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PT-FlowNet: Scene Flow Estimation on Point Clouds
With Point Transformer

Jingyun Fu"”, Zhiyu Xiang

Abstract—As a low-level task of 3D perception, scene flow is
a fundamental representation of dynamic scenes and provides
non-rigid motion descriptions for the objects in the 3D environ-
ment, which can strongly support many upper-level applications.
Inspired by the revolutionary success of deep learning, many
attention-based neural networks have recently been proposed to
estimate scene flow from consecutive point clouds. However, ex-
tracting effective features and estimating accurate point motions
for irregular and occluded point clouds remains a challenging
task. In this letter, we propose PT-FlowNet, the first end-to-end
scene flow estimation network embedding the point transformer
(PT) into all functional stages of the task. In particular, we design
novel PT-based modules for point feature extraction, iterative flow
update, and flow refinement stage to encourage effective point-level
feature aggregation. Experimental results on FlyingThings3D and
KITTI datasets show that our PT-FlowNet achieves state-of-the-art
performance. Trained on synthetic data only, our PT-FlowNet
can generalize to real-world scans and outperforms the existing
methods by at least 36.2% for the EPE3D metric on the KITTI
dataset.

Index Terms—Computer vision for automation, vision-based
navigation.

I. INTRODUCTION

CENE flow refers to the 3D motion field of the points
S in the world space. Scene flow estimation provides fun-
damental low-level motion information for 3D dynamic scene
understanding and can be used as a building block for various
real-world applications, such as dynamic SLAM [1], 3D object
detection [2], motion tracking [3], and robotic manipulation [4].
They employ scene flow to filter out influences from dynamic
objects [1] or keep accurate tracking for them [3], fuse features
among successive point clouds [2], and acquire accurate motion
of the tools for manipulation [4], etc.
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Many previous scene flow methods focus on employing stereo
or RGB-D images as input. However, with the rapid develop-
ment and the increasing application of Lidar, accurate spatial
information can be efficiently collected by the sensor and direct
scene flow estimation on raw point cloud has become a new
research trend. With advances in deep neural networks on point
clouds [5], [6], [7], [8], a series of learning-based methods [9],
[10], [11], [12], [13], [14] have been proposed to generate scene
flow from two consecutive point clouds. To tackle the disordered
and irregular structure of the point clouds and enable deep
learning on point sets, many existing point-based methods resort
to K-nearest neighbor (KNN) algorithms [15], [16], [17], [18],
[19], [20], [21]. However, as the position of the KNN center
varies in space, invalid points from noise, background, or other
objects can be included in the KNN neighborhood, which may
lead to incorrect point-wise correlation and confuse the resulting
point features.

Recently, attention mechanisms are showing strong potential
in point cloud segmentation and classification [22], [23], [24],
[25]. In particular, the attention-based methods assign adapted
weights to each point in a local neighborhood based on the
point-wise feature similarity. Consequently, the irrelevant points
with weights close to zero can be distinguished as outliers and
the more crucial points with greater weights will play more
important roles in the process of feature aggregation. Some
recent works have made preliminary attempts to apply the
attention mechanism to scene flow estimation [26], [27], [28]
and the latest work SCTN [29] first introduces transformer into
its point-based model. However, these existing works limit the
application of attention mechanism to some specific steps in
scene flow estimation, such as point cloud abstraction or filtering
candidate points for flow embedding. Besides, the transformer
is only utilized for global attention on the whole point cloud in
SCTN [29] and its powerful ability in aggregating information
from local neighborhoods is ignored.

Based on the above observations, we believe that the potential
of the transformer in scene flow estimation task has not been
fully exploited and we further develop a novel full-stage PT-
based network, namely PT-FlowNet. Point transformer [22] is
adopted for every step of the scene flow estimation pipeline,
including capturing local point relation in a multi-scale fashion
for point-wise feature extraction, iterative flow generation, and
handling occlusions as well as boosting the flow smoothness and
consistency in the flow refinement stage. We conduct extensive
experiments on both synthetic FlyingThings3D and real-world
KITTI datasets and the effectiveness of each PT-based module
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is also validated through ablation studies. Our key contributions
are summarized as follows:

® We propose anovel PT-based network for end-to-end scene
flow estimation on point clouds. To the best of our knowl-
edge, this is the first work that embeds the point transformer
onto the full stage of the scene flow estimation pipeline.

e We propose a PT-based KNN branch within the iterative
update module. It can aggregate the correlated features
more effectively than the common KNN equipped with
max-pooling.

e The proposed PT-FlowNet achieves state-of-the-art per-
formance on the synthetic FlyingThings3D dataset and
surpasses previous approaches by remarkable margins on
the real-world KITTT dataset.

