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Abstract
Masked diffusion large language models (dLLMs) are emerging as promising alter-1

natives to autoregressive LLMs, offering competitive performance while supporting2

unique generation capabilities such as inpainting. We explore how inpainting can3

inform RL algorithm design for dLLMs. Aligning LLMs with reinforcement4

learning faces an exploration challenge: sparse reward signals and sample waste5

when LLMs fail to discover correct solutions. While this inefficiency affects LLMs6

broadly, dLLMs offer a distinctive opportunity—their inpainting ability can guide7

exploration. We introduce IGPO (Inpainting Guided Policy Optimization), an RL8

framework that strategically injects partial ground-truth reasoning traces during on-9

line sampling. Unlike providing full solutions, inpainting steers exploration toward10

promising trajectory spaces while preserving self-generated reasoning, bridging11

supervised fine-tuning and reinforcement learning. We apply IGPO to group-based12

optimization methods such as GRPO, where exploration failures cause zero ad-13

vantages and gradients. IGPO restores meaningful gradients while improving14

sample efficiency. We also propose supervised fine-tuning on synthetically rewrit-15

ten concise traces that better align with dLLM generation patterns. With additional16

techniques including entropy-based filtering, our training recipe yields substan-17

tial gains across four mathematical benchmarks—GSM8K, Math500, AMC and18

Minerva—achieving new state-of-the-art results for full-attention masked dLLMs.19

(a) Masked dLLM Inpainting-Guided Sampling 
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to read 120 pages?"
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(b) IGPO Performance & All-Wrong Groups Reduction
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Figure 1: (a) Unlike autoregressive LLMs, diffusion LLMs can be conditioned on future reasoning
hints during generation through inpainting via bidirectional attention, enabling guided exploration
toward correct solutions. (b) Applying inpainting-guided exploration in policy optimization outper-
forms standard Group Relative Policy Optimization (GRPO) sampling and reduces all-wrong groups
occurrences. (c) Our full training recipe combining Length-Aligned supervised fine-tuning on concise
reasoning traces with IGPO achieves SoTA performance among full-attention masked dLLMs across
four mathematical reasoning benchmarks.
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1 Introduction20

Recent research has shown that masked diffusion large language models (dLLMs) (Austin et al.,21

2021; Lou et al., 2024; Shi et al., 2024) such as LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025)22

can achieve performance competitive with autoregressive LLMs of similar size. Their capabilities and23

performance can be further enhanced via RL post-training (Zhao et al., 2025; Gong et al., 2025b) and24

ability to flexibly include multimodal data (Li et al., 2025; Yang et al., 2025; You et al., 2025). Unlike25

autoregressive LLMs, which decode in a left-to-right manner, dLLMs iteratively unmask tokens in26

parallel. This brings potential for faster inference as shown in closed models like Mercury (Inception27

Labs et al., 2025) and Gemini Diffusion (DeepMind, 2025), along with a flexible inductive bias for28

operations such as inpainting, the ability to fill in missing content within existing text.29

In this work, we explore how inpainting can be leveraged to inform post-training algorithms for30

dLLMs. Recent work on post-training of dLLMs has adopted training approaches similar to autore-31

gressive LLMs, applying Reinforcement Learning with Verifiable Reward (RLVR) methods (Zhao32

et al., 2025; Yang et al., 2025; Gong et al., 2025b). However, a fundamental exploration challenge33

persists: for challenging tasks, policies struggle to discover correct solutions and binary rewards34

provide minimal learning signal when most generated solutions are incorrect. This leads to substantial35

sample waste and poor training efficiency, exacerbating the computational costs of online RL.36

The bidirectional generative structure of diffusion LLMs provides a unique mechanism to address this37

exploration challenge. Since dLLMs are trained through stochastic masking patterns, they possess38

inherent capability for accepting externally provided partial hints through inpainting. We leverage39

this ability to introduce IGPO (Inpainting Guided Policy Optimization), a novel RL framework that40

strategically guides exploration for dLLMs by injecting reasoning hints when answering difficult41

problems. Specifically, when the policy is unlikely to generate correct solutions, partial reasoning42

traces are injected into the generation region, and the dLLM is tasked with completing the remaining43

reasoning sequence and output final answer. The final answers are verified against ground truth, and44

only successful completions are used for downstream policy optimization.45

We demonstrate IGPO’s effectiveness in group-based policy optimization methods such as46

GRPO (Shao et al., 2024), which are particularly vulnerable to exploration failures: when a group’s47

responses are all incorrect, group-normalized advantage collapses to zero and resulting in zero gradi-48

ents. This occurs with alarming frequency in challenging domains. By reducing the prevalence of49

all-wrong groups, IGPO restores gradient signals and enables more effective RL. More broadly, IGPO50

can be viewed as a form of guided exploration that interpolates between supervised and RL paradigms.51

The injected tokens act as conditioning context that steers the policy’s action distribution toward52

high-reward regions. Unlike pure SFT, which might suffer from distribution shift between data and53

policy rollouts (Zhang et al., 2025), IGPO maintains on-policy generation for the non-injected tokens.54

Finally, we augment IGPO with techniques that improve learning stability and performance, including55

entropy-based gradient filtering for injected tokens, and conduct comprehensive experiments across56

math benchmarks. We evaluate each component of our approach through ablation studies. Our work57

makes the following key novel contributions:58

• We propose IGPO, the first work to utilize the unique inpainting capabilities of diffusion LLMs59

for reinforcement learning. By strategically injecting partial reasoning traces during exploration,60

IGPO alleviates the inefficiency of sparse verifiable rewards and mitigates the zero-advantage61

dilemma in group-based policy optimization methods, substantially reducing the proportion of62

all-wrong groups (by approximately 60% as shown in Fig 1 (b)) in our training.63

• We propose a Length-Aligned SFT for full-attention based dLLMs using synthetically rewritten,64

concise reasoning traces. This design better aligns SFT data length with RL sampling and evaluation65

length, avoids the limitations of verbose traces, and provides stronger initialization for RL.66

• Our full training recipe achieves substantial improvements on mathematical benchmarks, including67

+5.3% on GSM8K, +8.4% on Math500, +11.4% on AMC, and +4.0% on Minerva relative to68

the LLaDA-Instruct, achieving SoTA performance among full-attention based dLLMs.69

• We conduct a comprehensive ablation study that disentangles the mechanisms of IGPO. We show70

that partial inpainting consistently outperforms full ground-truth inpainting by staying closer to the71

policy distribution in online RL, and propose an entropy-based gradient filtering mechanism that72

stabilizes training dynamics.73
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2 Preliminaries74

2.1 Masked Diffusion Large Language Models75

Masked diffusion LLMs (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024; Lou76

et al., 2024) employ a forward diffusion (masking) process that progressively corrupts clean sequences77

x0 by introducing mask tokens. This process is indexed by continuous time t ∈ [0, 1]. At any timestep78

t ∈ (0, 1), the partially corrupted sequence xt is obtained by independently masking tokens so that79

each token remains unmasked with probability αt, where the schedule αt is strictly decreasing in80

t. At t = 1, the sequence is fully masked. Training specifies the forward process via αt and learns81

a bidirectional unmasking predictor fθ to recover the original tokens from xt. Each step samples82

t ∈ [0, 1), applies the forward masking to obtain xt ∼ qt|0(xt|x0), and optimizes a masked-token83

objective derived from the negative evidence lower bound (NELBO), which upper-bounds the data84

negative log-likelihood (NLL). For masked dLLMs this NELBO reduces to a weighted NLL with85

weights determined by transforms of αt (Sahoo et al., 2024, Eq. (10)). For example, LLaDA (Nie86

et al., 2025) uses a linear schedule αt = 1− t, leading to:87

−Et∼U [0,1), x0∼pdata, xt∼qt|0(xt|x0)

