How to Get Them a Dream Job?

Entity-Aware Features for Personalized Job Search Ranking

Jia Li
University of lllinois at Chicago
1200 W Harrison St
Chicago, IL, USA
jli213@uic.edu

Dhruv Arya
LinkedIn
2029 Stierlin Ct
Mountain View, CA, USA
darya@linkedin.com

Viet Ha-Thuc
LinkedIn
2029 Stierlin Ct
Mountain View, CA, USA
vhathuc@linkedin.com

Shakti Sinha
LinkedIn
2029 Stierlin Ct
Mountain View, CA, USA
ssinha@linkedin.com

ABSTRACT

This paper proposes an approach to applying standardized
entity data to improve job search quality and to make search
results more personalized. Specifically, we explore three
types of entity-aware features and incorporate them into the
job search ranking function. The first is query-job matching
features which extract and standardize entities mentioned in
queries and documents, then semantically match them based
on these entities. The second type, searcher-job expertise
homophily, aims to capture the fact that job searchers tend
to be interested in the jobs requiring similar expertise as
theirs. To measure the similarity, we use standardized skills
in job descriptions and searchers’ profiles as well as skills
that we infer searchers might have but not explicitly list in
their profiles. Third, we propose a concept of entity-faceted
historical click-through-rates (CTRs) to capture job docu-
ment quality. Faceting jobs by their standardized compa-
nies, titles, locations, etc., and computing historical CTRs
at the facet level instead of individual job level alleviate
sparseness issue in historical action data. This is particu-
larly important in job search where job lifetime is typically
short. Both offline and online experiments confirm the ef-
fectiveness of the features. In offline experiment, using the
entity-aware features gives improvements of +20%, +12.1%
and +8.3% on Precision@1l, MRR and NDCG@25, respec-
tively. Online A/B test shows that a new model with these
features is +11.3% and +5.3% better than the baseline in
terms of click-through-rate and apply rate.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: [Search pro-
cess|

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

KDD 16, August 13 - 17, 2016, San Francisco, CA, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4232-2/16/08. .. $15.00

DOL: http://dx.doi.org/10.1145/2939672.2939721

Keywords

Information Retrieval; Learning-to-Ranking; Personaliza-
tion

1. INTRODUCTION

Traditional information retrieval systems, and partic-
ularly Web search engines, have focused on keyword-
matching. In this search paradigm, users typically input
their information needs as a set of keywords and the search
engines match the keywords with documents and use some
additional signals, such as document popularity (e.g., doc-
ument historical click through rate, PageRank etc.) to find
relevant documents. This paradigm makes it very simple
and easy for users to use. Moreover, it allows the efficient
retrieval of documents at the Web scale. However, while this
paradigm has been effective for the majority of the queries
on generic Web search engines, it does not work that well for
LinkedIn job search. In our use case, user information needs
are typically rather complicated. For example, when a user
issues query “software engineer Cambridge Microsoft”, he or
she does not mean to find a job that its description con-
tains these keywords. Instead, he or she looks for a job with
title software engineer at company Microsoft in Cambridge
city. Thus, it is important to understand the structure of
the information need. Moreover, even if we can structure
the query as above, it is still unclear which city does “Cam-
bridge” refers to. Even assuming we know that “Cambridge”
refers to the city in Massachusetts (USA), there could still
be plenty of Microsoft software engineer jobs in the city.
In this case, which specific ones match best with the user’s
interests and expertise? Thus, it is crucial to go beyond
keyword-matching when scoring documents to provide per-
sonally relevant results on LinkedIn job search.

Semantic search, on the other hand, represents informa-
tion needs and documents in a structured way and semanti-
cally matches the information needs with the documents. A
challenge with semantic search is that it is typically difficult
for an end-user to describe his or her information need in a
semantic representation. Moreover, semantic search is often
restricted by concepts and relations predefined in a knowl-
edge base. Thus, it does not scale well to open and dynamic
document sets like the Web.

This work aims to bridge the two search paradigms to
make LinkedIn job search experience more relevant and per-
sonalized yet still simple to use while keeping it efficient at
the Web scale. From a user perspective, he or she is still
able to describe their information needs in a free-text form.
Given user queries, we extract and standardize the entities,
such as, job title, company, skills and location. On the doc-
ument side, we leverage standardized entities mentioned in
job descriptions and include them in the search index. Based
on the standardization information, we construct entity-
aware features matching queries and documents as well as
entity-faceted historical CTR features capturing global doc-
ument qualities (query-independent). Moreover, as men-
tioned in the motivating example above, even when a query
is perfectly understood, the query is not enough to represent
user information need. To overcome this issue, we leverage
standardized skills in members’ profiles and job descriptions
to capture searcher-job expertise homophily. For instance,
if the searcher is a machine learning expert, he or she will
be more likely to apply for software engineer jobs focusing
on machine learning domain rather than on software system
infrastructure. Thus, the ranking function should rank the
former higher than the latter. Finally, to combine these fea-
tures, we apply learning to rank technique to automatically
learn a personalized search ranking function.

We conduct offline and online experiments on LinkedIn
job search. Our experiments confirm the benefit of using
standardized entities in the ranking function to make job
search results more relevant and personalized. Specifically,
in offline experiment on randomized data, a new model with
the proposed features improves over the baseline without the
features +20%, +12.1% and +8.3% in terms of Precision@1,
MRR and NDCG@25, respectively. Online A/B test shows
that the features can improve click-through-rate and apply
rate, the two most important metrics of the product, +11.3%
and +5.3%, respectively. At the time of this writing, the new
ranking model has served all of LinkedIn job search traffic.

