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Abstract

Gliomas, a common type of malignant brain tumor, present significant surgical1

challenges due to their similarity to healthy tissue. Preoperative Magnetic Reso-2

nance Imaging (MRI) images are often ineffective during surgery due to factors3

such as brain shift, which alters the position of brain structures and tumors. This4

makes real-time intraoperative MRI (ioMRI) crucial, as it provides updated imaging5

that accounts for these shifts, ensuring more accurate tumor localization and safer6

resections. This paper presents a deep learning pipeline combining You Only Look7

Once Version 8 (YOLOv8) and Segment Anything Model Vision Transformer-base8

(SAM ViT-b) to enhance glioma detection and segmentation during ioMRI. Our9

model was trained using the Brain Tumor Segmentation 2021 (BraTS 2021) dataset,10

which includes standard magnetic resonance imaging (MRI) images, and noise-11

augmented MRI images that simulate ioMRI images. Noised MRI images are12

harder for a deep learning pipeline to segment, but they are more representative of13

surgical conditions. Achieving a Dice Similarity Coefficient (DICE) score of 0.79,14

our model performs comparably to state-of-the-art segmentation models tested15

on noiseless data. This performance demonstrates the model’s potential to assist16

surgeons in maximizing tumor resection and improving surgical outcomes.17

1 Introduction18

Gliomas are a common type of cancerous brain tumors that account for about 30% of all brain19

tumors and 80% of all malignant brain tumors [30]. Standard treatment modalities for gliomas20

include surgery, chemotherapy, and radiation therapy, with surgery often being the preferred option21

for most neurosurgeons [13]. The primary goal of surgery is to physically remove as much of the22

tumor as possible in a process known as resection [29], in which imaging technologies play a crucial23

role. Preoperative imaging, particularly MRI, is essential for diagnosing and planning the surgical24

approach.25

However, the intraoperative success of glioma resection is frequently challenged by several factors.26

Brain shift, a phenomenon that occurs when the brain changes position during surgery, significantly27

hinders a surgeon’s ability to accurately locate and resect the tumor [12, 17]. Another complication28

arises when gliomas infiltrate surrounding brain tissue, making it difficult to clearly delineate tumor29

margins[28, 27]. As a result, there runs a risk of leaving behind residual tumor cells, which can lead30

to the recurrence of the glioma or removing too much healthy tissue.31

To address these challenges, neurosurgeons have adopted real-time imaging techniques using intra-32

operative magnetic resonance imaging (ioMRI), which has emerged as the preferred imaging tool33

for brain tumor operations [21, 11, 14, 25, 26]. ioMRI allows surgeons to update their view of the34

brain and tumor as the surgery progresses, compensating for brain shift and improving the accuracy35

of tumor resection. The interpretation of ioMRI images can be time-consuming due to the potential36
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for human error, which can prolong surgery and increase the risk of complications[3]. Moreover, the37

process of identifying tumor margins on ioMRI images is manually conducted and subject to human38

error and variability [23].39

In this paper, we propos a pipeline that utilizes a YOLOv8 model for the detection of gliomas from40

ioMRI images, followed by the SAM model to refine the segmentation results, thereby ensuring41

higher accuracy and robustness. To evaluate the robustness of our model, we tested it on augmented42

MRI images that were simulated through the addition of Gaussian noise to MRI images. These43

augmented MRI images are similar to ioMRI images, which are generally noisier. Our model achieved44

a similar dice score to state-of-the-art tumor segmentation models and merits further exploration for45

use in improving glioma resection outcomes.46

2 Methodology47

2.1 Data Preprocessing48

Our model was trained on the open access BraTS 2021 dataset, which is a collection of clinically49

acquired MR images of annotated glioma tumors from consenting patiends[4, 18, 7, 5, 6]. As the50

YOLO model can only process colorized images, an image processing function was developed to51

colorize the grayscale images. This was conducted by assigning an RGB value to each pixel based52

off its intensity. Another function was developed to create bounding boxes from the ground truth53

segmentation of the images. Following this function, all images and masks were resized to 256x25654

pixels. Finally, the model was trained on both standard MR images and ioMR images that were55

synthesized through the addition of Gaussian noise. In order to accomplish a dataset of usable ioMR56

images, the signal-to-noise ratio (SNR) of the BraTS dataset was decreased to mimic ioMR images.57

ioMR images typically have an SNR of 25 under standard clinical conditions [10]. By decreasing the58