II. RELATED WORK
A. Scene Flow Estimation From Point Clouds

FlowNet3D [9] has pioneered scene flow estimation on con-
sequent point cloud frames through the deep-learning neural
network. HPLFlow-Net [10] maps point clouds into permuto-
hedral lattices and extracts multi-scale correlations. PointPWC-
Net [11] proposes novel self-supervised losses and a coarse-to-
fine architecture. FLOT [12] formulates scene flow estimation
as an optimal transport problem and PV-RAFT [16] leverages
point-voxel correlation fields. Inspired by the successful iter-
ative flow update technique employed in RAFT [30], Flow-
Step3D [15] and PV-RAFT [16] adopt the Gated Recurrent Unit
(GRU) [31] to promote prediction accuracy. RMS-FlowNet [19]
relies on Random-Sampling instead of the commonly used
Farthest-Point-Sampling [6] for efficient large-scale point cloud
processing, and RCP [20] proposes an effective two-stage re-
current network to avoid the complicated cost volume design
in irregular point clouds. The recent Bi-PointFlowNet [21] pro-
poses novel bidirectional layers for flow embedding.

Recently, the application of attention mechanism for scene
flow estimation is gaining increasing attention. FESTA [26]
proposes a trainable aggregate pooling to generate more
stable down-sampled points than Farthest-Point-Sampling.
HALFlow [27] introduces a novel attentive embedding module
to focus on task-related regions and reduce information loss
for patch-to-patch cost volume construction. Res3DSF [28]
proposes an attention-based context-aware set convolution layer
to produce local point features and a residual flow learning struc-
ture is employed to handle long-distance movement. SCTN [29]
first introduces transformer for scene flow estimation, but the
transformer is only built on a global scale. In this work, we
propose a full-stage PT-based network for accurate scene flow
estimation by deeply exploring the potential of the point trans-
former in aggregating information from point clouds.

B. 3D Point-Based Deep Learning

Since point-based scene flow estimation is a sub-problem of
3D point cloud processing, 3D point-based deep learning is
also a very close field. PointNet [5] first puts forward inno-
vative permutation-invariant operators to allow direct learning
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on point sets. PointNet++ [6] utilizes query ball grouping and
further hierarchically organizes PointNet to enhance the local
perception ability of the network. Some successive point-based
approaches [8], [32], [33] also consume point clouds without
converting them into 3D grids. Some other works [34], [35]
voxelize point clouds to enable standard 3D convolution and
the sparse convolution is employed afterward for more efficient
learning [7], [36], [37]. Many recent works [38], [39], [40],
[41] transform the point cloud into a graph and then apply
graph-based operations.

Recently, the transformer from natural language processing
has been extended to point cloud processing and is drawing
increasing research interest. [23] presents a transformer-based
framework with offset-attention and [22] develops an efficient
PT layer to apply self-attention to the local region in 3D point
clouds. [24] further introduces a lightweight local self-attention
module to boost computational efficiency. Different from the
existing models, our PT-FlowNet applies the transformer to each
stage of the scene flow estimation pipeline, rather than being
limited to the point cloud feature extraction process.

III. METHOD

Considering two consecutive frames of point clouds,
ie., PC1 = {p; € R*} | and PCy = {q; € R?}}., where
(pi,q;) are the 3D Cartesian coordinates for points in each
set and (N, M) denote the set size, the task for the network is
estimating the scene flow SF = {sf,; € ]RB’}Z-ZI for every point
in PC5 by finding the correlation between point clouds.

The pipeline of our proposed PT-FlowNet is shown in Fig. 1.
It consists of three key modules: (1) PT-based feature extraction,
(2) iterative flow update, and (3) PT-based flow refinement. In the
following subsections, we first describe the common structure
of the core PT layer that is embedded in each module, then
introduce the design of each module one by one.

