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ABSTRACT

Flow-based generative models, including diffusion models, excel at modeling con-
tinuous distributions in high-dimensional spaces. In this work, we introduce Flow
Policy Optimization (FPO), a simple on-policy reinforcement learning algorithm
that brings flow matching into the policy gradient framework. FPO casts policy
optimization as maximizing an advantage-weighted ratio computed from the con-
ditional flow matching loss, in a manner compatible with the popular PPO-clip
framework. It sidesteps the need for exact likelihood computation while preserv-
ing the generative capabilities of flow-based models. Unlike prior approaches for
diffusion-based reinforcement learning that bind training to a specific sampling
method, FPO is agnostic to the choice of diffusion or flow integration at both
training and inference time. We show that FPO can train diffusion-style policies
from scratch in a variety of continuous control tasks. We find that flow-based
models can capture multimodal action distributions when necessary and achieve
comparative or higher performance than Gaussian policies, particularly in under-
conditioned settings. For overview of FPO’s key insights and interactive results
please see our anonymized supplemental website.

1 INTRODUCTION

Flow-based generative models—particularly diffusion models—have emerged as powerful tools
for generative modeling across the domains of images (Saharia et al., 2022; Ho et al., 2022b),
videos (Brooks et al., 2024; Polyak et al., 2024; Veo-Team et al., 2024), speech (Liu et al., 2023),
audio (Kong et al., 2021), robotics (Chi et al., 2024b), and molecular dynamics (Raja et al., 2025). In
parallel, reinforcement learning (RL) has proven to be effective for optimizing neural networks with
non-differentiable objectives, and is widely used as a post-training strategy for aligning foundation
models with task-specific goals (Chu et al., 2025; Liu et al., 2024).

In this work, we introduce Flow Policy Optimization (FPO), a policy gradient algorithm for optimiz-
ing flow-based generative models. FPO reframes policy optimization as maximizing an advantage-
weighted ratio computed from the conditional flow matching (CFM) objective (Lipman et al., 2023).
Intuitively, FPO shapes probability flow to transform Gaussian noise into high-reward actions by re-
inforcing its experience using flow matching. The method is simple to implement and can be readily
integrated into standard techniques for stochastic policy optimization. We use a PPO-inspired sur-
rogate objective, enabling flow policies as a drop-in replacement for Gaussian policies in existing
PPO frameworks.

FPO offers several key advantages. It sidesteps the complex likelihood calculations typically associ-
ated with flow-based models, instead using the flow matching loss as a surrogate for log-likelihood
in the policy gradient. The objective increases the evidence lower bound of high-reward actions.
FPO treats the sampling procedure as a black box during rollouts, which allows for flexible inte-
gration with any sampling approach—whether deterministic or stochastic, and with any number of
steps during training and inference.

We theoretically analyze FPO’s correctness and empirically validate its performance across a diverse
set of tasks. These include a GridWorld environment, 10 continuous control tasks from MuJoCo
Playground (Zakka et al., 2025), and high-dimensional humanoid control—all trained from scratch.
FPO demonstrates robustness across tasks, enabling effective training of flow-based policies in high-
dimensional domains. We probe flow policies learned in the toy GridWorld environment and find
that on states with multiple possible optimal actions, it learns multimodal action distributions. On
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humanoid control tasks, we show that the expressivity of flow matching enables single-stage training
of under-conditioned control policies, where only root-level commands are provided. In contrast,
Gaussian policies struggle to learn viable walking behaviors in such cases, suggesting the practical
benefits of more flexible policy representations. We will open-source our code to enable further
research in this direction.

2 RELATED WORK

Policy Gradients. We study on-policy reinforcement learning, where a parameterized policy is op-
timized to maximize cumulative reward in a provided environment. This is commonly solved with
policy gradient techniques, which bypass the need for differentiable environment rewards by weight-
ing action log-probabilities with observed rewards or advantages (Sutton et al., 1999; Williams,
1992; Kakade, 2002; Peters & Schaal, 2008; Schulman et al., 2015a; 2017; Mnih et al., 2016; Wang
et al., 2016; Shao et al., 2024). Policy gradient methods are central in learning policies for general
continuous control tasks (Duan et al., 2016; Huang et al., 2024), robot locomotion (Rudin et al.,
2022; Schwarke et al., 2023; Mittal et al., 2024; Allshire et al., 2025) and manipulation (Akkaya
et al., 2019; Chen et al., 2021; Qi et al., 2023; 2025). They have also been adopted increasingly for
searching through and refining prior distributions in pretrained generative models. This has proven
effective for alignment with human preferences (Ouyang et al., 2022; Christiano et al., 2023) and
improving reasoning using verifiable rewards (DeepSeek-AI et al., 2025).

In this work, we propose a simple algorithm for training flow-based generative policies, such as
diffusion models, under the policy gradient framework. By leveraging recent insights from flow
matching (Lipman et al., 2023), we train policies that can represent richer distributions than the
diagonal Gaussians that are most frequently used for reinforcement learning for continuous con-
trol (Rudin et al., 2022; Schwarke et al., 2023; Mittal et al., 2024; Allshire et al., 2025; Qi et al.,
2023; 2025), while remaining compatible with standard actor-critic training techniques.

Diffusion Models. Diffusion models are powerful tools for modeling complex continuous distribu-
tions and have achieved remarkable success across a wide range of domains. These models have
become the predominant approach for generating images (Ho et al., 2020; Song et al., 2022; Rom-
bach et al., 2022; Song & Ermon, 2020), videos (Ho et al., 2022c; Singer et al., 2022; Ho et al.,
2022a; Brooks et al., 2024), and more recently, robot actions (Chi et al., 2024b; Black et al., 2024;
NVIDIA et al., 2025). In these applications, diffusion models aim to sample from a data distribution
of interest, whether scraped from the internet or collected through human teleoperation.

