
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DARE–AGENT: DOMAIN–AWARE,
RESOURCE–EFFICIENT, EVIDENCE–GROUNDED
AGENTIC RAG

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM agents for deep research have advanced open–domain reasoning, yet de-
ployments in specialized domains still fail along three critical axes: unverifiable
answers, uncontrolled cost, and domain–agnostic retrieval that undermines au-
thority/recency. Prevailing evaluations focus narrowly on answer accuracy, over-
looking process–level metrics such as citation precision (CP), minimal sufficient
evidence (MSE), and the accuracy–cost trade–off, while many training setups
rely on complex, hard–to–reproduce online RL. We reframe research–agent qual-
ity as a multi–objective problem spanning accuracy, verifiability, and resource
efficiency, and introduce DARE–Agent, a domain–aware, resource–efficient, ev-
idence–grounded agentic RAG framework. DARE–Agent integrates a learnable
domain–aware gating mechanism into a short, auditable trajectory: the agent pro-
poses domain–conditioned controls over retrieval and evidence, and an executor
clips them to safe ranges. Training combines SFT with Direct Preference Optimiza-
tion over multiple sampled trajectories using a composite preference that balances
accuracy, verifiability, cost, and redundancy; retrieved tokens are loss–masked
for stability. In a reproducible fixed–corpus setting plus small live–web subsets,
DARE–Agent delivers competitive accuracy while consistently improving citation
precision, reducing MSE, and yielding stronger accuracy–cost Pareto fronts under
matched budgets; it also raises authority/recency hit rates.

1 INTRODUCTION

Large language models (LLMs) augmented with retrieval have become a standard recipe for
knowledge-intensive reasoning. Early retrieval-augmented systems ground generation on exter-
nal corpora to reduce hallucination and improve factuality (Lewis et al., 2020; Izacard & Grave, 2021;
Shuster et al., 2021), while agentic variants interleave tool use and reasoning to plan, browse, and cite
sources (Yao et al., 2023; Nakano et al., 2021; Tan et al., 2025). Despite this progress, deployments
in specialized domains (biomedicine, law, finance) still fail along three practical axes: unverifiable
answers with weak or redundant evidence, uncontrolled cost from excessive tool calls and token
usage, and domain-agnostic retrieval that overlooks authority and recency signals.

These limitations are compounded by evaluations that emphasize answer accuracy alone, with
limited attention to process-level metrics such as citation correctness, evidence sufficiency, and
the accuracy–cost trade-off (Liang et al., 2022). Meanwhile, many tool-use training paradigms
rely on complex, hard-to-reproduce online reinforcement learning. Our goal is to advance agentic
retrieval-augmented generation toward verifiable, resource-efficient behavior that adapts to domain
constraints, without the engineering overhead of online RL.

We reframe research-agent quality as a multi-objective problem spanning accuracy, verifiability,
and resource efficiency, aligning with calls for holistic, multi-metric evaluation (Liang et al., 2022).
Beyond exactness of answers, we emphasize process desiderata: citation precision and minimal
sufficient evidence (MSE), measured alongside compute and latency budgets. While recent work
adapts retrieval frequency or integrates self-reflection to improve factuality (Asai et al., 2023; Shinn
et al., 2023), rigorous measurement and optimization of these process metrics remain underreported.
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Step1: Domain 
Recognition

Input Query

Step1: Train on short, auditable traces:

 think → search → informa7on → answer

Step2: Build DPO pairs;
Score:  
S(τ)=α·Acc+β·CP−γ·MSE−δ·Cost−η·Redun.

Step3: Train with DPO 
Update planner for beSer gates & early stopping.

Step4: MMR 
Reranking

Step5: Generator

Can antibiotics be used for a cold?

Medicine

├─ Pharmacology (weight 0.87)

│ └─ Antibiotic Use (weight 0.79)

└─ Immunology (weight 0.52)

Step2: Gate 
proposal

Ĝ = {λ%=0.60, k%=5, r=̂2, m̂=2, 𝒃 ̂}

λ" = 0.60 (MMR): slight diversity bias to cover both viral cold and bacterial-complica@on angles.
k" = 5 (top-k/round): small but sufficient candidate set per round. 
r ̂= 2 (max rounds): 1 round by default; add 1 if probes aren’t met. 
m̂ = 2 (evidence cap): two authorita@ve sources to sa@sfy MSE.
𝒃̂ (authority/recency weights): priori@ze cdc.gov, who.int, nih.gov, cochrane.org; prefer last 5–10 years).

