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ABSTRACT

Despite known differences between reading and listening in the brain, recent work
has shown that text-based language models predict both text-evoked and speech-
evoked brain activity to an impressive degree. This poses the question of what
types of information language models capture that is correlated with features truly
predict in the brain. We investigate this question via a direct approach, in which
we eliminate information related to specific low-level stimulus features (textual,
speech, and visual) in the language model representations, and observe how this
intervention affects the alignment with fMRI brain recordings acquired while par-
ticipants read versus listened to the same naturalistic stories. We further contrast
our findings with speech-based language models, which would be expected to pre-
dict speech-evoked brain activity better, provided they model language processing
in the brain well. Using our direct approach, we find that both text-based and
speech-based language models align well with early sensory areas due to shared
low-level features. Text-based models continue to align well with later language
regions even after removing these features, while, surprisingly, speech-based mod-
els lose most of their alignment. These findings suggest that speech-based models
can be further improved to better reflect brain-like language processing.

1 INTRODUCTION

An explosion of recent work that investigates the alignment between the human brain and language
models shows that text-based language models (e.g. GPT*, BERT, etc.) predict both text-evoked
and speech-evoked brain activity to an impressive degree (text: (Toneva & Wehbe, |2019; |Schrimpf]
et al.l 2021} |Goldstein et al., [2022; |Aw & Toneval, [2022; |Oota et al.l [2022; [Lamarre et al., 2022}
Chen et al., [2023)); speech: (Jain & Huthl 2018} |Caucheteux & King, [2020; Antonello et al., 2021}
Vaidya et al., [2022}; Millet et al.l 2022} Tuckute et al., 2022} |Oota et al., |2023azbic; |Chen et al.,
2023)). This observation holds across late language regions, which are thought to process both text-
and speech-evoked language (Deniz et al., [2019), but also more surprisingly across early sensory
cortices, which are shown to be modality-specific (Deniz et al.,[2019;|Chen et al., 2023). Since text-
based language models are trained on written text (Devlin et al.| 2019} [Radford et al.,|2019; |Chung
et al., 2022), their impressive performance at predicting the activity (also referred to as alignment)
in early auditory cortices is puzzling. This raises the question of what types of information underlie
the brain alignment of language models observed across brain regions.

In this work, we investigate this question via a direct approach (see Fig. [1| for a schematic). For
a number of low-level textual, speech, and visual features, we analyze how the alignment between
brain recordings and language model representations is affected by the elimination of information
related to these features. We further contrast our findings with speech-based language models, which
would be expected to predict speech-evoked brain activity better, provided they model language
processing in the brain well. For this purpose, we present a systematic study of the brain alignment
across two popular fMRI datasets of naturalistic stories (1-reading, 1-listening) and different natural
language processing models (text vs. speech). We focus on three popular text-based language
models (BERT (Devlin et al., 2019), GPT2 (Radford et al., |2019), and FLAN-TS (Chung et al.,
2022)) and two speech-based models (Wav2vec2.0 (Baevski et al., [2020) and Whisper (Radford
et al.| [2022))-which have been studied extensively in the NLP-brain alignment literature (Toneva
& Wehbe, 2019 |Aw & Toneval, [2022; Merlin & Toneva, 2022; |Oota et al.l 2022 2023a;; Millet:
et al.| 2022; Vaidya et al., 2022). The fMRI recordings are openly available (Deniz et al.,|2019) and
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Figure 1: A direct approach to test the effect of low-level stimulus features on the alignment between
different types of language models and brain recordings (reading vs. listening).
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correspond to 6 participants reading and listening to the same naturalistic stories. This dataset is
the only one of its kind, in which the participants are observing the same naturalistic stimuli but in
two different modalities. It is important that the datasets we analyze have the same stimuli but are
presented in two different modalities, because if the stimuli differ between modalities, any observed
difference between modalities may be due to the difference in the presented stimuli and not to the
difference in sensory modalities. We test how eliminating a range of low-level textual (number of
letters, number of words, word length, etc.), speech (number of phonemes, Fbank, MFCC, Mel,
articulation, phonological features, etc.), and visual features (motion energy) in artificial model
representations affects alignment with brain responses.

Using our direct approach, we find that both types of language models predict brain responses
well both during reading and listening in corresponding early sensory regions in large parts due
to low-level stimulus features that are correlated between text and speech (e.g. number of letters
and phonemes). In contrast, in later language regions, we find that much of the ability of text-based
language models to predict brain responses is retained during both listening and reading even after
removing low-level stimulus features, suggesting that text-based language models capture important
brain-relevant semantics. However, surprisingly, we find that speech-based language models do not
predict additional substantial variance in the late language regions, once low-level stimulus features
are removed from the model representations.

Our main contributions can be summarized as follows: (i) We employ a direct approach to study the
fine-grained aspects of information (i.e., low-level textual, speech, and visual features) in different
types of neural language processing models and brains; (ii) We show that both text- and speech-
based language models predict brain activity well both during reading and listening. During listen-
ing, speech-based models outperform text-based models in the auditory cortex. During reading, both
text- and speech-based models have similar brain alignment with the early visual regions. However,
the alignment with the late language regions is significantly better for text-based vs. speech-based
models both during reading and listening; (iii) Our direct residual approach reveals that low-level
stimulus features are the primary contributors underlying the alignment with early visual and au-
ditory regions for both types of models. Specifically, diphones and number of letters are the two
features that explain the most variance in brain responses for text-based models, while phonological
features explain the most variance for speech-based models. We will make all code available upon
publication so that other researchers can reproduce and build on our methodology and findings.

2 RELATED WORK

Our work is most closely related to that of (Toneva et al.| [2022), who proposes the direct residual
approach to study the supra-word meaning of language by removing the contribution of individual
words to brain alignment. More recent work uses the same residual approach to investigate the
effect of syntactic and semantic properties on brain alignment across layers of a text-based language
model (Oota et al. [2023a). We build on this approach to investigate the contribution of low-level
stimulus features to the brain alignment of both text-based and speech-based language models.