1
t

|xt|∑
k=1

1[xk
t = mask] log fθ(xk

0 | xt)

 , (1)

where |xt| is the sequence length and xk the k-th token. The loss is computed only on tokens masked88

at time t. For prompt-conditional generation, prompt tokens are kept unmasked while continuation89

tokens are initialized as mask. The model then simulates a reverse process pθ(xs | xt) over timesteps90

t > s, where fθ provides denoising predictions for masked positions. Throughout the reverse91

trajectory, already unmasked tokens are preserved and carried forward unchanged.92

2.2 Policy Optimization for Masked Diffusion Large Language Models93

Policy-gradient post-training is widely used for LLM alignment (Ouyang et al., 2022; Bai et al.,94

2022; Li et al., 2023; Ahmadian et al., 2024). GRPO (Shao et al., 2024; Guo et al., 2025; Team et al.,95

2025) is a value-free variant of PPO (Schulman et al., 2017) that uses group-wise, sequence-level96

advantages for G responses {oi}Gi=1 to a query q:97

Ai = r(oi) − 1
G

G∑
j=1

r(oj). (2)

The GRPO objective integrates ratio clipping and reverse-KL regularization:98

LGRPO(θ) = E q∼D
o1,...,oG∼πθold (·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

min
(
ρkiAi, clip

(
ρki , 1− ε, 1 + ε

)
Ai

)
− βDKL [πθ(·|q)∥πref(·|q)]

 , (3)

where ρki =
πθ(o

k
i |q,o

<k
i )

πθold (o
k
i |q,o

<k
i )

is the probability ratio, r(·) is a reward function, β > 0 is the KL regulariza-99

tion coefficient, ε > 0 is the clipping parameter, and πref is the reference policy. In autoregressive mod-100

els, the reverse-KL is tractable via the chain rule, log πAR(o | q) =
∑|o|

k=1 log πAR(o
k | q, o<k), but101

masked diffusion LLMs do not admit a left-to-right factorization because πθ arises from composing102

reverse denoising steps of the mask predictor. To make GRPO practical for masked diffusion policies,103

DiffuGRPO (Zhao et al., 2025) adopts a mean-field approximation that yields single-pass estimators104

for token-level ratios and the reverse-KL; we use these estimators throughout. We provide a detailed105

background discussion in Section B.106

3 Methods107

3.1 IGPO: Inpainting Guided Policy Optimization108

Zero-Advantage Dilemma. In the GRPO framework, when sampling G responses109

{o1, o2, . . . , oG} for a given prompt q, the advantage computation relies on reward variance across110

the group. However, when all responses receive identical rewards—either all correct or all incorrect111
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Inpainting-Guided Policy Optimization

Generation Area (All [Mask] Tokens)

Augmented RL 
Sampling Group 

✅  Non-zero advantages!

Response 1: r = 0

Green: Fixed chunks | Red: Inpainted Generations

Response 2: r = 0

Response 3 (õ₁) : r = 1
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Response 1: r = 0
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Ground Truth Reasoning Traces

Green: Selected chunks for inpainting

Inpainting with Ground Truth Chunks

Figure 2: Overview of IGPO: When all sampled responses yield identical incorrect rewards (zero-
advantage scenario), we perform hint-guided inpainting by generating additional responses using
ground truth reasoning chunks as injected hints. Ground truth traces y∗ are segmented into variable-
length chunks, and selected chunks are injected as fixed hints during generation while the model
generates the remaining tokens. We then replace a fraction of the original incorrect responses with
correct responses generated through inpainting, creating reward variance that enables non-zero
advantages for effective policy gradient updates.

—the advantages become zero: Ai = r(oi)− 1
G

∑G
j=1 r(oj) = 0. This zero-advantage scenario makes112

the policy gradient component degenerate. Specifically, the clipped surrogate objective collapses to113

zero regardless of whether the update lies in the clipped or unclipped region, since both terms contain114

Ai = 0. The policy gradient for this prompt q therefore becomes:115

1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

Ai ρ
k
i ∇θ log πθ(o

k
i | q) = 0 since Ai = 0 ∀i.

As a result, no meaningful policy update can be extracted from the reward signal, wasting compute116

sampling these responses. In this work, we specifically focus on mitigating the all-wrong case.117

Masked dLLM Generation and Inpainting. In full-attention masked dLLM generation, the118

model input at denoising step 0 is the concatenation [q; zmask], where q represents the prompt and119

zmask = [mask, mask, . . . , mask] denotes a fully masked completion sequence of predetermined120

length L. The generation process progressively unmasks these positions through iterative denoising121

until producing the final output.122

Hint injection modifies this formulation by fixing selected positions of zmask to ground-truth tokens.123

During RL training, we assume access to ground-truth reasoning trace y∗ = [y∗1 , y
∗
2 , . . . , y

∗
|y∗|] for124

every question q. For injection, we create a binary mask m ∈ {0, 1}L indicating which positions to125

inject as fixed hints, we construct the hint-injected initialization:126

zhint[i] =

{
y∗i if m[i] = 1 and i ≤ |y∗|,
mask otherwise.

(4)

The masked dLLM then performs bidirectional denoising on [q; zhint] through the inpainting process,127

leveraging both the prompt and injected hint tokens to generate coherent responses. The injected hint128

tokens remain fixed throughout the iterative denoising steps.129

Constructing Hint Patterns for Inpainting. To construct meaningful hint patterns for the inpaint-130

ing process, we segment the ground truth reasoning trace y∗ into variable-length contiguous chunks131

C = {c1, c2, . . . , cN}, where each chunk length |cj | is sampled from U [smin, smax]. We explicitly132

exclude the final answer tokens from chunking to prevent reward hacking behaviors where the model133

ignores reasoning and collapses. For a given hint injection ratio η ∈ [0, 1], we randomly select ⌊η ·N⌋134

chunks and set their corresponding positions in the binary mask m to 1 for hint injection.135
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Algorithm 1 IGPO: Inpainting-Guided Policy Optimization for Masked dLLMs

Require: Reference model πref, prompt distribution D, ground-truth reasoning traces {y∗}, number
of completions per prompt G, number of inner updates µ, hint injection ratio range [ηlow, ηhigh],
replacement fraction λ, entropy filter threshold τ , chunk size range [smin, smax]

1: Initialize πθ ← πref
2: while not converged do
3: πold ← πθ; sample prompt q∼D and responses o1:G∼πold(· |q); compute rewards r1:G
4: if all ri = 0 (zero-advantage case) then
5: Segment ground-truth reasoning y∗ into chunks {c1, . . . , cN} with |cj | ∼ U [smin, smax]
6: for i = 1, . . . , G do
7: Sample hint injection ratio η ∼ U [ηlow, ηhigh] and select ⌊ηN⌋ chunks from
{c1, . . . , cN} randomly

8: Inject selected chunk tokens as fixed hints at corresponding positions
9: Generate õi via inpainting: denoise only masked positions, keep hint tokens fixed

10: Evaluate rewards r(õi) and replace up to ⌊λG⌋ incorrect oi with correct õi
11: Compute advantages Ai on the updated response set
12: for n = 1, . . . , µ do
13: Estimate log πθ, log πold, log πref; apply top-τ entropy filter on hint positions
14: Update πθ via LIGPO(θ) (Eq. 5)
15: return πθ

Elastic Inpainting-Triggered Sampling. With the above inpainting setup, we design IGPO (as in136