Q1: Risks of Antibiotic Use 
in Viral Cold

Criteria for Antibiotic Selection 
in Bacterial Cold

MMR Score = λ*Sim(Q,Doc) –(1-λ)*max(Sim(Doc,Others))
Design different λ and thresholds for different domains.

1 2

Candidate Docs:
1. WHO 2023 Guidelines on Antibiotic Use in Upper Respiratory Infections
2. Clinical Differentiation Between Bacterial and Viral Cold: A Multicenter RCT
3. Adverse Effects of Unnecessary Antibiotics in Viral Infections: A Meta-Analysis

Answer:
Based on the latest clinical 
evidence and guidelines:
…

Step3: Query 
Expansion and
Retrieval

Module 3:  Align & Improve (SFT + DPO)Module 1:  Sense & Propose (Planner)

Module 2:  Clip & Execute (Executor)

Probes and Early stop (via:CP/MSE/COST )

Figure 1: DARE-Agent framework (SAP–CAE–AAI). Module 1 (SAP: Sense & Propose) detects
the domain (e.g., Medicine) and proposes gates ĝ = {λ̂ = 0.60, k̂ = 5, r̂ = 2, m̂ = 2, b̂} to
control retrieval breadth, rounds, citation budget, and authority/recency weights. Module 2 (CAE:
Clip & Execute) clips to safe bounds, expands sub-queries, performs hybrid retrieval with MMR
(λ = 0.60), and answers with citations once citation precision and minimal sufficient evidence (MSE)
thresholds are met; otherwise it loops back to SAP. Module 3 (AAI: Align & Improve) improves the
planner/generator via SFT warm-start and DPO on logged trajectories with composite preference
S(τ) = α·Acc + β ·CP− γ ·MSE− δ ·Cost− η ·Redun.

Scope and Positioning. DARE-Agent targets a reproducible, RL-free path to agent alignment under
matched budgets, with short, auditable trajectories and explicit domain-aware gates. Our objective
is not to chase peak single-metric accuracy, but to deliver stronger Pareto fronts over (accuracy,
verifiability, cost). During inference we use lightweight CP/MSE proxies to guide early stopping
(their computation is accounted in Cost), while a frozen LLM-as-a-judge is used only for offline
evaluation and does not contribute to inference-time costs (details in Sec. 3.4, App. D).

To this end, we introduce DARE-Agent, a Domain-Aware, Resource-Efficient, evidence-grounded
agentic RAG framework (Figure 1). DARE-Agent executes a short, auditable trajectory–think→
search→ information (repeat under a budget)→ answer–and operationalizes domain awareness via a
learnable domain-aware gating mechanism. In the think step, the model proposes domain-conditioned
controls over retrieval and evidence, including the MMR trade-off λ, top-k, the number of search
rounds, a cap on evidence items, and authority/recency allowlists; a lightweight executor then clips
these proposed gates to safe ranges (propose-and-clip), logs the proposal/execution pair, and updates
cost counters.

Training eschews online RL in favor of a reproducible post-training pipeline: supervised fine-tuning
(SFT) for cold-start trajectories, followed by Direct Preference Optimization (DPO) (Rafailov et al.,
2023). For each question, we sample multiple trajectories that vary the domain-aware gates and
stopping decisions, compute a composite preference score that balances accuracy, verifiability
(citation precision and MSE), cost (tokens and latency), and redundancy, and construct preference
pairs for DPO. Retrieved content is loss-masked to prevent label leakage and to stabilize optimization.
The resulting single model learns when to retrieve, how much to retrieve, which sources to trust, and
when to stop without an explicit reward model or a policy-gradient loop.

2
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We evaluate DARE-Agent in two regimes. (1) A reproducible fixed-corpus setting spanning open-
domain QA and specialized domains (Natural Questions, HotpotQA, 2WikiMultiHopQA, Pub-
MedQA) using shared indexes and a common retriever (Kwiatkowski et al., 2019; Yang et al., 2018;
Ho & et al., 2020; Jin et al., 2019). (2) Agentic browsing environments that stress multi-step search
and tool use (GAIA, WebArena) (Mialon et al., 2023; Zhou et al., 2023). Across datasets and under
matched budgets, DARE-Agent delivers competitive answer accuracy while consistently improving
citation precision, lowering MSE, and yielding stronger accuracy–cost Pareto fronts.