The main contributions of this paper are the following:

1. Proposing a new approach to incorporating entity data
into personalized ranking functions for job search.
Specifically, we propose three classes of entity-aware
features including:

e Query-job matching: Extract and standardize en-
tities mentioned in queries and documents, such
as, job titles, skills, companies and locations.
Then, construct features matching queries and
documents based on these entities.

e Searcher-job expertise homophily: Analyzing log
data, we discover that job searchers tend to be
interested in the jobs requiring similar expertise
as theirs. Thus, we propose features capturing
searcher-document expertise homophily based on
the standardized skills in job descriptions and
users’ profiles as well as the skills that members
might have but not explicitly list. These features
make results more personalized to the searchers.

e Job historical CTRs: We introduce a concept
of entity-faceted historical CTRs to capture job
document popularity. Job documents are faceted
on job attributes like company, title or location.
Then, historical CTRs are computed as the facet
level to overcome data sparseness issue.

2. Presenting practical challenges when deploying the
entity-aware features in LinkedIn job search engine
such as ambiguity, missing values, sparseness, param-
eter tuning, scalability, online efficiency, biases in log
data and how to combine the new features with ex-
isting ones in an optimal way as well as solutions for
these challenges.

3. Experimenting and demonstrating significant bene-
fit of using standardized entity data for personalized
search ranking in an industrial setting serving hun-
dreds of millions of users.

The rest of the paper will be organized as follows. Section
2 reviews related work. Section 3 presents query-document
matching features based on standardized entities in queries
and documents. Section 4 discusses searcher-document fea-
tures capturing expertise homophily. Section 5 details how
we construct entity-faceted historical click-through-rate fea-
tures. In Section 6, we present a learning-to-rank approach
to combine the proposed features and the existing ones. Of-
fline and online experimental results are discussed in Section
7. Finally, concluding remarks are in Section 8.

2. RELATED WORK

2.1 Semantic search

Semantic search has been an active research area recently.
Generally speaking, semantic search uses semantics to make
search systems more effective. More specifically, semantic
search approaches extract semantic meanings and structures
from search queries and documents and exploits them in
search process [6]. The main approach to semantic search
typically represents queries and documents in a structured
way and applies semantic query languages like SPARQL [19]
to retrieve results.

SHOE system [12] is one of the early work in this di-
rection. It annotates Web pages with semantic informa-
tion. On query side, users specify their information needs
based on nodes and relations in an ontology. Swoogle [§]
and Corese [4] are Semantic Web search engines. These en-
gines store documents in Resource Description Framework
(RDF) format and provide structured query languages to re-
trieve the documents. Similarly, Zhong et al. [28] represent
queries and documents by conceptual graphs then propose
an ontology-based matching algorithm estimating the simi-
larity between a query and a document.

A common problem of these approaches is that it is chal-
lenging for end users to specify their information needs in
such structured ways [24]. Also, these approaches are often
restricted by concepts and relations predefined in ontologies.
Thus, they do not scale to open and dynamic document sets
like the Web [7]. Moreover the algorithm matching queries
and documents in the structured representation are typi-
cally computationally expensive. Thus, it is challenging for
industrial search engines to apply them in real time at the
Web scale.

2.2 Enhancing traditional IR with semantics

Another research direction related to our work is using
semantic technology to enhance traditional keyword-based
information retrieval. Guha et al. [9] propose an approach
to improve keyword-based search by using data retrieved
from the Semantic Web. Specifically, given a text query, the

terms in the query are then mapped to nodes in the Seman-
tic Web. They also propose heuristics to resolve ambiguity
when mapping. Then, the nodes are used to augment the
query. SemSearch [24] also allows users to specify their in-
formation needs by free text. Then, it maps the terms into
classes, properties or instances in a knowledge base. A novel
aspect of the work is that for a query containing multiple
terms, the whole semantic meanings of all of the terms are
taken into account. Fernandez et al . [7] introduce a new ar-
chitecture to scale semantic search by supporting both pure
semantic search on ontologies and enhancing traditional key-
word search with semantics. In particular, their approach
deals with knowledge incompleteness by switching from the
former to the later search paradigm when there is no match
in the ontologies. Buscaldi et al. [2] use semantic relation-
ship such as synonymy in WordNet to compute similarity of
a document and a query and then to rank the results. More
recently, Dalton et al. [5] propose an approach called entity
feature query expansion that expands user queries by struc-
tured data in knowledge bases. Given a query, the approach
first annotates it with both explicit and latent entities and
link them to two knowledge bases including Wikipedia and
Freebase. Then, the corresponding structured data is used
to do query expansion. The expanded queries are used to
match with documents in retrieval phase. They show effec-
tiveness of the approach on TREC text collections.

Compared to the previous work, our work is different to
them in the following aspects. First, unlike the most of
the previous approaches focusing on semantically matching
documents and queries, our work goes beyond that. In par-
ticular, our work exploits standardized entities to match a
searcher and documents to make results personalized as well
as to model document popularities (query-independent) on
various facets. As shown in evaluation section, these feature
categories give even higher impacts than document-query
matching. Second, even though our document-query match-
ing approach is similar to the ones in the literature, our ap-
proach is customized for job search domain. To the best
of our knowledge, there is no prior work focusing on using
semantic knowledge in job search. Third, our approach uses
entity data at a feature level in personalized ranking func-
tion (as opposed to query expansion level in some previous
work). At the feature level, by applying learning to rank,
our approach can softly combine semantic features and tra-
ditional features in an optimal way learnt from training data
instead of making a hard switch between semantic search
and keyword search as in some previous work, such as [7].
Finally, besides typical offline experiments, we experiment
on live traffic on an industrial search engine. The online
metrics are derived from searcher actions, thus they allow
demonstrating effectiveness of the approach in a personal-
ized setting.