Algorithm 1) to be elastic: hint injection is only triggered when all sampled responses in a group137

yield incorrect rewards (the zero-advantage case), and when activated, both the hint injection ratio η138

and chunk sizes (U [smin, smax]) are randomized to provide diverse training signals. Concretely, when139

detecting that all sampled responses {o1, . . . , oG} for query q yield identical rewards r(oi) = 0, we140

generate an additional set of responses {õ1, . . . , õG} through the inpainting process. Each response141

õi is generated via inpainting with a distinct hint injection ratio ηi ∼ U [ηlow, ηhigh] to ensure diverse142

hint densities. Following inpainting generation, we evaluate the correctness of {õi} and only use the143

correct ones for replacement. Specifically, we replace K = min(|{õi : r(õi) = 1}|, ⌊λG⌋) of the144

original incorrect responses with correct responses generated through inpainting, where λ ∈ (0, 1)145

controls the replacement fraction.146

The complete IGPO objective modifies the GRPO formulation by incorporating the augmented147

sampling procedure:148

LIGPO(θ) = E q∼D
{o1,...,oG−K ,õ1,...,õK}∼IGPO-Sample(πθ,q,y∗)

[(
1

G

G∑
i=1

1

Li

Li∑
k=1

min
(
ρkiA

k
i , clip

(
ρki , 1− ε, 1 + ε

)
Ak

i

))
− βDKL [πθ(·|q)∥πref(·|q)]

]
,

(5)
where IGPO-Sample(πθ, q, y

∗) denotes the augmented sampling procedure that applies inpainting-149

based augmentation when zero-advantage scenarios are detected, producing the augmented RL150

sampling group {o1, . . . , oG−K , õ1, . . . , õK} containing (G−K) original responses and K verified151

correct inpainted responses {õi} after replacement. Li denotes the length of the i-th response (whether152

oi or õi). Crucially, only inpainted responses that pass correctness verification are included in the153

augmented group, satisfying r(õi) = 1. Advantages Ai are computed normally. We built IGPO with154

DiffuGRPO (Zhao et al., 2025)’s log probability estimation methods, where all completion tokens155

are masked during estimation and we remove the random masking applied to prompt tokens as done156

in DiffuGRPO. Since we use a small number of policy iterations (i.e. µ = 4), this alleviates the157

need for random prompt masking to reduce overfitting. Inspired by Zheng et al. (2025), we compute158

sequence-level importance-ratio through mean-field approximation for stability purposes.159

Entropy-based Gradient Filtering for Hint Tokens. When applying IGPO to zero-advantage160

scenarios, the responses generated through inpainting contain ground truth reasoning chunks that161

originate from a different distribution than the current policy πθ. This creates an off-policy learning162

scenario where gradient updates from ground truth tokens can conflict with the model’s current163

beliefs, particularly at positions where the model has high confidence (low entropy). To mitigate164

potential training instability from this distribution mismatch, we implement an entropy-based filtering165

approach that restricts learning to hint token positions where the model exhibits sufficient uncertainty,166
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as inspired by Huang et al. (2025). Specifically, for each hint token position (i.e., positions with167

injected ground-truth tokens) we compute the entropy. We then apply gradient updates only to168

the top τ percentile of hint token positions with highest entropy values. This selective learning169

strategy serves two purposes: high-entropy positions represent genuine decision boundaries where170

the model is naturally uncertain and thus more receptive to external guidance, and they correspond to171

flatter probability distributions that yield more stable gradient updates when incorporating ground172

truth information. This approach controls the policy shift by focusing learning on positions where173

the model is already open to change, rather than forcing updates against strong existing beliefs at174

low-entropy positions.175

3.2 Length-Aligned SFT via Concise Reasoning Trace Rewriting176

To further strengthen our training recipe, we seek better RL initialization via SFT but identified177

generation length mismatches across SFT, RL sampling, and evaluation phases. Full-attention masked178

dLLMs like LLaDA lack KV cache optimization (Wu et al., 2025) by defualt, requiring full-sequence179

attention at every denoising step, which dominates online RL training cost. As a result, we restrict RL180

rollouts to 256 tokens for faster convergence within a reduced exploration space, and evaluation setups181

in recent work (Zhao et al., 2025; Zhu et al., 2025; Nie et al., 2025) typically use 256–1024 tokens. In182

contrast, popular reasoning SFT corpora (e.g., OpenR1) contain verbose traces often exceeding 10k183

tokens, creating distribution mismatch across SFT, RL, and evaluation, and include repeated reflective184

behaviors unsuited for limited context. To resolve this, we systematically rewrite verbose traces into185

concise, structured forms that preserve logical flow while respecting dLLM computational limits.186

Using LLaMA-4-Maverick (Meta, 2025) with prompts detailed in Section I, we remove redundant187

reflections, condense multi-sentence elaborations into precise, mathematically rigorous statements,188

and retain essential reasoning. Examples of revision length distributions and before/after traces are189

in Sections D and I. Our Length-Aligned SFT trains LLaDA solely on rewritten traces, improving190

RL initialization by avoiding implicit length compression and focusing learning on reasoning quality191

within fixed compute budgets. Empirical results show clear gains over training on verbose traces, and192

we further observe that masked dLLMs benefit from extended training (e.g., 100 epochs) relative to193

AR LLMs, consistent with recent works (Ni and the team, 2025; Prabhudesai et al., 2025).194

4 Experiments195

To investigate how the inpainting capabilities of masked dLLMs can address the exploration chal-196

lenges in RL and how Length-Aligned SFT improves performance, we conduct comprehensive197

experiments to answer the following main research questions:198

(1) How effectively does our complete training approach (Length-aligned SFT with rewritten reason-199

ing traces followed by reinforcement learning with IGPO) improve the mathematical reasoning200

performance of LLaDA and reduce all-wrong groups occurrences? (§4.3)201

(2) How does partial hint injection in IGPO bridge on-policy generation with ground truth guidance,202

and how does this improve learning compared to full supervision? (§4.4)203

(3) How do key design choices—including entropy filtering thresholds and reasoning trace rewrit-204

ing—affect RL training dynamics and learning stability? (§4.4)205

4.1 Complete Training Recipe206

Our complete learning framework consists of a two-stage pipeline: Stage 1: Supervised Fine-Tuning207

with Rewritten Traces. We begin with Length-Aligned SFT on the LLaDA-8B-Instruct model using208

the OpenR1-Math-220K dataset’s default split (94k math problems), but with all reasoning traces209

rewritten (See Section D for length distribution before and after revision). This ensures consistency210

between training distribution and downstream RL/evaluation phases by aligning trace lengths. Stage211

2: Reinforcement Learning with IGPO. Following Length-aligned SFT, we apply IGPO to further212

enhance reasoning capabilities through strategic inpainting-guided policy optimization. We utilize the213

reasoning traces from the MetaMathQA dataset for the elastic inpainting process, creating effective214

guidance signals that fit within our computational constraints. Detailed training hyperparameters are215

provided in Section F.216
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Figure 3: RL training curves of IGPO versus normal GRPO sampling. (a) Starting from LLaDA-
8B-Instruct. (b) Starting from the length-aligned SFT checkpoint. IGPO exhibits superior and
more stable training performance under both initialization checkpoints compared to standard GRPO
sampling. Results are averaged over 3 random seeds across four mathematical reasoning benchmarks
(GSM8K, MATH500, AMC and Minerva Math), with standard errors shown as shaded regions.