A. PT Layer

PT layer is integrated into each stage of scene flow esti-
mation as the core functional component in our PT-FlowNet
network. We follow [22] to construct the PT layer based on
vector self-attention [42] and subtraction relation for point-wise
feature aggregation in the 3D space. Different from typical scalar
attention that uses dot-product results as shared weights between
feature channels, vector attention adopts weight vectors to assign
adapted attention weights to different channels and is proved to
be more powerful in point cloud processing.

As depicted in Fig. 2, let o, ¥, and «v denote linear projections
for point-wise feature transformation, J denote the position
encoding, the calculation in a PT layer can be represented as

yi= Y p((p() —9(E) +8) © (alf)) +4), (D)

XjEX(i)

where (f;, f;) are the input feature of point (x;,x;) and y; is the
output feature for x;. X'(4) is the set of the k-nearest neighbors of
point x;. v denotes an MLP for attention vector generation and p
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Fig. 1.

module to generate contextual feature F'.. During the ¢th iteration in the iterative flow update stage, the point q; in PC is warped to qg.

The pipeline of our proposed PT-FlowNet. PC'; and PC'> share a PT-based feature extraction module; meanwhile, PC'; is encoded by another PT-based

U in PCE ! by the

last flow estimation sf*~!. The point-wise feature (Fpe1, Fpez) and the point coordinates of PCS*1 are the inputs for the correlation feature construction. The
obtained correlated feature combined with sf*~! is fed into the GRU together with F'.. The hidden state of GRU is then updated to obtain the residual flow and
the new flow prediction sf? is produced for the next iteration. After 7" iterations, the last flow predicted from the iterative update module is fed into a PT-based
refinement module to generate the final refined scene flow estimation. 4 represents concatenation.

N P, N
K Ky

(N, K, Cyia)

F,
(N, K, Cou)

@, y, a: Linear

3 Cou

&: Position encoding

Fig. 2. The structure of the PT layer. Ci,, Cnid, and Coy are the dimensions
of the input point-wise feature, the outputs of the linear projections, and the
output feature, respectively. We set the number of nearest neighbors K = 32

and Chig = Cour/2 = 32. The input point-wise feature Finpm is mapped by

several linear projections to produce the key, query, and value attention vectors
Fy,Fy,F,. P and P, in the upper branch refer to the 3D coordinates and
relative 3D spatial position of the points respectively, except for the refinement
module (described in Section I1I-D).

is softmax for weight normalization. ® represents the Hadamard
product between vectors.

B. PT-Based Feature Extraction

The primary function of the feature extraction module is to
generate 128-dimensional point-wise features for the input point
cloud, which are represented by F., F .1, and F > in Fig. 1.
As shown in Fig. 3, the input of the feature extraction module is
the raw 3D coordinates of points, which are also adopted as the
initialized point-wise features.

Following the design in [22], the backbone of the PT-based
feature extraction module is built based on residual PT blocks,
transition down and up units with U-shaped cross-layer connec-
tions, and MLPs. A transition down unit first performs Farthest-
Point-Sampling [6] on the input point cloud to get a subset of
points. After that, the K nearest neighbors of each subset point
are selected from the original input points and their features

will go through a linear transformation, followed by batch
normalization and ReLLU. Then these processed features are
gathered by applying max-pooling to each feature dimension
of the K nearest neighbors to generate aggregated point-wise
feature for each subset point. Guided by the skip link, a corre-
sponding transition up unit leads an inverse process that uses
trilinear interpolation to map features from the downsampled
point subset onto its superset. Specifically, the interpolated
features are summarized with the features from the transition
down stage.

We modulate the number of transition down and up units
based on the input size of the point sets. Moreover, we add
a block with a PT layer and MLPs at the end of the feature
extraction module to adjust the dimension of the output features
and enhance the representation ability of the network. With the
transition down and transition up operations, the network can
capture the structural information of objects at different scales.

C. lIterative Flow Update

We adopt the GRU-based [31] structure which enables iter-
ative residual flow generation to obtain better flow estimation
results. As a simplified variant of LSTM with fewer control
gates, GRU can capture the long-term dependents of the context
and produce better outputs than traditional RNNs, which are es-
sential for the iterative scene flow update module. In addition, we
suggest anovel PT-based KNN branch within correlation feature
construction to reduce information loss and further strengthen
the feature aggregation of the network. The procedure of iterative
flow update is summarized in Fig. 1 and our improved PT-based
KNN branch is illustrated in Fi(g. 45 During the tth iteration, the

t—

point q; in PC5 is warped to q; Yin PCE! by the temporary

flow estimation sf*~! before generating the new estimation sf*.
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N EE gk O m, . from the original KNN branch [16] gathers the K point features
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T small local regions, while the voxel branch has a large recep-
Fig. 4. PT-based KNN branch. P,. here is the relative 3D spatial position tive field and can handle point pairs with large displacements,

between the points in PC'y and PC;’I. EB represents concatenation.