Our work also relates to a growing literature that investigates the alignment between human brains
and language models. A number of studies have used text-based language models to predict both
text-evoked and speech-evoked brain activity to an impressive degree (Wehbe et al.| [2014; [Jain &
Huth| 2018 [Toneva & Wehbe, 2019; |Schwartz et al., [2019; |Caucheteux & King, 2020 Jat et al.,
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2020; Schrimpf et al., 2021} |Goldstein et al., 2022} |Antonello et al., 2021} [Oota et al.l 2022} Merlin
& Toneva, 2022; |Aw & Toneva, 2022; |Oota et al., |2023a; |[Lamarre et al., 2022; |Chen et al., [2023)).
Similarly, the recent advancements in Transformer-based models for speech (Chung et al., |2020;
Baevski et al., 2020; Hsu et al.| [2021) have motivated neuroscience researchers to test their brain
alignment (Millet et al., 2022; |Vaidya et al., [2022; Tuckute et al., 2022; |Oota et al., 2023bjcj |Chen
et al.l 2023) for speech-evoked brain activity. Our approach is complementary to these previous
works and can be used to further understand what types of information underlie the brain alignment
of language models, particularly across different brain regions. As demonstrated by (Deniz et al.,
2019), early sensory cortices appear to be more modality-specific, and our approach can shed light
on how these modality-specific aspects relate to brain alignment.

3 DATASETS AND MODELS

3.1 BRAIN DATASETS

We analyzed two fMRI datasets which were recorded while the same six participants listened to
and read the same narrative stories selected from the Moth Radio Hour. These datasets were made
publicly available by Deniz et al.|(2019) and contain data for 6 participants. The brain responses of
each participant contain 3737 samples (TRs) for training and 291 samples for testing. These datasets
were selected because they are the only large naturalistic datasets for which the same stimulus was
presented both auditorily and visually. We use a multi-modal parcellation of the human cerebral
cortex (Glasser Atlas; 180 regions of interest (ROIs) in each hemisphere) (Glasser et al.,[2016). This
includes three early sensory and four language-relevant ROIs in the human brain with the following
subdivisions: (1) early visual (V1, V2); (2) visual word form area (VWFA: PH and TE2P); (3) early
auditory area (A1, PBelt, MBelt, LBelt, RI, A4); and (4) late language regions encompassing broader
language regions: angular gyrus (AG: PFm, PGs, PGi, TPOJ2, TPOJ3), lateral temporal cortex
(LTC: STSda, STSva, STGa, TEla, TE2a, TGv, TGd, A5, STSdp, STSvp, PSL, STV, TPOJ1),
inferior frontal gyrus (IFG: 44, 45, IFJa, IFSp) and middle frontal gyrus (MFG: 55b) (Baker et al.,
2018} Milton et al., [2021} |Desai et al., [2022). The functionality of these ROIs is reported in the
Appendix (see Table|I).

Estimating dataset noise ceiling. To account for the intrinsic noise in biological measurements and
obtain a more informative estimate of a model’s brain alignment, we follow previous work |Schrimpf]
et al.| (2021)) to estimate the ceiling value for a model’s performance for the reading and listening
fMRI datasets. This is achieved by subsampling the fMRI datasets with 6 recorded participants.
Specifically, we create all possible combinations of s participants (s € [2,6]), separately for reading
and listening. For each subsample s, we estimate the amount of brain response in one target par-
ticipant that can be predicted using only data from other participants, using a voxel-wise encoding
model (see Sec. [). Note that the estimated noise ceiling is based on the assumption of a perfect
model, which may not always be the case in real-world scenarios. Nonetheless, this approach can
put the model’s performance in a useful perspective. We present the average estimated noise ceiling
across voxels for the naturalistic reading-listening fMRI dataset in Appendix [AFig.[7] We observe
that the average estimated noise ceiling across voxels for the two modalities is not significantly dif-
ferent. However, as depicted in Fig |2} there are clear regional differences: Early visual areas have
higher noise ceiling during the reading condition (red voxels), while many of the early auditory areas
have a higher noise ceiling during the listening condition (blue voxels).

3.2 LANGUAGE MODELS

To investigate the reasons for brain alignment of language models during reading and listening, we
extract activations from five popular pretrained Transformer models. Three of these models are
“text-based”: BERT-base, GPT2-small, and FLAN-TS; and two are ”speech-based”: Wav2Vec2.0-
base and Whisper-base. Below we present more details for each model.

Text-based language models. To extract representations of the text stimulus, we use three popular
pretrained Transformer language models from Huggingface (Wolf et al., 2020): (1) BERT (Devlin
et al.l 2019) uses only encoder blocks of standard Transformer-based architecture with 12 layers
and 768-dimensional representations. (2) GPT-2 (Radford et al., 2019) uses only decoder blocks of
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Figure 2: Contrast of estimated noise ceilings for a representative participant for the reading vs
listening condition for one subject (subject-8). Blue voxels depict higher noise ceiling estimate in
listening condition. Red voxels depict higher noise ceiling estimate in reading. Voxels that appear
in white have similar noise ceilings during reading and listening, and are distributed across language
regions. Noise ceilings for other participants are reported in Appendix [A]Figs. [8|and

standard Transformer-based architecture with 12 layers and 768-dimensional representations. Here,
the Transformer model was pretrained with next word prediction. (3) FLAN-TS5 (encoder-decoder
model) (Chung et al [2022) uses text-text to Transformer model with 24 layers (12 layers encoder
and 12 layers decoder) and 768-dimensional representations.

Extracting text representations. We follow previous work to extract the hidden-state representa-
tions from each layer of these language models, given a fixed-length input length
. To extract the stimulus features from these pretrained models, we constrained the tokenizer
to use a maximum context of previous 20 words. Given the constrained context length, each word
is successively input to the network with at most C previous tokens. For instance, given a story of
M words and considering the context length of 20, while the third word’s vector is computed by
inputting the network with (w1, wa, w3), the last word’s vectors wj, is computed by inputting the
network with (Wps_20, - .., Was). The pretrained Transformer model outputs token representations
at different layers. We use the #tokens x 768 dimension vector obtained from the each hidden layer
to obtain word-level representations from each pretrained Transformer language model. Since the
rate of fMRI data acquisition (TR =2.0045sec) was lower than the rate at which the text stimulus was
presented to the subjects, several words fall under the same TR in a single acquisition. Hence, we
match the stimulus acquisition rate to fMRI data recording by downsampling the stimulus features
using a 3-lobed Lanczos filter. After downsampling, we obtain the chunk-embedding corresponding
to each TR.