2.3 Personalized Search

An important aspect of our work is personalization, which
is also an active research area in the literature. The key idea
behind personalized search is that different users might have
different backgrounds and interests. As a result, they might
look for different results even when issuing the same queries
[1]. Thus, the one-size-fit-all model is not effective. There
are multiple ways to achieve personalization in search. One
direction is to ask users to describe their interests. For in-
stance, Google personalized web search allows users to ex-

plicitly select some of the predefined topics to specify their
interests. Another direction is to implicitly model user’s in-
terests. Sugiyama et al. [22] and Sontag et al. [21] propose
approaches to model user’s long-term interests. Some other
work like [20, 25] focuses on immediate history to repre-
sent user’s short-term interests. When data is too sparse
to model user’s interests individually, personalization could
be achieved by grouping users in cohorts [27]. When a user
issues a query, the corresponding cohorts can be used to
customize results for the user.

A novel aspect of our work in terms of personalization is
that we propose a new concept of expertise homophily to
personalize job search results. Expertise homophily is mea-
sured by similarity between user’s expertise and expertise
requirement of each job. Moreover, to represent user’s ex-
pertise, we do not only use standardized skills explicitly in
a user profile but also infer skills that the user might have.
The inference step is done by collaborative filtering tech-
nique exploiting skill co-occurrence patterns in the whole
member base.

3. ENTITY-AWARE DOCUMENT-QUERY
MATCHING

As mentioned before, when a user issues a query like “soft-
ware engineer Microsoft”, the user implicitly links the key-
words to different typed entities, such as, title and company
and expects the results matching with the information need
in terms of the structure he or she has in mind. To sat-
isfy this, we propose an approach that indexes documents
in a structured way. At searching time, the user query is
segmented and linked to one of the typed entities used in
the document index. Then, we construct various features
matching typed entities mentioned in the query with the cor-
responding ones in the documents. In the next subsections,
we describe how documents are structured and indexed, how
to segment a query and link the segments to entities and how
to construct features semantically matching the query and
documents.

3.1 Job Document Indexing

To help job seekers search and discover jobs, we build
a search index on some of the key attributes of the job.
Jobs on LinkedIn are structured to present the following key
attributes: job title, company, location, industry and skills.
An example is shown in Figure 1. When a job is posted
on LinkedlIn, it goes through a standardizer which looks at
above mentioned fields to extract out standardized entities.
The extracted entities are based on curated dictionaries built
over time from our member profiles. The standardizer has
been engineered through multiple iterations to understand
what parts of the job posting are critical for different entities.
The standardized job is then indexed and is searchable both
on the entities as well as the free text as entered by the job
poster. Since there is huge research literature on mapping
textual mentions to entities, this paper does not emphasize
this step. Instead, through out the paper, we focus on how
to use these entities in job search ranking.

3.2 Query Processing

When a searcher enters a query, e.g. “software engineer
Microsoft Cambridge”, we first apply a query tagger to seg-
ment the query and tag the segments into entity types that

Software Engineer, University Grad
Adobe - San Francisco Bay Area

‘ Posted 15 days ago
Apply now Save

Experience Industry

Not Applicable Information Technology and Services
Job function Job ID

Information Technology 70702863

Employment type
Full-time

Other Details

About this job

a Job description

Adobe Software Engineers work on all product teams from Photoshop and Acrobat to Online Marketing.
Software Engineers at Adobe are researchers and developers who are driven to create and implement
complex computer science solutions. As a Software Engineer, you will work on our core products and
services as well as those who support critical functions of our engineering operations. Depending on your
interest, background and experience, you will be working in either the Digital Marketing, Digital Media or
Corporate Technology Business Unit.

.'8‘, Desired Skills and Experience

+ Working towards a BS or MS degree from an accredited university or college

+ Computer Science, Computer Engineering, Electrical Engineering or similar technical majors with
programming experience

= Strong Technical background with analytical and problem solving skills.

« Ability to work with ambiguity and change

« Ability to work on diverse teams

« Experience in any of the following Computer Languages: C, C++, Java, ActionScript, Flex, Python
or Perl

« Past internship experience a plus

Figure 1: A job posting on LinkedIn. Entities in the
job such as title, skills, company and location are
extracted, standardized and indexed.

are important to the job search domain, such as, job ti-
tle, skill, company and location, etc. For instance, the query
above is segmented into “software engineer”; “Microsoft” and
“Cambridge” segments. These segments are then tagged into
types of job title, company and location, respectively. Our
query segmentation approach is similar to [23]. We refer
interested readers to the reference for more details.

Given entity types of query segments, the next step is
to map the segments into specific entities. The segments
are matched against the dictionary of the corresponding
types. In ambiguous cases, e.g., “security” (ambiguous ti-
tle) or “Cambridge” (ambiguous location), the standardized
entities in the searcher’s profile are then used to resolve the
ambiguity in a personalized way. For example, if the stan-
dardized location in the searcher’s profile is Massachusetts
(USA), “Cambridge” in his or her query is more likely to
refer to the city in the US rather than the one in the UK.
Similarly, if the searcher has title of computer security or
related skills, such as, computer security or fraud detection,
the term “security” in his or her query is more likely to refer
to “computer security” title rather than “physical security”.

3.3 Query-Document Matching Features

Given typed entities mentioned in user queries and in doc-
uments, we construct entity-aware features to capture the se-
mantic similarity between the queries and the documents. In
particular, we match entities in the queries and the ones with
the same types in the documents. For instance, for the query
“software engineer Microsoft Cambridge”, after extracting
standardized entities from the query as described above, we

match title entity (“software engineer”) with the title entity
in each job document. Similarly, we match company entity
and location entity with the corresponding ones in the job
description. We consider two types of entity-matching: hard
matching and soft matching. The former checks if the two
entities (in the query and in the document) have the same
identifier. This matching is able to capture synonymy rela-
tionship amongst different textual forms of the same entities,
e.g., “software engineer” and “software developer”.