Flow matching (Lipman et al., 2023) simplifies and generalizes the diffusion model framework.
It learns a vector field that transports samples from a tractable prior distribution to the target data
distribution. The conditional flow matching (CFM) objective trains the model to denoise data that
has been perturbed with Gaussian noise. Given data x and noise ϵ ∈ N (0, I), the CFM objective
can be expressed as:

LCFM,θ = Eτ,q(x),pτ (xτ |x) ∥v̂θ(xτ , τ)− u(xτ , τ | x)∥22 , (1)

where xτ = ατx+στ ϵ represents the partially noised sample at flow step τ , an interpolation of noise
and data with a schedule defined by hyperparameters ατ and στ . v̂θ(xτ , τ) is the model’s estimate
of the velocity to the original data, and u(xτ , τ | x) is the conditional flow x − ϵ. The learned
velocity field is a continuous mapping that transports samples from a simple, tractable distribution
(e.g. Gaussian noise) to the training data distribution through ODE integration.

Optimizing likelihoods directly through flow models requires divergence estimation (Skreta et al.,
2025) and is computationally prohibitive. Instead, flow matching optimizes variational lower bounds
of the likelihood with the simple denoising loss above. In this work, we leverage flow matching
directly within the policy gradient formulation.

Diffusion Policies. Diffusion-based policies have shown promising results in robotics and decision-
making applications (Chi et al., 2024a; Ajay et al., 2023; Black et al., 2024). Most existing ap-
proaches train these models via behavior cloning (Janner et al., 2022; Chi et al., 2024b), where the
policy is supervised to imitate expert trajectories without using reward feedback.

Recent work by Psenka et al. (2023) explores off-policy training of diffusion policies via Q-score
matching. While off-policy reinforcement learning continues to make progress (Seo et al., 2025;
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Fujimoto et al., 2018), on-policy methods dominate practical applications today. Methods like
DDPO Black et al. (2023), DPPO Ren et al. (2024), and Flow-GRPO Liu et al. (2025) adopt on-
policy policy gradient methods by treating initial noise values as observations from the environment,
framing the denoising process as a Markov decision process, and training each step as a Gaussian
policy using PPO. Our approach differs by directly integrating the conditional flow matching (CFM)
objective into a PPO-like framework Since FPO integrates flow matching as its fundamental primi-
tive, it is agnostic to the choice of sampling method during both training and inference.

3 FLOW MATCHING POLICY GRADIENTS

3.1 POLICY GRADIENTS AND PPO

The goal of reinforcement learning is to learn a policy πθ that maximizes expected return in a
provided environment. At each iteration of online reinforcement learning, the policy is rolled out to
collect batches of observation, action, and reward tuples (ot, at, rt) for each environment timestep
t. These rollouts can used in the policy gradient objective (Sutton et al., 1999) to increase likelihood
of actions that result in higher rewards:

max
θ

Eat∼πθ(at|ot)

[
log πθ(at | ot)Ât

]
, (2)

where Ât is an advantage estimated from the rollout’s rewards rt and a learned value function (Schul-
man et al., 2015b).

The vanilla policy gradient is valid only locally around the current policy parameters. Large updates
can lead to policy collapse or unstable learning. To address this, PPO (Schulman et al., 2017)
incorporates a trust region by clipping the likelihood ratio:

max
θ

Eat∼πold(at|ot)

[
min

(
r(θ)Ât, clip(r(θ), 1− εclip, 1 + εclip)Ât

)]
, (3)

where εclip is a tunable threshold and r(θ) is the ratio between current and old action likelihoods:

r(θ) =
πθ(at | ot)
πold(at | ot)

. (4)

PPO is popular choice for on-policy reinforcement learning because of its stability, simplicity, and
performance. Like the standard policy gradient, however, it requires exact likelihoods for sampled
actions. These quantities are tractable for simple Gaussian or categorical action spaces, but compu-
tationally prohibitive to estimate for flow matching and diffusion models.

3.2 FLOW POLICY OPTIMIZATION

We introduce Flow Policy Optimization (FPO), an online reinforcement learning algorithm for poli-
cies represented as flow models v̂θ. There are two key differences in practice from Gaussian PPO.
During rollouts, a flow model transforms random noise into actions via a sequence of learned trans-
formations, enabling much more expressive policies than those used in standard PPO. Also, to up-
date the policy, the Gaussian likelihoods are replaced with a transformed flow matching loss.

Instead of updating exact likelihoods, we propose a proxy r̂FPO for the likelihood ratio. FPO’s overall
objective is the same as Equation 3, but with the ratio substituted:

max
θ

Eat∼πold(at|ot)

[
min

(
r̂FPO(θ)Ât, clip(r̂FPO(θ), 1− εclip, 1 + εclip)Ât

)]
. (5)

Intuitively, FPO’s goal is to steer the policy’s probability flow toward high-return behavior. Instead
of computing likelihoods, we construct a simple ratio estimate using standard flow matching losses:

r̂FPO(θ) = exp(L̂CFM,θold(at; ot)− L̂CFM,θ(at; ot)), (6)

which, as we will discuss, can be derived from optimizing the evidence lower bound.
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For a given action and observation pair, L̂CFM,θ(at; ot) is an estimate of the per-sample conditional
flow matching loss LCFM,θ(at; ot):

L̂CFM,θ(at; ot) =
1

Nmc

Nmc∑
i

ℓθ(τi, ϵi) (7)

ℓθ(τi, ϵi) = ||v̂θ(aτit , τi; ot)− (at − ϵi)||22 (8)
aτit = (1− τi)at + τiϵi, (9)

where we denote flow timesteps with τ and environment timesteps with t. We include both timesteps
in aτt , which represents an action at rollout time t with noise level τ following Eq. 1 with OT
schedule (Lipman et al., 2023). L̂CFM,θold and L̂CFM,θ share ϵi ∼ N(0, I) and τi ∈ [0, 1] samples.

Properties. FPO’s ratio estimate in Equation 6 serves as a drop-in replacement for the PPO
likelihood ratio. FPO therefore inherits compatibility with advantage estimation methods like
GAE (Schulman et al., 2015b) and GRPO (Shao et al., 2024). Without loss of generality, it is also
compatible with flow and diffusion implementations based on estimating noise ϵ (Ho et al., 2020)
or clean action at (Ramesh et al., 2022), which can be reweighted for mathematical equivalence to
Lθ,CFM (Karras et al., 2022).