The point-wise features (chl, chg) generated from the fea-
ture extraction module are used for calculating a correlation map
based on the matrix dot product:

Ceorr = chl ' chQa (2)

thus point pairs with similar features have high correlation val-
ues. Based on this correlation map, two branches, i.e., voxel and
KNN branch, are employed for correlation feature construction.

Voxel Branch: The voxel branch first builds a voxel neighbor

(t-1)

cube centered around q k ,whichisacubewith L = a X a X

a sub-cubes. The side length of each sub-cube is r and /\/}(l)
is the set of the PC points that locate in the [th sub-cube.
The correlation values of the points inside each sub-cube are
averaged to produce the sub-cube feature:

!
s(u)b = Z Ccorr pn )
pneN(”

3)

where n; is the set size of ./\/}( . Ceorr(Pn) denotes the corre-
lation value between q; and py,, which is computed by Eq. (2).
Then the output feature of qgt_l)

as

from the voxel branch is defined

£

1 2 L
voxel — MLonmel (fs(ugz @ fG(ug) @ . f( ))

sub

“)

where @ represents concatenation.
PT-based KNN Branch: Let N'(j) denote the PC] points that

belong to the k-nearest neighbor of q(75 R
for each point p,,, € N(j) is defined as

= MLPKNN(Ccorr(pm) EB (pm

, the primary feature

£7) "),

which are common in the initial stage of the iterative update.
Therefore, the KNN branch largely determines the accuracy of
the final prediction in the sense that the voxel branch cannot
provide detailed correlations. However, the simple max-pooling
operation in Eq. (6) inevitably causes large information loss and
hence leads to performance degradation.

Based on the above analysis, we replace the max-pooling
operation in Eq. (6) with a PT layer:

> o (WeED) — viED) +9))

PmeN(J)
® (a(f,(nj)) + 5) . )

Different from the original KNN branch, our PT-based KNN
branch utilizes the transformer to adaptively aggregate the local
features. Compared with the KNN branch equipped with max-
pooling, the PT-based KNN branch has less information loss
and is more robust to the structural distortions in the iterative
process.

Following [16], the correlation feature from the voxel and
KNN branch are then concatenated with sf*~* and F, which is
taken as input z; for the GRU cell [31] to produce the hidden
state hy:

fgz)wv =

2y = o(Convy g([hi—1,2¢], W2)) ®)
e = o(Convy q([hu1, 3], W) ©)
hy = tanh(Convy ¢([ry © hy_1, 2], Wp)) (10)
he=(1—2) ®ht 1+ 2 © h (11)

where W, W,., and W)}, are the weight matrices that can be
learned during training. Finally, the obtained hidden state h; is
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fed into convolutional layers to generate the predicted scene flow
sf?.

D. PT-Based Flow Refinement

The PT-based flow refinement module adopts the same back-
bone structure as the point-wise feature extraction module and is
trained independently. The difference is that the flow refinement
module takes the final predicted flow from the iterative update
stage and the point-wise feature F,.» as input, as shown in
Fig. 1. These two inputs also replace P and Fy,;, in the
PT layer shown in Fig. 2 respectively. The consequent P,. in
Fig. 2 becomes the difference between point-wise flow vectors.
The main function of the refinement module is to promote
flow smoothness in the 3D space by transformer-based flow
aggregation. In the existence of occlusion, the points in the two
scenes may not match each other completely. In this case, the
PT-based flow refinement can produce reasonable flow estima-
tion for the occluded points from their neighbors. Besides, the
points with similar features and closer positions in space are
more likely to produce similar scene flow predictions through
PT-based operations. This encourages flow consistency of the
points collected from the same object and improves the network
performance thereby.

E. Loss Function

Our model is trained under full supervision on annotated syn-
thetic FlyingThings3D dataset [43]. Following the hierarchical
design in [15] and [16], we accumulate the loss from every
iteration as the supervised loss for the feature extraction and
the iterative update module. We also use the /;-norm loss for the
flow refinement stage.