We also consider the semantic similarity (soft matching)
between two different but related standardized entities, such
as, between title “software engineer” and title “software ar-
chitect” or between skill “information retrieval” and skill
“Web search”. To measure such similarity, we use an ap-
proach leveraging the uniqueness of LinkedIn data collection
including entity co-occurrence and career trajectory of more
than 400 million members on LinkedIn. Intuitively, if two
skills tend to co-occur in similar groups of members, they
are likely to be related. Likewise, if there are a significant
number of employees transferring between two companies,
they are also likely to be similar.

4. SEARCHER-DOCUMENT EXPERTISE
HOMOPHILY

As briefly presented before, for a query like “software en-
gineer Microsoft” the searcher is not equally interested in
every software engineer job at the company. Instead, if the
searcher happens to be a machine learning expert, he or she
is much more likely to be interested in software engineer jobs
related to this field rather than software engineer jobs focus-
ing on other domains. Thus, in many cases, user queries are
not enough to represent user information need and interest.
To complement the query, we exploit an idea of expertise
homophily that captures the similarity between searcher’s
expertise and job expertise requirements to make job search
results more personally relevant.

Homophily has been extensively studied in the context of
social networks analysis [17, 14]. The main idea is that in
a social network, a node tends to be connected or interact
with other nodes that are similar to it. In the context of
job search, we hypothesize that a job searcher tends to be
interested in the jobs requiring similar expertise as his or
hers. In this section, we first present how we represent ex-
pertise of searchers and expertise requirement of jobs via
standardized skills. Then, we conduct an analysis to ver-
ify the hypothesis. Finally, we propose features capturing
searcher-document expertise homophily.

LinkedIn allows members to add skills to their profiles.
Typical example of skills for a software engineer would be
- “Algorithm”; “Data Mining”, “Python”, etc. On LinkedIn,
there are about 35 thousand standardized skills. Members
can also endorse skills of other members in their network.
Thus, skills are an integral part of members’ profiles to help
them showcase their professional expertise (see Figure 2).
On document side, as described in Section 3, each job de-
scription also associates with a set of standardized skills.
Thus, in this paper, we use skills to represent searcher’s ex-
pertise and job expertise requirement.

We conduct an analysis to verify the hypothesis that a job
searcher tends to be interested in the jobs similar to his or
her expertise using search logs. To avoid confounding fac-
tors, e.g., a feature in the original ranking function produc-

Top Skills

Agortms L DEREAeE
m Data Mining Eﬁﬂ{@ Eﬂzﬂ.il
m Machine Learning ER&E QENAi. u
m EDA .P.EU Eiﬂ. HW
@ Pren PEREIA ML
n Optimization .B.Q Eﬂ.ﬂ n
- LRREY
Cos nesn
g Physical Design Eﬂﬂ
n Big Data EEH

Ganesh also knows about...

n Integrated Circuit... u Scalability n Perl n PostgreSQL

n SQALAlchemy n Graph Theory Social Network Analysis

Figure 2: Example of Skill Section with Endorse-
ments.

Difference between overlapping bucket
and non-overlapping bucket

CTR + 55%

Apply Rate + >100%

Table 1: CTRs and Apply Rates of job results with
overlapping skills and job results without overlap-
ping skills.

ing the logs that is correlated with searcher-result skill ho-
mophily and also impacts searcher’s actions on results (since
it impacts result rankings and searchers are biased towards
top results), we use randomized data as described in de-
tails in Section 6.2. The data contains about 200 thousand
searches from tens of thousands unique searchers. The re-
sults of the searches are divided into two buckets. The first
bucket contains job results that their required skills overlap
with the searcher’s skills. The second bucket includes job
results that do not require any skills the searcher has. The
overlapping bucket ends up with about 16% and the non-
overlapping bucket has 84% of the total number of results.
For each bucket, we compute CTR and apply rate, which
are defined as ratios of the number of job results that the
searcher clicks (views) or applies, respectively, to the total
number of results shown (the number of result impressions).
As shown in Table 1, CTR and apply rate of the jobs with
overlapping skills are 55% and more than 100%, respectively,
higher than the jobs without overlapping skills. Thus, this
analysis confirms the importance of skill homophily between
searcher and results.

A key challenge of generating the expertise homophily fea-
ture is that searchers may not explicitly list all the skills
they have on profiles. On the other hand, some of their
skills might not be relevant to their core expertise. For in-

stance, a machine learning researcher could have “nonprofit
fundraising” skill [11]. To overcome these challenges, we es-
timate expertise scores of a member on the explicit skills
and the ones he might have. Figure 3 describes the offline
process to estimate the expertise scores. In the first step,
we use a supervised learning algorithm combining various
signals on LinkedIn such as skill-endorsement graph page
rank, skill-profile textual similarity, member’s seniority, etc.
to estimate the expertise score, i.e., p(expert|member, skill).
After this step, the expertise matrix (Fo) is very sparse since
we can be certain only for a small percentage of the pairs.
In the second step, we factorize the matrix into member
and skill matrices in K-dimensional latent space. Then, we
compute the dot-product of the matrices to fill in the “un-
known” cells. The intuition is that if a member have “ma-
chine learning” and “information retrieval” skills, based on
skill co-occurrence patterns from all of our member base, we
could infer that the member is likely to also know “learning-
to-rank”.

Since the dot-product results in a large number of non-
zero scores of each member on the 35K skills, the scores are
then thresholded. If a member’s score on a skill is less than a
threshold, the member is assumed not to know the skill and
the score is zeroed out. Thus, outlier skills are removed.
At the same time, the final expertise matrix (E1) is still
relatively denser than Ej since it includes scores of inferred
skills. We refer interested readers to our recent work [10] for
more details.

Since matrix factorization is computationally complex, to
guarantee efficiency, we apply a two-phase approach. An
offline process periodically runs on distributed computing
platforms like Hadoop to infer member skills. The online
phase then simply consumes the latest version of the data
at ranking time. Given a set of skills that a searcher has
and a set of skills that a job requires, we compute Jaccard
similarity between the the two sets. One future direction is
to use weighted Jaccard similarity in which the weights are
determined by searcher’s expertise scores on the skills.

