-078

rial prediction models, predicting concept combi-079

nations beyond pairs, including a prompt based080

method and a new energy-like scoring function.081

• Our experiments show that standard link pre-082

dictors cannot directly be applied for predicting083

concept combinations beyond pairs successfully.084

Our combination predictors shows clear advan-085

tages and lay a foundation for studying the chal-086

lenging combinatorial scientific discovery task.087

2 Related Work088

Automatic scientific discovery has only been con-089

sidered in few previous works (Luo et al., 2018;090

Wang et al., 2019; Krenn and Zeilinger, 2020). Yet,091

as outlined in Section 1, the data model in (Luo092

et al., 2018) is based on domain-specific informa-093

tion (i.e., influence links); the dataset is rather small094

(~5k positive samples) and focuses only on biomed-095

ical domains; the models use basic ML based on096

hand-engineered features and, in particular, only do097

link prediction. (Wang et al., 2019) propose Paper-098

Robot which, given a paper title, predicts related099

entities and generates some key elements of a new100

paper. However, it also focuses on medical papers101

and determine new concepts using link prediction 102

in a very diverse graph. Without well-defined rela- 103

tionships in the graph and enough data, their case 104

study in the NLP domain shows much less satis- 105

factory results. Krenn and Zeilinger (2020) built 106

semantic networks in quantum physics and predict 107

the research trends by link prediction. Our dataset 108

and models solve these issues and hence provide 109

a good start and generalization for deep learning 110

research on this problem. 111

Other works are only coarsely related to scien- 112

tific discovery, but they focus on very different 113

topics, such as citation field extraction (Thai et al., 114

2020), citation analysis (Mohammad, 2020), multi- 115

document summarization of scientific articles (Lu 116

et al., 2020), or the transfer of scientific concepts 117

across text corpora (Cao et al., 2020). 118

3 The CSD Datasets 119

Table 1 gives an overview of our datasets. We con- 120

sider papers from three major NLP and three CV 121

conferences, details about the paper collection and 122

curation are given in Appendix A. Note that the 123

sizes of the datasets are very different, with the CV 124

data being much larger, thus yielding very different 125

test scenarios. The extraction of the concept nodes, 126

which is more involved, is detailed in a subsection 127

below. We create an undirected link between two 128

nodes when the corresponding concepts occur to- 129

gether in one paper; recall that we restrict the focus 130

to the abstracts for mitigating noise. We created 131

time-based train/valid/test splits based on (concept 132

combinations co-occurring in) papers and model- 133

ing a realistic prediction scenario, as suggested in 134

(Hu et al., 2020); the train/valid/test set contain all 135

papers from 2000-2014/2015/2016. Of course, we 136

removed links between concepts that co-occur in a 137

paper in the valid or test set from the graph. 138
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CSD-NLP CSD-CV

Model F1 Hits@10 Hits@20 Hits@30 F1 Hits@10 Hits@20 Hits@30

LP 29.08 2.53 6.21 14.07 15.92 2.08 4.81 10.78
CP-pro 37.44 6.53 14.88 25.23 53.89 14.38 30.12 44.84
CP-avg 49.19 1.30 5.98 16.57 47.25 2.25 10.47 25.41
CP-gnn 48.39 5.87 15.20 23.45 41.64 4.63 12.93 24.20
CP-enb 61.61 4.16 12.60 25.03 64.59 10.21 26.97 44.42

Table 2: Overview of results.

CSD-NLP Test Set

Model F1 Hits@10 Hits@20 Hits@30

CP-enb 61.10 4.64 14.89 26.78

Table 3: Results for combined NLP and CV train data.