SNR and resolution, these modified images simulate the qualities of an ioMR image, demonstrated in59

Figure 1.60

Figure 1: Left: regular MRI image. Right: augmented MRI image with SNR of 10

2.2 Architecture61

The architecture of the model integrates two state-of-the-art algorithms, YOLO and SAM, to ef-62

fectively detect and segment glioma tumors. The processed images are first fed into the YOLO63

model. The YOLO model then identifies the tumor and places a bounding box around it, additionally64

returning the middle coordinate of the bounding box. Following this general tumor detection, SAM65

is then used to precisely outline and segment the tumor based on the coordinates provided by YOLO.66

Figure 2 details this process.67
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Figure 2: YOLO + SAM architecture; grayscale images are processed through an RGB assignment
function, then passed through YOLO in which a bounding box is located around the tumor, the
middle coordinate of the bounding box is passed into SAM, finally SAM produces a segmented brain
image.

A pre-trained YOLOv8 model was chosen for our application to quickly and accurately detect the68

approximate location of tumors. YOLOv8 outperforms contemporary models and previous versions69

of the YOLO algorithm in speed and accuracy [16], making it highly suitable for real-time object70

detection tasks. Once the MRI images of the brain are passed into the YOLO model, it processes71

these images through a convolutional neural network (CNN), which extracts essential features and72

predicts bounding boxes around potential tumors. The YOLO model outputs the center coordinates73

of the predicted bounding box, which is then passed into SAM as a prompt.74

The purpose of the SAM model in the pipeline is to refine the detection results provided by YOLOv8,75

ensuring that the tumors are accurately and precisely segmented for further analysis. The SAM ViT-b76

model was selected due to its lightweight nature, allowing for our model to be cost efficient while77

still maintaining high accuracy. Once the center coordinates of the YOLO bounding box are passed78

as a prompt into the SAM model, these inputs are used to perform precise segmentation, delineating79

the exact boundaries of the tumors. The SAM model then produces a detailed probability mask that80

delineates the tumor regions within the MRI images.81

2.3 Training82

The model was trained using the BraTS 2021 dataset using both standard MR images and the83

simulated ioMR images shown in Figure 1. In order to ensure consistency during training, middle84

slices from the axial plane (slices taken parallel to the X-axis) were extracted from the dataset by85

selecting the 78th slice of 155 from each image, thus converting the images from 3D to 2D. The86

middle slice is where the tumor is largest, making it the best choice for training. The specific MRI87

scan used was T1CE due to its tumor clarity within YOLO.88

The YOLO model did not require any training on the BraTS dataset as it was already pre-trained on89

it. To fine-tune SAM, the middle coordinates of every bounding box in the training set, produced by90

YOLO, are fed as an initial prompt. SAM was trained on this data over 10 epochs. After the SAM91

model was finished being trained on the regular BraTS images, YOLO and SAM were then trained92

on the augmented version, or simulated ioMRI version, of the BraTS images.93

3 Results94

The proposed YOLO + SAM model was evaluated on an augmented version of the BraTS 202195

dataset. The model was evaluated using a Dice Similarity Coefficient (DICE) score, which is the96

similarity between two sets of data, in this case, predicted segmentation and ground truth, on a 0 -197

range with 1 indicating perfect overlap. The numerical value is calculated by 2 times the overlap98

area divided by the total area. The model achieved a DICE score of 0.79 on the augmented BraTS99

testing set for enhancing tumor (ET), which indicates a strong agreement between the predicted and100

ground truth segmentation. When compared to other state-of-the-art baseline models, YOLO + SAM101

has a comparable performance despite running on intentionally noised data. These models include102
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E1 D3 U-Net, Extended VAT method, and NVAUTO; created by Bukhari et al., Peiris et al., and103

