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Abstract
Mixed linear regression is a well-studied problem
in parametric statistics and machine learning.
Given a set of samples, tuples of covariates and
labels, the task of mixed linear regression is to
find a small list of linear relationships that best fit
the samples. Usually it is assumed that the label
is generated stochastically by randomly selecting
one of two or more linear functions, applying this
chosen function to the covariates, and potentially
introducing noise to the result. In that situation,
the objective is to estimate the ground-truth
linear functions up to some parameter error. The
popular expectation maximization (EM) and
alternating minimization (AM) algorithms have
been previously analyzed for this.

In this paper, we consider the more general
problem of agnostic learning of mixed linear
regression from samples, without such generative
models. In particular, we show that the AM
and EM algorithms, under standard conditions
of separability and good initialization, lead to
agnostic learning in mixed linear regression by
converging to the population loss minimizers, for
suitably defined loss functions. In some sense,
this shows the strength of AM and EM algorithms
that converges to “optimal solutions” even in the
absence of realizable generative models.

1. Introduction
Suppose we obtain samples from a data distribution D on
Rd+1, i.e., {xi,yi}∼D, xi∈Rd,yi∈R,i=1,...,n. We con-
sider the problem of learning a list of k Rd→R linear func-
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tions y=θTj x,θj ∈Rd,j=1,...,k, that best fits the samples.

This problem is well-studies as the mixed linear regression,
when there are ground-truth θ̃j ,j=1,...,k, that generate the
samples. For example, the setting where

xi∼N (0,Id),θ∼Unif{θ̃1,...,θ̃k},yi|θ∼N (xT θ,σ2), (1)

for i = 1, ... ,n has been analyzed thoroughly. Bounds on
sample complexity are provided in terms of d,σ2 and error
in estimating parameters θ̃j ,j=1,...,k ((Chaganty & Liang,
2013; Faria & Soromenho, 2010; Städler et al., 2010; Li &
Liang, 2018; Kwon & Caramanis, 2018; Viele & Tong, 2002;
Yi et al., 2014; 2016; Balakrishnan et al., 2017; Klusowski
et al., 2019)).

In this paper, we consider an agnostic and general learning
theoretic setup to study the mixed linear regression problem
first studied in (Pal et al., 2022). In particular, we do not
assume a generative model on the samples. Instead we focus
on finding the optimal set of lines that minimize a certain loss.

Suppose, we denote a loss function ℓ :Rd×k→R evaluated
on a sample as ℓ(θ1,θ2,...,θk;x,y). The population loss is

L(θ1,θ2,...,θk)≡E(x,y)∼Dℓ(θ1,θ2,...,θk;x,y),

and the population loss minimizers

(θ∗1 ,...,θ
∗
k)≡argmin L(θ1,θ2,...,θk).

Learning in this setting makes sense if we are allowed to
predict a list (of size k) of labels for an input, as pointed out in
(Pal et al., 2022). We may set some goodness criteria, such as
an weighted average of prediction error over all elements in
the list. In (Pal et al., 2022), it was called a ‘good’ prediction if
at least one of the labels in the list is good, in particular, the fol-
lowing loss function was proposed, that we will call min-loss:

ℓmin(θ1,θ2,...,θk;x,y)=min
j∈[k]

{
(y−⟨x,θj⟩)2

}
. (2)

The intuition behind min-loss is simple. Each sample is
assigned to a best-fit line, which define a partition of the
samples. This is analogous to the popular k-means clustering
objective. In addition to the min-loss function, we will also
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consider the following soft-min loss function:

ℓsoftmin(θ1,θ2,...,θk;x,y)=

k∑
j=1

pθ1,..,θk(x,y;θj)[y−⟨x,θj⟩]2,

(3)

where pθ1,..,θk(x,y;θj)=
e−β(y−⟨x,θj⟩)2∑k
l=1e

−β(y−⟨x,θl⟩)2

with β≥0 as the inverse temperature parameter. Note that, at
β→∞, this loss function correspond to the min-loss defined
above. On the other hand, at β=0, this is simply an average
of the squared errors, if a label is uniformly chosen from the
list. Depending on how the prediction would occur, the loss
function, and therefore the best-fit lines θ∗1 ,...,θ

∗
k will change.

As is the usual case in machine learning, a learner has
access to the distribution D only through the samples
{xi,yi},i=1,...,n. Therefore instead of the population loss,
one may attempt to minimize the empirical loss:

L(θ1,...,θk)≡
1

n

n∑
i=1

ℓ(θ1,θ2,...,θk;xi,yi).

Usual learning theoretic generalization bounds on excess
risk should hold provided the loss function satisfies some
properties1. However, there are certain caveats in solving
the empirical loss minimization problem. For example, even
the presumably simple case of squared error (Eq.(2)), the
minimization problem is NP-hard, by reduction to the subset
sum problem (Yi et al., 2014).

An intuitive and generic iterative method that is widely-
applicable for problems with latent variables (in our case,
which line is best fit for a sample) is the alternating minimiza-
tion (AM) algorithm. At a very high level, starting from some
initial estimate of the parameters, the AM algorithm first tries
to find a partition of samples according to the current estimate,
and then finds the best fit lines within each part. Again under
the generative model of (1), AM can approach the original
parameters assuming suitable initialization (Yi et al., 2014).

Another popular method of solving mixed regression
problems (or in general mixture models) is the well-known
expectation maximization (EM) algorithm. EM is an iterative
algorithm that, starting from an initial estimate of parameters,
iteratively update the estimates based on data, by taking an
expectation-step and maximization-step repeatedly. For ex-
ample, it was shown in (Balakrishnan et al., 2017) that, under
the assumption of the generative model that was defined in
Eq. (1), one can give guarantees on recovering the ground-
truth parameters θ̃1,...,θ̃k assuming a suitable initialization.

1Some discussions on generalization with soft-min loss can be
found in Section 5.

In this paper, we show that the AM and the EM algorithms
are in fact more powerful in the sense that even in the absence
of a generative model, they lead to agnostic learning of
parameters. It turns out, under standard assumptions on
data-samples and D, these iterative methods can output
the minimizers of the population loss θ∗1 , ... , θ

∗
k with

appropriately defined loss functions. In particular, starting
from reasonable initial points, the estimates of the AM
algorithm approach θ∗1 ,...,θ

∗
k under the min-loss (Eq. 2), and

the estimates of the EM algorithm approach the minimizers
of the population loss under the soft-min loss (Eq. 3).

Instead of the standard AM (or EM), a version that has been
referred to as gradient EM (and gradient AM) is also popular
and has been analyzed in (Balakrishnan et al., 2017; Zhu
et al., 2017; Wang et al., 2020; Pal et al., 2022) to name a few.
Here, in lieu of the maximization step involved in EM (min-
imization for AM), a gradient step with appropriately chosen
step size is taken. This version is amenable to analysis and is
strictly worse than the actual EM (or AM) in their generative
setting. In this paper as well, we analyze the gradient EM
algorithm, and the analogous gradient AM algorithm.

Recently (Pal et al., 2022) proposed a gradient AM algorithm
for the agnostic mixed linear regression problem. However,
they require a strong assumption on initialization of {θi}ki=1

within a radius of O( 1√
d
) of the corresponding {θ∗i }ki=1.As

we can see, in high dimension, the initialization condition
is prohibitive. The dimension dependence initialization
in (Pal et al., 2022) comes from a discretization (ϵ-net)
argument, which was crucially used to remove inter-iteration
dependence of the gradient AM algorithm.

In this paper, we show that a dimension independent
initialization is sufficient for gradient AM. In particular, we
showed that the initialization needed for {θi}ki=1 is Θ(1),
which is a significant improvement over the past work (Pal
et al., 2022). Instead of an ϵ-net argument, we use fresh
samples every round. Moreover, we thoroughly analyze the
behavior of restricted covariates on a (problem defined) set,
in the agnostic setup, which turns out to be non-trivial. In
particular, we observe that the restricted covariates are sub
Gaussian with a shifted mean and variance, and we need to
control the minimum singular value of the covariance matrix
of such restricted covariates (which dictates the convergence
rate). We leverage some properties of restricted distributions
(Tallis, 1961), and were able to analyze such covariates
rigorously, obtain bounds and show convergence of AM.

In this paper we also propose and analyze the soft variant
of gradient AM, namely gradient EM. As discussed above,
the associated loss function is the soft-min loss. We show
that gradient EM also requires dimension independent O(1)
initialization, and also converges in an exponential rate.

While the performance of both the gradient AM and gradient
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EM algorithms are similar, AM minimizes a min-loss
whereas EM minimizes the optimal soft-min loss (maximum
likelihood loss in the generative setup). As shown in the
subsequent sections, AM requires a separation condition
(appropriately defined in Theorem 2.1) whereas EM does not.
On the other hand, EM requires the initialization parameter
to satisfy certain condition, albeit mild (exact condition in
Theorem 3.1).