Speech-based language models. Similar to text-based language models, we use two popular pre-
trained Transformer speech-based models from Huggingface 2020): (1) Wav2Vec2.0
(encoder model) (Baevski et al.} 2020) uses only encoder blocks of standard Transformer-based ar-
chitecture with 12 layers and 768-dimensional representations. Here, the Transformer model was
pretrained with contrastive loss as objective function. (2) Whisper (encoder-decoder model)
uses speech-to-speech Transformer model with 24 layers (12 layers encoder and 12
layers decoder) and 768-dimensional representations. Here, the Transformer model was pretrained
and fine-tuned with multiple speech tasks.

Extracting speech representations. The input audio story is first segmented into clips correspond-
ing to 2.0045 seconds, which matches the fMRI image rate. Each audio clip is input to the speech-
based models one by one to obtain stimulus representations per clip. The representations are ob-
tained from the activations of the pretrained speech model in intermediate layers. For all models, we

used the checkpoints provided by the huggingface library (Wolf et al., 2020). Overall, each layer of
speech-based models (Wav2Vec2.0 and Whisper) outputs 768 dimensional vector at each TR.

3.3 INTERPRETABLE STIMULUS FEATURES

To better understand the contribution of different stimulus features to the brain alignment of lan-
guage models, we extract a range of low-level textual, speech, and visual features that have been
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shown in previous work to relate to brain activity during listening and reading (see Sec. [2] for a
summary of the related work).

Low-level textual features. (1) Number of Letters: The number of letters in each TR. (2) Number
of Words: The number of words in each TR. (3) Word Length STD: The standard deviation of word
length corresponding to each TR. These low-level textual features, which are already downsampled
and aligned with each TR, have also been used in (Deniz et al.| 2019} Huth et al., 2022]).

Low-level speech features. We extract low-level speech features like filter banks (FBank), Mel
Spectrogram, and MFCC from audio files using Self-Supervised Speech Pre-training and Represen-
tation Learning (S3PRL) toolki and phonological features using the DisVoice libra We also
use the articulation and power spectrum (PowSpec) feature vectors provided in (Deniz et al., 2019;
LeBel et al.l [2022). (1) Number of Phonemes: The number of phonemes in each TR. (2) Mono-
Phones: The smallest unit of speech (e.g., /p/, /c/, /a/) distinguishing one word (or word element)
from another. There are 39 phonemes in English, and we generate a 39-dimensional feature vector
at each TR. (3) DiPhones: Diphones represent the adjacent pair of phones (e.g., [da], [al], [If]) in an
utterance. For each TR, we obtained a one-hot code encoding the presence or absence of all possible
diphones (858). (4) TriPhones: A triphone is a sequence of three consecutive phonemes. (5) FBank:
Filter banks divide the raw audio signal into multiple components (each one carrying a single fre-
quency sub-band of the original signal) using a bandpass filter, results in a 26-dimensional vector.
(6) Mel Spectrogram: Mel spectrogram features are computed by applying a Fourier transform on
the raw audio signal to analyze a signal’s frequency content and converting it to the mel-scale, yield-
ing an 80-dimensional vector. (7) MFCC: MFCC features are Mel-frequency spectral coefficients
obtained by taking the Discrete Cosine Transform (DCT) of the spectral envelope obtained from
the logarithmic filter bank outputs. (8) PowSpec: The time-varying power spectrum features are
provided in (Gong et al.| 2023)). They were obtained by estimating the power for each 2-s segment
of the audio signal between 25 Hz and 15 kHz, in 33.5 Hz bands (number of frequency bands =
448). (9) Phonological: Phonological features are the smallest units of distinction between any
two phonemes. We compute 108 phonological features consisting of (18 descriptors, e.g. vocalic,
consonantal, back, etc,.)x(6 functionals: mean, std, skewness, kurtosis, max, min). (10) Articula-
tion: We use phoneme articulations as a mid-level speech feature. These were derived by mapping
hand-labeled phonemes onto 22 articulatory features.

Low-level visual features. (1) Motion energy features: We use motion energy features as low-level
visual features. These features were generated through the utilization of a spatiotemporal Gabor
pyramid. This pyramid was employed to extract low-level visual characteristics from the sequence
of word frames employed in the reading experiment (Adelson & Bergen, [1985). The resulting
motion energy features were (39 parameters), as provided in|Deniz et al.|(2019).

4 METHODOLOGY

Our direct approach to investigate the reasons for brain alignment of language models involves three
main steps (see Fig. [T): (1) removal of interpretable stimulus features from the language model
representations; (2) estimating the brain alignment of the language model representations before
and after removal of a particular feature; (3) a significance test to conclude whether the difference
in estimated brain alignment before and after is significant.

Removal of low-level features from language model representations. To remove low-level fea-
tures from language model representations, we rely on a simple method proposed previously by
Toneva et al.| (2022)); |Oota et al.| (2023al), in which the linear contribution of the feature to the
language model activations is removed via ridge regression. In our setting, we remove the linear
contribution of a low-level feature by training a ridge regression, in which the low-level feature vec-
tor is considered as input and the neural word/speech representations are the target. We compute the
residuals by subtracting the predicted feature representations from the actual features resulting in the
(linear) removal of low-level feature vector from pretrained features. Because the brain prediction
method is also a linear function (see next paragraph), this linear removal limits the contribution of
low-level features to the eventual brain alignment.

"nttps://github.com/s3prl/s3prl
https://github.com/jcvasquezc/DisVoice
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Specifically, given an input feature vector L; with dimension N x d for low-level feature i, and
target neural model representations W € RN*P where N denotes the number of TRs, d and D
denote the dimensionality of low-level and neural model representations, respectively. Overall, the
ridge regression objective function is f(L;) = n;in||W — L;0:||% + \||0:]|% where 6; denotes the

learned weight coefficient for embedding dimension D for the input feature 4, ||.||% denotes the
Frobenius norm, and A > 0 is a tunable hyper-parameter representing the regularization weight for
each feature dimension. Using the learned weight coefficients, we compute the residuals as follows:

TR Alignment. To account for the slowness of the hemodynamic response, we model the hemody-
namic response function using finite response filter (FIR) per voxel and for each subject separately
with 6 temporal delays corresponding to 12 seconds.