Contributions.

• A domain-aware agentic RAG framework with a propose-and-clip gating mechanism that
turns domain identification into explicit, learnable controls over retrieval, evidence selection,
and budgets within a short, auditable trajectory.

• An RL-free post-training recipe (SFT+DPO on composite preferences) that aligns agents to
multi-objective quality (accuracy, verifiability, and cost), with loss masking over retrieved
content for stability.

• A reproducible evaluation protocol with probes for citation precision, MSE, and cost,
applied to fixed-corpus QA and agentic browsing benchmarks, demonstrating improved
accuracy–cost Pareto fronts under matched budgets.

2 RELATED WORK

We position DARE-Agent within four threads: retrieval-augmented generation, agentic tool use and
web browsing, evaluation and verifiability, and preference-based alignment.

Retrieval-augmented generation (RAG). Early work integrates retrieval to ground generation and
reduce hallucination, including pre-training with latent retrieval (REALM) and encoder-decoder
architectures that condition on retrieved passages (RAG, FiD). Subsequent approaches add critique
or self-reflection to improve factuality, e.g., Self-RAG and Reflexion (Asai et al., 2023; Shinn et al.,
2023). Our framework shares the grounding premise but differs in (i) converting domain awareness
into explicit, learnable gates for retrieval intensity and evidence breadth, (ii) incorporating authority
and recency signals during ranking, and (iii) optimizing for process-level quality (citation precision
and minimal sufficient evidence) under explicit cost budgets.

Agentic reasoning and web-enabled QA. Interleaving reasoning with tool use has been explored
by ReAct and WebGPT (Yao et al., 2023; Nakano et al., 2021). RL-based browsing agents (e.g.,
Search-R1, DeepResearcher) learn interleaved search-and-reasoning with outcome rewards in static
corpora or the live web (Jin et al., 2025; Zheng et al., 2025). DARE-Agent adopts short, auditable
trajectories with a propose-and-clip executor that enforces domain/budget constraints, trading some
peak accuracy for verifiability/efficiency and easier reproducibility. We also discuss MedResearcher-
R1 (domain tools) and WebWatcher (multimodal) as complementary directions (Yu et al., 2025; Geng
et al., 2025).

Preference-based alignment and RL-free optimization. Beyond RLHF, DPO/SimPO provide
RL-free alternatives for preference alignment (Rafailov et al., 2023; Meng et al., 2024). We choose
RL-free post-training for reproducibility, cost/stability, and explicit multi-objective control (CP/M-
SE/Cost), while RL-based agents remain a strong complementary line (Jin et al., 2025; Zheng et al.,
2025).

Fairness of comparisons. Online RL browsing agents typically operate under different interaction
budgets and environments; aligning every knob is non-trivial. We therefore standardize a matched-
budget, fixed-corpus/browsing protocol shared by all compared methods in this paper, and place
non-budget-matched RL results (if any) in the appendix strictly as contextual references.

3 METHODS

We cast agentic retrieval-augmented generation (RAG) as a short, auditable decision process that
jointly controls when to retrieve, how much to retrieve, which sources to trust, and when to stop.

3
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DARE-Agent operationalizes this with three components: (i) domain-aware propose-and-clip gating
(Sec. 3.2); (ii) authority-/recency-aware retrieval with diversity control (Sec. 3.3); and (iii) an RL-free
post-training pipeline (SFT→ DPO) with evidence-span loss masking (Sec. 3.5). Throughout, we
relate our design to the ReAct act-and-reason paradigm (Yao et al., 2023) and grounding/evaluation
practices, including LLM-as-a-judge (Zheng et al., 2023).

3.1 PROBLEM SETUP AND NOTATION

Given a query q, the agent interacts with a retriever and produces an answer y with cited evidence
E = {ei}mi=1. Let d ∈ D denote a domain inferred in-context during planning (e.g., biomedicine,
law). At step t, the agent state st composes the dialogue prefix, the current plan, accumulated
evidence E1:t, and running cost counters (tool calls, retrieved/generation tokens, latency).

The planner πθ proposes a vector of gates

ĝt =
(
λ̂t, k̂t, r̂t, m̂t, b̂t

)
, (1)

where λ∈ [0, 1] is the MMR trade-off, k is the per-round top-k, r is the remaining search rounds, m
is the cap on evidence items, and b encodes domain-conditioned priors over sources (an allowlist
with nonnegative weights). The executor clips ĝt to safe ranges and enforces budgets.