1.1. Setup and Geometric Parameters

Recall that the parameters θ∗1 ,...,θ
∗
k are the minimizers of

the population loss function, and we consider both min-loss
(ℓmin(.)) as well as soft-min loss (ℓsoftmin(.)) as defined in
the previous section. We define

S∗
j ={(x∈Rd,y∈R) : (y−⟨x,θ∗j ⟩)2<(y−⟨x,θ∗l ⟩)2,

for all l∈ [k]\j} as the possible set of observations where
θ∗j is a better (linear) predictor (in ℓ2 norm) compared to
θ∗1 , ... ,θ

∗
k. Furthermore, in order to avoid degeneracy, we

assume, for any j∈ [k]

Pr
D
(x : (x,y)∈S∗

j )≥πmin,

for some πmin > 0. We are interested in the probability
measure corresponding to the random vector x only, and
we integrate (average-out) with respect to y to achieve this.
We emphasize that, in the realizable setup, the distribution
of y is governed by that of x (and possibly some noise
independent of x), and in that setting our definition of S∗

j and
πmin becomes analogous to that of (Yi et al., 2014; 2016)2.

Since we are interested in recovering θ∗j ,j = 1,...,k, a few
geometric quantities naturally arises in our setup. We define
the misspecification parameter λ as a smallest non-negative
number satisfying

|yi−⟨xi,θ∗j ⟩|≤λ for all (xi,yi)∈S∗
j and j∈ [k].

Moreover, we also define the separation parameter ∆ as the
largest non-negative number satisfying

min
l∈[k]\j

|yi−⟨xi,θ∗l ⟩|≥∆ for all (xi,yi)∈S∗
j .

Let us comment on these geometric quantities. Note that in
the case of a realizable setup, the parameterλ=0 in the noise-
less case or proportional to the noise in the noisy case. In
words,λ captures the level of misspecification from the linear
model. On the other hand, the parameter ∆ denotes the sepa-
ration or margin in the problem. In classical mixture of linear
regression framework, with realizable structure, similar as-
sumptions are present in terms of the (generative) parameters.
Moreover, with the realizable setup, our assumption can be
shown to be exactly same as the usual separation assumption.

2In (Yi et al., 2014; 2016), the authors denote {S∗
j }kj=1 as set

of indices, but that can be thought of as an analogue to a subset of
Rd+1 as shown above.

1.2. Summary of Contributions

Let us now describe the main results of the paper. To simplify
exposition, we state the results here informally and the
rigorous statements may be found in Sections 3 and 2.

Our main contribution is analysis of the gradient AM and
gradient EM algorithms. The gradient AM algorithm works
in the following way. At iteration t, based on the current
parameter estimates {θ(t)j }kj=1, the gradient AM algorithm

constructs estimates of {S∗
j }kj=1, namely {S(t)

j }kj=1. The
next iteration is then obtained by taking a gradient (with γ
as step size) over the quadratic loss over all such data points
{i : (xi,yi)∈S(t)

j } for all j∈ [k].

On the other hand, in the t-th iteration, the gradient EM algo-
rithm uses the current estimate of{θ∗j }kj=1, namely{θ(t)j }kj=1

to compute the soft-min probabilities p
θ
(t)
1 ,...,θ

(t)
k

(xi,yi;θ
(t)
j )

for all j∈ [k] and i∈ [n]. Then, using these probabilities, the
algorithm takes a gradient of the soft-min loss function with
step size γ to obtain the next iteration.

We begin by assuming the covariates xi
i.i.d∼ N (0,Id). Note

that this assumption serves as a natural starting point of
analyzing several EM and AM algorithms ((Balakrishnan
et al., 2017; Yi et al., 2014; 2016; Netrapalli et al., 2015;
Ghosh & Kannan, 2020)). Furthermore, as stated earlier,
we emphasize that in order to obtain convergence, we need
to understand the behavior of restricted covariates in the
agnostic setting. We require Gaussians, because the behavior
of restricted Gaussians are well studied in statistics (Tallis,
1961) and we use several such classical results.

We first consider the min-loss and employ the gradient AM
algorithm, similar to (Pal et al., 2022). In particular, we show
that the iterates returned by the gradient AM algorithm after
T iterations, {θ(T )

j }kj=1 satisfy

∥θ(T )
j −θ∗j ∥≤ρT ∥θ

(0)
j −θ∗j ∥+δ,

with high probability (where ρ < 1) provided n is large
enough and ∥θ(0)j −θ∗j ∥≤cini∥θ∗j ∥. Here cini is the initializa-
tion parameter and δ is the error floor that stems from the
agnostic setting and the gradient AM update (see (Balakrish-
nan et al., 2017) where, even with generative setup, an error
floor is shown to be unavoidable). Here δ depends on the
step size of the gradient AM algorithm as well as the several
geometric properties of the problem like misspecification
and separation. However, the result of (Pal et al., 2022) in this
regard requires an initialization of {θi}ki=1 within a radius of
O( 1√

d
) of the corresponding {θ∗i }ki=1 which we improve on.

In this paper, we show that it suffices for the initial parameters
to be within a (constant) Θ(1) radius for convergence,
provided the geometric parameter ∆− λ is large enough.
The Θ(1) initialization matches the standard (non agnostic,
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generative) initialization for mixed linear regression (see
(Yi et al., 2014; 2016)). In order to analyze the gradient
AM algorithm we need to characterize the behavior of
covariates {xi}ni=1 restricted to sets {S∗

j }kj=1. In particular
we need to control the norm of such restricted Gaussians
as well as control the minimum singular value of a random
matrix whose rows are made of such random variables.
Specifically, we require (i) a lower bound on the minimum
singular value of 1

n

∑
xi∈Sxix

T
i , where the set S is problem

dependent, (ii) an upper bound on ∥xi∥where xi∈S and (iii)
a concentration on ⟨xi,u⟩ where u is some vector and xi∈S.

In order to obtain the above, we leverage the properties of
restricted Gaussians ((Tallis, 1961; Ghosh et al., 2019)) on
a (generic) set with Gaussian volume bounded away from
zero and show that the resulting distribution of the covariates
is sub Gaussian with non-zero mean and constant parameter.
We obtain upper bounds on the shift and the sub Gaussian
parameter. We would like to emphasize that in the realizable
setup of mixed linear regressions, as shown in (Yi et al.,
2014; 2016) such a characterization may be obtained with
lesser complication. However, in the agnostic setup, it turns
out to be quite non-trivial.

Moreover, in gradient AM, the setup is complex since the sets
are formed by the current iterates of the algorithm (and hence
random), unlike {S∗

j }kj=1, which are fixed. In order to handle
this, we employ re-sampling in each iteration to remove the
inter-iteration dependency. We would like to emphasize that
sample splitting is a standard technique in the analysis of AM
type algorithms and several papers (e.g. (Yi et al., 2014; 2016;
Ghosh & Kannan, 2020) for mixed linear regression, (Netra-
palli et al., 2015) for phase retrieval and (Ghosh et al., 2020)
for distributed optimization) employ such a technique. While
this is not desirable, this is a way to remove the inter iteration
dependence that comes through data points. Finer techniques
like leave-one-out analysis (LOO) is also used ((Chen et al.,
2019)) but for simpler problems (like phase retrieval) since
the LOO updates are quite non-trivial. This problem exag-
gerates further in the agnostic setup. Hence, as a first step, in
this paper we assume a simpler sample split based framework
and keep finer techniques like LOO as future direction.

We would also like to take this opportunity to correct an
error in (Pal et al., 2022, Theorem 4.2). In particular, that
theorem should hold only for Gaussian covariates, not for
general bounded covariates as stated. It was incorrectly
assumed in that paper that the lower bound on the singular
value mentioned above holds for general covariates.

We then move on to analyze the soft-min loss and analyze the
gradient EM algorithm. Here, we show similar contraction
guarantees in the parameter space as in gradient EM. There
are several technical difficulties that arise in the analysis
of the gradient EM algorithm for agnostic mixed linear
regressions– (i) First, we show that if (xi,yi)∈S∗

j , then the

soft-min probability pθ∗
1 ,...,θ

∗
k
(xi,yi;θ

∗
j ) ≥ 1− η, where η

is small. (ii) Moreover, using the initialization condition,
and the properties of the soft-max function ((Gao & Pavel,
2017)) we argue that p

θ
(t)
1 ,...,θ

(t)
k

(xi, yi; θ
(t)
j ) is close to

pθ∗
1 ,...,θ

∗
k
(xi,yi;θ

∗
j ), where {θ(t)j }Tt=1 are the updated of the

gradient EM algorithm.