Voxel-wise encoding model. We estimate the brain alignment of a language model before and after
the removal of a stimulus property via training standard voxel-wise encoding models Deniz et al.
(2019); Toneva & Wehbe| (2019). Specifically, for each voxel and participant, we train a ridge re-
gression model to predict the fMRI recording associated with this voxel as a function of the stimulus
representations obtained from both text and speech-based models (before and after the removal of
stimulus features). In particular, we use layerwise pretrained representations from both text and
speech-based models as well as residuals by removing each basic low-level feature and using them
in a voxelwise encoding model to predict brain responses. If the removal of a particular stimulus
property from the language model representation leads to a significant drop in brain alignment, then
we conclude that this stimulus property is important for the brain alignment of the language model.
In this paper, we train fMRI encoding models using Banded ridge regression (Iikhonov et al.l|{1977).
Before the regression, we first z-scored each feature channel separately for training and testing. This
was done to match the features to the fMRI responses, which were also z-scored for training and
testing. Formally, at the time step (t), we encode the stimuli as X; € R™V*? and brain region voxels
Y, € RV*V where N denotes the number of training examples, D denotes the dimension of the
concatenation of delayed 6 TRs, and V' denotes the number of voxels. To find the optimal regular-
ization parameter for each feature space, we use a range of regularization parameters that is explored
using cross-validation. The main goal of each fMRI encoding model is to predict brain responses
associated with each brain voxel given a stimulus.

Normalized predictivity. The final measure of a model’s performance is obtained by calculating
the Pearson’s correlation between the model’s predictions and neural recordings. This correlation is
then divided by the estimated ceiling and averaged across voxels, regions and participants, resulting
in a standardized measure of performance referred to as normalized predictivity.

Implementation details for reproducibility. All experiments were conducted on a machine with 1
NVIDIA GEFORCE-GTX GPU with 16GB GPU RAM. We used banded ridge-regression with the
following parameters: MSE loss function, and L2-decay ()\) varied from 10! to 10?; the best A was
chosen by using the validation data in each cross-validation fold.

5 RESULTS

We calculate the normalized brain predictivity independently for text- and speech-based models,
averaging the results within each model category separately. Likewise, we compute the normalized
predictivity for each specific low-level stimulus feature type (e.g., textual), considering only the cor-
responding low-level stimulus features (e.g., number of letters). Except for the qualitative analysis,
all our results presented in subsections and[5.2]are averaged within types of models and types of
low-level stimulus feature categories.

5.1 TEXT VS. SPEECH MODEL ALIGNMENT DURING READING VS. LISTENING

We assess the degree to which each type of model aligns with different regions of interest (ROI)
across the brain. Specifically, we consider early sensory regions (early visual and early auditory) in
addition to the visual word form area (VWFA) and late language regions.

In Fig. [3] we present the brain alignment of each model normalized by the noise ceiling for both
reading and listening. We show the average normalized brain predictivity computed across partic-
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Figure 3: ROI-based average normalized brain prgc(ijithivity was computed across participants, mod-
els, layers and voxels. In the case of brain reading, we represent the data using full-color bars, while
for listening, we use bars with patterns. Likewise, we refer to the and the

language models.

ipants, models, layers, and voxels for both text- and speech-based language models. Specifically,
we report the average normalized predictivity across text-based models (BERT, GPT2, and FLAN-
TS) and speech-based models (Wav2Vec2.0 and Whisper). To test whether the difference in brain
alignment is statistically significant between the two types of models, we perform the Wilcoxon
signed-rank test.

We make the following observations from Fig. [3} (1) During reading, both text- and speech-based
language models predict early visual areas similarly well. This result is quite surprising, as one
might anticipate text-based models to better predict these areas than speech-based models. How-
ever, text-based models outperform speech-based models in VWFA. This implies that text-based
models capture brain-relevant information related to processing of visual word forms, as VWFA has
a specific computational role in decoding written forms of words and is considered a crucial node of
the brain’s language network (Dehaene & Cohen, 2011; McCandliss et al.,2003). (2) During listen-
ing, speech-based models outperform text-based models in the early auditory cortex. Nevertheless,
text-based language models still predict brain activity to an impressive degree. This raises questions
about what types of information text-based language models capture that is correlated with features
relevant to early auditory processing. (3) In contrast, in late language regions, text-based models
significantly outperform speech-based models during both reading and listening. However, the dif-
ferences between text- and speech-based model alignment remain unclear, which we explore further
via our direct residual approach.

5.2 DISSECTING BRAIN ALIGNMENT

While the previous analyses demonstrate that both text and speech-based language models pre-
dict brain activity to an impressive degree in the early sensory processing regions to late language
regions during reading and listening, a major goal of the current study is to identify the specific
types of information these language models capture in brain responses. To achieve this, we remove
information related to specific low-level stimulus features (textual, speech, and visual) in the lan-
guage model representations, and observe how this perturbation affects the alignment with fMRI
brain recordings acquired while participants read versus listened to the same naturalistic stories. We
present the results of these analyses for the early visual areas and VWFA during reading, the early
auditory area during listening, and the late language regions during both reading and listening.

Why do text-based language models predict speech-evoked brain activity in early auditory
cortices? In Fig. fa), we report the normalized brain predictivity results during listening in the
early auditory cortex for both text- and speech-based language models, along with their residual
performance after eliminating low-level stimulus features. We make the following observations: (1)
Removal of low-level textual features results in a similar performance drop for both types of models.
(2) Removal of low-level speech features results in a larger performance drop for speech-based com-
pared to text-based language models (more than 40% of the original performance). These findings
indicate that speech-based language models outperform text-based language models because they
better leverage low-level speech features such as fbank, MFCC, Mel spectrogram, and PowSpec.
However, the presence of correlated information related to low-level textual (e.g., number of letters)
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predictivity was computed over the average of participants for text- and speech-based models, across
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Figure 5: (a) Listening condition in the Late Language: Average normalized brain predictivity
was computed across participants for text- and speech-based models, across layers and voxels. (b)
Reading condition in the Late Language: Average normalized brain predictivity was computed over
the average of participants for text- and speech-based models, across layers and voxels.

and speech (e.g., number of phonemes) features explains a large portion of the brain alignment for
both types of models. Additionally, we find that the removal of low-level visual features (motion
energy) has a much smaller effect on the alignment of both types of models. This is possibly because
the features in language models are not correlated with visual stimulus features, such as edges. We
present the residual performance results of individual low-level stimulus features for both text- and
speech-based language models in the Appendix (see Fig. [TT).