The agent optimizes three objectives: answer accuracy, verifiability (citation precision/sufficiency
and minimal sufficient evidence), and resource efficiency (cost in tool calls/tokens/latency). These
are surfaced both at inference (through gt and stopping) and during learning (through composite
preferences).

3.2 DOMAIN-AWARE GATING VIA PROPOSE-AND-CLIP

DARE-Agent turns domain awareness into explicit, learnable control signals over retrieval and
evidence.

Propose. A planning model πθ generates a structured plan containing (dt, ĝt) conditioned on st:

(dt, ĝt) ∼ πθ(· | st). (2)

Clip and log. A lightweight executor enforces domain- and budget-specific constraints via element-
wise clipping,

gt = clip
(
ĝt; g

min(dt), g
max(dt)

)
, (3)

logs (ĝt→gt) for auditability, updates cost counters, and halts if any budget is exceeded. Intuitively,
this propose-and-clip gate allows the model to suggest retrieval intensity and evidence breadth, while
a deterministic layer guarantees safety and reproducibility.

Stopping. The agent answers if (i) rounds are exhausted or a budget is met, or (ii) the estimated
support is strong enough: ĈP≥ τc and M̂SE≤ τm (Sec. 3.4). Otherwise it continues with another
search round.

3.3 AUTHORITY/RECENCY-AWARE RETRIEVAL WITH DIVERSITY

At each round, a unified retriever returns a candidate pool C with base similarity sim(q, e) (dense or
hybrid). We refine ranking with domain-aware authority and recency features to promote credible
and timely sources.

Authority score A(e; d,b). We define

A(e; d,b) = wallow · I{host(e) ∈ Allow(d,b)} + whost · ahost(e; d) + wtype · atype(e), (4)

where (i) Allow(d,b) is a domain-conditioned allowlist with weights in b; (ii) ahost(e; d) ∈ [0, 1] is a
host-level prior; and (iii) atype(e) ∈ [0, 1] reflects document type. Features are min–max normalized
per domain. Initialization. Allowlist entries and host/type priors are initialized from publicly available
domain directories and curated guideline registries (details in App. D); they are not hard constraints
and can be de-emphasized by b.

4
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Recency score R(e). Let t(e) be the publication timestamp (or crawl time). We define R(e) =
exp(−age(e)/τd) with age(e) = t0 − t(e) and domain-specific half-life τd (App. D). When times-
tamps are missing, we impute from URL patterns and metadata.

Score fusion and diversity. Authority and recency adjust the base score:

sim⋆(q, e) = sim(q, e) + αa A(e; dt,bt) + αr R(e), (5)

and select via MMR (Carbonell & Goldstein, 1998):

e⋆ = arg max
e∈C\S

[
λt sim

⋆(q, e)− (1− λt)max
e′∈S

sim(e, e′)
]
, S←S ∪ {e⋆}, (6)

until |S|=kt or mt is reached. Selected snippets are deduplicated, normalized, and appended to E
with provenance.

3.4 PROCESS PROBES FOR VERIFIABILITY AND COST

We instrument three probes to guide stopping and to supervise preferences.

Citation precision (CP). CP is the fraction of cited items deemed supportive by a judgment function
J(·). We implement J with either (i) string/entailment heuristics or (ii) an LLM-as-a-judge prompted
to label each (y, e) as support/refute/irrelevant (Zheng et al., 2023).

Minimal sufficient evidence (MSE). MSE(y,E) = min{|S| : S ⊆ E, J(S) = support},
approximated via backward elimination with leave-one-out checks under J .

Inference-time proxies vs. offline judging. At inference, we use lightweight proxies ĈP, M̂SE
(heuristic string/entailment checks) to trigger early stopping; their computation is included in the
cost accounting. For reporting, we apply a frozen LLM-as-a-judge offline; this does not affect
inference-time behavior or costs (App. D).

Cost. We track

Cost(τ) = βs #search + βr tokretr + βg tokgen + βℓ latency. (7)

We normalize costs by the mean cost of the RAG baseline on the same split to obtain a dimensionless
C̃ost with anchor 1.0 (weights and sensitivity in App. D).