3.3 FPO SURROGATE OBJECTIVE

Exact likelihood is computationally expensive even to estimate in flow-based models. Instead, it is
common to optimize the evidence lower bound (ELBO) as a proxy for log-likelihood:

ELBOθ(at | ot) = log πθ(at | ot)−DKL
θ , (10)

where DKL
θ is the KL gap between the ELBO and true log-likelihood and πθ is the distribution

captured by sampling from the flow model. Flow matching and diffusion models use the conditional
flow matching loss, a simple denoising reconstruction objective. Prior work (Kingma et al., 2023)
shows that the CFM loss (Eq. 1) corresponds to the negative ELBO. (Kingma et al., 2023). Using
this fact, the FPO ratio in Eq. 6 corresponds to the ratio of ELBOs under current and old policies:

rFPO(θ) =
exp(ELBOθ(at | ot))
exp(ELBOθold(at | ot))

. (11)

Decomposing this ratio reveals a scaled variant of the true likelihood ratio (Equation 4):

rFPO(θ) =
πθ(at | ot)
πθold(at | ot)︸ ︷︷ ︸

Likelihood

exp(DKL
θold

)

exp(DKL
θ )︸ ︷︷ ︸

Inv. KL Gap

. (12)

Here, the ratio decomposes into the standard likelihood ratio and an inverse correction term involving
the KL gap. Maximizing this ratio therefore increases the modeled likelihood while reducing the
KL gap—both of which are beneficial for policy optimization. The former encourages the policy
to favor actions with positive advantage, while the latter tightens the approximation to the true log-
likelihood.

3.4 ESTIMATING THE FPO RATIO WITH FLOW MATCHING

We estimate the FPO ratio using the flow matching objective directly, which follows from the re-
lationship between the weighted denoising loss Lw

θ and the ELBO established by Kingma & Gao
(2023). Lw

θ is a more general form of the flow matching and denoising diffusion loss that parame-
terizes the model as predicting ϵ̂θ, an estimate of the true noise ϵ present in the model input.

The weighted denoising loss Lw
θ for a clean action at takes the form:

Lw
θ (at) =

1

2
Eτ∼U(0,1),ϵ∼N (0,I)

[
w(λτ ) ·

(
−dλ

dτ

)
· ∥ϵ̂θ(aτt ;λτ )− ϵ∥22

]
, (13)

where w is a choice of weighting and λτ represents the log-SNR at noise level τ . We estimate this
value with Monte Carlo draws of timestep τ and noise ϵ:

ℓwθ (τ, ϵ) =
1

2
w(λτ ) ·

(
−dλ

dτ

)
· ∥ϵ̂θ(aτt ;λτ )− ϵ∥22. (14)
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Algorithm 1 Flow Policy Optimization (FPO)

Require: Policy parameters θ, value function parameters ϕ, clip parameter ϵ, MC samples Nmc
1: while not converged do
2: Collect trajectories using any flow model sampler and compute advantages Ât

3: For each action, store Nmc timestep-noise pairs {(τi, ϵi)} and compute ℓθ(τi, ϵi)
4: θold ← θ
5: for each optimization epoch do
6: Sample mini-batch from collected trajectories
7: for each state-action pair (ot, at) and corresponding MC samples {(τi, ϵi)} do
8: Compute ℓθ(τi, ϵi) using stored (τi, ϵi)

9: r̂θ ← exp
(
− 1

Nmc

∑Nmc
i=1(ℓθ(τi, ϵi)− ℓθold(τi, ϵi))

)
10: LFPO(θ)← min(r̂θÂt, clip(r̂θ, 1± ϵ)Ât)
11: end for
12: θ ← Optimizer(θ,∇θ

∑
LFPO(θ))

13: end for
14: Update value function parameters ϕ like standard PPO
15: end while

The choice of weighting w incorporates the conditional flow matching loss and standard diffusion
loss as specific cases of a more general family Lw

θ (at).

We focus here on the constant weight case w(λτ ) = 1 (diffusion schedule), which yields the sim-
plest theoretical connection. Similar results hold for many popular schedules, including optimal
transport (Lipman et al., 2023) and variance preserving schedules. Please see the supplementary
material for details.

For the diffusion schedule, Kingma & Gao (2023) proves that:
Lw
θ (at) = −ELBOθ(at) + c, (15)

where c is a constant w.r.t θ. Geometrically, minimizing Lw
θ (at) points the flow more toward at.

MinimizingLw
θ also maximizes the ELBO (Eq. 10) and thus the likelihood of at, so flowing toward a

specific action makes it more likely. This intuition aligns naturally with the policy gradient objective:
we want to increase the probability of high-advantage actions. By redirecting flow toward such
actions (i.e., minimizing their diffusion loss), we make them more likely under the learned policy.

Using this relationship, we express the FPO ratio (Eq. 11) in terms of the flow matching objective:

rFPO
θ =

exp(ELBOθ(at|ot))
exp(ELBOθold(at|ot))

= exp(Lw
θold

(at)− Lw
θ (at)), (16)

where Lw
θ , as per Equation 7, can be estimated by averaging over Nmc draws of (τ , ϵ). We find the

sample count Nmc to be a useful hyperparameter for controlling learning efficiency. This estimator
recovers the exact FPO ratio in the limit, although we use only a few draws in practice.

One possible concern with smaller Nmc values is bias. A ratio estimated from only one (τ , ϵ) pair,

r̂FPO
θ (τ, ϵ) = exp(ℓwθold

(τ, ϵ)− ℓwθ (τ, ϵ)), (17)
is in expectation only an upper-bound of the true ratio. This can be shown by Jensen’s inequality:

Eτ,ϵ[r̂
FPO
θ (τ, ϵ)] ≥ rFPO

θ . (18)
To understand the upward bias, we can use the log-derivative trick to decompose the FPO gradient:

∇θ r̂
FPO
θ (τ, ϵ) = −r̂FPO

θ (τ, ϵ)∇θℓ
w
θ (τ, ϵ). (19)

Since the gradient operator commutes with expectation, the gradient term on the right side is unbi-
ased:

Eτ,ϵ[−∇θℓ
w
θ (τ, ϵ)] = −∇θLw

θ (at) = ∇θELBOθ(at). (20)
In other words, gradient estimates are directionally unbiased even with worst-case overestimation of
ratios. Our experiments are consistent with this result: while additional samples help, we observe
empirically in Section 4.2 that FPO can be trained to outperform Gaussian PPO even with Nmc = 1.
Algorithm 1 details FPO’s practical implementation using this mathematical framework.