Why do both types of models exhibit similar degree of brain alignment in early visual cortices?
We make the following observations from Fig. Ekb): (1) Similar to the listening condition in the
early auditory areas, the removal of low-level textual features from both types of models leads to
a significant drop in brain alignment. This indicates that the performance of both types of models
in early visual cortices is largely due to low-level textual features that are correlated with low-
level speech features (see Fig. [I2]in the Appendix). Additionally, the removal of low-level visual
features has a much smaller effect for both types of models in both early visual cortices and VWFA,
presumably because these models are not designed to process low-level visual information. (2)
Text-based models outperform speech-based models in VWFA, as this region is mainly associated
with processing visual word forms and speech-based models are not equipped to handle this type of
information. We present the residual performance results of individual low-level stimulus features
for both text- and speech-based language models in the Appendix (see Fig. [I2).

Are there any possible differences between text- and speech-based models in late language
regions? In Fig.[5(a) and (b), we report the normalized brain predictivity of both text- and speech-
based language models and their residual performance after removal of low-level stimulus features
for reading and listening in the late language regions. Text-based models explain a large amount
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Figure 6: Listening: Percentage of decrease in alignment for each voxel after the removal of Phono-
logical features from Wav2Vec2.0. Percentage decrease in alignment for each voxel in one subject
(subject-8) are projected onto the subject’s flattened cortical surface. Voxels appear white if phono-
logical features do not explain any shared information of Wav2Vec2.0, and blue if all the information
predicted by Wav2Vec2.0 is similar to the information captured using phonological features. Voxels
appear in light blue indicates that parts of AC explained (40-60% drop) by phonological features
and there are additional features in Wav2Vec2.0 that are relevant for early auditory processing.

of variance in these regions, even after removing low-level stimulus features. In contrast, residual
performance of speech-based models goes down to around 10-15%. This implies that the align-
ment of speech-based models with late language regions is almost entirely due to low-level stimulus
features, and not brain-relevant semantics.

Qualitative analysis. To determine the low-level stimulus feature that has the highest impact on
brain predictivity during reading and listening, we conducted a fine-grained analysis where we mea-
sured the drop in brain predictivity for each voxel after removing low-level stimulus features from
text- and speech-based models. We found that the “Phonological” feature had the highest impact
during listening for the speech-based model Wav2Vec2.0 and "Number of Letters” had the highest
impact during reading for the text-based model BERT. Figs. [6]and [T4] (see Appendix) display the
percentage decrease in brain predictivity for listening (Wav2Vec2.0 with Phonological) and reading
(BERT with Number of Letters), respectively. Removing "Number of Letters” leads to a significant
drop (80-100%) in the early visual areas, but only a slight drop (0-20%) in the late language areas
during reading. Fig.[T5](see Appendix) displays the percentage decrease in predictivity when the
low-level speech feature ”DiPhones” is removed from BERT representations during reading. Since
many common short words are composed of diphones (Gong et al, [2023)), removing this feature
from BERT significantly decreases predictivity (20-40%) even in late language regions. Removing
Phonological features from Wav2Vec2.0 leads to a substantial drop (80-100%) in performance in
the late language regions. This indicates that there is little, if any, brain-relevant information in
speech-based models beyond low-level speech features in late language regions.

6 DISCUSSION AND CONCLUSION

We propose a direct approach to evaluate what types of information language models capture that
is correlated with features truly predict in brain responses. This is achieved by eliminating the in-
formation related to specific low-level stimulus features (textual, speech, and visual) and observing
how this intervention affects the alignment with fMRI brain recordings acquired while participants
read versus listened to the same naturalistic stories. We show that both types of language models
predict brain responses well both during reading and listening in corresponding early sensory areas
in large parts due to low-level stimulus features that are correlated between text and speech (e.g.,
number of letters and phonemes). We found that text-based models predict fMRI recordings signif-
icantly better than speech-based models, irrespective of stimulus modality. These findings suggest
that speech-based models can be further improved to better reflect brain-like language processing.

Our current study primarily focuses on the effect of low-level stimulus features on the alignment
between language models and the human brain. However, the human brain also processes high-level
semantic features (e.g., discourse-level or emotion-related). Future work can also examine how
such high-level semantic features affect this alignment. Since semantic comprehension encompasses
elements like metaphors, humor, sarcasm, discourse, emotion, and narrative information.
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Appendix for: Speech language models lack important
brain-relevant semantics

A ESTIMATED NOISE CEILING

We present the average estimated noise ceiling across voxels for the naturalistic reading-listening
JMRI dataset in Fig.[/] We observe that the average estimated noise ceiling across voxels for the
two modalities is not significantly different. However, as depicted in Figs. [§] and [0} there are clear
regional differences across all the participants: Early visual regions have higher noise ceiling during
the reading condition (red voxels), while many of the early auditory regions have a higher noise
ceiling during the listening condition (blue voxels).

Subset-Moth-Radio-Hour (Reading)
" Subset-Moth-Radio-Hour (Listening)

Average of Subjects

0.12

011

Estimated Noise Ceiling

0.1
Datasets

Reading Listening

0.13

0.125

0.12

0.115

0.11

Estimated Noise Ceiling

0.105

0.1

\ \ \ \ \ \
1 2 3 5 7 8

Subjects

Figure 7: The estimated noise ceiling was computed across all subjects for the Subset-Moth-Radio-
Hour naturalistic reading-listening fMRI dataset. The average noise ceiling is shown across pre-
dicted voxels where each voxel ceiling value is > 0.05.
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Listening

(a) Subject-03

Figure 8: Contrast of estimated noise ceilings for the remaining participants for the reading vs
listening condition. BLUE-AC (Auditory Cortex) voxels have a higher noise ceiling in listening,
and Red-VC (Visual Cortex) voxels have a higher noise ceiling in reading. Voxels that appear in
white have similar noise ceilings across conditions, and are distributed across language regions.
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Listening

(a) Subject-05

0.4

(a) Subject-07

Figure 9: Contrast of estimated noise ceilings for the remaining participants for the reading vs
listening condition. BLUE-AC (Auditory Cortex) voxels have a higher noise ceiling in listening,
and Red-VC (Visual Cortex) voxels have a higher noise ceiling in reading. Voxels that appear in
white have similar noise ceilings across conditions, and are distributed across language regions.