Our results for agnostic gradient AM and EM consist some
extra challenge over the existing results in literature ((Balakr-
ishnan et al., 2017; Waldspurger, 2018)). Usually, the popula-
tion operator with Gaussian covariates are analyzed (mainly
in EM, see (Balakrishnan et al., 2017)), and then a finite
sample guarantee is obtained using concentration arguments.
However, in our setup, with the soft-min probabilities and the
min function, it is not immediately clear how to analyze the
population operator. Second, in the gradient EM algorithm,
we do not split the samples over iterations, and necessarily
handle the inter-iteration dependency of covariates.

Furthermore, to understand the soft-min and min loss better,
in Section 5, we obtain generalization guarantees that involve
computing the Rademacher complexity of such function
classes. Agreeing with intuition, the complexity of soft-min
and min loss class is at most k times the complexity of the
learning problem of simple linear regression with quadratic
loss.

1.3. Related works

As discussed earlier, most works on the mixture of linear
regressions are in the realizable setting, and aim to do
parameter estimation. Algorithms like EM and AM are
most popularly used to achieve this task. For instance, in
(Balakrishnan et al., 2017), it was proved that a suitable
initialized EM algorithm is able to find the correct parameters
of the mixed linear regressions. Although (Balakrishnan
et al., 2017) obtains the convergence results within an ℓ2
ball, it is then extended to an appropriately defined cone by
(Klusowski et al., 2019). On the AM side, (Yi et al., 2014)
introduced the AM algorithm for the mixture of 2 regressions,
where the initialization is done by the spectral methods.
Then, (Yi et al., 2016) extends that to a mixture of k linear
regressions. Perhaps surprisingly, for the case of 2 lines,
(Kwon & Caramanis, 2018) shows that any random initial-
ization suffices for EM algorithm to converge. In the above
mentioned works, the covariates are assumed to be standard
Gaussians, which was relaxed in (Li & Liang, 2018), allow-
ing Gaussian covariates to have different covariances. Here,
near optimal sample as well as computational complexities
were achieved albeit not via EM or AM type algorithm.

In another line of work, the convergence rates of AM or
its close variants are investigated. In particular, in (Ghosh
& Kannan, 2020; Shen & Sanghavi, 2019), it is shown
that AM (or its variants) converge at a double-exponential
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(super-linear) rate. Recent work, (Chandrasekher et al.,
2021) shows similar results for larger class of problems.

We emphasize that apart from mixture of linear regressions,
EM or AM type algorithms are used to address other prob-
lems as well. Classically parameter estimation in the mixture
of Gaussians is done by EM mixture of Gaussians (see
(Balakrishnan et al., 2017; Daskalakis & Kamath, 2014) and
the references therein). The seminal paper by (Balakrishnan
et al., 2017) addresses the problem of Gaussian mean esti-
mation as well as linear regression with missing covariates.
Moreover, AM type algorithms are used in phase retrieval
((Netrapalli et al., 2015; Waldspurger, 2018)), parameter
estimation in max-affine regression ((Ghosh et al., 2019)),
clustering in distributed optimization ((Ghosh et al., 2020)).

In all of the above mentioned works, the covariates are given
to the learner. However, there is another line of research that
focuses on analyzing AM type algorithms when the learner
has the freedom to design the covariates ((Yin et al., 2019;
Krishnamurthy et al., 2019; Mazumdar & Pal, 2020; 2022;
Pal et al., 2021)).

However, none of these works is directly comparable to our
setting. All these works assume a realizable model where the
parameters come with the problem setup. However, ours is
an agnostic setup, and here there are no optimal parameters
associated with the setup, rather solutions of (naturally
emerging) loss functions.

Our work is a direct follow up of (Pal et al., 2022), who intro-
duced the agnostic learning framework for mixed linear re-
gression, and also used the AM algorithm in lieu of empirical
risk minimization. Also, (Pal et al., 2022) only considered the
min-loss, and neither the soft-min loss nor the EM algorithm,
whereas we consider both EM and AM. Moreover, the AM
guarantees we obtain are sharper than that of (Pal et al., 2022).

1.4. Organization

We start with the soft-min loss function and the gradient EM
algorithm in Section 3. In Section 3.2, we obtain the theoreti-
cal results of gradient EM. We then move to min loss function
in Section 2, where we analyze the gradient AM algorithm,
with theoretical guarantees given in Section 2.2. We present a
rough overview of the proof techniques in Section 4. Finally,
in Section 5, we provide some generalization guarantees
using Rademacher complexity. We conclude in Section 6
with a few open problems and future direction. We collection
all the proofs (both EM and AM) in Appendix B and A.

1.5. Notation

Throughout this paper, we use ∥.∥ to denote the ℓ2 norm of a d
dimensional vector unless otherwise specified. Also for a pos-
itive integer r, we use [r] to denote the set {1,...,r}. We use
C,C1,C2,...,c,c1,c2... to denote positive universal constants,

the value of which may differ from instance to instance.

2. Agnostic Mixed Linear Regression-Min-Loss
In this section, we analyze the min-loss function and analyze
gradient AM algorithm. First, recall the definition of ℓmin(.)
from Eq. 2. Similar to the section above, we are given a set of
n data-points {xi,yi}ni=1, where xi ∈Rd and yi ∈R drawn
from an unknown distribution D. We want to obtain

(θ∗1 ,...,θ
∗
k)=argminE(x,y)∼Dℓmin(θ1,...,θk;x,y).

With the given n datapoints, we aim to learn these k
hyperplanes via the AM algorithm (Algorithm 1), which
tries to minimize the empirical optimization version instead.

2.1. Gradient AM Algorithm

In this section we use the gradient AM algorithm for
minimizing L(θ1, ... ,θk). The details of our algorithm is
given in Algorithm 1.

First note that here, we split the n samples {xi, yi}ni=1

into 2T disjoint samples where we run Algorithm 1 for T
iterations. We would like to remind that sample splitting
is a standard in AM type algorithms ((Yi et al., 2014; 2016;
Ghosh & Kannan, 2020; Netrapalli et al., 2015; Ghosh et al.,
2020)). While this is not desirable, this is a way to remove the
inter iteration dependence that comes through data points.

Hence, at each iteration of gradient AM we are given
n′=n/2T samples. Each iteration consists of 2 stages (see
Algorithm 1). In the first stage of the t-th iteration, we use n′

samples to construct the index sets I(t)j in the following way

I
(t)
j ={i∈ [n′] : (y

(t)
i −⟨x(t)i ,θ

(t)
j ⟩)2<(y

(t)
i −⟨x(t)i ,θ

(t)
j′ ⟩)

2}

∀j′∈ [k]\j. Here, we collect the data points for which the cur-
rent estimate of θ∗j , namely θ(t)j is a better (linear) estimator

than {θ(t)j′ } where j′ ̸=j. Notw that {I(t)j }kj=1 partitions [n′].

At the second stage of gradient AM, we use another set
of fresh n′ data points to run the gradient update on the
set {I(t)j }kj=1 with step size γ to obtain the next iterate

{θ(t+1)
j }kj=1. The details is given in Algorithm 1.

2.2. Theoretical Guarantees

In this section, we obtain theoretical guarantees for Algo-
rithm 1. Similar to the previous section, we assume |yi|≤b
for all i ∈ [n]. In the following, we consider one iteration
of Algorithm 1, and show a contraction in parameter space.
Let the current parameter estimates are {θj}kj=1 and the
corresponding to the index {Ij}kj=1. Moreover, let the next
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Algorithm 1 Gradient AM for Mixture of Linear Regressions
1: Input: {xi,yi}ni=1, Step size γ
2: Initialization: Initial iterate {θ(0)j }kj=1

3: Split all samples into 2T disjoint datasets {x(t)i ,y
(t)
i }n′

i=1

with n′=n/2T for all t=0,1,...,T−1
4: for t=0,1,...,T−1 do
5: Partition:
6: For all j∈ [k], use n′ samples to construct index sets

{I(t)j }kj=1 such that ∀j′∈ [k]\j,

I
(t)
j ={i : (y(t)i −⟨x(t)i ,θ

(t)
j ⟩)2<(y

(t)
i −⟨x(t)i ,θ

(t)
j′ ⟩)

2}

7: Gradient Step:
8: Use fresh set of n′ samples to run gradient update

θ
(t+1)
j =θ

(t)
j − γ

n

∑
i∈[n′]

∇Fi(θ
(t)
j )1{i∈I(t)j },∀j∈ [k]

9: where Fi(θ
(t)
j )=(y

(t)
i −⟨x(t)i ,θ

(t)
j ⟩)2

10: end for
11: Output: {θ(T )

j }kj=1

iterates are {θ+j }kj=1. Unpacking, the next iterate is given by

θ+j =θj−
2γ

n

∑
i∈Ij

[xix
T
i θj−yixi] (4)

for all j∈ [k]. We now present our main results of this section.