5
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Learned Flow and Target Action Distribution at

Denoising steps
Goal Agent

Gridworld with 2 Goals Sampled Trajectories

start end

Figure 1: Grid World. (Left) 25×25 GridWorld with green goal cells. Each arrow shows a denoised
action sampled from the FPO-trained policy, conditioned on a different latent noise vector. (Center)
At the saddle-point state (⋆) shown on the left, we visualize three denoising steps τ as the initial
Gaussian gradually transforms into the target distribution through the learned flow, illustrated by the
deformation of the coordinate grid. (Right) Sampled trajectories from the same starting states reach
different goals, illustrating the multimodal behavior captured by FPO.

3.5 DENOISING MDP COMPARISON

Existing algorithms (Black et al., 2023; Ren et al., 2024; Liu et al., 2025) for on-policy reinforce-
ment learning with diffusion models reformulate the denoising process itself as a Markov Decision
Process (MDP). These approaches bypass flow model likelihoods by instead treating every step in
the sampling chain as its own action, each parameterized as a Gaussian policy step. This has a few
limitations that FPO addresses.

First, denoising MDPs multiply the horizon length by the number of denoising steps (typically
10-50), which increases the difficulty of credit assignment. Second, these MDPs do not consider
the initial noise sample during likelihood computation. Instead, these noise values are treated as
observations from the environment—this significantly increases the dimensionality of the learning
problem. Finally, denoising MDP methods are limited to stochastic sampling procedures by con-
struction. Meanwhile, FPO inherits the flexibility of all flow/diffusion sampler choices, including
fast deterministic and higher-order samplers. Perhaps most importantly, FPO is simpler to imple-
ment because it does not require a custom sampler or the notion of extra environment steps.

4 EXPERIMENTS

We assess FPO’s effectiveness by evaluating it in multiple domains. Our experiments include: (1) an
illustrative GridWorld environment using Gymnasium (Brockman et al., 2016; Towers et al., 2024),
(2) continuous control tasks with MuJoCo Playground (Zakka et al., 2025; Todorov et al., 2012),
and (3) physics-based humanoid control in Isaac Gym (Makoviychuk et al., 2021). These tasks vary
in dimensionality, reward sparsity, horizon length, and simulation environments.

4.1 GRIDWORLD

We first test FPO on a 25×25 GridWorld environment designed to probe the policy’s ability to
capture multimodal action distributions. As shown in Figure 1 left, the environment consists of two
high reward regions located as the top and bottom of the map (green cells). The reward is sparse:
agents receive a single reward upon reaching a goal or a penalty, with no intermediate rewards. This
setup creates saddle points where multiple distinct actions can lead to equally successful outcomes,
offering a natural opportunity to model diverse behaviors.

We train a diffusion policy from scratch using FPO by modifying a standard implementation (Yu,
2020) of PPO. The policy is parameterized as a two-layer MLP modeling p(at | s, aτt ), where
at ∈ R2 is the action, s ∈ R2 is the grid state, and aτt ∈ R2 is the latent noise vector at noise level
τ , initialized from N (0, I) at τ = 0. FPO consistently maximizes the return in this environment.
The arrows in Figure 1 left shows denoised actions at each grid location, computed by conditioning
on a random aτt ∼ N (0, I) and running 10 steps of Euler integration. In Figure 1 center, we probe
the learned policy by visualizing the flow over its denoising steps at the saddle point illustrated by
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Figure 2: Comparison between FPO and Gaussian PPO (Schulman et al., 2017) on DM Control
Suite tasks. Results show evaluation reward mean and standard error (y-axis) over 60M environment
steps (x-axis). We run 5 seeds for each task; the curve with the highest terminal evaluation reward
is bolded.
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Figure 3: Comparison between FPO and DPPO (Ren et al., 2024) on DM Control Suite tasks.
Results show evaluation reward mean and standard error (y-axis) over 60M environment steps (x-
axis). We run 5 seeds for each task; the curve with the highest terminal evaluation reward is bolded.

the red star where either going up or down leads to the optimal reward. The initial Gaussian evolves
into a bimodal distribution, demonstrating that the policy captures the multi-modality of the solution
at this location. Figure 1 right shows multiple trajectories sampled from the policy, initialized from
various fixed starting positions. The agent exhibits multimodal behavior, with trajectories from the
same starting state reaching different goals. Even when heading toward the same goal, the paths
vary significantly, reflecting the policy’s ability to model diverse action sequences.

We also train a Gaussian policy using PPO, which successfully reaches the goal regions. Compared
to FPO, it exhibits more deterministic behavior, consistently favoring the nearest goal with less
variation in trajectory patterns. Please see the supplemental material for more details.

4.2 MUJOCO PLAYGROUND

Next, we evaluate FPO for continuous control using MuJoCo Playground (Zakka et al., 2025). We
compare three policy learning algorithms: (i) a Gaussian policy trained using PPO, (ii) a diffusion
policy trained using FPO, and (iii) a diffusion policy trained using DPPO (Ren et al., 2024). We eval-
uate these algorithms on 5 seeds for each of 10 environments adapted from the DeepMind Control
Suite (Tassa et al., 2018; Tunyasuvunakool et al., 2020). Results are reported in Figures 2 and 3.
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Methods Goal conditioning Success rate (↑) Alive duration (↑) MPJPE (↓)
Gaussian PPO All joints 98.7% 200.46 31.62
FPO All joints 96.4% 198.00 41.98

Gaussian PPO Root + Hands 46.5% 142.50 97.65
FPO Root + Hands 70.6% 171.32 62.91

Gaussian PPO Root 29.8% 114.06 123.70
FPO Root 54.3% 152.90 73.55

Table 2: Humanoid Control Quantitative Metrics. We compare FPO with Gaussian PPO with
different conditioning goals, and report the success rate, alive duration, and MPJPE averaged over
all motion sequences.
Policy implementations. For the Gaussian policy baseline, we run the Brax (Freeman et al., 2021)-
based implementation used by MuJoCo Playground (Zakka et al., 2025)’s PPO training scripts. We
also use Brax PPO as a starting point for implementing both FPO and DPPO. Following Section 3.2,
only small changes are required for FPO: noisy action and timestep inputs are included as input to
the policy network, Gaussian sampling is replaced with flow sampling, and the PPO loss’s likelihood
ratio is replaced with the FPO ratio approximation. For DPPO, we make the same policy network
modification, but apply stochastic sampling (Liu et al., 2025) during rollouts. We also augment each
action in the experience buffer with the exact sampling path that was taken to reach it. Following
the two-layer MDP formulation in DPPO (Ren et al., 2024), we then replace intractable action
likelihoods with noise-conditioned sampling path likelihoods.