Redundancy (Redun). Redun(E) = 1
|E|

∑|E|
i=1 maxj<i cos(ϕ(ei), ϕ(ej)) using sentence embed-

dings (BGE-M3).

3.5 LEARNING FROM COMPOSITE PREFERENCES: SFT→ DPO

SFT for cold start. We supervise πθ on short trajectories that instantiate the think→ search→
information→ answer pattern, including structured gates and explicit citations.

Composite preference scoring. For a query q, we sample m trajectories {τj}mj=1 by varying gates
and stopping decisions. We compute

S(τ) = αAcc(τ) + β CP(τ) − γ M̂SE(τ) − δCost(τ) − ηRedun(τ), (8)

with preference margin κ (weights in App. D).

DPO objective with masking.

LDPO = −E
[
log σ

(
βdpo(∆θ −∆ref)

)]
, log πθ(τ |x) =

∑
t

Mt log πθ(yt|y<t, x), (9)

where Mt=0 on tokens copied from retrieved spans (evidence-span loss masking). For redundancy,
we use BGE-M3; for masking detection we adopt a conservative SBERT 5-gram semantic filter
(App. F).

5
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Algorithm 1 DARE-Agent Inference (propose-and-clip)

Require: query q, budgets (Bsearch, Btok, Bℓ)
1: Initialize s1 with q; E←∅; costs← 0
2: for t = 1, 2, . . . do
3: (dt, ĝt) ∼ πθ(· | st) propose
4: gt ← clip(ĝt; g

min(dt), g
max(dt)); update logs/costs clip

5: if rounds exhausted, a budget hit, or ĈP≥τc and M̂SE≤τm then
6: Generate final answer y with citations from E; return (y,E)
7: end if
8: Retrieve pool C; re-rank with Eq. 4–7; select S via MMR
9: Normalize and append S to E; update st+1 with evidence and costs

10: end for

3.6 INFERENCE AND BUDGETS

Algorithm 1 summarizes inference. Budgets are enforced by the executor; logs include proposed and
clipped gates, evidence UUIDs, and probe outputs.

3.7 IMPLEMENTATION NOTES AND RELATIONS

We use a unified retriever (dense or hybrid) with cosine similarity; authority and recency features
are normalized to [0, 1] and conditioned on domain via b. Default gate ranges: k ∈ [1, 8], λ ∈
[0.3, 0.8], r ≤ 3,m ≤ 3. Sentence-level deduplication precedes MMR. For similarity/Redun we use
BGE-M3; for conservative masking in Eq. 7 we use SBERT windowed checks. Optional critique
modules (Self-RAG, Reflexion) can be plugged as additional probes without changing the core
mechanism.

4 EXPERIMENTAL SETUPS

We evaluate DARE-Agent under two complementary regimes: (1) fixed-corpus QA with controlled
retrieval, and (2) agentic browsing environments with live tool use. All methods share the same
retriever, corpora, budgets, and prompting templates unless stated otherwise.

4.1 TASKS AND DATASETS

Fixed-corpus QA. We use Natural Questions (NQ), HotpotQA, and 2WikiMultiHopQA (2Wiki)
and PubMedQA (Kwiatkowski et al., 2019; Yang et al., 2018; Ho & et al., 2020; Jin et al., 2019). We
evaluate with EM/F1 and report process metrics (Sec. 4.7).

Agentic browsing. We adopt GAIA and WebArena (Mialon et al., 2023; Zhou et al., 2023).
Exact-match is insufficient; we complement task scores with judge-based evaluations and process
metrics.

4.2 CORPORA, INDEXING, RETRIEVER

We build per-dataset FAISS indexes (checksums in Appendix). Retriever is hybrid: BM25 + dense
(BGE-M3). We z-score normalize BM25 per query and linearly fuse with dense cosine:

sfuse(q, e) = wbm25s̃bm25(q, e) + wdense cos(h(q), h(e)),

with wbm25 ∈ [0.3, 0.7] grid-searched on dev. Top-K0 from each branch are merged/deduped,
re-ranked by authority/recency to obtain sim⋆, then selected by MMR.

4.3 MODELS AND INFERENCE

Planner/Generator: Qwen2.5-32B-Instruct (ReAct-style schema with
<think>/<search>/<information>/<answer>); temperature 0.5, top-p 0.95,
max_new_tokens 512.

6
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Domain classifier: Qwen2.5-1.5B-Instruct predicts (d,b) with confidence fallback to a generic
allowlist.