Theorem 2.1 (Gradient AM). Suppose xi
i.i.d∼ N (0,Id) and

that n′≥C dlog(1/πmin)
π3
min

. Furthermore,

∥θj−θ∗j ∥≤cini∥θ∗j ∥

for all j ∈ [k] where cini is a small positive constant
(initialization parameter). Moreover, let the separation
parameter satisfy

∆>λ+C1[cini
√
log(1/πmin)max

j∈[k]
∥θ∗j ∥+

√
1+log(1/πmin)].

Then, running one iteration of Gradient AM with step size
γ, yields {θ+j }kj=1 satisfying

∥θ+j −θ∗j ∥≤ρ∥θj−θ∗j ∥+ε, with probability exceeding

1−C1exp(−C2π
4
minn

′)− c1exp(−Pen
′)− n′

poly(d) , where
ρ=(1−cγπ3

min), and the error floor

ε≤Cγλ
√
dlogdlog(1/πmin)+C1γ(k−1)Pe

×
[
dlogdlog(1/πmin)∥θ∗1∥+Cb

√
dlogdlog(1/πmin)

]
,

and Pe≤4exp

(
− 1

cini2maxj∈[k]∥θ∗j ∥2
[
∆−λ
2

]2
)
.

The proof of Theorem 2.1 is deferred to Appendix A. We
make a few remarks here.

Remark 2.2 (Contraction factor ρ). We observe that if ρ<1,
the above result implies a contraction in parameter space
with a slack of ε, which we call the error-floor. Note that
by choosing γ< c0

(1−η)π3
min

, where c0 is a small constant, we
can always make ρ<1.

Remark 2.3 (Error floor ε). Observe that the error floor ε
depends linearly on the step size γ, similar to any standard
stochastic optimization problem. The error floor also decays
linearly with the misspecification parameter λ, which may be
thought as an agnostic bias. In previous works (Yi et al., 2016;
2014), even in the realizable setting, either the authors assume
λ=0 or very small. In a related field of online learning (multi
armed bandits and reinforcement learning in linear frame-
work), this model misspecification also impacts the regret in
a linear fashion as seen by (Jin et al., 2020, Theorem 5). Even
in these realizable setting, is it unknown how to tackle largeλ.

Remark 2.4 (Re-sampling). Note that the gradient AM algo-
rithm of ours requires re-sampling fresh data points in every
iteration. Similar to the analysis of the gradient EM, here also
we need to control the lower spectrum of a random matrix con-
sisting Gaussians restricted to a set. From the structure of gra-
dient AM, this set here is given by S(t)

j ={(xi,yi) : i∈I(t)j }.
Note that without re-sampling of data points, analyzing the
behavior of Gaussians on the sets {S(t)

j }kj=1 turns out to

be quite non-trivial since {S(t)
j }kj=1 depends on {θ(t)j }kj=1

which depends on all the data point {xi,yi}ni=1.

Remark 2.5 (Probability of errorPe). One major part in show-
ing the convergence guarantee is to show that provided good
initialization, the probability of a datapoint lying in an incor-
rect index set is at mostPe. With a closer look, it turns out that
if the problem is separated enough (∆ large) and the initial-
ization is suitable (cini is small),Pe decays exponentially fast.
Hence, in such a setup, the second term in ε is quite small.

Remark 2.6 (Sample complexity). Note that we re-
quire the number of samples satisfying the following:
n ≥ C dlog(1/πmin)

π3
min

, where the dependence on k comes
through πmin (and from definition, we have πmin ≤ 1/k).
Note that information theoretically, we only require Ω(kd)
samples, since there are kd unknown parameters to learn.
Hence, our sample complexity is optimal in d. However, it
is sub-optimal in k compared to the standard (non-agnostic)
AM guarantees ((Yi et al., 2014; 2016)). The sub-optimality
comes from the proof techniques we use for the agnostic
setting. In particular, we use spectral properties of a restricted
Gaussian vectors on a set with (Gaussian) volume at least
πmin. As shown in (Ghosh et al., 2019), this gives rise to a
dependence of 1/π3

min in sample complexity. Moreover, in
(Ghosh et al., 2019), it is argued (albeit in a different problem),
that when spectral properties of such restricted Gaussians are
employed, a 1/π3

min dependency is in general unavoidable.
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Algorithm 2 Gradient EM for Mixture of Linear Regressions
1: Input: {xi,yi}ni=1, Step size γ
2: Initialization: Initial iterate {θ(0)j }kj=1

3: for t=0,1,...,T−1 do
4: Compute Probabilities:

5: Compute p
θ
(t)
1 ,..,θ

(t)
k

(xi, yi;θ
(t)
j ) for all j ∈ [k] and

i∈ [n]
6: Gradient Step: (for all j∈ [k])

θ
(t+1)
j =θ

(t)
j − γ

n

n∑
i=1

p
θ
(t)
1 ,..,θ

(t)
k

(xi,yi;θ
(t)
j )∇Fi(θ

(t)
j ),

7: where Fi(θ
(t)
j )=(yi−⟨xi,θ(t)j ⟩)2

8: end for
9: Output: {θ(T )

j }kj=1

3. EM algorithm for Soft-Min Loss
In this section we analyze the soft-min loss function and
propose gradient EM algorithm to address this. Recall the
definition of ℓsoftmin(.) from Eq. 3. Moreover, recall that we
are given a set of n data-points {xi,yi}ni=1, where xi ∈Rd

and yi∈R drawn from an unknown distribution D. Our goal
here is to obtain

(θ∗1 ,...,θ
∗
k)=argminE(x,y)∼Dℓsoftmin(θ1,...,θk;x,y).

We aim to learn these k hyperplanes through the given
data. The EM algorithm (Algorithm 2) tries to minimize the
empirical version of the problem.

3.1. Gradient EM Algorithm

We propose EM based algorithm for minimizing the
empirical loss functionL(θ1,..,θk). In particular we propose
a variant of EM, popularly known as gradient EM for this.
The steps are given in Algorithm 2. Each iteration of gradient
EM consists of two steps. First, in the compute probability
step, based on the current estimates of {θ∗j }kj=1, namely
{θ(t)}kj=1, Algorithm 2 computes the soft-min probabilities
computed using the current iterates {θ(t)}kj=1, which is

p
θ
(t)
1 ,...,θ

(t)
k

(xi, yi;θ
(t)
j ) for all j ∈ [k] and i ∈ [n]. In the

subsequent step, using these probabilities, the algorithm
takes a gradient step with step size γ. In particular, for
the j-th iterate θ

(t)
j , gradient EM weights the standard

quadratic loss computed on the i-th data point, given by
(yi − ⟨xi, θ(t)j ⟩)2 and takes the gradient to obtain the next

iterate {θ(t+1)
j }kj=1. We truncate Algorithm 2 after T steps.

We split the n samples {xi,yi}ni=1 into 2T disjoint samples
where we run Algorithm 2 for T iterations. Again sample
splitting is a standard in EM type algorithms ((Balakrishnan
et al., 2017; Kwon & Caramanis, 2018)). Hence, at each

iteration of gradient EM we are given n′ = n/2T samples.
Each iteration consists of 2 stages (see Algorithm 2). The
first n′ samples are used to compute the probabilities, and
the next set of samples are used to take the gradient step.

3.2. Theoretical Guarantees

We now look at the convergence guarantees of Algorithm 2.
In particular, here we consider one iterate of the gradient EM
algorithm with current estimate (θ1,...,θk). Also, assume
that the next iterate with these current estimates is given by
(θ+1 ,...,θ

+
k ). Unrolling the iterate, we have

θ+j =θj−
2γ

n′

n′∑
i=1

pθ1,...,θk(xi,yi;θj)
(
xix

T
i θj−yixi

)
. (5)

for all j∈ [k]. Furthermore, we assume |yi|≤b for all i∈ [n′]
for a non-negative b. With this, we are now ready to present
the main result of this section.

Theorem 3.1 (Gradient EM). Suppose that xi
i.i.d∼ N (0,Id)

and that n′≥C dlog(1/πmin)
π3
min

. Moreover,

∥θj−θ∗j ∥≤cini∥θ∗j ∥

for all j ∈ [k], where cini is a small positive constant (ini-
tialization parameter) satisfying cini< c2 λ√

log(1/πmin)∥θ∗
1∥

.

Then running one iteration of gradient EM algorithm with
step size γ yields {θ+j }kj=1 satisfying

∥θ+j −θ∗j ∥≤ρ∥θj−θ∗j ∥+ε,

with probability at least 1 − C1 exp(−c1π4
minn

′) −
C2exp(−c2d)−n′/poly(d)−n′C3exp(− λ2

cini2∥θ∗
1∥2 ), where

ε≤Cγλ
√
dlogdlog(1/πmin)

+C1γη
′(b+

√
dlogdlog(1/πmin))

2(cini+1))∥θ∗1∥,

ρ = (1 − 2γc(1 − η)π3
min), η

′ = e−((∆−Cλ)2−C2λ
2) and

η =

(
1−e−C2λ2

+(k−1)e−(∆−Cλ)2

1+(k−1)e−(∆−Cλ)2

)
, with C,C1,..,c,c1,.. as

universal positive constants.