Hyperparameters. We match hyperparameters in Gaussian PPO, FPO, and DPPO training when-
ever possible: following the provided configurations in Playground (Zakka et al., 2025), all exper-
iments use ADAM (Kingma, 2014), 60M total environment steps, batch size 1024, and 16 updates
per batch. For FPO and DPPO, we use 10 sampling steps, set learning rates to 3e-4, and swept
clipping epsilon εclip ∈ {0.01, 0.05, 0.1, 0.2, 0.3}. For DPPO, we perturb each denoising step with
Gaussian noise with standard deviation σt, which we sweep ∈ {0.01, 0.05, 0.1}. We found that
εclip = 0.05 produces the best FPO results and εclip = 0.2, σt = 0.05 produced the best DPPO re-
sults; we use these values for all experiments. For fairness, we also tuned learning rates and clipping
epsilons for Gaussian PPO. We provide more details about hyperparameters and baseline tuning in
the appendix.

Method Reward

Gaussian PPO 667.8±66.0
Gaussian PPO† 577.2±74.4
DPPO 652.5±83.7
FPO‡ 759.3±45.3
FPO, 1 (τ, ϵ) 691.6±50.3
FPO, 4 (τ, ϵ) 731.2±58.2
FPO, u-MSE 664.6±48.5
FPO, εclip=0.1 623.3±76.3
FPO, εclip=0.2 526.4±76.8

Table 1: FPO variant compar-
ison. We report averages and
standard errors across MuJoCo
tasks. †Using default hyperparam-
eters from MuJoCo Playground.
‡FPO results use 8 (τ, ϵ) pairs, ϵ-
MSE, εclip = 0.05.

Results. We observe in Figures 2 and 3 that FPO-optimized
policies outperform both Gaussian PPO and DPPO, achieving
higher rewards on 8 of 10 Playground tasks.

Analysis. In Table 1, we present average evaluation rewards
for baselines, FPO, and several variations of FPO. We observe:
(1) (τ, ϵ) sampling is important. Decreasing the number of
sampled pairs generally decreases evaluation rewards. More
samples can improve learning without requiring more expen-
sive environment steps. (2) ϵ-CFM is preferable over u-CFM
in Playground. ϵ-CFM refers to computing conditional flow
matching losses by first converting velocity estimates to ϵ noise
values; u-CFM refers to CFM directly on velocity estimates.
In Playground, we found that the former produces higher av-
erage rewards. We hypothesize that this is because ϵ scale is
invariant to action scale, which results in better generalization
for εclip choices. For fairness, we also performed learning rate
and clipping ratio sweeps for the u-MSE ablation. (3) Clip-
ping. Like Gaussian PPO, the choice of εclip in FPO signifi-
cantly impacts performance.

4.3 HUMANOID CONTROL

Physics-aware humanoid control is higher-dimensional than standard MuJoCo benchmarks, making
it a stringent test of FPO’s capability. We therefore train a humanoid policy to track motion-capture
(MoCap) trajectories in the PHC setting (Luo et al., 2023a) . This experiment follows the goal-
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(a) Episode return along training. (b) Root+hand conditioning. (c) Rough terrain locomotion.

Figure 4: Physics-based Humanoid Control. (a) The curves show that FPO performance is close
to that of Gaussian-PPO when conditioning on all joints and surpasses it when goals are reduced to
the root or root+hands, indicating stronger robustness to sparse conditioning. (b) In the root+hands
goal setting, FPO (blue) tracks the reference motion (grey) while Gaussian-PPO (orange) falls. (c)
Trained with terrain randomization, FPO walks stably across procedurally generated rough ground.

conditioned imitation-learning paradigm pioneered by DeepMimic (Peng et al., 2018), in which
simulated characters learn to reproduce reference motions. Sparse goals are significantly more chal-
lenging, requiring the policy to fill in the missing joint specification in a physically plausible manner.

Implementation details. Our simulated agent is a SMPL-based humanoid with 24 actuated joints,
each with six degrees of freedom. The policy receives both proprioceptive observations and goal
information computed from the motion-capture reference. A single policy is trained to track
AMASS (Mahmood et al., 2019) motions following PHC (Luo et al., 2023a). We use the root
height, joint positions, rotations, velocity, and angular velocity in a local coordinate frame as the
robot state. For goal conditioning, we compute the difference between the tracking joint informa-
tion (positions, rotations, velocity, and angular velocity) and the current robot’s joint information,
as well as the tracking joint locations and rotations. We explore both full conditioning, i.e., condi-
tioning on all joint targets, and under conditioning, i.e., conditioning only on the root or the root and
hands targets. Note that the same imitation reward based on all joints is used for both conditioning
experiments. We adopt the per-joint tracking reward from DeepMimic (Peng et al., 2018).

Evaluation. For evaluation, we compute the success rate, considering an imitation unsuccessful if
the average distance between the body joints and the reference motion exceeds 0.5 meters at any
point. We also report the average duration the agent stays alive till it completes the tracking or falls.
Finally, we compute the global mean per-joint position error (MPJPE) on the conditioned goals.

Results. Figure 4a shows that we successfully train FPO from scratch on this high-dimensional con-
trol task. With full joint conditioning, FPO performance is close to Gaussian PPO. However, when
the model is under-conditioned—conditioned only on the root or the root and hands—FPO outper-
forms Gaussian PPO, highlighting the advantage of flow-based policies. While prior methods have
achieved sparse-goal control with Gaussian policies, they first train a teacher policy that conditions
on full joint reference and then distill the knowledge to sparse conditioned policies (Tessler et al.,
2024; Li et al., 2025) or train a separate encoder observing sparse references (Luo et al., 2023b;
2024), highlighting the challenging nature of this problem setup.