S. ENTITY-FACETED HISTORICAL
CLICK-THROUGH-RATE

In this section, we propose entity-faceted document-
popularity features based on user past behaviors. These
features aim to indicate the quality of documents and are
independent of query and searcher. The idea of using user’s
historical actions on documents in Web search ranking func-
tions has been shown effective in the literature [3]. However,
a key challenge when deploying these features is the sparse-
ness of data. The challenge is even more serious for job
search since the lifetime of a job document is much shorter.
To overcome this, instead of computing a single historical
CTR separately for every job in the corpus, we estimate his-
torical CTRs of a job on different entity-facets, such as, title,
company or location. Please also note that in this paper we
use historical CTR as an example, the idea is also appli-
cable to other user-action based popularity features where
data sparseness is an issue.

5.1 Feature Definition

Given a job corpus, we compute multiple historical CTRs
on different facets of the jobs. These facets are defined based
on standardized entities mentioned in the jobs, such as, ti-

skills

‘/,7777{"’ / > 7-7‘\"‘%,, D
Textual similarity
Endorsement page rank

L

D O

C]E L)

members

K latent topics

skills

w

L2)
S)
[]

1

€ r

]

o

)

~

Member
Latent

members

Figure 3: Member-skill matrix factorization to infer
skills that members might have but do not explicit
list on profiles.

tle, company or location. Specifically, we estimate histor-
ical CTR of jobs with a certain title like “data scientist”,
historical CTR of jobs at a company or historical CTR of
jobs at some location. Then, given a specific job, for in-
stance, a data scientist job at company LinkedIn in the
city of Mountain View (California - USA), we use applicable
entity-faceted historical CTRs including CT Ryt (data sci-
entist), CT Reompany (LinkedIn) and CT Riocation (Mountain
View (California - USA)) as features to indicate the popu-
larity of the jobs on the corresponding aspects.

It is worth noting that when computing historical CTRs,
the jobs are grouped at entity level (e.g., company Ids),
not at text level (e.g., company names in job postings).
Thus jobs listing different names of the same company such
as “International Business Machines”, “IBM Corporation”,
“IBM corp.” or “IBM” are grouped together in the same
bucket. Similarly, jobs with different title variations of the
same title entity like “software engineer”, “software devel-
oper”, “software development engineer” or “SDE” are also
grouped together. Grouping the jobs at entity level does
not only make the facet more meaningful, but also further
reduces the issue of data sparseness. One future direction
is to consider related entities, such as subsidiary companies
(e.g., “Google”, “Youtube” and “Alphabet”) or neighboring
cities (like “Mountain View” and “Sunnyvale” - both are in
Silicon Valley) when estimating historical CTRs.

The entity-faceted historical CTRs are computed based
on the number of times the jobs belonging to the entity got
clicked and the number of times these jobs were shown on
search results (See Equation 1). Smoothing factor N and
default value A\ are parameters. For entity that the jobs
belonging to it have zero or a small number of impressions
compared to N, historical CTR corresponding to it will have
value equal or closed to the default value A. Once again, for
efficiency purpose, we build an offline process running on a
distributed system to estimate the entity-faceted historical

CTRs at a large scale. At ranking time, the online process
takes the latest data to compute features in realtime.

(#clicks + A= N)

TR =
CTh (#impressions + N)

(1)

5.2 Parameter Tuning

The default value A controls an interesting trade off for
the cases where the number of impressions are low, e.g.,
jobs from a new company. If we use a too small default
value, the new jobs that were not previously shown have
little chance to be shown. Thus, we could not explore these
results. However, many of these jobs could be good results
and could get clicked if they are shown to the users. On
the other hand, if we assign A to a too high value, historical
CTRs become too smooth and we do not ezxploit much of
the insight from user historical actions.

A =argmax Correlation(CTR,label) (2)
A

We tune the values of A on validation set. Each instance in
the data set, which corresponds to a search result, contains
a feature vector and a graded relevance label. The label
indicates how relevant the result is to the query and the
searcher. The details on how the data set is generated will
be described in Section 6.2. For each entity-faceted historical
CTR (e.g., company-faceted historical CTR), we select the
value for A that maximizes the correlation between the CTR
and the labels (See Equation 2).

To illustrate the effect of parameter tuning, Figures 4 and
5 show company-faceted historical CTRs with A\ equaling to
zero and the optimal value. In each figure, the upper plot
shows the relationship between the CTR feature and labels
and the lower plot reveals company distribution over CTR
values. On Figure 4, when the default value is zero, there
are a significant number of companies having the historical
CTR of zero because they have zero or few impressions in
the period before we collect the training data. However, the
average label of these results is not low (the first data point
in Figure 4(a)), i.e., many of them are actually good results.
Thus, as shown in the figure, the CTR does not strongly
predict result relevance. When we assign A to the optimal
value (Figure 5), however, the company-faceted historical
CTR becomes strongly correlated with the label. Quanti-
tatively, between the two values for A, the later improves
Pearson correlation coefficient between the feature and the
label by 55%.

6. MODEL TRAINING

This section describes how the proposed features are in-
tegrated into the job search ranking function. Specifically,
we apply learning-to-rank approach to learn a new ranking
function combining the entity-aware features with the exist-
ing ones. We first give a high level description on the exist-
ing features. Then, we present an approach for extracting
personalized training data from search log and the learning-
to-rank algorithm used to learn a new ranking function from
the training data.

6.1 Existing Features

The existing features are generally divided into the fol-
lowing categories.

(a) i i historical CTRs and labels
T T

T
09

08

Lﬂﬂs
205
Sosf
<03

L I
| |

o2 |

ml/\/ I

oll \ | \ \ .