Siddiquee et al. respectively, which were chosen as baselines as they are the state of the art trained on104

the BraTS 2021 dataset[9][19][20]. Their models achieved DICE scores of 0.826, 0.814, and 0.86 for105

ET. The inference times for these models are significantly higher, with estimates of 4 to 8 minutes, 3106

to 6 minutes, and 45 to 90 seconds respectively, compared to 15 to 25 seconds for YOLO + SAM.107

This comparison shows the strong capability of the YOLO + SAM model as it achieved comparable108

performance to models that tested on images that were noiseless, while YOLO + SAM was tested109

on images that had extreme amounts of noise. The significantly lower inference time makes YOLO110

+ SAM more suitable for real-world iMRI applications, providing faster and reliable results during111

surgery.112

Dice Score
E1D3 U-Net 0.826
Extended VAT 0.814
NVAUTO 0.860
YOLO + SAM 0.790

(a) Comparison of model performances on the
BraTS 2021 dataset. Note that, unlike the other
models, YOLO+SAM achieved this score on
noised data, demonstrating striking robustness.

(b) Tumor Segmentation Model Inference
Times. Note that, again, unlike the other
models, YOLO+SAM achieved this score on
noised data

Figure 3: DICE performance comparison (left) and inference times of various models (right).

4 Discussion113

Physicians have used computed tomography (CT) scans, positron emission tomography (PET) scans,114

and MRI to detect and diagnose gliomas in patients [1]. Historically, machine learning applications115

for glioma imaging have focused on classification, diagnosis, and preoperative planning. For instance,116

Hua et al. implemented a cascaded V-Net model ensembling on segmented gliomas, which achieved117

high accuracy in delineating the whole tumor, tumor core, and enhanced tumor regions on the BraTS118

2018 online validation set [15]. Another study by Shen et al. explores the use of a convolutional119

neural network combined with near-infrared II (NIR-II) fluorescence imaging, which achieves high120

sensitivity and specificity in the classification of tumor versus non-tumor intraoperatively [24]. The121

YOLO algorithm for object detection was then implemented by Abdulsalomov et al, who developed a122

YOLOv7 model for the detection of glioma tumors using MRI images, achieving 99.5% accuracy [2].123

While the aforementioned models report high performances, they cannot be used intraoperatively and124

do not provide real-time imaging critical for glioma resection. The FL-CNN model proposed does125

have intraoperative capabilities, but it can only be used on fluorescent images, rendering it infeasible126

for ioMRI applications. This further clarifies the need for an ioMRI-specific model.127

Recent research has shown an abundance of high-resolution, preoperative MRI data, prompting128

efforts to leverage this data as a proxy for ioMRI. Fei et al. addressed this by simulating low-field129

interventional MRI images to align real-time interventional MRI images with high-resolution MRI130

images [10]. By adding noise and creating thicker slices, they successfully simulated 3D images that131

matched the signal-to-noise ratio of interventional MRI images [10]. Given that interventional MRI132

and ioMRI have the same fundamental qualities, their method can be used to simulate the dataset133

necessary to train an effective model [8].134

In this context, we introduce a novel method using the YOLO algorithm combined with SAM to135

identify and detect glioma tumors in real time during ioMRI. In this study, we introduced a novel136

YOLO + SAM model capable of detecting and segmenting glioma tumors using ioMRI images. The137

model achieved a DICE score of 0.79 for ET and inference time of 15 to 25 seconds, which displays138

a robust ability for efficient and effective tumor segmentation. This can have a profound impact in139

the field of glioma surgery as integrating this model with an ioMRI machine could result in improved140

patient outcomes and more successful surgeries.141

To address the limitations of this model, several areas for improvement have been identified. The first142

is that the YOLO + SAM model we produced was trained solely on simulated ioMRI images, and for143
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future research a model trained on proper clinical ioMRI images could have better performance and144

accuracy. The second is that the SAM model used for this currently only supports 2D inputs, which145

according to Zhang et al. could "result in a loss of context information", so an application of SAM to146

3D data could be a promising venture [31]. A possible method for incorporating 3D data with SAM147

is by using TomoSAM which is a 3D slicer extension that uses SAM to help with the segmentation of148

3D data from tomography or other imaging methods [22].149
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