We defer the proof of the theorem in Appendix B. The
remarks we made after the AM algorithm continues to hold
here as well.
Remark 3.2 (Error floor ε). Observe that the error floor ε
depends linearly on the step size γ. The error floor also
decays linearly with the misspecification parameter λ and
an exponentially decaying term dependent on the gap.

Discussion and Comparison between gradient EM
and AM: Note that both the algorithms require initial-
ization and provides exponential convergence with error

7
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floor. However, gradient AM minimizes an intuitive
min-loss while gradient EM minimizes optimal (maximum
likelihood in the generative setup) soft-min loss. More-
over, the gradient AM algorithm requires the separation
∆ = Ω(λ +

√
logk(1 + cini)) (exact condition in Theo-

rem 2.1), whereas we do not have any such requirement for
gradient EM. On the flip side, the convergence of gradient
EM requires a condition on the initialization parameter cini
that depends on misspecification λ, whereas for gradient
AM algorithm, no such restriction is imposed.

4. Proof Sketches
In this section, we present a rough sketch of the proof of
Theorems 2.1 and 3.1.

4.1. Gradient AM (Theorem 2.1)

For gradient AM algorithm, based on the current iterates
{θj}kj=1, we first construct the index sets {Ij}kj=1 using n′

fresh samples, where Ij consists of all such indices such
that θj is a better predictor compared to the other parameters.
Similarly, one can construct {I∗j }kj=1 based on {θ∗j }kj=1.
Unrolling gradient AM update (Eq. 4), using another set of
n′ samples we have

∥θ+1 −θ∗1∥=∥θ1−θ∗1−
2γ

n′

∑
i∈I1

(
xix

T
i θ1−yixi

)
∥.

Similar to the gradient EM setup, it turns out that we need to
lower boundσmin(

1
n′

∑
i∈Ij

xix
T
i ). Note that since we usen′

fresh samples to construct Ij , the set can be considered fixed
with respect to the samples used in the gradient step and we
can leverage Lemma B.2. We use σmin(

1
n′

∑
i∈I1

xix
T
i )≥

σmin(
1
n′

∑
i∈I1∩I∗

1
xix

T
i ). Thanks to the suitable initializa-

tion and Lemma A.1, we show that |I1∩I∗1 | is big enough,
yielding a singular value lower bound of ≈π3

min. The control
of other terms are done similar to the gradient EM setup, and
upon combining, we get the final theorem.

4.2. Gradient EM (Theorem 3.1)

Recall that we consider one iteration of Algorithm 2
with current and next iterates as {θj}kj=1 and {θ+j }kj=1

respectively. Recall the update given by Eq. 5. Without loss
of generality, we focus on j=1 and use shorthand p(θ1) to
denote pθ1,...,θk(xi,yi;θ1). With this we have

∥θ+1 −θ∗1∥=∥θ1−θ∗1−
2γ

n′

n′∑
i=1

p(θ1)
(
xix

T
i θ1−yixi

)
∥.

We now break the sum to indices i : (xi, yi) ∈ S∗
1 and

otherwise. When we look at indices such that (xi,yi)∈S∗
1 ,

after a few algebraic manipulation, it turns out we need
to lower bound σmin[

1
n′

∑
i:(xi,yi)∈S∗

1
xix

T
i ]. Since

Pr(xi : (xi, yi) ∈ S∗
1 ) ≥ πmin by definition, leveraging

properties of restricted Gaussians (Lemma B.2), we
obtain σmin[

1
n′

∑
i:(xi,yi)∈S∗

1
(1− η)xix

T
i ] ≥ (1− η)π3

min.
Furthermore, leveraging the fact that if (xi,yi)∈S∗

1 , we have
p(θ∗1)≥1−η (Lemma B.1), and using the norm upper bound
on restricted Gaussians (Lemma B.3) we control such indices.
Finally, combining all the terms and using the geometric
parameters succinctly, we obtain the desired result.

5. Generalization Guarantees
In this section, we obtain generalization guarantees for the
soft-min loss functions. Note that similar generalization
guarantee for the min loss function has appeared in (Pal et al.,
2022).

We learn a mixture of functions from X →Y for X ⊆ Rd

fitting data distribution D over (X ,Y). A learner has access
to samples {xi,yi}ni=1. There is a base class H : X → Y .
Here, we work with the setup of list decoding where the
learner outputs a list while testing. In (Pal et al., 2022) the
list decodable function class has been defined. We rewrite
here for completeness.

Definition 5.1. Let H be the base function class H. We
construct a vector valued k-list-decodable function class,
namely H̄k such that any h̄∈H̄k is defined as

h̄=(h1(·),···,hk(·))

such that hj ∈Hj for all j∈ [k]. Thus h̄’s map X →Yk and
form the new function class H̄k.

To ease notation, we omit the k in H̄ when clear from context.

In our setting, the base function class is linear, i.e., for all
j∈ [k]

Hj=H={⟨θ,·⟩ :∀θ∈Rd s.t ∥θ∥2≤R},

and the base loss function ℓ :Y×Y→R+ is given by

ℓ(hj(x),y))=(y−⟨x,θj⟩)2.

In what follows, we obtain generalization guarantees for
bounded covariates and response, i.e., |y|≤1 and ∥x∥≤1.

Claim 5.2. For bounded regression problem, the loss
function ℓ(hj(x),y)) is Lipschitz with parameter 2(1+R)
with respect to the first argument.

The proof is deferred to Appendix C. We are interested in
the soft loss function, which is a function of the k-base loss
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functions:

L(h̄(x),y)=L(x,y;θ1,...,θk)

=

k∑
j=1

pθ1,..,θk(x,y;θj)[y−⟨x,θj⟩]2

=

k∑
j=1

pθ1,..,θk(x,y;θj)ℓ(hj(x),y),

where

pθ1,..,θk(x,y;θj)=
e−(y−⟨x,θj⟩)2∑k
ℓ=1e

−(y−⟨x,θℓ⟩)2
.

We have n datapoints {xi,yi}ni=1 drawn from D and we want
to understand how well this soft-min loss generalizes. In
order to do that, a standard metric one studies in statistical
learning theory is (emprirical) Rademacher Complexity
((Mohri et al., 2018)). In our setup, the loss class is defined by

{(x,y) 7→
k∑

j=1

pθ1,..,θk(x,y;θj)ℓ(hj(x),y);{θj :∥θj∥≤R}kj=1}.

Let us define this class as Φ. The Rademacher complexity
of the loss class is given by

R̂n(Φ)=Eσ

[
sup

h̄∈H̄k

∣∣∣∣ 1n
n∑

i=1

σiL(h̄(xi),yi)

∣∣∣∣
]

=Eσ

 sup
{θj :∥θj∥≤R}kj=1

∣∣∣∣ 1n
n∑

i=1

σi

k∑
j=1

pθ1,..,θk (x,y;θj)ℓ(hj(x),y)

∣∣∣∣
,

where σ is a set of Rademacher RV’s {σi}ni=1. We have the
following result:

Lemma 5.3. The Rademacher complexity of Φ satisfies

R̂(Φ)≤4k(1+R)R̂(H)≤ 4kR(1+R)√
n

.

We observe that the (empirical) Rademacher complexity
of the soft-min loss class does not blow-up provided the
complexity of the base class H is controlled. Moreover,
since the base class is a linear hypothesis class (with bounded
ℓ2 norm), the Rademacher complexity scales as O(1/

√
n),

resulting in the above bound. The proof is deferred in
Appendix C. In a nutshell, we consider a bigger class of all
possible convex combination of the base losses, and connect
Φ to that bigger function class.

6. Conclusion and Open Problems
In this work, we have studied the agnostic setup for mixed
linear regression, and show that EM and AM algorithms

are strong enough to provide provable guarantees even in
this setup. However we believe such algorithms may be used
in a broader context of agnostic learning. We conclude the
paper with a few interesting problems. Beyond mixture of
linear regressions, can this agnostic setup be used for other
problems such as mixture of classifiers, mixture of experts, to
name a few? What is the role of Gaussian covariates in such
an agnostic setting? Can we relax this to some extent? In
(Ghosh et al., 2019) it is explained how restricted Gaussian
analysis can be extended to sub-Gaussians satisfying a
small ball condition for the particular problem of max-affine
regression. Another interesting direction is to analyze the
AM based algorithms without resampling in the agnostic
setup, leveraging techniques like Leave One Out (LOO) as
an example. We keep these as our future endevors.
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A. Proof of Theorem 2.1
Without loss of generality, let us focus on θ+1 . We have

∥θ+1 −θ∗1∥=∥θ1−θ∗1−
γ

n′

∑
i∈I1

∇Fi(θ1)∥

=∥(θ1−θ∗1)−
γ

n′

∑
i∈I1

(∇Fi(θ1)−∇Fi(θ
∗
1))−

γ

n′

∑
i∈I1

∇Fi(θ
∗
1)∥

≤∥(θ1−θ∗1)−
γ

n′

∑
i∈I1

(∇Fi(θ1)−∇Fi(θ
∗
1))∥︸ ︷︷ ︸

T1

+
γ

n′
∥
∑
i∈I1

∇Fi(θ
∗
1)∥︸ ︷︷ ︸

T2

.