4.2 Experimental Setup217

We conduct experiments using LLaDA-8B-Instruct as the base model with a sampling temperature of218

1.2 for RL online generation, where the temperature is selected based on exploration and exploitation219

analysis detailed in Appendix F.1. For reinforcement learning, we train on the MetaMathQA220

dataset (Yu et al., 2023), specifically using the “Answer Augmentation" split and combining questions221

from both GSM8K and MATH500. After deduplicating identical questions, we obtain 12,794 unique222

training examples. For supervised fine-tuning, we utilize the OpenR1-Math-220K dataset with223

rewritten reasoning traces as described in Section 3.2. We evaluate our approach on four mathematics224

benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021), AMC (LI et al.,225

2024) and Minerva Math (Lewkowycz et al., 2022). Experiments are conducted on 8×8 80GB H100226

GPUs. For UniGRPO (Yang et al., 2025) baseline, we reproduce based on their Algorithm 1. We227

provide detailed experiment hyperparameter setups in Section F and Section H.228

4.3 Main Results229

Table 1: Performance across multiple mathematics tasks. GSM8K, MATH500 and Minerva are
evaluated with pass@1 at temperature of 0.0, and AMC with avg@16 at temperature 0.1. Underlined
scores indicate the best within each initialization group. Parenthesized deltas typeset via (+) denote
absolute percentage-point improvements relative to the LLaDA-8B-Instruct baseline.

Model
GSM8K
(pass@1)

MATH500
(pass@1)

AMC
(avg@16)

Minerva
(pass@1) Average

Similar-sized autoregressive LLMs

LLaMA3-8B (AI@Meta, 2024) 79.6 30.0 – – –
Qwen2.5-7B (Team, 2024) 85.4 49.8 – – –

Prior masked dLLM baselines

Dream-7B (Ye et al., 2025) 77.2 39.6 – – –
d1-LLaDA (Zhao et al., 2025) 82.1 40.2 – – –
wd1 (Tang et al., 2025) 82.3 39.0 – – –
LLaDA-1.5 (Zhu et al., 2025) 83.3 42.6 13.6 8.8 37.1
LLaDA-Instruct (Nie et al., 2025) 81.5 (+0) 39.0 (+0) 14.5 (+0) 9.2 (+0) 36.0 (+0)

RL from LLaDA-Instruct

LLaDA-Instruct + UniGRPO (Yang et al., 2025) 82.2 (+0.7) 39.2 (+0.2) 15.0 (+0.5) 11.0 (+1.8) 36.9 (+0.9)

LLaDA-Instruct + DiffuGRPO (Zhao et al., 2025) 82.4 (+0.9) 40.2 (+1.2) 15.5 (+1.0) 10.3 (+1.1) 37.1 (+1.1)

LLaDA-Instruct + IGPO (ours) 83.1 (+1.6) 42.8 (+3.8) 17.5 (+3.0) 12.1 (+2.9) 38.9 (+2.9)

Length-aligned SFT on LLaDA-Instruct and RL on the SFT checkpoint

LLaDA-Instruct + Length-aligned SFT (ours) 83.6 (+2.1) 45.2 (+6.2) 22.3 (+7.8) 10.3 (+1.1) 40.4 (+4.4)

LLaDA-Instruct + Length-aligned SFT + IGPO (ours) 86.8 (+5.3) 47.4 (+8.4) 25.9 (+11.4) 13.2 (+4.0) 43.3 (+7.3)

As shown in Table 1, our training recipe demonstrates consistent improvements across all mathe-230

matical reasoning benchmarks. With Length-Aligned SFT on rewritten traces, LLaDA achieves an231

average improvement of 4.4% compared to the base LLaDA-8B-Instruct model. When applying232

IGPO on top of the SFT model, we observe additional improvements, resulting in a total average233

improvement of 7.3%. The complete two-stage pipeline yields cumulative improvements of 5.3% on234
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GSM8K, 8.4% on MATH500, 11.4% on AMC, and 4.0% on Minerva relative to the LLaDA-Instruct235

baseline. Notably, on the challenging AMC benchmark, our approach achieves 25.9% (avg@16). As236

shown in Figure 3, IGPO exhibits superior training dynamics compared to standard GRPO sampling237

when initializing from before or after SFT. IGPO effectively reduces the all-wrong group ratio by238

approximately 60%, as shown in Figure 1(b). Our final model (LLaDA + Length-Aligned SFT239

+ IGPO) outperforms all baseline approaches including the recent LLaDA-1.5 model across all240

evaluated benchmarks. Notably, even without SFT, applying IGPO directly on LLaDA achieves241

better performance than the previous LLaDA-1.5 and other RL methods for full-attention dLLMs,242

establishing a new state-of-the-art recipe for mathematical reasoning in masked diffusion language243

models.244

4.4 Analysis and Ablation Studies245

0 200 400 600 800 1000 1200 1400
RL Training Steps

0.445

0.450

0.455

0.460

0.465

0.470

Av
er

ag
e 

Ac
cu

ra
cy

 a
cr

os
s 3

 B
en

ch
m

ar
ks Hint Inject Ratio Comparison

Hint Inject Ratio = 1.0
Hint Inject Ratio ~ U[0.2, 0.6]
without Inpaint

Figure 4: Impact of hint injection ratio. across
3 datasets (GSM8K, MATH500 and AMC) and 3
seeds with standard error shown as shaded areas.
We compare partial hint injection (η ∼ U [0.2, 0.6])
versus full hint injection (η = 1.0). Partial hint
injection consistently outperforms full hint injec-
tion, demonstrating the benefits of self-generated
reasoning. Both hint-guided inpainting variants
outperform the baseline without any hint injection.

Self-generated inpainted traces provide bet-246

ter learning signal than ground truth traces.247

The results in Figure 4 show that partial hint in-248

jection achieves higher performance than full249

hint injection. When the hint injection ratio250

varies within the lower range, the model needs251

to generate self-rationalized inpainting traces252

(with an example shown in Section G), and only253

those that lead to correct solutions are added254

to the group for gradient updates. Through in-255

painting, the model attempts to coherently con-256

nect provided hint chunks with its own reason-257

ing steps. The inpainted generation produces258

a learning signal that bridges the gap between259

the model’s current capabilities and the target260

behavior. The self-generated portions reflect the261

model’s current reasoning patterns and are more262

“on-policy" while incorporating structural guid-263

ance from ground truth chunks, resulting in more264

effective policy optimization compared to pure265

supervised learning, reducing the distributional266

mismatch. This bridging of SFT and online267

RL through partial self-generation leads to268

more effective policy optimization.269

Entropy clipping prevents training instability from off-policy tokens. As shown in Figure 5a,270

we observe that learning from only the top 20% highest-entropy hint token positions (τ = 0.2)271

achieves the best performance and exhibits the most stable training dynamics. In contrast, learning272

from all hint token positions (τ = 1.0) or a large fraction (τ = 0.8) leads to more unstable training273

with performance fluctuations compared to lower values like 0.2. This empirical finding supports our274

motivation that restricting gradient updates to high-entropy positions prevents the destabilizing effects275

of large gradients on high-entropy positions. The validates the necessity of entropy-based filtering276

when incorporating ground truth traces from hint-guided inpainting into policy gradient training.277

Effect of reasoning trace rewriting for SFT and subsequent RL training. The results in278

Figure 5b illustrate two key findings. First, SFT on rewritten reasoning traces produces substantially279

stronger checkpoints than SFT on the original traces. Our rewritten traces eliminate verbose reflection280

behaviors and compress reasoning into concise trajectories (up to 1024 tokens), which are better281

aligned with LLaDA’s generation budget (256 tokens) and evaluation sequence length. This alignment282

improves SFT accuracy at step 0 relative to models trained on the longer 4096-token traces. Second,283

while RL training can partially compensate for weaker SFT checkpoints—the models trained on284