Extraction of Concept Nodes139

We used the pretrained SciERC model (Wadden140

et al., 2019) to perform entity extraction on the141

collected abstracts. The model was pretrained on a142

dataset including annotations for scientific entities143

for 500 scientific paper abstracts from major AI144

conferences. Unlike previous works such as (Wang145

et al., 2019), we did not extract all entities and rela-146

tions but just focused on entities of predicted type147

“method”. By focusing on combining only method148

concepts, i.e., the main components of a scientific149

idea, we also avoid the uncertainty of relationship150

prediction. Since the entity extraction results in-151

clude multiple lexical forms of the same concept,152

we clustered them to create our final concepts. We153

calculated the similarities of all candidates based154

on their surface forms, and merge similar ones.155

More details can be found in Appendix A.156

4 Evaluation157

We conducted initial experiments over our CSD158

datasets in order to point out the challenges of com-159

binatorial scientific discovery. We explore different160

approaches as initial solutions for this problem,161

which may serve as baselines in future works.162

4.1 Models163

Given a set S of concepts, our models aim to pre-164

dict whether the combination of these concepts165

in S is new and realistic. We compare a stan-166

dard link prediction model (LP), which assumes167

|S| = 2, with several higher-order combination168

prediction models (CP), which are able to predict 169

combinations of more than two concepts. 170

LP: The link prediction model (1) uses BERT to 171

convert concept nodes into 768-dimensional word 172

embeddings as node features; (2) applies a graph 173

convolutional network (GCN) (Kipf and Welling, 174

2017) to obtain concept node embeddings {c1, c2} 175

from the 768-dimensional word embeddings for 176

the concepts in S; (3) combines these embeddings: 177

cLP(S) = c1 ∗ c2 ; and (4) uses an MLP (multi- 178

layer perception) to predict the label LP(S). 179

As most test samples contain more than two con- 180

cepts, in order to evaluate the link prediction model, 181

we need to extend the link prediction results to com- 182

binations S with |S| > 2. In this context, we make 183

a simple assumption: a combination is true only if 184

all pairwise links in the set are true: 185

LP(S) =


1 if LP((ci, cj)) > 0.5

for all i, j ∈ |S|, i < j

0 otherwise.

186

Leveraging the pre-trained language model 187

BERT (Devlin et al., 2019), prompted-based learn- 188

ing (Brown et al., 2020), and energy-like score 189

functions(Bishop, 2006), we propose four different 190

higher-order combination prediction models (CP). 191

In all these model, we use a scoring function to first 192

get the score for a combination S and then predict 193

the probability p(S) = Sigmoid(Score(S)). 194

• CP-pro. Prompted-based learning: For each 195

combination S, we consider all pairwise subset 196

combinations {C1, C2} ⊆ S, and combine them 197

with a prefix (hard prompt) of form “This paper 198

uses C1 and C2.” We use BERT to get the rep- 199

resentation of the sentences and then use MLP 200

layers to obtain the final scores. 201

• CP-avg. Simple average scoring function: In- 202

stead of directly encoding the entire combination 203

with BERT, we encode each concept in S with 204
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NLP

word alignment models, SMT, spectral embedding, unsupervised language models
look-ahead methods, discriminative classifier, pruning framework
probability integral transform, Moses, phrase-based system, time-based merging
structured perceptron, data-driven sense induction method, parser, joint learning

NLP
+CV

language models, discriminating models, joint model, refined multi-scale image segmentations
image ranker learning, head-shoulder detector, unsupervised syntactic parser, multiview stereo
cubic splines, bag-of-words, domain adaptation, MDL and SPHARM methods

Table 4: Concept combinations CP-enb scores high when learning over CSD-NLP (top) and both NLP and CV.
.