Figure 4b visualizes the behaviors in the root+hands setting; FPO tracks the target closely, whereas
the Gaussian policy drifts. Table 2 quantifies these trends, with FPO achieving higher success rates in
the under-conditioned scenarios. Finally, as illustrated in Fig. 4c, FPO trained with terrain random-
ization enables the humanoid to traverse rough terrain, showing potential for sim-to-real transfer.
Please see the supplemental for training hyperparameter details.

5 DISCUSSION

We introduce Flow Policy Optimization (FPO), a simple and intuitive algorithm for training flow-
based generative models using policy gradients. We demonstrate FPO across a range of tasks where
it shows promising results. Looking ahead, exciting future directions include investigating FPO on
real robotic systems to test its sim-to-real capabilities. Another exciting direction is fine-tuning large
pretrained diffusion policies (e.g., vision–language–action models) with FPO, and exploring how to
incorporate one-step flow methods such as mean-flow Geng et al. (2025) for improved efficiency.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. International Conference on Learning Representations (ICLR), 2024.

Arthur Allshire, Hongsuk Choi, Junyi Zhang, David McAllister, Anthony Zhang, Chung Min Kim,
Trevor Darrell, Pieter Abbeel, Jitendra Malik, and Angjoo Kanazawa. Visual imitation enables
contextual humanoid control. arXiv preprint arXiv:2505.03729, 2025.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-
language-action flow model for general robot control, 2024. URL https://arxiv.org/
abs/2410.24164.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-orientation. Confer-
ence on Robot Learning, 2021.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024a.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024b.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023. URL https://arxiv.org/abs/
1706.03741.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai

10

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pp. 1329–1338. PMLR, 2016.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://arxiv.
org/abs/2207.12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
definition video generation with diffusion models, 2022a. URL https://arxiv.org/abs/
2210.02303.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022b.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models, 2022c. URL https://arxiv.org/abs/2204.03458.
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NVIDIA, :, Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding,
Linxi ”Jim” Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang,
Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu,
Edith Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed,
You Liang Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen
Xu, Zhenjia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng,
and Yuke Zhu. Gr00t n1: An open foundation model for generalist humanoid robots, 2025. URL
https://arxiv.org/abs/2503.14734.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 2022.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1–14, 2018.

Jan Peters and Stefan Schaal. Natural actor–critic. Neurocomputing, 71(7–9):1180–1190, 2008.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-
tion models. arXiv preprint arXiv:2410.13720, 2024.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching. arXiv preprint arXiv:2312.11752, 2023.

Haozhi Qi, Brent Yi, Sudharshan Suresh, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra
Malik. General in-hand object rotation with vision and touch. In Conference on Robot Learning,
pp. 2549–2564. PMLR, 2023.

Haozhi Qi, Brent Yi, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra Malik. From simple to
complex skills: The case of in-hand object reorientation. arXiv preprint arXiv:2501.05439, 2025.
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A.1 APPENDIX

In this supplementary material, we discuss the deferred proofs of technical results, elaborate on the
details of our experiments, and present additional visual results for the grid world, humanoid control,
and present a text-to-image diffusion model finetuning experiment.

A.2 FPO DERIVATION

The mathematical details presented in this section provide expanded derivations and additional con-
text for the theoretical results outlined in Section 3 of the main text. Specifically, we elaborate on the
connection between the conditional flow matching objective and the evidence lower bound (ELBO)
first mentioned in Section 3.4, and provide complete derivations for the FPO ratio introduced in
Section 3.3. These details are included for completeness and to situate our work within the theo-
retical framework established by Kingma et al. Kingma & Gao (2023), but are not necessary for
understanding the core FPO algorithm or implementing it in practice.

First, we detail the different popular loss weightings used when training flow matching models laid
out by Kingma et al. Kingma & Gao (2023). These weightings, denoted as w(λt), determine how
losses at different noise levels contribute to the overall objective and lead to different theoretical
interpretations of Flow Policy Optimization.

Then, we show the more general result, which is that FPO optimizes the advantage-weighted ex-
pected ELBO of the noise-perturbed data. Specifically, for any monotonic weighting function (in-
cluding Optimal Transport CFM schedules Lipman et al. (2023)), we can express the weighted loss
as:

Lw
θ (at) = −Epw(τ),q(aτ

t |at)[ELBOτ (a
τ
t )] + c1, (21)

where pw(τ) is the distribution over timesteps induced by the weighting function, and ELBOτ (a
τ
t )

is the evidence lower bound at noise level τ for the perturbed action aτt .

This means that FPO increases the likelihood of high-reward samples and the intermediate noisy
samples aτt from the sample path. By weighting this objective with advantages Âτ , we guide the
policy to direct probability flow toward action neighborhoods that produce higher reward.

For diffusion schedules with uniform weighting w(λτ ) = 1, we show a somewhat stronger theoret-
ical result. In this special case, the weighted loss directly corresponds to maximizing the ELBO of
clean actions:

−ELBO(at) =
1

2
Eτ∼U(0,1),ϵ∼N (0,I)

[
−dλ

dτ
· ∥ϵ̂θ(aτt ;λτ )− ϵ∥22

]
+ c2, (22)

which is a more direct connection to maximum likelihood estimation.

A.2.1 LOSS WEIGHTING CHOICES

Most popular instantiations of flow-based and diffusion models can be reparameterized in the
weighted loss scheme proposed by Kingma et al. Kingma & Gao (2023). This unified framework
expresses each version as an instance of a weighted denoising loss:

Lw
θ (x) =

1

2
Eτ∼U(0,1),ϵ∼N (0,I)[w(λτ ) · −

dλ

dτ
· ∥ϵ̂θ(aτt ;λτ )− ϵ∥22], (23)

where w(λτ ) is a time-dependent function that determines the relative importance of different noise
levels.

For those with a loss weight that varies monotonically with noise timestep τ , the aforementioned
relationship between the weighted loss and expected ELBO holds. Specifically, when w(λτ ) is
monotonically increasing with τ , Kingma et al. prove:

Lw
θ (at) = −Epw(τ),q(aτ

t |at)[ELBOτ (a
τ
t )] + c1, (24)

where c1 is a constant, and does not vary with model parameters.
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These monotonic weightings include several popular schedules: (1) standard diffusion with uniform
weighting w(λτ ) = 1 Ho et al. (2020), (2) optimal transport linear interpolation schedule Lipman
et al. (2023), which yields w(λτ ) = e−λ/2, and (3) velocity prediction (v-prediction) with cosine
schedule Salimans & Ho (2022), which also yields w(λτ ) = e−λ/2.