0.3 04
Scaled Click Through Rate

.

(b) Distribution of ies over historical CTR values
T T T T

Percentage of Companies
.

03 04
Scaled Click Through Rate

Figure 4: Company-Faceted Historical CTR with
A = 0. With this setting, the historical CTR does
not predict result relevance well.

(a) i i historical CTRs and labels
T

s

e

_]

09

08
go7
Sos
:-3,05
Soa
Zos

I I I I I
% 01 02 03 04 05 06
Scaled Click Through Rate

(b) Distribution of over historical CTR values
T T T T

Percentage of Companies
T
|

~—
-
L T — L

02 03 04
Scaled Click Through Rate

Figure 5: Company-Faceted Historical CTR with
the optimal value for A\. With this setting, the his-
torical CTR is strongly correlated with labels.

Textual features The most traditional type of features
in information retrieval is textual features. These features
match the keywords in queries with different sections of job
descriptions, such as, title, company, etc. The key difference
between these features and entity-aware matching features
in Section 3 is that the former does not take into account
standardized entity information when matching queries and
documents.

Geographic features (personalized features) Job
search on LinkedIn is highly personalized. For instance, a
query like “software developer” from a job seeker will pro-
duce very different results if the searcher is in New York City,
USA as opposed to (say) Montreal, Canada. Location plays
an important role in personalizing the results. We create
multiple features capturing this.

Social features (personalized features) Another im-
portant aspect of personalization is to capture how the re-
sults socially relate to the searcher. We leverage a variety of
the signals on LinkedIn, such as, how the searcher socially
connects with the company posting the job, e.g., if he or she
follows the company or he or she has friends working at the
company, etc. to generate the features in this category. We
refer the readers to [10] for a more detailed description of
the existing features.

6.2 Training Data and Learning Algorithm

A traditional way to obtain training data is to use human
experts to label the results. However, as we are dealing
with a large amount training data for personalized search,
it is expensive to use human experts. At the same time, it
is very hard for people other than the searcher to know the
true relevance judgment of the results. For example, for the
same query “software engineer”, a new college graduate in
the US and an experienced candidate in Canada could be
interested in very different results. Thus, similar to [13], we
use log data as implicit feedback from searchers to generate
training data.

One problem with the log data is position bias as the users
tend to interact (e.g., click) on top results. Thus, labels in-
ferred from the user actions are biased towards the ranking
function generating the data. In order to counter the po-
sition bias, we randomize the ranking of search results and
show them to a small percentage of traffic. Then, we collect
user actions on the results. For instance, as shown in Figure
6, a user issues query “software engineer”, and six results
are shown. There are different actions the user can take
on the results and the corresponding ones will have differ-
ent graded relevance labels based on the importance of the
actions. In the example shown, the searcher clicks on the
second result and decides to apply to the job at the fourth
position. Since applying to a job is a stronger signal of rel-
evance than clicking on a job, we assign a higher label to
applied results (label=3, i.e., considered as perfect results)
and a lower label to clicked results (label=1, i.e., good re-
sults). For the first and third results, the searcher scans
through them but chooses not to take any action. Thus, we
consider that these results are irrelevant (label=0, i.e., bad
results). For the results ranked below the last interacted one
(below result 4 in the Figure), we cannot be certain about
the relevance judgement of them since the searcher may not
have looked at them. Therefore, we discard these results.

It is worth noting that when collecting the data, we count
every query issued as a unique search. For instance, if the

¥ @ Advanced

& | software engineer

17,106 results for software engineer

Software Engineer
99, BaduUsa

Skipped

* 10 connections to the poster - Similar

Software Engineer
HypeVR

Clicked

Similar

Software Engineer

@ Cask Data

Similar

Skipped

Software Engineer
& posenos Project Hosts

Applied

Similar

Software Engineer
wepay WePay Ignored

Similar

Software Engineer

Red Giant Ignored

REDGIANT

Similar

Figure 6: Example of how the labels are generated
from user actions. Applied results are considered as
perfect, clicked results are good and skipped results
are bad. The results under the last interacted ones
are ignored since the searcher may not have looked
at them.

query “software engineer” is issued five times, they are con-
sidered as five distinct searches. The reason for this is that
even though the query being searched for is identical across
the five searches, they might have different search contexts
when considering other dimensions such as searcher, location
or time, etc. Moreover, this keeps the query distribution in
the labeled data the same as in our live search traffic. We
run the randomization bucket as mentioned above for two
full weeks. The reason we keep the period in order of weeks
is to iron out strong weekly patterns. For example, if the
labeled data is collected only during weekdays, it will be bi-
ased towards weekday search patterns and will not represent
weekend search traffic. After two weeks, the randomization
bucket ends up with about two hundred thousand searches
with at least one searcher’s action. The labeled data is then
divided into training, validation and test sets.

Given the training dataset, we apply Coordinate Ascent
[18], a listwise learning-to-rank algorithm, to search for an
optimal model. For efficiency purpose, we use linear mod-
els in our work. Coordinate Ascent algorithm has also been
shown to be effective for learning linear ranking functions in
some other search domains [18]. One key benefit of listwise
learning-to-rank approach over pointwise and pairwise ones
is that the listwise approach can optimize ranking-based
metrics directly [15, 16]. The objective function we optimize
in the learning process is normalized discounted accumula-
tive gain (NDCG@K) defined on the graded relevance labels

as described above. Parameter K is set to 25, which is the
number of results shown in the first result page of LinkedIn
job search.

7. EVALUATION

In this section, we evaluate the proposed features in both
offline testing and online A/B testing.

7.1 Offline Experiment
7.1.1 Models to Compare

Baseline: The baseline model uses all of the existing
features described in Section 6.1 and does not contain any
entity-aware features.

Entity-Aware Document-Query Matching
(DQM): This model uses the existing features and
entity-aware document-query matching features discussed
in Section 3.