BERT and then average these embeddings to rep-205

resent S. Then, we use the same MLP as above206

to predict the final score.207

• CP-gnn. Extension of CP-avg: after BERT, we208

apply a GCN to obtain deeper embeddings.209

• CP-enb. We design an energy-based scoring210

function replacing the average in CP-avg, to en-211

code both atom and pair-wise information:212

213

Score(c1, ..., c|S|) =214

1

|S|
∑
i

cTi bi +
1

N

∑
i<j

(cTi Wcj), (1)215

ci is the embedding of a concept in S and N is216

the number of all pairwise combinations in S.217

Further details about the model configurations218

and training can be found in Appendix B.219

4.2 Results220

An overview of our results is given in Table 2. All221

numbers are averaged over three runs with differ-222

ent random seeds. The disappointing results of LP223

clearly show that it is not a good option to simply224

combine the link prediction scores for a larger com-225

bination. Standard link predictors cannot be easily226

extended for predicting combinations of more than227

two concepts. In contrast, the CP-enb model which228

uses our higher-order scoring function achieves the229

overall best results in terms of F1. While the CP-230

pro (BERT prompt) achieves highest Hits@K, its231

performance on F1 is much worse, and its advan-232

tage over other models on Hits@20 and Hits@30233

is also rather small. That indicates that the prompt234

model can predict the highest ranked matchings235

better, but its overall performance over all combi-236

nations is not as good as the energy function based237

model CP-enb. Comparing CP-avg and CP-enb,238

we can clearly see the scoring function used in CP-239

enb is superior to simple averaging. Finally, to our240

surprise, CP-gnn does not perform well. Possible241

reasons may be that the model is too complex and 242

the graph is too sparse (i.e., not enough train data). 243

We also tested the cross-domain effects. Table 3 244

shows the results for the models trained over an 245

augmented NLP dataset by combining CSD-NLP 246

and CSD-CV. More precisely, we add the CV con- 247

ference papers during 2000-2014 to the existing 248

CSD-NLP training dataset for joint training, and 249

then test on the same test data as CSD-NLP (shown 250

in Table 2). We see that the additional domain 251

knowledge improves the scores with the NLP part 252

with respect of Hits@k. This shows that adding 253

the knowledge even from other domains may also 254

bring benefits to the prediction of new ideas. Inter- 255

estingly, we did not see major improvements when 256

performing this experiment for the larger CV data. 257

4.3 Example Predictions 258

Table 4 shows examples of new combinations ob- 259

taining high probabilities in our model and not 260

occurring in our paper corpus. Many of these look 261

surprisingly reasonable. We also see that, when we 262

combine the NLP and CV papers during training, 263

we might learn even more interesting combinations. 264

Note that our current data does not include the most 265

recent years, which limits the “imaginative power” 266

of the system. In the future, we plan to collect more 267

recent papers to generate more “modern” ideas. 268

5 Conclusions 269

In this paper, we study the scientific discovery prob- 270

lem which, in particular, has become more severe 271

with the fast-growing number of publications in AI. 272

We propose the new task as predicting combina- 273

tions of more than two concepts. We provide an 274

initial framework to create corresponding datasets, 275

together with solid initial solutions. Although there 276

are still some limitations (e.g., the extracted con- 277

cepts have some noise), we believe our motivation, 278

datasets, and solutions will inspire future works. 279
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Conference # Papers # Papers w/ abstract

EMNLP 1,845 1,695
ACL 3,521 3,138
NAACL 2,239 2,066

CVPR 12,317 12,266
ICCV 4,706 4,052
ECCV 2,854 2,176

Table 5: Overview of conferences considered for paper
extraction for CSD-NLP (top) and CSD-CV (bottom).
We only used papers which were accompanied by an
abstract.

A Additional Details about CSD364

We used the papers provided in the DBLP-Citation-365

network V103 for our project (Tang et al., 2008).366

An overview of the conferences considered for367

CSD, including paper numbers, is given in Table 5.368

Specifically, we considered only papers from the369

years 2000-2016 w/ abstract information.370

For concept clustering, we represent each candi-371

date concept as a set of n-grams, and weight them372

with TF-IDF. Then we compute the cosine similari-373

ties of any two concepts. If their similarity is larger374

than our threshold, we merge them together and375

use the longer one to represent the concept. For ex-376

ample, if we have two extracted candidate concepts,377

"cluster" and "clustering", we have the following378

procedures to merge them: (1) n-grams represen-379

tations: "cluster"=["clu", "lus", "ust", ...]; "clus-380

tering"=["clu", "lus", "ust", ..., ’ing’]; (2) TF-IDF:381

we measure how frequently one n-gram occurs in382

a concept, and use TF-IDF to weight the n-gram383

components; (3) cosine similarity: we compute the384

cosine similarity of the two concepts; (4) merging:385

we merge concepts based on their similarity. We386

tried different thresholds and finally select 0.5 as a387

proper choice. In addition, there are many abbrevi-388

ations in the dataset, we manually replace some of389

them into full forms.390

We create an undirected link between two nodes391

when the corresponding concepts occur together in392

one paper. We also tested higher thresholds (e.g.,393

establish a link if the concepts co-occur in n papers)394

but these seemed to make prediction harder.395

3https://www.aminer.org/citation

B Model Configurations and Training 396

LP model and CP-gnn use fives graph convolu- 397

tional neural network layers (Kipf and Welling, 398

2017) to generate the node embeddings and five 399

fully connected layers (with dropout 0.5) to obtain 400

the final prediction scores. The hidden dimension is 401

128 everywhere. And we use the Sigmoid function 402

to convert the final prediction score to 0-1 range. 403

As learning rate we chose 0.002. Note that we did 404

not do extensive hyperparameter tuning. The im- 405

plementation was done in PyTorch (Paszke et al., 406

2019) and PyTorch Geometric (Fey and Lenssen, 407

2019). 408

CP models use BERT to encode the concepts 409

with fixed prefix "This paper uses". We take the 410

CLS token for the downstream task. For CP-pro, 411

CP-avg and CP-gnn, we use two layer fully con- 412

nected layers with dropout 0.5 to obtain the final 413

prediction scores. For CP-enb, our scoring function 414

can predict the combinatorial scores directly. 415

During training, we randomly generate target 416

nodes to create negative training samples (i.e., pairs 417

of concepts) for LP. For CP, for each S of more 418

than 4 concepts, we break it down into subsets 419

of shorter combinations {S′} for easier training. 420

The negative combination are then produced by 421

randomly replacing one concept for each S′. 422

We trained both models for maximal 300 epochs 423

with a patience of 30 epochs using three different 424

random seed for each experiment, using F1 for 425

model selection. We use 1e-3 as the learning rate 426

and batch size 256 for LP with 5 GCN layers. For 427

all CP methods, we use "bert-base-uncased" as our 428

pre-trained language model from Pytorch. We use 429

1e-5 as our learning rate to train CP-pro, CP-avg 430

and CP-enb. For CP-gnn, the learning rate is 1e-4. 431

NLP dataset requires about 12 hours to train on one 432

GeForce RTX 1080ti GPU and CV dataset requires 433

two and a half day to train. All models will train a 434

binary classifier at the end and we use the threshold 435

0.5 to decide the prediction is positive or negative. 436
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