A.2.2 FLOW MATCHING AS EXPECTED ELBO OPTIMIZATION

To derive FPO in the more general flow matching case, we begin with the standard policy gradient
objective, but replace direct likelihood maximization with maximization of the ELBO for noise-
perturbed data:

max
θ

Eat∼πθ(at|ot)

[
Epw(τ),q(aτ

t |at)[ELBOτ (a
τ
t )] · Ât

]
, (25)

where t is temporal rollout time and τ is diffusion/flow noise timestep.

This formulation directly leverages the result from Kingma et al. Kingma & Gao (2023) that for
monotonic weightings, the weighted denoising loss equals the negative expected ELBO of noise-
perturbed data plus a constant:

Lw
θ (at) = −Epw(τ),q(aτ

t |at)[ELBOτ (a
τ
t )] + c1. (26)

To apply this within a trust region approach similar to PPO, we need to define a ratio between the
current and old policies. Since we are working with expected ELBOs, the appropriate ratio becomes:

rFPO(θ) =
exp(Epw(τ),q(aτ

t |at)[ELBOτ (a
τ
t )]θ)

exp(Epw(τ),q(aτ
t |at)[ELBOτ (aτt )]θ,old)

(27)

This ratio represents the relative likelihood of actions and their noisy versions under the current
policy compared to the old policy.

It is important to note that the constant c1 in the ELBO equivalence depends only on the noise
schedule endpoints λmin and λmax, the data distribution, and the forward process, but not on the
model parameter θ. This is critical for our derivation. It ensures that within a single trust region data
collection and training episode, this constant remains identical between the old policy θold and the
updated policy θ. Consequently, when forming the ratio rFPO(θ), these constants cancel out:

rFPO(θ) =
exp(Epw(τ),q(aτ

t |at)[ELBOτ (a
τ
t )]θ + c1)

exp(Epw(τ),q(aτ
t |at)[ELBOτ (aτt )]θ,old + c1)

=
exp(Epw(τ),q(aτ

t |at)[ELBOτ (a
τ
t )]θ)

exp(Epw(τ),q(aτ
t |at)[ELBOτ (aτt )]θ,old)

(28)

We estimate this ratio through Monte Carlo sampling of timesteps τ and noise ϵ:

r̂FPO(τ, ϵ) = exp(−ℓθ(τ, ϵ) + ℓθ,old(τ, ϵ)), (29)

where ℓθ(τ, ϵ) =
1
2 [−λ̇(τ)]∥ϵ̂θ(a

τ
t ;λτ )− ϵ∥2 is the reparameterized conditional flow matching loss

for a single draw of random variables ϵ and τ .

As discussed in the main text, r̂FPO overestimates the scale but unbiasedly estimates the direction of
the gradient. We can reduce or eliminate the scale bias by drawing more samples of τ and ϵ.

A.2.3 FPO WITH DIFFUSION SCHEDULES

For the special case of standard diffusion schedules with uniform weighting w(λt) = 1, we can
derive a stronger theoretical result connecting our optimization objective directly to the ELBO of
clean (non-noised) data.
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Goal

Gridworld with 2 Goals Sampled Trajectories

start end
noise = 0.0 noise = 0.1 noise = 0.5Gaussian Policy

Figure A.1: GridWorld with Gaussian Policy. Left) 25 × 25 GridWorld with green goal cells.
Each arrow shows an action predicted by the Gaussian policy. Right) Four rollouts under test-time
noise perturbations (σ = 0.0, 0.1, 0.5). While the Gaussian policy achieves the goal, its trajectories
lack diversity and hit the same goal consistently when given the same initialization point.

As shown by Kingma et al. Kingma & Gao (2023), when using uniform weighting, the weighted
loss directly corresponds to the negative ELBO of the clean data plus a constant:

−ELBO(at) =
1

2
Eτ∼U(0,1),ϵ∼N (0,I)

[
−dλ

dτ
· ∥ϵ̂θ(aτt ;λτ )− ϵ∥22

]
+ c2, (30)

where c2 is a different constant than c1 that also does not depend on model parameter θ.

This means that minimizing the unweighted loss (w(λτ ) = 1) is equivalent to maximizing the
ELBO of the clean action at, providing a more direct connection to traditional maximum likelihood
estimation.

In the context of FPO, we can therefore express our advantage-weighted objective as:

max
θ

Eat∼πθ(at|ot)

[
ELBOθ(at) · Ât

]
(31)

In this case, the objective direct increases a lower bound of the log-likelihood of clean actions at
weighted by their advantages, rather than over noise-perturbed actions.

The FPO ratio in this case becomes:

rFPO(θ) =
exp(ELBOθ(at))

exp(ELBOθ,old(at))
(32)

This specific case highlights the close relationship between FPO and traditional maximum likelihood
methods common for PPO Schulman et al. (2017). FPO still retains the computational advantages
of avoiding explicit likelihood computations.

As in the general case, our Monte Carlo estimator exhibits upward bias of gradient scale. We can
use the same PPO clipping mechanism to control the magnitude of parameter changes.

A.2.4 ADVANTAGE-WEIGHED FLOW MATCHING DISCUSSION

Advantage estimates are typically zero-centered to reduce variance in estimating the policy gradient.
Flow matching, however, learns probability flows which must be nonnegative by construction. Since
advantages function as loss weights in this context, they should remain positive for mathematical
consistency. A constant shift does not affect policy gradient optimization, which follows from the
same baseline-invariance property that justifies using advantages in the first place. We find that both
processed and unprocessed advantages work empirically.