Let us first consider T1. Substituting the gradients, we obtain

T1=∥(I− 2γ

n

∑
i∈I1

xix
⊤
i )(θ1−θ∗1)∥=∥(I− 2γ

n′

∑
i:(xi,yi)∈S1

xix
⊤
i )(θ1−θ∗1)∥.

We require a lower bound on

σmin(
1

n

∑
i∈I1

xix
⊤
i )≥σmin(

1

n′

∑
i:(xi,yi)∈S1∩S∗

1

xix
⊤
i )

Similar to the EM framework, in order to bound the above, we need to look at the behavior of the covariates (which are
standard Gaussian) over the restricted set given by S1∩S∗

1 . Note that since we are resampling at each step, and using fresh
set of samples to construct Sj and another fresh set of samples to run the Gradient AM algorithm, we can directly use
Lemma B.2 here. Moreover, we use the fact that |i : (xi,yi)∈S1∩S∗

1 |≥C|i : (xi,yi)∈S∗
1 |≥C ′πminn with probability at

least 1−Cexp(−πminn) where we use the initialization Lemma A.1. Thus, we have

σmin(
1

n′

∑
i:(xi,yi)∈S1

xix
⊤
i )≥cπ3

min

with probability at least 1−C1exp(−C2π
4
minn

′)−C3exp(−πminn
′) provided n′≥C dlog(1/πmin)

π3
min

. As a result,

T1≤(1−cγπ3
min)∥θ1−θ∗1∥,

with probability at least 1−C1exp(−C2π
4
minn

′).

Let us now consider the term T2. We have

T2=
γ

n
∥

∑
i:(xi,yi)∈S1

∇Fi(θ
∗
1)∥

≤ γ

n

∑
i:(xi,yi)∈S1

∥∇Fi(θ
∗
1)∥

=
γ

n

∑
i:(xi,yi)∈S1∩S∗

1

∥∇Fi(θ
∗
1)∥+

γ

n

k∑
j=2

∑
i:(xi,yi)∈S1∩S∗

j

∥∇Fi(θ
∗
1)∥

When {i : (xi,yi)∈S∗
1}, we have

∥∇Fi(θ
∗
1)∥=2|yi−⟨xi,θ∗1⟩|∥xi∥

≤2λ∥xi∥≤Cλ
√
dlogdlog(1/πmin)

12
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with probability at least 1−n′/poly(d), where in the first inequality, we have used the misspecification assumption, and in
the second inequality, we use Lemma B.3. Let us now compute an upper bound on ∥∇Fi(θ

∗
1)∥, which we use to bound the

second part. We have

∥∇Fi(θ
∗
1)∥≤∥xi∥2∥θ∗1∥+∥xi∥|yi|

≤C1dlogdlog(1/πmin)∥θ∗1∥+Cb
√
dlogdlog(1/πmin)

with probability at least 1−1/poly(d).

With this, we have

T2≤
γ

n
|I1∩I∗1 |Cλ

√
dlogdlog(1/πmin)+

γ

n

k∑
j=2

|I1∩I∗j |
(
C1dlogdlog(1/πmin)∥θ∗1∥

+Cb
√
dlogdlog(1/πmin)

)
≤γCλ

√
dlogdlog(1/πmin)+C1γ(k−1)Pe

[
dlogdlog(1/πmin)∥θ∗1∥+Cb

√
dlogdlog(1/πmin)

]
,

with probability at least 1− exp(−cPen)− n′

poly(d) −
Pen

poly(d) , where Pe is defined in Lemma A.1. In this case, we use
|I1∩I∗1 |≤n′ (trivially holds) as well as the standard binomial concentration on |I1∩I∗j |with mean at mostn′Pe with probability
at least 1−exp(−cPen

′). Moreover we take the union bound. Here, we use Lemma B.3 along with the fact that |yi|≤b.

Combining T1 and T2, we have

∥θ+1 −θ∗1∥≤(1−cγπ3
min)∥θ1−θ∗1∥+Cγλ

√
dlogdlog(1/πmin)

+C1γ(k−1)Pe

[
dlogdlog(1/πmin)∥θ∗1∥+Cb

√
dlogdlog(1/πmin)

]
,

with probability at least 1−C1exp(−C2π
4
minn

′)−exp(−cPen
′)− n′

poly(d) .

A.1. Good Initialization

We stick to analyzing θ+1 . In the following lemma, we only consider θ2. In general, the same argument holds for {θ3,...,θk}.

Lemma A.1. We have

Pe=P
(
Fi(θ1)>Fi(θ2)|i∈I∗1

)
≤4exp

(
− 1

cini2maxj∈[k]∥θ∗j ∥2

[
∆−λ
2

]2)

Let us consider the event

Fi(θ1)>Fi(θ2),

which is equivalent to

|yi−⟨xi,θ1⟩|> |yi−⟨xi,θ2⟩|.

Let us look at the left hand side of the above inequality. We have

|yi−⟨xi,θ∗1⟩+⟨xi,θ1−θ∗1⟩|
≤|yi−⟨xi,θ∗1⟩|+|⟨xi,θ1−θ∗1⟩|
≤λ+|⟨xi,θ1−θ∗1⟩|,

where we have used the fact that if i∈I∗1 , the first term is at most λ.

13
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Similarly, for the right hand side, we have

|yi−⟨xi,θ∗2⟩−⟨xi,θ2−θ∗2⟩|
≥|yi−⟨xi,θ∗2⟩|−|⟨xi,θ2−θ∗2⟩|
≥∆−|⟨xi,θ2−θ∗2⟩|

where we use the fact that if i∈I∗1 , the first term is lower bounded by ∆.

Combining these, we have

P
(
Fi(θ1)>Fi(θ2)|i∈I∗1

)
≤P
(
|⟨xi,θ1−θ∗1⟩|+|⟨xi,θ2−θ∗2⟩|≥∆−λ

)
≤P
(
|⟨xi,θ1−θ∗1⟩|≥

∆−λ
2

)
+P
(
|⟨xi,θ2−θ∗2⟩|≥

∆−λ
2

)
Let us look at the first term. Lemma B.2 shows that if i ∈ I∗1 (accordingly (xi,yi) ∈ S∗

1 ), the distribution of xi − µτ is
subGaussian with (squared) parameter at most C(1 + log(1/πmin)), where µτ is the mean of xi (under the restriction
(xi,yi)∈S∗

1 ). With this we have

P
(
|⟨xi,θ1−θ∗1⟩|≥

∆−λ
2

)
≤P
(
|⟨xi−µτ ,θ1−θ∗1⟩|+∥µτ∥∥θ1−θ∗1∥≥

∆−λ
2

)
≤P
(
|⟨xi−µτ ,θ1−θ∗1⟩|≥

∆−λ
2

−ciniC
√

log(1/πmin)∥θ∗1∥
)

where we use the initialization condition ∥θ1−θ∗1∥≤cini∥θ∗1∥, and from Lemma B.2, we have ∥µτ∥2≤Clog(1/πmin).

Now, provided ∆−λ>C(cini
√

log(1/πmin)∥θ∗1∥)+C1

√
1+log(1/πmin), using sub-Gaussian concentration, we obtain

P
(
|⟨xi,θ1−θ∗1⟩|≥

∆−λ
2

)
≤2exp

(
− 1

cini2∥θ∗1∥2

[
∆−λ
2

]2)
.

Similarly, for the second term, similar calculation yields

P
(
|⟨xi,θ2−θ∗2⟩|≥

∆−λ
2

)
≤2exp

(
− 1

cini2∥θ∗2∥2

[
∆−λ
2

]2)
,

and hence

P
(
Fi(θ1)>Fi(θ2)|i∈I∗1

)
≤4exp

(
− 1

cini2maxj∈[k]∥θ∗j ∥2

[
∆−λ
2

]2)
which proves the lemma.