The loss function for the sub-network with the first two
modules is

T
Liter = > wB|(s£15, — sfy0)

(12)
t=1
with
w® =~ % (T —t—1), (13)
where sf (t) is the flow estimated from the tth iteration in the

est
iterative flow update stage, and sf ;4 denotes the ground truth. 7'

is the maximum number of iterations and w(*) is the weight for
tth iteration. We adopt the hyper-parameter setting in [16] with
v =0.8.
The loss for the refinement module is
Lrep = ||(sfrey —sfgi)l1, (14)

where sf,.. s is the final refined flow prediction.

IV. EXPERIMENTS
A. Datasets

As the first benchmark for scene flow estimation, FlyingTh-
ings3D (FT3D) [43] is a large-scale synthetic dataset composed
of 19,640 pairs of labeled training samples and 3,824 samples in
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the testing set. Each sample contains stereo and RGB-D images
of the moving synthetic objects selected from ShapeNet [44].
With the camera parameters and disparities provided in FT3D,
the previous methods [10], [11], [12], [15] generate 3D point
clouds and ground truth flows by lifting the 2D data to 3D points.
KITTI Scene Flow 2015 [45] is another benchmark with 142
available real-world samples. For a fair comparison with other
methods, we follow the above-mentioned data pre-processing
and conduct experiments on both FT3D and KITTI datasets
established by Gu et al. [10]. Note that the points with a depth of
more than 35 m or a height of less than 0.3 m are also removed.
Following [16], we select 2000 samples from the FT3D training
set for validation and use the remains for training. Our model
is only trained on synthetic FT3D dataset and is applied to
real-world KITTTI scans without fine-tuning.

B. Evaluation Metrics

We adopt the same evaluation metrics used in recent

works [10], [11], [12], [15], [18] for performance comparison.

® EPE3D (m): ||sfess — sfgi]|2 3D end-point-error averaged
over non-occluded points.

® ACC3D Strict: A strict version of 3D accuracy, the per-
centage of points whose EPE3D < 0.05 m or relative error
< 5%.

® ACC3D Relax: A relaxed version of 3D accuracy, the
percentage of points whose EPE3D < 0.1 m or relative
error < 10%.

® Qutliers3D: The percentage of points whose EPE3D >
0.3 m or relative error > 10%.

e EPE2D (px): 2D end-point-error measured by projecting
points back to the 2D image plane, which is a common
metric for optical flow evaluation.

® ACC2D: The percentage of points whose EPE2D < 3px or
relative error < 5%.

C. Implementation Details

We implement PT-FlowNet in PyTorch [46]. For a fair com-
parison with the previous works, we randomly sample N =
M = 8,192 input points from each point cloud as the input of
our network. Following the correlation module settings in [16],
k = 32 nearest neighbors are selected for the point branch;
3-level cubes with cube resolution a = 3 and side length r =
0.25,0.5, 1 are built for the voxel branch. The total amounts of
iterations are 7' = 8 and 32 for training and evaluation, respec-
tively. The whole network other than the refinement module is
first trained for 50 epochs and the weights are fixed afterward.
Then the refinement module is integrated and trained for another
10 epochs. We use the Adam optimizer [47] with an initial
learning rate of 0.001.

D. Comparison to State-of-The-Art (SOTA)

We report the performance of our PT-FlowNet compared to
the state-of-the-art methods on both FT3D and KITTI datasets
described in Section IV-A. The evaluation results are shown in
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TABLE I
THE QUANTITATIVE RESULTS ON THE FT3D AND KITTI DATASETS