4096-token traces recover accuracy rapidly in early RL steps—starting from stronger rewritten SFT285

checkpoints leads to consistently higher final performance. Importantly, across both initialization286

settings, IGPO outperforms standard RL without inpainting. Additionally, IGPO preserves output287

diversity and stabilizes pass@5 performance throughout training, whereas standard GRPO exhibits a288

decline in pass@k metrics, indicative of reduced exploration and mode collapse.289
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Figure 5: (a) Impact of entropy clipping threshold on hint tokens. Performance comparison
across different entropy clipping thresholds τ applied to hint token positions in IGPO, where τ = 0.2
represents learning from only the top 20% highest-entropy hint token positions, while τ = 1.0
indicates learning from all hint token positions without filtering. (b) SFT and RL dynamics with
rewritten vs. original traces. We compare models fine-tuned on concise rewritten traces (max 1024
tokens) vs on original OpenR1-Math traces truncated at LLaDA’s 4096 context limit. RL is then
applied (GRPO or IGPO) to both models. Rewritten traces yield stronger SFT performance and
superior RL outcomes. IGPO consistently outperforms GRPO with stable pass@5 while GRPO
suffers from diversity collapse. Results are run on GSM8K with temperature 0.1 and length 256.

Elastic inpainting outperforms sequential SFT and GRPO We further validate the effectiveness290

of our elastic inpainting approach by comparing it against sequentially performing SFT on the RL291

dataset’s reasoning traces followed by standard GRPO (see Section E for details). This ablation292

confirms that IGPO’s elastic hint injection during zero-advantage scenarios is superior to uniformly293

applying SFT on concise reasoning traces across all prompts before applying GRPO. The uniform294

SFT approach can degrade initial performance due to distribution shift in reasoning patterns, whereas295

injecting partial hints allows dLLMs to inpaint longer, more “on-policy" reasoning traces.296

5 Related Work297

Diffusion Language Models: Recent advances in diffusion language models have progressed from298

continuous approaches mapping discrete text to continuous representations (Chen et al., 2022; Li299

et al., 2022; Gong et al., 2023) to scaled discrete diffusion models, with masked diffusion emerging300

as a prominent approach (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024;301

Nie et al., 2024). Notable developments include DiffuLLaMA (Gong et al., 2025a) and Dream (Ye302

et al., 2025) adapted from pretrained autoregressive LLMs, and LLaDA (Nie et al., 2025) as a masked303

diffusion LLM trained from scratch achieving comparable performance to autoregressive models.304

Commercial models like Mercury (Inception Labs et al., 2025) and Gemini Diffusion (DeepMind,305

2025) have demonstrated practical viability with significantly faster inference. Reinforcement306

Learning for Diffusion Language Models: Applying RL to diffusion LLMs faces unique challenges307

due to intractable likelihood estimation, which is required for policy optimization. Recent solutions308

include diffu-GRPO (Zhao et al., 2025) with mean-field approximation, MMaDA (Yang et al., 2025)309

and coupled-GRPO (Gong et al., 2025b) with improved masking strategies, LLaDA 1.5 (Zhu et al.,310

2025) addressing variance through preference optimization, wd1 (Tang et al., 2025) eliminating311

policy ratios via weighted likelihood objectives, and SDPO (Han et al., 2025) decomposing trajectory312

alignment into stepwise subproblems. More detailed related works are discussed in Section C.313

6 Conclusion314

We introduced IGPO, a reinforcement learning algorithm that leverages the inpainting capabilities315

of masked diffusion language models. By injecting ground-truth reasoning hints during denoising,316

IGPO steers the policy toward high-reward regions and alleviates the exploration bottleneck in317

RL. It resolves the zero-advantage dilemma by inducing reward variance that supports effective318

policy gradient updates when standard sampling yields uniform outcomes. To further strengthen319

RL initialization, we proposed Length-Aligned SFT, which reduces the length mismatch across SFT,320

RL, and evaluation stages. Combined with entropy-based gradient filtering, our approach achieves321

new state-of-the-art performance among full-attention masked dLLMs on multiple mathematical322

reasoning benchmarks. These results highlight a new paradigm for reinforcement learning in masked323

diffusion language models, showing how architectural properties can be systematically exploited to324

address critical optimization challenges.325
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A Use of Large Language Models Disclosure487

LLMs were used only for minor editing (grammar and phrasing) and to generate speech narration488

for the supplementary presentation video from an author-written script. All research ideas, meth-489

ods, experiments, analyses, and substantive writing were carried out by the authors without LLM490

assistance.491

B Preliminaries492

B.1 Masked Diffusion Large Language Models493

Masked diffusion LLMs (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024;494

Lou et al., 2024) employ a forward diffusion process that progressively corrupts token sequences x0495

through introduction of mask tokens. This corruption process is parameterized by time t ∈ [0, 1]. At496

any given timestep t, the resulting sequence xt contains partial masking, where each token maintains a497

probability αt of remaining unmasked. The noise schedule αt exhibits strict monotonic decrease with498

respect to t. Complete masking occurs at t = 1, where all tokens in x1 become masked. The training499

procedure for masked dLLMs follows a forward process through definition of αt and a bidirectional500

unmasking predictor fθ with learnable parameters. During each training step, we stochastically501

sample timestep t ∈ [0, 1) and apply token masking according to the designated forward process.502

Given these corrupted sequences, the training objective seeks to recover the original tokens. The503

standard optimization criterion employs the negative evidence lower bound (NELBO), which provides504

an upper bound for the negative log-likelihood (NLL) of the training data. For masked dLLMs,505

this NELBO reduces to a weighted NLL formulation, with weighting coefficients derived from506

transformations of αt (Sahoo et al., 2024, Equation (10)). For example, LLaDA (Nie et al., 2025)507

specifies the forward process through αt = 1− t, yielding the following NELBO formulation:508

−Et∼U [0,1), x0∼pdata, xt∼qt|0(xt|x0)

1
t

|xt|∑
k=1

1[xk
t = mask] log fθ(xk

0 | xt)

 , (6)

where |xt| denotes the sequence length of x, and xk represents the k-th token position. The loss509

computation is restricted to tokens masked at timestep t.510

During prompt conditional generation, the model starts with a sequence where prompt tokens remain511

unmasked and continuation tokens are initially masked, then progressively unmasks the continuation512

tokens through ancestral sampling from the reverse process pθ(xs | xt) for timesteps t > s, where513

the model fθ provides the denoising predictions for masked positions. The reverse process maintains514

the property that unmasked tokens are carried over unchanged throughout all denoising steps.515

B.2 Policy Optimization for Masked Diffusion Large Language Models516

Policy-gradient methods have gained widespread adoption for post-training LLMs (Ouyang et al.,517

2022; Bai et al., 2022; Li et al., 2023; Ahmadian et al., 2024). Online RL—particularly Group518

Relative Policy Optimization (GRPO)—has proved effective for improving language models (Shao519

et al., 2024; Guo et al., 2025; Team et al., 2025). GRPO (Shao et al., 2024) offers a computationally520

efficient alternative to PPO (Schulman et al., 2017) by using group-based statistics for advantage521

estimation, avoiding separate value-function training.522

The GRPO objective integrates clipping for stability and reverse KL regularization:523

LGRPO(θ) = E q∼D
o1,...,oG∼πθold (·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

min
(
ρkiAi, clip

(
ρki , 1− ε, 1 + ε

)
Ai

)
− βDKL [πθ(·|q)∥πref(·|q)]

 , (7)

where ρki =
πθ(o

k
i |q,o

<k
i )