B. Proof of Theorem 3.1
Let us look at the iterate of gradient EM after one step and without loss of generality, we focus on recovering θ∗1 . We have

∥θ+1 −θ∗1∥=∥θ1−θ∗1−
2γ

n′

n′∑
i=1

pθ1,...,θk(xi,yi;θ1)
(
xix

T
i θ1−yixi

)
∥

Let us use the shorthand p(θ1) to denote pθ1,...,θk(xi,yi;θ1) and p(θ∗1) to denote pθ∗
1 ,...,θ

∗
k
(xi,yi;θ

∗
1) respectively. We have

∥θ+1 −θ∗1∥=∥θ1−θ∗1−
2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)
(
xix

T
i θ1−yixi

)
− 2γ

n′

∑
i:(xi,yi)/∈S∗

1

p(θ1)
(
xix

T
i θ1−yixi

)
∥

≤∥θ1−θ∗1−
2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)
(
xix

T
i θ1−yixi

)
− 2γ

n′

∑
i:(xi,yi)/∈S∗

1

p(θ1)
(
xix

T
i θ1−yixi

)
∥

︸ ︷︷ ︸
T1

14
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First we argue from the separability and the closeness condition that, if (xi,yi)∈S∗
1 , the probability p(θ1) is bounded away

from 0. Lemma B.1 shows that conditioned on (xi,yi)∈S∗
j , we have pθ1,...,θk(xi,yi;θj)≥1−η, where

η=

(
1−e−C2λ

2

+(k−1)e−(∆−Cλ)2

1+(k−1)e−(∆−Cλ)2

)
.

with probability at least 1−C3exp

(
−C1

λ2

cini2∥θ∗
1∥2

)
. With this, let us look at T1. We have

T1≤∥θ1−θ∗1−
2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)
(
xix

T
i θ1−yixi

)
∥

︸ ︷︷ ︸
T11

+
2γ

n′
∥

∑
i:(xi,yi)/∈S∗

1

p(θ1)
(
xix

T
i −yixi

)
∥

︸ ︷︷ ︸
T12

.

We continue to upper bound T11:

T11≤∥θ1−θ∗1−
2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)
(
xix

T
i θ1−yixi

)
∥

≤∥θ1−θ∗1−
2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)
(
xix

T
i θ1−xixTi θ∗1

)
∥+2γ

n′
∥

∑
i:(xi,yi)∈S∗

1

p(θ1)
(
xix

T
i θ

∗
1−yixi

)
∥

≤∥
[
I− 2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)xix
T
i

]
(θ1−θ∗1)∥+

2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)|yi−⟨xi,θ∗1⟩|∥xi∥

≤∥
[
I− 2γ

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)xix
T
i

]
(θ1−θ∗1)∥+Cλγ

√
dlogdlog(1/πmin),

with probability at least 1 − C3n
′ exp

(
− C1

λ2

cini2∥θ∗
1∥2

)
− n′/poly(d), where we use the misspecification condition,

|yi−⟨xi,θ∗1⟩|≤λ for all (xi,yi)∈S∗
1 , along with the fact that the number of such indices is trivially upper bounded by the

total number of observations, n. Moreover, we also use Lemma B.3 to bound ∥xi∥.

Note that since (xi, yi) ∈ S∗
1 , we have p(θ1) ≥ 1 − η. We need to look at σmin

(
1
n′

∑
i:(xi,yi)∈S∗

1
p(θ1)xix

T
i

)
, where

p(θ1)≥1−η. We use the fact that

σmin

 1

n′

∑
i:(xi,yi)∈S∗

1

p(θ1)xix
T
i

≥σmin

 1

n′

∑
i:(xi,yi)∈S∗

1

(1−η)xixTi

.
Note that we need to analyze the behavior of the data restricted on the set S∗

1 . In particular we are interested in the second
moment estimation of such restricted Gaussian random variable. We show that, conditioned on S∗

1 , the distribution of
xi changes to a sub-Gaussian with a shifted mean. Lemma B.2 characterizes the behavior as well as the second moment
estimation for such variables.

We invoke the Lemma B.2 and use the standard binomial concentration to obtain |i : (xi,yi)∈S∗
1 |≥Cπminnwith probability

at least 1−exp(−cπminn). With this, we obtain

σmin

 1

n′

∑
i:(xi,yi)∈S∗

1

(1−η)xixTi

≥c(1−η)π3
min

with probability at least 1−C1exp(−C2π
4
minn

′), provided n′≥C dlog(1/πmin)
π3
min

.

Using this, we obtain

T11≤(1−2γc(1−η)π3
min)∥θ1−θ∗1∥+Cγλ

√
dlogdlog(1/πmin).
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with high probability. Let us now look at T12. We have

T12=
2γ

n′
∥

∑
i:(xi,yi)/∈S∗

1

p(θ1)
(
xix

T
i θ1−yixi

)
∥

≤ 2γ

n′

∑
i:(xi,yi)/∈S∗

1

p(θ1)∥xixTi θ1−yixi∥

(i)

≤ 2γη′

n′

∑
i:(xi,yi)/∈S∗

1

|yi−xTi θ1|∥xi∥

≤ 2γη′

n′

∑
i:(xi,yi)/∈S∗

1

(|yi|+∥xi∥∥θ1∥)∥xi∥

(ii)

≤ 2γη′

n′

∑
i:(xi,yi)/∈S∗

1

(b+C
√
dlogdlog(1/πmin))[∥θ1−θ∗1∥+∥θ∗1∥])

√
dlogdlog(1/πmin)

≤2γη′(b+C
√
dlogdlog(1/πmin))

2(cini+1))∥θ∗1∥.

with probability at least 1−n′/poly(d)−C3n
′exp

(
−C1

λ2

cini2∥θ∗
1∥2

)
(using union bound). Here (i) follows from the fact

that p(θ∗1)≤η′ where η′=e−((∆−Cλ)2−C2λ
2). (since (xi,yi) /∈S∗

1 , which follows from Lemma B.1), (ii) follows from the
fact that |yi|≤ b for all i. Moreover, since {S∗

j }dj=1 partitions Rd, (xi,yi) /∈S∗
1 implies that (xi,yi)∈S∗

ℓ where ℓ∈ [k]\{1},
and we can invoke Lemma B.3.

Collecting all the terms: We now collect the terms and combine them to obtain

∥θ+1 −θ∗1∥≤T11+T12
≤(1−2γc(1−η)π3

min)∥θ1−θ∗1∥+Cγλ
√
dlogdlog(1/πmin)

+2γη′(b+C
√
dlogdlog(1/πmin))

2(cini+1))∥θ∗1∥.

with probability at least 1−C1exp(−c1π4
minn

′)−C2exp(−c2d)−n′/poly(d)−n′C3exp

(
− λ2

cini2∥θ∗
1∥2

)
.

Let ρ=(1−2γc(1−η)π3
min) and we choose γ such that ρ<1. We obtain

∥θ+1 −θ∗1∥≤ρ∥θ1−θ∗1∥+ε,

where

ε≤Cγλ
√
dlogdlog(1/πmin)+2γη′(b+C

√
dlogdlog(1/πmin))

2(cini+1))∥θ∗1∥,

with probability at least 1−C1exp(−c1π4
minn

′)−C2exp(−c2d)−n′/poly(d)−n′C3exp

(
− λ2

cini2∥θ∗
1∥2

)
.

B.1. Proofs of Auxiliary Lemmas:

Lemma B.1. For any (xi,yi)∈S∗
j , we have pθ1,...,θk(xi,yi;θj)≥1−η, where

η=

(
1−e−C2λ

2

+(k−1)e−(∆−Cλ)2

1+(k−1)e−(∆−Cλ)2

)
.

Moreover, for (xi,yi) /∈S∗
j we have

pθ1,...,θk(xi,yi;θj)≤e−((∆−Cλ)2−C2λ
2).
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Proof. Consider any (xi,yi)∈S∗
j and use the definition of pθ1,...,θk(xi,yi;θj). We obtain

pθ1,...,θk(xi,yi;θj)=
e−(yi−⟨xi,θj⟩)2∑k
ℓ=1e

−(yi−⟨xi,θℓ⟩)2

Note that

|yi−⟨xi,θj⟩|= |yi−⟨xi,θ∗j ⟩+⟨xi,θ∗j−θj⟩|
≤|yi−⟨xi,θ∗j ⟩|+|⟨xi,θ∗j−θj⟩|

Furthermore, using reverse triangle inequality, we also have

|yi−⟨xi,θj⟩|≥|yi−⟨xi,θ∗j ⟩|−|⟨xi,θ∗j−θj⟩|.

Since we are re-sampling at every step, and from the initialization condition, we handle the random variable ⟨xi,θ∗j−θj⟩.

Using Lemma B.2 shows that if (xi,yi)∈S∗
1 , the distribution of xi−µτ is subGaussian with (squared) parameter at most

C(1+log(1/πmin)), where µτ is the mean of xi (under the restriction (xi,yi)∈S∗
1 ). With this we have

P
(
|⟨xi,θ1−θ∗1⟩|≥Cλ

)
≤P
(
|⟨xi−µτ ,θ1−θ∗1⟩|+∥µτ∥∥θ1−θ∗1∥≥Cλ

)
≤P
(
|⟨xi−µτ ,θ1−θ∗1⟩|≥Cλ−ciniC1

√
log(1/πmin)∥θ∗1∥

)
where we use the initialization condition ∥θ1−θ∗1∥≤cini∥θ∗1∥, and from Lemma B.2, we have ∥µτ∥2≤Clog(1/πmin).