Dataset Method EPE3D ACC3D ACC3D  Outliers EPE2D ACC
(m) | Strict T Relax 1 3D | (px) 4 2D 1
ICP [48] 0.4062 0.1614 0.3038 0.8796 232280 0.2913
FlowNet3D [9] 0.1136 0.4125 0.7706 0.6016 59740  0.5692
HPLFlowNet [10] 0.0804 0.6144 0.8555 0.4287 4.6723  0.6764
PointPWC [11] 0.0588 0.7379 0.9276 0.3424 32390  0.7994
FLOT [12] 0.0520 0.7320 0.9270 0.3570 - -
HALFlow [27]* 0.0492 0.7850 0.9468 0.3083 27555 08111
FT3D HCREF-Flow [18] 0.0488 0.8337 0.9507 0.2614 2.5652  0.8704
PV-RAFT [16] 0.0461 0.8169 0.9574 0.2924 - -
FlowStep3D [15] 0.0455 0.8162 0.9614 0.2165 - -
RMS-FlowNet [19] | 0.0560 0.7920 0.9550 0.3240 - -
RCP [20] 0.0403 0.8567 0.9635 0.1976 - -
SCTN [29] 0.0380 0.8470 0.9680 0.2680 - -
Res3DSF [28]* 0.0310 0.9139 0.9768 0.1551 1.7504 009113
Ours 0.0304 0.9142 0.9814 0.1735 1.6150  0.9312
ICP [48] 0.5181 0.0669 0.1667 0.8712  27.6752  0.1056
FlowNet3D [9] 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
HPLFlowNet [10] 0.1169 0.4783 0.7776 0.4103 4.8055  0.5938
PointPWC [11] 0.0694 0.7281 0.8884 0.2648 3.0062  0.7673
FLOT [12] 0.0560 0.7550 0.9080 0.2420 - -
HALFlow [27]* 0.0622 0.7649 0.9026 0.2492 2.5140  0.8128
KITTI HCREF-Flow [18] 0.0531 0.8631 0.9444 0.1797 2.0700  0.8656
PV-RAFT [16] 0.0560 0.8226 0.9372 0.2163 - -
FlowStep3D [15] 0.0546 0.8051 0.9254 0.1492 - -
RMS-FlowNet [19] | 0.0530 0.8180 0.9380 0.2030 - -
RCP [20] 0.0481 0.8491 0.9448 0.1228 - -
SCTN [29] 0.0370 0.8730 0.9590 0.1790 - -
Res3DSF [28]* 0.0351 0.8932 0.9620 0.1654 1.2879  0.9442
Ours 0.0224 0.9551 0.9838 0.1186 0.9893  0.9667

“ HALFlow and Res3DSF take N = M = 8,192 points as input but only output scene flow for
2,048 sampled points; other methods produce scene flow for all 8,192 input points.
All methods are trained on FT3d in a supervised manner.

FLOT

PV-RAFT

acld

ILLIA

0.000 - 0.004

0.004 - 0.008 | 0.008 - 0.016

Fig. 5.

Res3DSF

0.256 - 0.512

0.512 - 1.024 1.024 - Inf

The qualitative comparison of different methods on FT3D (top) and KITTI (bottom) datasets. From left to right: The EPE3D (m) error map of FLOT [12],

PV-RAFT [16], Res3DSF [28], and our proposed method. Res3DSF [28] estimates scene flow for one quarter of the original input points, so its point clouds are
more sparse in the visualization results. Compared with other methods, our PT-FlowNet shows lower errors especially for real-world scenes in the KITTI dataset.

Table I and the qualitative comparison results are presented in
Fig. 5.

Evaluation on FT3D: According to Table I, our method
outperforms recent state-of-the-art approaches. Although
Res3DSF [28] shows comparable results on FT3D, it generates
more sparse scene flow for only a quarter of the points down-
sampled from the input point cloud, as shown in Fig. 5. When
compared to SCTN [29] which also includes point transformer

for capturing point relation information in the feature extraction
stage, we report a relative improvement of 20.0% on the EPE3D
metric. The evaluation results confirm the effectiveness of our
method to predict scene flow accurately.

Generalization on KITTI: The generalization ability of our
method is evaluated by directly applying the model trained on
the synthetic FT3D datasets to real-world point cloud frames
in KITTI without fine-tuning. The results listed in Table I
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TABLE II
THE ABLATION STUDY RESULTS ON THE FT3D AND KITTI DATASETS

Dataset Featulje KNN Refinement | EPE3D ACC3D ACC3D  Outliers EPE2D ACC
Extraction Branch Module (m) | Strict T Relax 1 3D | (px) 4 2D 1
Pointnet++ | with PT - 0.0508 0.7461 0.9442 0.3484 2.6466  0.8413