πθold (o
k
i |q,o

<k
i )

is the likelihood ratio.524

For a query q, GRPO samples G responses {o1, . . . , oG} from the behavior policy πθold and assigns a525

single sequence-level advantage per response. Following Liu et al. (2025b), we use the unnormalized526

group-relative advantage Ai = r(oi) − 1
G

∑G
j=1 r(oj), where r is the reward function. This scalar527

Ai is shared by all tokens in oi when forming the tokenwise objective.528
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Applying Policy Gradient Methods to Diffusion LLMs Applying GRPO to dLLMs is nontriv-529

ial. The objective in Equation (7) requires (i) token-level probabilities for importance ratios and530

(ii) sequence-level probabilities for KL regularization. Autoregressive models provide per-token531

conditionals via sequential factorization, enabling one-pass sequence scoring by the chain rule:532

log πAR(o | q) =
∑|o|

k=1 log πAR(o
k | q, o<k). Accordingly, the reverse-KL decomposes as533

DKL

[
πθ(· | q)

∥∥πref(· | q)
]
= Eo∼πθ(·|q)

 |o|∑
k=1

log
πθ(o

k | q, o<k)

πref(ok | q, o<k)

 . (8)

In contrast, dLLMs do not admit a sequential factorization of π(o | q). dLLM’s generation invokes the534

unmasking predictor fθ across M denoising steps, making πθ a composition of M mappings. Exact535

tokenwise probabilities would require marginalization over denoising trajectories and maintaining536

(and differentiating through) full denoising trajectories, which is computationally prohibitive. To537

address this, recent work develops efficient approximations for policy optimization in masked538

diffusion LLMs. DiffuGRPO (Zhao et al., 2025) employs a mean-field approximation that yields539

single-pass estimates of both token-level and sequence-level terms, replacing explicit multi-step540

unrolling with a single-sample Monte Carlo estimate. While this introduces bias relative to the541

exact diffusion policy, it provides a practical framework for GRPO-style optimization on dLLMs.542

In our method, we adopt the mean-field estimators of Zhao et al. (2025) to compute the token-level543

importance ratios ρki and the reverse-KL term with one forward pass per policy.544

C Related Work545

C.1 Diffusion Language Models546

Diffusion language models was first explored through continuous approaches that map discrete text to547

continuous representations, including learned embeddings, sequence-to-sequence conditioning, and548

binary bit representations (Chen et al., 2022; Li et al., 2022; Gong et al., 2023). Recently, discrete549

diffusion language models have been scaled up significantly, with masked diffusion established as a550

specific instance of discrete diffusion (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou551

et al., 2024; Nie et al., 2024). Notable developments include DiffuLLaMA (Gong et al., 2025a) and552

Dream (Ye et al., 2025), both adapted from pretrained autoregressive LLMs. LLaDA (Nie et al.,553

2025) represents a breakthrough as a masked diffusion LLM trained from scratch using full-attention,554

achieving performance comparable to similarly-sized autoregressive models. These approaches are555

predominantly based on masked modeling. Unlike these full-attention dLLMs, Block Diffusion556

(Arriola et al., 2025) introduced a hybrid approach that models sequences block-by-block while557

applying diffusion within each block, enabling flexible length generation and improved inference558

efficiency through kv-caching. Recent commercial models like Mercury (Inception Labs et al., 2025)559

and Gemini Diffusion (DeepMind, 2025) have demonstrated the practical viability of diffusion-based560

code generation, achieving performance comparable to leading autoregressive models while offering561

significantly faster inference. More recent works have introduced caching and parallel decoding562

algorithms (Wu et al., 2025; Liu et al., 2025a; Ma et al., 2025; Israel et al., 2025; Sahoo et al., 2025;563

Hu et al., 2025) that significantly improve inference efficiency for masked diffusion language models.564

In this work, we focus on full-attention masked dLLMs.565

C.2 Reinforcement Learning for Diffusion Language Models566

Applying reinforcement learning to diffusion language models presents unique challenges compared567

to autoregressive models. The primary obstacle is the intractability of likelihood functions in568

diffusion models, which necessitates approximating response likelihoods for policy optimization. This569

requirement introduces computational overhead and potential bias, particularly when approximation570

errors occur in policy ratios used for importance sampling. d1 proposed diffu-GRPO (Zhao et al.,571

2025) which adopts an efficient approximation through mean-field approximation. MMaDA (Yang572

et al., 2025) and diffucoder’s coupled-GRPO (Gong et al., 2025b) further improve the masking573

strategy in log probabilities estimation to achieve better learning efficiency. LLaDA 1.5 (Zhu et al.,574

2025) tackles the variance issues in ELBO-based likelihood estimates through preference optimization.575

Recently, wd1 (Tang et al., 2025) addresses these challenges by reformulating policy optimization as576

a weighted likelihood objective that eliminates the need for policy ratios. SDPO (Han et al., 2025)577
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decomposes the diffusion trajectory alignment problem into stepwise subproblems that align the578

posterior at each diffusion step. Our inpainting method can also be applicable to some of the above579

online RL methods.580

Additionally, a closely related work in RL for AR LLMs is Prefix-RFT (Huang et al., 2025), which581

samples prefixes from demonstrations to guide online exploration, though this is limited to left-582

to-right sequential generation that does not leverage the bidirectional conditioning capabilities of583

diffusion LLMs.584

D Length-Aligned SFT: SFT trace revision length distribution comparison585

As illustrated in Figure 6, the original OpenR1-Math-220K dataset exhibits substantial token length586

diversity, with reasoning traces extending beyond 10,000 tokens while LLaDA’s maximum context587

length is only 4096 tokens. Naively applying SFT on this dataset would result in many truncated588

sequences, and even for samples within the 4096-token limit, significant distribution mismatch589

persists across training phases—we use 256 tokens for RL sampling and 512 tokens for evaluation.590

Our rewriting using LLaMA-4-Maverick successfully constrains all traces to under 1500 tokens,591

creating alignment between SFT training, RL sampling, and evaluation phases. Additionally, while592

reflective behavior has been found helpful for LLaDA in prior work (Zhao et al., 2025), the excessive593

repeated reflective patterns in the original dataset are unsuitable for its constrained generation space.594

The rewriting process eliminates this redundancy while preserving essential reasoning structure.
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Figure 6: Token Length Distribution of SFT Dataset Before and After Revision. Comparison of
token length distributions for the OpenR1-Math-220K dataset (94k math problems). After revision
using LLaMA-4-Maverick, token lengths are constrained to below 1500 tokens, eliminating the
extreme range of the original dataset where traces could exceed 20,000 tokens. This addresses the
generation length mismatch across SFT training, RL sampling (256 tokens), and evaluation (512
tokens) phases.
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E Ablation: SFT on hint traces then apply GRPO vs IGPO596

In our RL training setup, we assume access to ground-truth reasoning traces for every query in597

the training dataset. To investigate whether direct supervised fine-tuning on these traces provides598

comparable benefits to our elastic inpainting approach, we conduct an ablation study comparing599

two strategies: (1) applying SFT on the RL dataset’s reasoning traces followed by standard GRPO600

sampling, versus (2) directly applying IGPO with elastic hint injection only when all generated601

responses are incorrect.602

Specifically, we first fine-tune the LLaDA-8B-Instruct model on the MetaMath dataset’s reasoning603

traces for 20 epochs, then apply standard GRPO sampling. We compare this against our IGPO604

approach, which selectively injects partial reasoning hints from the same MetaMath dataset only605

when zero-advantage scenarios occur (i.e., when all sampled responses yield incorrect rewards).606