Now, provided cini<C2
λ√

log(1/πmin)∥θ∗
1∥

, using sub-Gaussian concentration, we obtain(
|⟨xi,θ1−θ∗1⟩|≥Cλ

)
≤2exp

(
−C1

1

cini2∥θ∗1∥2
λ2
)
.

Using the assumption, i,.e., the separability and the misspecification condition, we obtain

pθ1,...,θk(xi,yi;θj)≥
e−C2λ

2

e−(yi−⟨xi,θj⟩)2+
∑

ℓ ̸=je
−(yi−⟨xi,θℓ⟩)2

≥ e−C2λ
2

e−(yi−⟨xi,θj⟩)2+(k−1)e−(∆−Cλ)2

≥ e−C2λ
2

1+(k−1)e−(∆−Cλ)2

=1−

(
1−e−C2λ

2

+(k−1)e−(∆−Cλ)2

1+(k−1)e−(∆−Cλ)2

)
.

Let us look at the condition (xi,yi) /∈S∗
j . Since {S∗

j }kj=1 partitions Rd, (xi,yi)∈S∗
j′ for j′∈ [k]. With this,

pθ1,...,θk(xi,yi;θj)≤
e−(∆−Cλ)2

e−(yi−⟨xi,θj′ ⟩)2+
∑

ℓ ̸=j′e
−(yi−⟨xi,θℓ⟩)2

≤ e−(∆−Cλ)2

e−C2λ2+0
=e−((∆−Cλ)2−C2λ

2).

The above events occur with probability at least 1−C3exp

(
−C1

λ2

cini2∥θ∗
1∥2

)
.
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Lemma B.2. Suppose x ∼ N (0,Id) and a fixed set S such that P(x ∈ S) ≥ ν. Let τ denote the restriction of x onto S.
Moreover, suppose we have n draws from a standard Gaussian andm of them falls in S. Provided n≥ Clog(1/ν)

ν3 d, we have

σmin

(
1

m

m∑
i=1

τiτ
T
i

)
≥ C

2
ν2,

with probability at least 1−2exp(−c1ν4n).

Proof. Consider a random vector τ drawn from such restricted Gaussian distribution, and let µτ and Στ be the first and second
moment respectively. Using (Ghosh et al., 2019, Equation 38 (a-c)), we have

∥µτ∥2≤Clog(1/ν),

Cν2Id≼Στ ,

Moreover (Yi et al., 2016, Lemma 15 (a)) shows that τ is subGaussian with ψ2 norm at most ζ2 ≤ C(1 + log(1/πmin).
Coupled with the definition of ψ2 norm, (Vershynin, 2018), we obtain that the centered random variable τ −µτ admits a
ψ2 norm squared of at mostC1(1+log(1/πmin).

Withm draws of such random variables, from (Ghosh et al., 2019, Equation 39), we have

σmin

(
1

m

m∑
i=1

τiτ
T
i

)
≥Cν2−ζ2

(
d

m
+

√
d

m
+δ

)
,

with probability at least 1−2exp(−c1mmin{δ,δ2})

If there are n samples from the unrestricted Gaussian distribution, the number of samples,m that fall in S is given bym≥ 1
2νn

with high proibability. This can be seen directly from the binomial tail bounds. We have

P(m≤ νn

2
)≤exp(−cνn)

Combining the above, with ν≥cwhere c is a constant as well as n≥ Clog(1/ν)
ν3 d, we have

σmin

(
1

m

m∑
i=1

τiτ
T
i

)
≥ C

2
ν2,

with probability at least 1−2exp(−c1mmin{δ,δ2}). Substituting δ=Cν2 yields the result.

Lemma B.3. Suppose (xi,yi)∈S∗
j for some j∈ [k]. We have

∥xi∥≤C(
√
dlogdlog(1/πmin)+

√
log(1/πmin))≤C1

√
dlogdlog(1/πmin),

with probability at least 1−1/poly(d), where the degree of the polynomial depends on the constantC.

Proof. Note that Lemma B.2 shows that under (xi,yi) ∈ S∗
j for some j ∈ [k], the centered random variable τi − µτ is

sub-Gaussian with ψ2 norm squared of at most C(1+ log(1/πmin)). Note that since, τi−µτ is centered, the ψ2 norm is
(orderwise) same as the sub-Gaussian parameter.

We now use the standard norm concentration for sub-Gaussian random variables (Jin et al., 2019). We have, for a sub-Gaussian
random vector with parameter at mostC(1+log(1/πmin)), we have

P
(
∥X−EX∥≥ t

√
d
√
(1+log(1/πmin)

)
≤2exp(−c1t2).

Using this with t=C
√
logd along with the fact that ∥µτ∥2≤Clog(1/πmin), we obtain the lemma.
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C. Proof of Generalization
C.1. Proof of Claim 5.2

In order to see this, suppose h(1)j ∈ Hj and h(2)j ∈ Hj , and so we have h(1)j (x) =
〈
x,θ

(1)
j

〉
and h(2)j (x) =

〈
x,θ

(2)
j

〉
with

∥θ(1)j ∥≤R as well as ∥θ(2)j ∥≤R. With this, we have

|ℓ(h(1)j (x),y)−ℓ(h(2)j (x),y)|=
∣∣∣∣〈xi,θ(2)j −θ(1)j

〉
[2y−

〈
x,θ

(2)
j +θ

(1)
j

〉
]

∣∣∣∣
≤|h(1)j (x)−h(2)j (x)|

[
2|y|+∥x∥(∥θ(1)j ∥+∥θ(2)j ∥)

]
≤2(1+R)|h(1)j (x)−h(2)j (x)|,

which proves the claim.

C.2. Proof of Lemma 5.3

Proof. Note that the soft-min loss is a convex combination of the base losses, and the probabilities are computed by
pθ1,..,θk(x, y; θj). Instead, if we consider the loss class with all possible convex combinations of the base losses, the
corresponding loss class will be a superset of the current loss class. From the definition of Rademacher complexity, if F1⊆F2

for any two sets F1 and F2, we have R̂n(F1)≤R̂n(F2). We define the following loss class

Φ̄=

{
(x,y) 7→

k∑
j=1

αjℓ(hj(x),y);θj ∈Rd,∥θj∥≤R,αj≥0∀j∈ [k],

k∑
j=1

αj=1

}
,

and hence from the definition of Rademacher complexity, we have R̂(Φ)≤R̂(Φ̄).Continuing we have

R̂(Φ̄)=Eσ

 sup
{θj :∥θj∥≤R,αj≥0}k

j=1,
∑k

j=1αj=1

∣∣∣∣ 1n
n∑

i=1

σi

k∑
j=1

αjℓ(hj(x),y)

∣∣∣∣


=Eσ

 sup
{θj :∥θj∥≤R,αj≥0}k

j=1,
∑k

j=1αj=1

∣∣∣∣ k∑
j=1

1

n

n∑
i=1

σiαjℓ(hj(x),y)

∣∣∣∣


≤
k∑

j=1

Eσ

[
sup

θj :∥θj∥≤R,αj≥0,|αj |≤1

∣∣∣∣ 1n
n∑

i=1

σiαjℓ(hj(x),y)

∣∣∣∣
]

≤
k∑

j=1

Eσ

[
sup

θj :∥θj∥≤R,αj≥0,|αj |≤1

|αj |
∣∣∣∣ 1n

n∑
i=1

σiℓ(hj(x),y)

∣∣∣∣
]

≤
k∑

j=1

Eσ

[
sup

θj :∥θj∥≤R,αj≥0,|αj |≤1

∣∣∣∣ 1n
n∑

i=1

σiℓ(hj(x),y)

∣∣∣∣
]

≤
k∑

j=1

Eσ

[
sup

θj :∥θj∥≤R

∣∣∣∣ 1n
n∑

i=1

σiℓ(hj(x),y)

∣∣∣∣
]

=kR̂(ℓ◦H)

≤4k(1+R)R̂(H)

≤ 4kR(1+R)√
n

where in the third line, we have used the sub-additivity property of the supremum function as well as the triangle inequality.
We also used the above claim regarding the Lipschitz constant of the loss function ℓ(.,.) and invoked the contraction result
for Rademacher averages by (Bartlett & Mendelson, 2002). Finally, for linear hypothesis class, we use (Mohri et al., 2018)
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to obtain the final result. Hence, we obtain

R̂(Φ)≤ 4kR(1+R)√
n

,

which proves the result.
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