PT w/o PT - 0.0362 0.8714 0.9760 0.2454 1.8709  0.9050

FT3D PT w?th PT - 0.0332 0.8944 0.9783 0.1968 1.7756  0.9191

PT with PT conv 0.0312 0.9065 0.9799 0.1769 1.6671  0.9282

PT with PT prt 0.0308 0.9132 0.9815 0.1776 1.6559  0.9298

PT with PT PT 0.0304 0.9142 0.9814 0.1735 1.6150  0.9312

Pointnet++ | with PT - 0.0392 0.8693 0.9604 0.1888 2.0143  0.8865

PT w/o PT - 0.0338 0.9095 0.9746 0.1588 1.4579  0.9366

KITTI PT W@th PT - 0.0261 0.9499 0.9796 0.1349 1.3083  0.9499
PT with PT conv 0.0239 0.9518 0.9780 0.1304 1.1730  0.9584

PT with PT pTt 0.0230 0.9544 0.9806 0.1228 1.1278  0.9630

PT with PT PT 0.0224 0.9551 0.9838 0.1186 0.9893  0.9667

TWe also report the scores from the network where the refinement module is trained without fixing the parameters of the

preceding sub-network .

demonstrate that our method achieves the leading position on
KITTI and is the first to reduce the EPE3D metric below 3 cm,
with a surprising 36.2% improvement over the state-of-the-art
method Res3DSF [28]. In addition, our proposed method sur-
passes the transformer-based SCTN [29] with an error reduction
of 39.5%. We believe that the PT-based operations in each
processing stage promote efficient information sharing between
points and allow the network to better adapt to the different
motion patterns of the objects.

E. Ablation Study

We verify the effectiveness of each module by simply re-
moving the PT-based components or replacing them with other
components used in previous works. The detailed results are
shown in Table II.

Feature Extraction: We compare our PT-based feature ex-
traction module with the PointNet++ network used in [12] for
point-wise feature abstraction. According to the experimental
results in Table II, using PT-based point cloud abstraction brings
significant gain to all evaluation metrics. In particular, EPE3D is
reduced by 34.6% and 33.4% on FT3D and KITTI, respectively.
The quantitative results strongly demonstrate that our PT-based
network generates point-wise features with higher quality and
is a more powerful embedding method for point sets.

KNN Branch: We validate the significance of the PT layer
in the KNN branch by rolling back to the original max-pooling
operation in [16] and then evaluating the network performance
after this alteration. According to the EPE3D metric shown in
Table II, the performance of the network on the FT3D dataset
has been enhanced by 8.3% and the prediction accuracy on the
KITTTI dataset has been improved by 22.8% after the PT-based
KNN branch is applied.

Flow Refinement Module: Both the convolutional layers
adopted in [16] and our PT-based refinement module are sep-
arately applied to our framework for comparison. The experi-
mental results show that the methods with the refinement module
perform better than those without it, and our PT-based refinement
module exhibits superior performance over the convolutional
refinement method. Furthermore, we notice that slightly better

TABLE III
THE RUNNING TIME COMPARISON BETWEEN THE OFFICIAL IMPLEMENTATION
OF PV-RAFT [16] AND OUR PT-FLOWNET

Method T=28 T =32
PV-RAFT [16] 292.8 ms  740.0 ms
PT-FlowNet (ours) 354.7 ms 898.5 ms

results are obtained when the parameters of the sub-network are
fixed rather than unfixed during the flow refinement step. The
intuitive explanation is that the iterative flow update within the
sub-network is the main step to generate scene flow, and the
PT-based flow refinement module is a relatively independent
component that improves the flow smoothness in the space based
on the existing scene flow estimation results.

F. Runtime

As shown in Table I1I, we measure the running time of our PT-
FlowNet and the most related work PV-RAFT [16], which also
involves iterative flow estimation and flow refinement. Evaluated
on a single NVIDIA A40 GPU with N = M = §,192 input
points, our PT-based method consumes relatively higher running
time than PV-RAFT.

V. CONCLUSION

In this letter, we propose PT-FlowNet - the first full-stage PT-
based deep learning architecture for accurate scene flow estima-
tion in an end-to-end manner. We design PT-based modules for
each flow prediction stage to enable effective point-level feature
aggregation and correlation. The embedded point transformer
helps aggregate point features with different scales in each step
and produce accurate prediction results in irregular real data with
occlusion. Experimental results on both synthetic and real-world
datasets demonstrate that our method outperforms previous
works and reaches state-of-art performance. The success of our
method also suggests the promising potential of the PT-based
attention mechanism in point cloud processing. One of the
future directions could be improving the real-time performance
of the method to make it more applicable to robotic tasks.
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