The results in Figure 7 demonstrate that IGPO consistently outperforms the SFT-first variant. Notably,607

after SFT on the MetaMath dataset for 20 epochs, the model’s initial performance drops significantly608

compared to the original LLaDA-8B-Instruct baseline. This degradation occurs because the MetaMath609

dataset contains very concise reasoning traces, many shorter than our 256-token generation length610

limit. Consequently, the model adopts overly concise reasoning patterns that prove insufficient for611

the challenging problems in our evaluation benchmarks (such as AMC and Minerva).612

While subsequent RL training can recover performance to some extent—as evidenced by the rapid613

improvement in early training steps—it ultimately fails to match the effectiveness of IGPO. This614

comparison highlights two key advantages of our approach: (1) the effectiveness of applying inpaint-615

ing guidance selectively only when the model struggles with specific queries, rather than forcing a616

uniform reasoning style through SFT, and (2) the critical importance of reducing all-wrong group617

occurrences, which successfully recovers gradient signals from otherwise degenerate zero-advantage618

scenarios.619
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Figure 7: Comparison of SFT-first approach versus direct IGPO application. The SFT-first strategy
involves fine-tuning on MetaMath reasoning traces for 20 epochs followed by standard GRPO, while
IGPO applies inpainting-guided exploration elastically only during zero-advantage scenarios. IGPO
demonstrates superior and more stable performance, avoiding the performance degradation caused by
overly concise reasoning patterns learned during SFT on short traces. Results are averaged across
four mathematical reasoning benchmarks with standard errors shown as shaded regions.
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F Experiments Hyperparameters620

Table 2: Training Hyperparameters
Parameter Value

SFT Training Parameters
Per Device Train Batch Size 4
Hardware Configuration 8×8 H100 GPUs
Gradient Accumulation Steps 8
Learning Rate 5× 10−6

LR Schedule Warmup-stable-decay
LR Warmup Steps 200
LR Min Value 1× 10−6

LR Decay Period Final 10% of steps
Number of Epochs 100

RL Sampling Parameters
RL Online Sampling Generation Length L 256
Diffusion Steps 128
Block Length 32
Sampling Temperature 1.2
Generations Per Group G 8

RL Training Parameters
Per Device Train Batch Size 8
Hardware Configuration 8×8 H100 GPUs
Gradient Accumulation Steps 1
Effective Batch Size 512
KL Beta β 0.01
Policy Gradient Inner Iterations per Generation µ 4
Learning Rate 5× 10−7

LR Schedule Linear decay to 0
LR Warmup Steps 50
LR Decay Period 10 epochs
Training Steps 1440
Clip Ratio Epsilon ε 0.2

IGPO Specific Parameters
Chunk Size |cj | ∼ U [smin, smax] U [5, 10]
Inpainting Ratio ηi ∼ U [ηlow, ηhigh] U [0.2, 0.6]
replacement fraction λ 0.5
Entropy-based Gradient Filtering for Inpainted Tokens τ 0.2
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F.1 Temperature Selection for RL Training621

Following the methodology established by Polaris An et al. (2025) for scaling reinforcement learning622

on advanced reasoning models, we conduct a systematic analysis to determine the optimal sampling623

temperature for our RL training process. We evaluate our model’s performance across different624

sampling temperatures by analyzing both Pass@5 and Average@5 scores on the MATH500 dataset.625

We also divide three temperature regions: low temperatures (≤ 0.8) yield high accuracy but reduced626

diversity in generated rollouts, restricting the model’s ability to explore diverse reasoning paths; high627

temperatures (≥ 1.6) preserve rollout diversity but significantly degrade accuracy due to increased628

noise in token generation; and the middle Controlled Exploration Zone (0.9-1.5) provides the optimal629

trade-off between maintaining reasonable accuracy and achieving sufficient diversity for effective RL630

training. Based on this analysis, we select temperature T = 1.2 to balance exploration with sample631

quality and provide sufficient diversity for RL training.632

Figure 8: Performance analysis across different sampling temperatures on MATH500. The plot shows
Pass@5 and Average@5 scores, revealing three distinct regions: low temperatures with high accuracy
but low diversity, high temperatures with preserved diversity but degraded accuracy, and the middle
region offering the desired trade-off. We select T = 1.2 for our RL training.
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G Inpainting Generation Qualitative Examples633

Blue text: Question Prompt Green text: Injected Hints Black text: Inpainted Generation

Problem: Circle C has radius 6 cm. How many square centimeters are in the area of the largest possible
inscribed triangle having one side as a diameter of circle C?

Inpainting Input At Denosing Step 0:

<|start_header_id|>user<|end_header_id|>
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
\ boxed{<Your answer>}
</answer>
Circle $C$ has radius 6 cm. How many square centimeters are in the area
of the largest possible inscribed triangle having one side as a diameter of
circle $C$?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

<|mdm_mask|><|mdm_mask|>...<|mdm_mask|>
Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12$ cm.
To <|mdm_mask|>...<|mdm_mask|> , we want the height to be as large
<|mdm_mask|>...<|mdm_mask|>
of the triangle is the distance from the midpoint of the base to the
circumference of the circle.
This is equal to the radius of the circle, <|mdm_mask|>...<|mdm_mask|>
<|mdm_mask|>...<|mdm_mask|> <|mdm_mask|>...<|mdm_mask|>
12 \ times <|mdm_mask|>...<|mdm_mask|>

Inpainted Generation After Denoising:

<reasoning>
We know to find the largest possible inscribed triangle in circle $C$, the base
of the triangle should be the diameter of the circle.
Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12$ cm.
To find the largest possible area of the triangle, we want the height to be
as large as possible.
The largest possible height of the triangle is the distance from the midpoint of
the base to the
circumference of the circle.
This is equal to the radius of the circle, which is 6 cm.
Therefore, the area of the largest possible inscribed triangle is given by the
formula for the area of a triangle, which is $$\ frac{1}{2} \ times \ textbase
\ times \ textheight = \ frac{1}{2} \ times 12 \ times 6 = 36$$ square centimeters.
</reasoning>
<answer>
\ boxed{36}
</answer>
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H Evaluation Hyperparameters634

We evaluate all models with a fixed decoding setup per benchmark. Unless otherwise noted, the same635

prompts and decoding hyperparameters are applied to both LLaDA-8B-Instruct and LLaDA-1.5.636

Table 3: Evaluation hyperparameters by benchmark.
Benchmark Temp. Block Len. Diffusion Steps Gen. Len. Metric

GSM8K 0.0 32 512 512 pass@1
MATH500 0.0 32 512 512 pass@1
AMC 0.5 128 512 512 avg@16
Minerva 0.0 128 512 512 pass@1

I Prompt for SFT traces revision637

Prompt for SFT traces revision sent to LLaMA 4 Maverick

Please rewrite the original solution to make it more concise and easier to understand without
changing the details. Please put the explanation in the solution between <reasoning> and
</reasoning> and put the final numerical answer between <answer> and </answer> in
boxed format. Please shorten or rewrite the rewritten solution to a random length between
100 and 1000 words while keeping sufficient details of the reasoning steps. Please do not
return anything other than the rewritten solution.
Example:
<reasoning>
xxx
</reasoning>

<answer>
\boxed{14}
</answer>
Original solution: {generations}.
Your response:
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SFT trace before rewritten by LLaMA 4 Maverick
Problem: Find all primes between 1 and 15.