B WHOLE BRAIN ANALYSIS: TEXT VS. SPEECH MODEL ALIGNMENT
DURING READING VS. LISTENING

In Fig.|10} we report the whole brain alignment of each model normalized by the noise ceiling for the
naturalistic reading and listening datasets. We show the average normalized brain alignment across
subjects, layers, and voxels. Note that we are only averaging across voxels which have a statistically
significant brain alignment. We perform the Wilcoxon signed-rank test to test whether the differences
between text- and speech-based language models are statistically significant. We found that all
text-based models predict brain responses significantly better than all speech-based models in both
modalities. Across text-based models, the whole brain alignment gradually diminishes when going
from BERT to GPT-2 to FLAN-T5 both during reading and listening. Across speech-based models,
stimulus modality had a significant effect. While Wav2Vec2.0 is the better performer during reading,
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Whisper aligns better with the whole brain during listening. The fact that Whisper is trained on a
larger amount of speech data could be the reason underlying its better alignment during listening.

Reading Listening
5o I BERT €0y 4 BERT
= I GPT-2 = I % GPT-2
S I FLAN-TS S i FLAN-TS
Z 06 B Wav2Vec2.0 | Z 0.6 222 B Wav2Vec2.0
c B Whisper c :: B Whisper
o o ]
m 0.5 m 0.5 by
© o =
: T | 5
S 0.4 S 0.4 st :
203 20.3 xS B

Models Models

Figure 10: Average normalized brain predictivity was computed over the average of subjects for
each model, across layers (3 text-based language models, 2 modalities (reading and listening), and
2 speech-based models).

C DISSECTING BRAIN ALIGNMENT

Our major goal of the current study is to identify the specific types of information these language
models capture in brain responses. To achieve this, we remove information related to specific low-
level stimulus features (textual, speech, and visual) in the language model representations, and ob-
serve how this perturbation affects the alignment with fMRI brain recordings acquired while partici-
pants read versus listened to the same naturalistic stories. In subsections[5.1]and[5.2] (see in the main
paper), all our results presented are averaged within types of models and types of low-level stimulus
feature categories. Here, we report the residual performance results of individual low-level stimulus
features for both text- and speech-based language models, as shown in Figs.[TT|and[12]

C.1 WHY DO TEXT-BASED LANGUAGE MODELS PREDICT SPEECH-EVOKED BRAIN ACTIVITY
IN EARLY AUDITORY CORTICES?

In Fig. [T1] we report the normalized brain alignment results during listening in the early auditory
cortex for both text- and speech-based language models, along with their residual performance after
eliminating low-level stimulus features.

Removal of low-level textual features We make the following observations from Fig. ﬂ;fl (a): (1)
Removal of number of letters feature results in a larger performance drop (more than 30% of the
original performance) for both text- and speech-based language models. (2) Similarly removal of
number of words feature also affect more than 25% drop indicate that low-level textual features are
captured in both text and speech-based language models.

Removal of low-level speech features We make the following observations from Fig.|11|(b): (1) Re-
moval of phonological features results in a larger performance drop (more than 50% of the original
performance) for speech-based language models than text-based models (30% drop of the original
performance). (2) Additionally, the removal of low-level speech features such as Mel spectrogram,
MEFCC and DiPhones leads to major performance drop (more than 40%) for speech-based language
models. (3) In contrast, the removal of remaining low-level speech features, including FBANK,
PowSpec and Articulation, has less shared information with speech-based language models and re-
sults in a minor performance drop (i.e. less than 20%). These findings indicate that speech-based
language models outperform text-based language models because they better leverage low-level
speech features such as MFCC, Mel spectrogram, and Phonological. Overall, phonological features
are the largest contributors for for both text and speech-based language models. Specifically, the
presence of correlated information in phonological features related to low-level textual (e.g., num-
ber of letters) and speech (e.g., number of phonemes) features explains a large portion of the brain
alignment for both types of models.
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Figure 11: Brain Listening: (a) Removal of Low-level textual features, Average normalized brain
predictivity was computed over the average of participants for text and speech-based models, across
layers for each low-level textual property. (b) Removal of low-level speech features: Average
normalized brain predictivity was computed across participants for text and speech-based models,
across layers for each low-level speech property.

C.2 WHY DO BOTH TYPES OF MODELS EXHIBIT SIMILAR DEGREE OF BRAIN ALIGNMENT IN
EARLY VISUAL CORTICES?

In Fig. [12] we report the normalized brain alignment results during reading in the early visual cor-
tex for both text- and speech-based language models, along with their residual performance after
eliminating low-level stimulus features.

Removal of low-level textual features We make the following observations from Fig. [12] (a): (1)
Similar to the listening condition in the early auditory regions, the removal of number of letters
feature from both types of models leads to a significant drop in brain alignment in the early visual
region. (2) Furthermore, the removal of number of words feature also leads to a drop of more than
20% in the early visual region indicate that low-level textual features are captured in both text and
speech-based language models. This indicates that the performance of both types of models in early
visual cortices is largely due to the number of letters feature followed by the number of words.
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Removal of low-level speech features We make the following observations from Fig. [12[(b): (1)
In the early visual region, removal of phonological features results in a larger performance drop
(more than 35% of the original performance) for speech-based language models than text-based
models (20% drop of the original performance). (2) However, the removal of remaining low-level
speech features has less shared information with text-based language models and results in a minor
performance drop (i.e. less than 10%). (3) In the visual word form area, the removal of all low-level
speech features has no affect on brain alignment for text-based language models, while the removal
of phonological features from speech-based models results in alignment dropping to zero. Overall,
phonological features are the largest contributors for speech-based language models, both in early
visual and visual word form areas.
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Figure 12: Brain Reading: (a) low-level textual features, Average normalized brain predictivity was
computed over the average of participants for text and speech-based models, across layers for each
low-level textual property. (b) low-level speech features: Average normalized brain predictivity
was computed across participants for text and speech-based models, across layers for each low-level
speech property.

Are there any differences between text- and speech-based models in late language regions?

Removal of low-level textual features In both reading and listening conditions, we make the fol-
lowing observations from Fig. @ (a) and (c): (1) Text-based models explain a large amount of
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variance in late regions, even after removing low-level textual features. (2) In contrast, residual per-
formance of speech-based models goes down to approximately 10-15%, after removing number of
letters and words.

Removal of low-level speech features In both reading and listening conditions, we make the fol-
lowing observations from Fig. |'13| (b) and (d): (1) Removing DiPhones features from Text-based
language models results in major drop (more than 25%) compared to other low-level speech fea-
tures. (2) Conversely, removal of phonological features results in a larger performance drop (more
than 80% of the original performance) for speech-based language models than text-based models
(10% drop of the original performance).