Document-Searcher Expertise Homophily (DSH):
This model uses the existing features and searcher-document
expertise homophily features described in Section 4.

Entity-Faceted Historical CTR (ECTR): This
model uses the existing features and entity-facted histotical
CTRs described in Section 5. In this paper, we experiment
with company and title facets.

All of Entity-Aware Features (ALL): This model
uses the existing features and all of the entity-aware fea-
tures.

All of the models are trained on the same training set and
are tuned extensively on the validation set to get the optimal
parameter setting for each of them.

7.1.2 Offline Results

The Figure 7 shows performance lifts of the proposed mod-
els over the baseline on the test set in terms of Precision at
1 (P@1), Mean Reciprocal Rank (MRR), NDCG@15 and
NDCG@25. As shown in the figure, all of the models with
entity-aware features (DQM, DSH and ECTR) are consis-
tently better than the baseline across all of the metrics. This
confirms the benefit of using entity-aware features in job
search. For instance, on NDCG@25, entity-aware document-
query matching features, document-searcher expertise ho-
mophily features and entity-faceted historical CTR features
can improve the baseline by 1.2%, 5.4% and 4.8% respec-
tively.

Interestingly, amongst the three feature -categories,
document-query matching features yield the least improve-
ment and document-searcher matching features achieve the
highest improvement. This emphasizes the importance of
using standardized entities to personalize search results. Fi-
nally, when combining all of the features together, not so sur-
prisingly ALL model has the best performance. Compared
to the baseline, ALL model is 20%, 12.1%, 8.3% and 7.9%
better in terms of PQ1, MRR, NDCG@15 and NDCG@25.

7.2 Online Experiment

In our online experiment, we take the model with the best
offline performance, which is the one using all of the entity-
aware features and compare it with the model currently in
production. The model in production uses the features in
Section 6.1 and some simple entity-aware document-query
matching features. The later could be viewed as a simplified
version of the features described in Section 3. The model

C—JALL

il il
p@1 MRR NDCG@15 NDCG@25

Figure 7: Percentage improvements over the base-
line model on offline experiment. All of the improve-
ments are statistically significant.

is also linear and trained by the same approach. Thus, the
difference between the new model and the current one es-
sentially demonstrates the effectiveness of the proposed fea-
tures.

We take a random portion of LinkedIn job search live traf-
fic and randomly split the searchers in the experiment traffic
into control and treatment buckets. To guarantee consistent
experience, each of the searchers is either control or treat-
ment bucket (not both) throughout the whole experiment
period. The control bucket is served by the current ranking
model and the treatment bucket is served by the new model.
We run the A/B test on LinkedIn experiment platform [26]
for a reasonably long period of time (4 weeks) and ignore re-
sults in the first week to eliminate the novelty effect. During
the three-week period, each bucket ends up with more than
one million unique searchers and tens of millions of searches.

We evaluate the buckets by two metrics: click-through-
rate and apply rate as defined in Section 4. These are the
most important metrics from our business perspective. It is
worth emphasizing that these are ranking-based metrics, not
set-based metrics. In online experiments, even if two rank-
ing functions produce exactly the same set of results on first
result page (top 25 results), the one that ranks relevant re-
sults at higher positions on the page will be likely to achieve
higher numbers of job views and applications. Thus, these
metrics discount document relevance by positions, just like
the NDCG metric that we use as the objective function in
the offline training. In fact, we find that the NDCG metric
in offline experiments is directionally inline with these met-
rics in online experiments, i.e., if a model A is better than
a model B in terms of the NDCG metric in offline experi-
ments, model A is likely to perform better than model B on
click-through-rate and apply rate in online experiments.

Table 2 shows online A/B test results. Because of busi-
ness sensitivity, we only report the relative improvements.
On click-through-rate and apply rate, the new model with
the proposed entity-aware features is 11.3% and 5.3% bet-
ter than the current ranking model in production. Both of

Improvement of Treatment
Metric over Control
Click-Through-Rate 11.3%
Apply Rate 5.3%

Table 2: Online A/B test results on click-through-
rate and apply rate metrics. Both of the improve-
ments are statistically significant.

the improvements are statistically significant (details of the
statistical testing is described in [26]) This re-confirms the
advantage of entity-aware features in personalized job search
ranking.

8. CONCLUSION

In this paper, we propose an approach to applying stan-
dardized entity data to improve job search quality and to
personalize search results. To match queries and job doc-
uments, we structure the queries and the documents in a
schema specific to job search domain including critical en-
tity types in the domain such as job title, skill, company and
location, etc. Then, we construct various features semanti-
cally matching the queries and the job documents based on
the structured schema. To close the gap between a query
and the searcher’s information need and also to personalize
search results, we propose a concept of expertise homphily
capturing the similarity between the searcher’s expertise and
the requirement of the job. We use standardized skills to
represent searcher’s expertise and job expertise requirement
and measure the similarity based on these skills. Finally, to
model document popularity, we introduce an idea of entity-
faceted historical CTRs. These capture quality of each job
on different aspects such as job title, company and location,
etc. Grouping job documents based on the entities does not
only make the groups meaningful but also alleviates the data
sparseness issue when estimating historical CTRs.

Throughout the paper, we also detail how we resolve prac-
tical challenges when deploying standardized entities in job
search ranking, including: ambiguity, missing values (such
as members’ skills), scalability and online efficiency (espe-
cially for sophisticated signals such as skill expertise scores),
sparseness of historical searchers’ actions (particularly in job
search domain where job lifetime is typically short), param-
eter tuning for feature engineering, confounding factors and
biases in log data and how to optimally combine the new
features with the current ones in the existing ranking func-
tion.