<think>
Okay, so I need to find all the prime numbers between 1 and 15. Hmm, let’s start by
remembering what a prime number is. From what I recall, a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself. So, numbers like 2,
3, 5, etc., are primes because you can’t divide them evenly by any other number besides 1 and
the number itself. On the other hand, numbers like 4, 6, 8, and so on are not primes because
they can be divided by other numbers. For example, 4 can be divided by 2, so it’s not prime.
Alright, so the task is to list all primes between 1 and 15. Let me list out all numbers from 1
to 15 first to check them one by one. The numbers are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15.
Now, let’s go through each number and see if it’s prime. Starting with 1. Wait, I remember
that by definition, prime numbers are greater than 1. So 1 is not considered a prime. So we
can skip 1.
Next up is 2. Let’s check if 2 is prime. The divisors of 2 are 1 and 2. There are no other
divisors, so yes, 2 is a prime number.
Moving on to 3. Similarly, the divisors are 1 and 3. No other numbers divide into 3, so 3 is
prime.
Next is 4. Let’s check divisors. 4 divided by 2 is 2, which is an integer, so 4 is not prime. It
can be divided by 2, so it’s composite.
Then 5. The divisors of 5 are 1 and 5. No other numbers divide into 5, so 5 is prime.
6. Checking divisors. 6 divided by 2 is 3, so it’s divisible by 2 and 3. Not prime.
7. Divisors are 1 and 7. No other divisors, so 7 is prime.
8. Divided by 2 gives 4, so 8 is not prime.
9. Divided by 3 gives 3, so 9 is not prime (since 3 times 3 is 9).
10. Divided by 2 is 5, so 10 is not prime.
11. Let’s see, 11. Divided by 2? 11 divided by 2 is 5.5, not an integer. Divided by 3? 11
divided by 3 is approximately 3.666... Not an integer. Divided by 4? 2.75, nope. 5? 2.2, nope.
Since 11 is a prime number because none of these divisions result in integers, so 11 is prime.
12. Divided by 2 is 6, so composite.
13. Checking divisors. 13 divided by 2 is 6.5, 13 divided by 3 is about 4.333..., 4? 3.25, 5?
2.6, 6? 2.166... None of these are integers. So 13 is prime.
14. Divided by 2 is 7, so composite.
15. Divided by 3 is 5, so composite.
Let me recap the numbers between 1 and 15 and their primality:
1: Not prime
2: Prime
3: Prime
4: Not
5: Prime
6: Not
7: Prime
8: Not
9: Not
10: Not
11: Prime
12: Not
13: Prime
14: Not
15: Not
So compiling the primes from this list: 2, 3, 5, 7, 11, 13.
Wait a second, let me verify each one again just to be sure I didn’t make a mistake.
Starting with 2: Definitely prime. It’s the only even prime.
3: Prime, yes.
5: Prime, yes.
7: Prime. Correct.
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11: Let’s check again. 11 divided by 2 is not whole. 3? 3*3 is 9, 3*4 is 12. So no. 5? 5*2 is
10, 5*3 is 15. So 11 is prime.
13: Similarly, 13 divided by 2 is 6.5, 3 is 4.333, 5 is 2.6. So, prime.
Yes, those all check out. So primes between 1 and 15 are 2, 3, 5, 7, 11, and 13.
But hold on, sometimes people might make a mistake with 9. Wait, 9 is 3 times 3, so that’s
composite, which I had down. 15 is 3 times 5, composite. So all the non-primes are accounted
for.
Is there any number I might have missed? Let’s see. Let’s list all numbers again:
2, 3, 5, 7, 11, 13. Are there any others?
Well, 1 is excluded. 4,6,8,9,10,12,14,15 are composite. So no, those six numbers are all
primes between 1 and 15.
Wait, but the question says "between 1 and 15." Does that include 15? Hmm, the wording
is "between 1 and 15," which could be a bit ambiguous. But usually, when someone says
"between 1 and 15," they mean including both endpoints. However, since 15 is composite,
it’s excluded either way. So primes are 2,3,5,7,11,13.
Yes, that seems correct. I don’t think I made any mistakes here. Let me cross-verify with
another method, like the Sieve of Eratosthenes. The Sieve is a method where you list all
numbers and cross out multiples.
Starting with 2, cross out multiples: 4,6,8,10,12,14.
Then 3, cross out multiples: 6,9,12,15.
Then 5, cross out 10,15.
7, cross out 14.
11 and 13 are primes, and their multiples are beyond 15. So remaining numbers are
2,3,5,7,11,13. Which matches our previous list.
Therefore, the primes between 1 and 15 are 2,3,5,7,11,13.
**Final Answer**
The primes between 1 and 15 are 2 , 3 , 5 , 7 , 11 , and 13 .
</think>
To find all the prime numbers between 1 and 15, we start by recalling that a prime number is
a natural number greater than 1 that has no positive divisors other than 1 and itself. We then
check each number from 1 to 15:
- **1**: Not a prime number (by definition).
- **2**: Prime (divisors: 1, 2).
- **3**: Prime (divisors: 1, 3).
- **4**: Not prime (divisible by 2).
- **5**: Prime (divisors: 1, 5).
- **6**: Not prime (divisible by 2, 3).
- **7**: Prime (divisors: 1, 7).
- **8**: Not prime (divisible by 2).
- **9**: Not prime (divisible by 3).
- **10**: Not prime (divisible by 2, 5).
- **11**: Prime (divisors: 1, 11).
- **12**: Not prime (divisible by 2, 3, 4, 6).
- **13**: Prime (divisors: 1, 13).
- **14**: Not prime (divisible by 2, 7).
- **15**: Not prime (divisible by 3, 5).
Using the Sieve of Eratosthenes method to cross out non-prime numbers confirms the primes
listed above. Therefore, the prime numbers between 1 and 15 are:

2 , 3 , 5 , 7 , 11 , 13
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SFT trace after rewritten by LLaMA 4 Maverick
Problem: Find all primes between 1 and 15.

<reasoning>
To find all the prime numbers between 1 and 15, we recall that a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself.
We then check each number from 1 to 15 to determine if it is prime.
- **1**: Not a prime number (by definition).
- **2**: Prime (divisors: 1, 2).
- **3**: Prime (divisors: 1, 3).
- **4**: Not prime (divisible by 2).
- **5**: Prime (divisors: 1, 5).
- **6**: Not prime (divisible by 2, 3).
- **7**: Prime (divisors: 1, 7).
- **8**: Not prime (divisible by 2).
- **9**: Not prime (divisible by 3).
- **10**: Not prime (divisible by 2, 5).
- **11**: Prime (divisors: 1, 11).
- **12**: Not prime (divisible by 2, 3, 4, 6).
- **13**: Prime (divisors: 1, 13).
- **14**: Not prime (divisible by 2, 7).
- **15**: Not prime (divisible by 3, 5).
The Sieve of Eratosthenes method confirms the primes listed above.
</reasoning>
<answer>
2, 3, 5, 7, 11, 13

</answer>

24


	Introduction
	Preliminaries
	Masked Diffusion Large Language Models
	Policy Optimization for Masked Diffusion Large Language Models

	Methods
	IGPO: Inpainting Guided Policy Optimization
	Length-Aligned SFT via Concise Reasoning Trace Rewriting

	Experiments
	Complete Training Recipe
	Experimental Setup
	Main Results
	Analysis and Ablation Studies

	Related Work
	Conclusion
	Use of Large Language Models Disclosure
	Preliminaries
	Masked Diffusion Large Language Models
	Policy Optimization for Masked Diffusion Large Language Models

	Related Work
	Diffusion Language Models
	Reinforcement Learning for Diffusion Language Models

	Length-Aligned SFT: SFT trace revision length distribution comparison
	Ablation: SFT on hint traces then apply GRPO vs IGPO
	Experiments Hyperparameters
	Temperature Selection for RL Training

	Inpainting Generation Qualitative Examples
	Evaluation Hyperparameters
	Prompt for SFT traces revision