A.3 GRIDWORLD

Figure A.1 shows results from the Gaussian policy on the same Grid World trained using PPO. While
the Gaussian policy can learn optimal behaviors, the trajectories resulting from it are not as diverse
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Learning Rate Clipping Epsilon (εclip)
0.3 0.2 0.1 0.05 0.03 0.01

0.0001 589.5 648.5 646.6 608.6 500.5 458.5
0.001 556.0 646.1 654.6 636.2 562.6 471.8
0.003 548.9 603.1 586.4 535.7 480.8 400.8
0.0003 567.0 631.8 667.8 650.9 570.4 492.0
0.0005 544.8 586.8 629.5 559.7 505.6 406.5

Table A.1: Hyperparameter sweep for Gaussian PPO on the subset of Playground tasks that
we evaluate on. All quantities are average rewards across 10 tasks, with 5 seeds per task. The
default configuration in Playground Zakka et al. (2025) (before tuning) uses learning rate 1e-3 and
clipping epsilon 0.3; the tuned variant we use for results in the main paper body sets learning rate to
3e-4 and clipping epsilon to 0.1.
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Figure A.2: Gaussian PPO baseline results before and after tuning. We tune clipping epsilon and
learning rate to maximize average performance across tasks. Results show evaluation reward mean
and standard error (y-axis) over 60M environment steps (x-axis). We run 5 seeds for each task; the
curve with the highest terminal evaluation reward is bolded.

as those of the diffusion policy. We visualize 4 samples from the Gaussian policy with 0.0, 0.1, and
0.5 random noise perturbations at test time (Fig. A.1, right). Note that despite being initialized at
the midpoint of the environment, all shown positions lead to a single goal mode, never both.

A.4 MUJOCO PLAYGROUND

Table A.2 shows hyperparameters used for PPO training in the MuJoCo Playground environment.
These are imported directly from the configurations provided by MuJoCo Playground Zakka et al.
(2025), but after sweeping hyperparameters to tune learning rate and clipping coefficients (Ta-
ble A.1). We visualize improvements from this sweep in Figure A.2. Our flow matching and
diffusion-based policies use the same hyperparameters, but adjust the clipping coefficient, turn off
the entropy coefficient, and for DPPO Ren et al. (2024), introduce a stochastic sampling variance to
account for the change in policy representation.

A.5 HUMANOID CONTROL

In Table A.3, we report the detailed hyperparameters that we used for training both the Gaussian
policy with PPO and the Diffusion policy with FPO in the humanoid control experiment. Note
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Hyperparameter Value
Discount factor (γ) 0.995 (most environments)

0.95 (BallInCup, FingerSpin)
GAE λ 0.95
Value loss coefficient 0.25
Entropy coefficient 0.01
Reward scaling 10.0
Normalize advantage True
Normalize observations True
Action repeat 1
Unroll length 30
Batch size 1024
Number of minibatches 32
Number of updates per batch 16
Number of environments 2048
Number of evaluations 10
Number of timesteps 60M
Policy network MLP (4 hidden layers, 32 units)
Value network MLP (5 hidden layers, 256 units)
Optimizer Adam

Table A.2: PPO hyperparameters imported from MuJoCo playground Zakka et al. (2025).

that we use the same set of hyperparameters for both policies. In our project webpage, we also
provide videos showing qualitative comparisons between the Gaussian policy and ours on tracking
an under-conditioned reference, and visual results of FPO on different terrains.

Hyperparameter Value Hyperparameter Value
Policy Settings

Hidden size 512 Solver step size 0.1
Action perturbation std 0.05 Target KL divergence None
Number of environments 4096 Normalize advantage True

Training Settings

Batch size 131072 Minibatch size 32768
Learning rate 0.0001 LR annealing False
LR decay rate 1.5e-4 LR decay floor 0.2
Update epochs 4 L2 regularization coef. 0.0
GAE lambda 0.2 Discount factor (γ) 0.98
Clipping coefficient 0.01 Value function coefficient 1.2
Clip value loss True Value loss clip coefficient 0.2
Max gradient norm 10.0 Entropy coefficient 0.0
Discriminator coefficient 5.0 Bound coefficient 10.0

Table A.3: Policy training hyperparameters for humanoid control.

A.6 IMAGE REWARD FINE-TUNING

We explore fine-tuning a pre-trained image diffusion model on a non-differentiable task using the
JPEG image compression gym proposed in DDPO (Black et al., 2023). We report this experiment as
a negative result for FPO, due to the difficulty of fine-tuning diffusion models on their own output.
Specifically, we find that repeatedly generating samples from a text-to-image diffusion model and
training on them is highly unstable, even with manually-specified uniform advantages. We believe
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Figure A.3: Image Generation at Different Training Steps. We generate images using Stable
Diffusion 1.5 finetuned with FPO as training progresses. We manually set all advantages to 1 to
eliminate the reward signal and investigate the dynamics of sampling from a text-to-image diffusion
model then training on the results in a loop. In the top row, we display images from a training run
using a classifier-free guidance (CFG) scale of 4. In the bottom row, we display images from a
training run using a CFG scale of 2. Low CFG scales tend to encourage bluriness while high CFG
scales encourage saturation and sharp geometric artifacts. Both diverge after a few hundred epochs
even with tuned hyperparameters.

that this is related to classifier-free guidance (CFG) Ho & Salimans (2022). CFG is necessary to
generate realistic images, however it is sensitive to hyperparameters, where too much or too little
guidance introduces artifacts such as blur or oversaturation that do not reflect the original training
data. Sometimes these artifacts are not visible to human eyes. These artifacts are further amplified
over successive iterations of RL epochs, ultimately dominating the training signal.

This phenomenon aligns with challenges previously identified in the literature on fine-tuning gener-
ative models on their own outputs (Shumailov et al., 2024; 2023; Alemohammad et al., 2024). To
illustrate this, we fine-tune Stable Diffusion with all advantages set to 1 to eliminate the reward sig-
nal. This is equivalent to fine-tuning on self-generation data in an online manner. We explore CFG
scales of 2 and 4 in Figure A.3. We find that both CFG scales induce a regression in quality over
time. Specifically, the CFG scale of 2 makes the generation more blurry, while the scale of 2 causes
the generated images to feature high saturation and geometry patterns. Both eventually diverge to
abstract geometric patterns.

A.7 LARGE LANGUAGE MODEL USE

We used Large Language Models (LLMs) to aid in polishing the writing of this paper. We also used
LLM-based web agents to help discover relevant related works. No LLMs were used to generate
original scientific content.
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