We conduct offline experiment on randomized data and
online A /B test to understand the effectiveness of the entity-
aware features. In offline experiment, a new model with
the features improves over the baseline +20%, +12.1% and
+8.3% in terms of Precision@l, MRR and NDCG@25, re-
spectively. Online A/B test shows that the features can
improve click-through-rate and apply rate, the two most
important metrics of the product, +11.3% and +5.3%, re-
spectively. The results confirm the benefits of the proposed
features in job search. As of this writing, the new model
serves all live traffic on LinkedIn job search.

ACKNOWLEDGMENT: We would like to thank
Deepak Agarwal for his valuable feedback during the course
of this work.

9.
1]

[10]

[11]

[13]

[14]

REFERENCES
D. Arya, V. Ha-Thuc, and S. Sinha. Personalized

federated search at linkedin. In Proceedings of the 24th
ACM International on Conference on Information and
Knowledge Management (CIKM), pages 1699-1702,
2015.

D. Buscaldi and P. Rosso. Using geowordnet for
geographical information retrieval. In Fvaluating
Systems for Multilingual and Multimodal Information
Access, pages 863-866, 2008.

O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. In Proceedings of the Yahoo
Learning to Rank Challenge, held at ICML, pages
1-24, 2011.

O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker.
Querying the semantic web with corese search engine.
In Proceedings of the 16th European Conference on
Artificial Intelligence, pages 705—709, 2005.

J. Dalton, L. Dietz, and J. Allan. Entity query feature
expansion using knowledge base links. In The 37th
ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 365-374,
2014.

B. Fazzinga and T. Lukasiewicz. Semantic search on
the web. Semantic Web, 1(1-2):89-96, 2010.

M. Fernandez, V. Lopez, M. Sabou, V. Uren,

D. Vallet, E. Motta, and P. Castells. Semantic search
meets the web. In 2008 IEEE International Conference
on Semantic Computing (ICSC), pages 253-260, 2008.
T. W. Finin, L. Ding, R. Pan, A. Joshi, P. Kolari,

A. Java, and Y. Peng. Swoogle: Searching for
knowledge on the semantic web. In Proceedings of the
Twentieth National Conference on Artificial
Intelligence, pages 1682-1683, 2005.

R. Guha, R. McCool, and E. Miller. Semantic search.
In Proceedings of the 12th ACM International
Conference on World Wide Web (WWW), pages
700-709, 2003.

V. Ha-Thuc, G. Venkataraman, M. Rodriguez,

S. Sinha, S. Sundaram, and L. Guo. Personalized
expertise search at linkedin. In Proceedings of the 4th
IEEFE International Conference Big Data, 2015.

V. Ha-Thuc, Y. Xu, S. P. Kanduri, X. Wu, V. Dialani,
Y. Yan, A. Gupta, and S. Sinha. Search by ideal
candidates: Next generation of talent search at
linkedin. In Proceedings of the 25th International
Conference on World Wide Web (WWW), pages
195-198, 2016.

J. Heflin, J. A. Hendler, and S. Luke. SHOE: A
blueprint for the semantic web. In Spinning the
Semantic Web: Bringing the World Wide Web to Its
Full Potential, pages 29-63, 2003.

T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 133—-142, 2002.

P. F. Lazarsfeld and R. K. Merton. Friendship as a
social process: A substantive and methodological
analysis. Freedom and control in modern society,
18:18-66, 1954.

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]

(25]

(26]

27]

28]

H. Li. A short introduction to learning to rank. IEICE
Transactions, 94-D(10):1854-1862, 2011.

T. Liu, T. Joachims, H. Li, and C. Zhai. Introduction
to special issue on learning to rank for information
retrieval. Information Retrieval, 13(3):197-200, 2010.
M. McPherson, L. Smith-Lovin, and J. M. Cook.
Birds of a feather: Homophily in social networks.
Annual Review of Sociology, 27(1):415-444, 2001.

D. Metzler and W. B. Croft. Linear feature-based
models for information retrieval. Information
Retrieval, 10(3):257-274, 2007.

E. Prud’Hommeaux, A. Seaborne, et al. Sparql query
language for rdf. W3C recommendation, 15, 2008.

X. Shen, B. Tan, and C. Zhai. Implicit user modeling
for personalized search. In Proceedings of the ACM
International Conference on Information and
Knowledge Management (CIKM), pages 824-831,
2005.

D. Sontag, K. Collins-Thompson, P. N. Bennett,

R. W. White, S. Dumais, and B. Billerbeck.
Probabilistic models for personalizing web search. In
Proceedings of the fifth ACM International Conference
on Web Search and Data Mining (WSDM), pages
433-442, 2012.

K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive
web search based on user profile constructed without
any effort from users. In Proceedings of the 13th ACM
International Conference on World Wide Web
(WWW), pages 675-684, 2004.

B. Tan and F. Peng. Unsupervised query segmentation
using generative language models and wikipedia. In
Proceedings of the 17th ACM International Conference
on World Wide Web (WWW), pages 347-356, 2008.
V. S. Uren, Y. Lei, and E. Motta. Semsearch: Refining
semantic search. In The Semantic Web: Research and
Applications, 5th European Semantic Web Conference,
pages 874-878, 2008.

R. W. White, P. N. Bennett, and S. T. Dumais.
Predicting short-term interests using activity-based
search context. In Proceedings of the 19th ACM
International Conference on Information and
Knowledge Management (CIKM), pages 1009-1018,
2010.

Y. Xu, N. Chen, A. Fernandez, O. Sinno, and

A. Bhasin. From infrastructure to culture: A/B
testing challenges in large scale social networks. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 2227-2236, 2015.

J. Yan, W. Chu, and R. W. White. Cohort modeling
for enhanced personalized search. In Proceedings of the
87th ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 505-514,
2014.

J. Zhong, H. Zhu, J. Li, and Y. Yu. Conceptual graph
matching for semantic search. In Conceptual
Structures: Integration and Interfaces, 10th
International Conference on Conceptual Structures,
pages 92-196, 2002.