Overall, the alignment of speech-based models with late language regions is almost entirely due to
low-level stimulus features, and not brain-relevant semantics.
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Figure 13: Reading condition in the Late Language: (a) low-level textual features, Average nor-
malized brain alignment was computed over the average of participants for text and speech-based
models, across layers for each low-level textual property. (b) low-level speech features, Average
normalized brain alignment was computed over the average of participants for text and speech-based
models, across layers for each low-level speech property. Listening condition in the Late Language:
(c) low-level textual features: Average normalized brain alignment was computed across partici-
pants for text and speech-based models, across layers for each low-level text property. (d) low-level
speech features, Average normalized brain alignment was computed over the average of participants
for text and speech-based models, across layers for each low-level speech property.

D LAYER-WISE PROBING ANALYSIS BETWEEN LANGUAGE MODELS AND
LOW-LEVEL STIMULUS FEATURES

To investigate how much of the information in the low-level stimulus features can be captured by
text- and speech-based language models, we learn a ridge regression model using model representa-
tions as input features to predict the low-level features (textual, speech and visual) as target. Fig.[I6]
shows that text-based language model (BERT) can accurately predict low-level textual features in
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Figure 14: Reading: Percentage decrease in alignment for each voxel after removing number of
letters feature from BERT representations. Percentage decrease scores for each voxel in one subject
(subject-8) are projected onto the subject’s flattened cortical surface. Voxels appear White if number
of letters feature do not explain any shared information of BERT, and orange if all the information
predicted BERT is similar to the information captured using number of letters feature. Voxels appear
in light orange indicates that parts of late language explained (0-20% drop) by number of letters
feature and BERT model has more information shared with late language regions beyond number of
letters feature.

Figure 15: Brain Reading: Percentage decrease in brain alignment for each voxel by comparing the
results after removing DiPhone features from BERT with the results before using BERT. Percentage
decrease scores for each voxel in one subject (subject-8) are projected onto the subject’s flattened
cortical surface. Voxels appear White if DiPhone features do not explain any shared information of
BERT, and orange if all the information predicted BERT is similar to the information captured using
DiPhone features. Voxels appear in light orange indicates that parts of late language explained (20-
40% drop) by DiPhone features and BERT model has more information shared with late language
regions beyond DiPhone features.

the early layers and have decreasing trend towards later layers. For the low-level speech features,
text-based models have zero to negative R2-score values showing that text-based models do not have
any speech-level information. We report GPT-2 probing results in the Fig.[T6

Complementary to text-based language models, speech-based models (Wav2Vec2.0) can accurately
predict low-level speech features in the higher layers and have lower R%-score values in the early
layers.
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Figure 16: Probing the information (basic linguistic and speech features) represented across layers
in neural language (BERT and GPT2) and speech-based models (Wav2Vec2.0 and Whisper).

E A1l REGION: SPEECH-LANGUAGE MODEL ALIGNMENT DURING LISTENING

We now show the results per speech model in the Fig. During listening, specifically for the
Al region, we observe that both speech models, Wav2Vec2.0 and Whisper, exhibit high normalized
brain alignment. Additionally, the elimination of low-level textual and speech features results in a
significant performance decline in both models. However, it is important to note that these language
models have additional information other than low-level features that need to be explored to further
explain the early auditory region.

Similar to the A1 region, we observed that both Wav2Vec2.0 and Whisper exhibit similar normalized
brain alignment in late language regions. Moreover, the removal of low-level textual and speech
features results in a significant performance decline in both models.

F LAYER-WISE NORMALIZED BRAIN ALIGNMENT

We now plot the layer-wise normalized brain alignment for the Wav2Vec2.0 model in brain listening,
both before and after removal of one important low-level speech property: phonological features,
as shown in Fig. [I8] Observation from Fig. [I8]indicates a consistent drop in performance across
layers, after removal of Phonological features, specifically in Al and Late language regions. The
key finding here is that our results that low level features impact the ability to predict both A1 and
late language regions hold across individual layers.

G Al REGION: LOW-LEVEL STIMULUS FEATURES AND BRAIN ALIGNMENT

We now plot the average normalized brain alignment for low-level stimulus features (textual, speech
and visual) during both reading and listening in the early sensory areas (early visual and Al), as

21



Under review as a conference paper at ICLR 2024

Wav2Vec2.0 L]
Wav2Vec2.0 - Lowlevel Textual Features M
“ Wav2Vec2.0 - Lowlevel Speech Features ™
Wav2Vec2.0 - Lowlevel Visual Features

Whisper
Whisper
Whisper

* Whisper

- Lowlevel Textual Features
- Lowlevel Speech Features
- Lowlevel Visual Features

Listening

08

06

<

o
P

¥
¥

IS
SREIRLL
RIRIKE
bo%e%e%e’e

0.4

botel
5
%5

&

S
X
{
205
%%,

02

Normalized Brain Alignment

bole!
%5
S

'
1o
p20%

B Wav2Vec2.0 E Whisper
¥ Wav2Vec2.0 - Lowlevel Textual Features M - Lowlevel Textual F
Wav2Vec2.0 - Lowlevel Speech Features ™ Whisper - L hF
Wav2Vec2.0 - Lowlevel Visual Features Whisper - Lowlevel Visual Features
Listening

p

0.4

Late Language

Normalized Brain Alignment

K)\gi\iii\%

&

Figure 17: Brain Listening in Al and Late language regions: Average normalized brain alignment
was computed over the average of participants for speech-based models, across layers and across
low-level features.

shown in Fig. [T9] Additionally, we report the individual low-level stimulus features, such as the
number of letters, PowSpec, Phonological features and motion energy features, specifically in early
sensory processing regions. It appears that both text-based and speech-based language models meet
the baselines in early sensory processing regions, particularly early visual areas in reading and A1
areas during listening. Among low-level stimulus features, motion energy features have better nor-
malized brain alignment during reading in the early visual area and Phonological features have better
brain alignment during listening in the A1 region.

H DISCUSSION AND CONCLUSION

We implement a direct approach to evaluate what types of information language models truly predict
in brain responses. This is achieved by eliminating the information related to specific low-level stim-
ulus features (textual, speech, and visual) and observing how this intervention affects the alignment
with fMRI brain recordings acquired while participants read versus listened to the same natural-
istic stories. We show that both text- and speech-based language models predict brain responses
well both during reading and listening in corresponding early sensory regions in large parts due to
low-level stimulus features that are correlated between text and speech (e.g., number of letters and
phonemes). We also found that text-based models predict fMRI recordings significantly better than
speech-based models in the late language regions, irrespective of stimulus modality.

Our findings have direct implications for both machine learning and cognitive neuroscience. First,
we show that even during speech-evoked brain activity (i.e., listening), the alignment of speech-
based models trails behind that of text-based models in the late language regions. More importantly,
our results demonstrate that the alignment of speech-based models with these regions is almost
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Figure 18: Layer-wise average normalized brain alignment was computed over the average of par-
ticipants for speech-based model: Wav2Vec2.0 for an important low-level speech property: phono-
logical features.

entirely explained by low-level stimulus features. Since these regions are purported to represent se-
mantic information, this finding implies that contemporary speech-based models lack brain-relevant
semantics. This suggests that new machine learning approaches are needed to improve speech-based
models. Furthermore, these results imply that observed similarities between speech-based models
and brain recordings in the past (Vaidya et al.| 2022} Millet et al., 2022) are largely due to low-
level information and not semantics, which is important to take into account when interpreting the
similarity between language representations in speech-based models and the brain. Second, we ob-
serve that phonological features explain the most variance during listening for speech-based models,
whereas “number of letters” explains the most variance during reading for text-based models. This
result offers us a glimpse into the mechanisms underlying language processing in the brain. Third,
we demonstrate a direct residual approach to identify the contribution of specific features to brain
alignment. To our knowledge, there is no better alternative to selectively remove information from
language models to probe their impact on brain alignment. Using this approach, it is possible to in-
vestigate how the human brain processes language during both reading and listening at a finer scale
than before.

One limitation of our approach is that the removal method we use only removes linear contributions
to language model representations. While this is sufficient to remove the effect on the brain align-
ment, which is also modeled as a linear function, it is possible that it does not remove all information
related to the specific features from the model. Another possible limitation for the interpretation of
the differences between the brain alignment of text- vs speech-based models is that the models we
are using have several differences beside the stimulus modality, such as the amount of their training
data and objective functions. To alleviate this concern, we have tested multiple models of each type,
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Figure 19: Early sensory processing regions: Average normalized brain alignment was computed
over the average of participants across text-based and speech-based language models, along with
basic low-level stimulus features, such as the number of letters, PowSpec, Phonological features
and motion energy features.
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with different objective functions and trained on different amounts of data, and showed that the re-
sults we observe generalize within the text- and speech-based model types despite these differences.
Still, it is possible that some of the differences in brain alignment we observe are due to confound-
ing differences between model types, and there is value in investigating these questions in the future
with models that are controlled for architecture, objective, and training data amounts. Lastly, our
work uses brain recordings that are obtained from English-speaking participants and experimental
stimuli that are in English, and therefore we use models that are mostly trained on English text and
speech. It is possible that the findings would differ in other languages, and this is important to study
in the future.

The alignment of text-based models with the late language regions is not explained by low-level
stimulus features alone. However, these regions also process high-level semantic information (e.g.,
discourse-level or emotion-related) (Binder & Desail, [2011; Wehbe et al.l 2014} |Bookheimer, 2002]).
Future work can investigate the contribution of such features to this alignment. In addition, while
impressive, the current level of alignment does not reach the estimated noise ceiling. Inducing
brain-relevant bias can be one way to enhance the alignment of these models with the human
brain (Schwartz et al.|[2019). Overall, further research is necessary to improve both text- and speech-
based language models.

I ESTIMATED NOISE CEILING ACROSS ROIs

We present the average noise ceiling estimate across subjects for both reading and listening condi-
tions in the Fig.[20] In this Fig. 20} we report the average noise ceiling estimate of all the voxels in
every ROL

One potential concern is that because the noise ceiling in the sensory regions of the non-presentation
modality is low (A1l during reading, and V1 during listening), one may expect that using this low
noise ceiling to normalize the prediction performance of models may result in an overly inflated
number. However, from Fig. 20| we see that the normalized brain alignment in the sensory regions
of the non-presentation modality is in fact quite low (Fig 1: checkered bars in early visual, and solid
bars in early auditory).
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Figure 20: Layer-wise average normalized brain alignment was computed over the average of par-
ticipants for speech-based model: Wav2vec2.0 for an imporant low-level speech property: phono-
logical features.
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J BRAIN LISTENING IN A1l REGION: TEXT-BASED VS. SPEECH-BASED
LANGUAGE MODELS

We now show the results just for Al region in Fig. 21} During listening, specifically for the Al
region, we observe that speech-based language models have higher normalized brain alignment than
text-based models. Additionally, removal of low-level textual features results in a similar perfor-
mance drop for both types of models. Also, removal of low-level speech features results in a larger
performance drop for speech-based compared to text-based language models.

[ Text Models H Speech Models
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Figure 21: Brain Listening: (a) Removal of Low-level textual features, Average normalized brain
predictivity was computed over the average of participants for text and speech-based models, across
layers for each low-level textual property. (b) Removal of low-level speech features: Average
normalized brain predictivity was computed across participants for text and speech-based models,
across layers for each low-level speech property.
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Early visual

The early visual area is the earliest cortical region for visual processing.
It processes basic visual features, such as edges, orientations, and spatial
frequencies (). Lesions in V1 can lead to blindness in the corresponding
visual field. V2 processes more complex patterns than V1.

VWFA

Early auditory

The visual word form area specializes in recognizing written words and
letters, facilitating the transition from visual representations of words to
their associated meanings and sounds (Dehaene & Cohen, 201 1; McCan-
dliss et al., 2003)). This region is crucial for skilled reading.

The early auditory area is the earliest cortical region for speech process-
ing. This area is specialized for processing elementary speech sounds, as
well as other temporally complex acoustical signals, such as music.

Late Language

Late language regions contribute to various linguistic processes. Areas
44 and 45 (Broca’s area) are vital for speech production and grammar
comprehension (Friederici, [2011). The IFJ, PG, and TPOJ clusters are
involved in semantic processing, syntactic interpretation, and discourse
comprehension (Deniz et al.| |2019; Toneva et al) 2022). STGa and
STS play roles in phonological processing and auditory-linguistic inte-
gration (Vaidya et al.|[2022; Millet et al.,2022;|Gong et al.,[2023)). TA2 is
implicated in auditory processing, especially in the context of language.

Table 1: Detailed functional description of various brain regions.
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