LLM-as-a-Judge: GPT-4 (frozen) with calibrated prompts for answer correctness and evidence
support; we also verify consistency on a small split using an open-source judge (Appendix).

4.4 BUDGETS, GATES, AND STOPPING

We enforce matched budgets:
Bsearch ≤ 3, kt ∈ [1, 8], mt ≤ 3, tokretr ≤ 4k, tokgen ≤ 1k.

Stopping occurs when rounds are exhausted, a budget is hit, or both proxies ĈP≥τc and M̂SE≤τm
are satisfied (Sec. 3).

Cost normalization anchor. We report a dimensionless C̃ost = Cost/CostRAG, where CostRAG
is the mean cost of the RAG baseline on the same split. Coefficients β and sensitivity are given in
App. D.

4.5 BASELINES AND VARIANTS

We compare against RAG/FiD (Lewis et al., 2020; Izacard & Grave, 2021); ReAct (Yao et al., 2023);
Self-RAG (Asai et al., 2023); IRCoT (Trivedi et al., 2023); Adaptive Retrieval (Mallen et al., 2023);
Adaptive-RAG (Jeong et al., 2024); (reference only) Search-R1 (Jin et al., 2025), DeepResearcher
(Zheng et al., 2025) (non-matched budgets; numbers, if shown, are contextual references in the
appendix). We ablate: –Gating, –Authority/Recency, –LossMask, –DPO.

4.6 TRAINING DETAILS

RL-free pipeline (Sec. 3.5). SFT uses short trajectories with structured gates/citations; preference
data samples m∈{3, 4} trajectories by perturbing gates/stopping; pairs keep margin κ=0.1; DPO
uses loss masking. Hyperparameters are selected on dev and reused across datasets. Counts and
prompts are provided in the anonymous artifact.

4.7 METRICS AND EVALUATION PROTOCOL

We report: (i) EM/F1 (fixed-corpus) and judge-based correctness (browsing), (ii) CP and MSE, (iii)
normalized and raw costs, and (iv) Pareto curves over {Bsearch, tokretr, tokgen}. Means over five
seeds; std and bootstrap CIs in Appendix.

4.8 REPRODUCIBILITY

We fix random seeds; log the full audit trail (proposed vs. clipped gates, evidence UUIDs, probe
outputs, cost counters); and cache retrieval results and judge decisions. The anonymous artifact will
include: (1) index build scripts and checksums, (2) training/eval prompts, (3) cost computation scripts
and normalization code, (4) minimal auditable logs for sampled runs.

5 RESULTS AND ANALYSIS

We report results on fixed-corpus QA (NQ, HotpotQA, 2Wiki, PubMedQA) and agentic browsing
(GAIA, WebArena) under matched budgets (Sec. 4.4). Unless noted, numbers are means over five
seeds; best results are bolded.

5.1 OVERALL PERFORMANCE ON FIXED-CORPUS QA

Analysis. (1) Controllability⇒ verifiability. CP↑/MSE↓ stems from gates prioritizing authoritative
sources and constrained retrieval (Sec. 3.2). (2) Efficiency without sacrificing accuracy. Compared
to ReAct, DARE-Agent attains better or equal answer quality at lower cost by early stopping driven
by CP/MSE. (3) Process alignment. Gains align with composite S(τ) in Eq. 8.

7
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Table 1: Fixed-corpus QA under matched budgets.

NQ HotpotQA 2Wiki PubMed CP(%)/
MSE/Cost

Method EM F1 EM F1 EM F1 Acc

RAG 47.8 60.1 50.3 68.4 – – 71.0 64.2 / 2.6 / 1.00
FiD 51.2 63.5 54.1 70.2 – – 72.6 66.1 / 2.5 / 1.20
ReAct 50.4 62.0 55.0 71.1 – – 72.2 68.0 / 2.3 / 1.45
Self-RAG 31.4 39.0 6.80 29.60 4.60 19.59 73.0 71.5 / 2.1 / 1.35
IRCoT 38.6 47.8 44.60 56.54 49.60 58.85 – –
Adaptive Retrieval 28.2 36.0 23.60 32.22 33.20 39.44 – –
Adaptive-RAG 37.8 47.3 42.00 53.82 40.60 49.75 – –
DARE-Agent (ours) 53.8 66.1 58.2 74.3 50.40 60.40 76.5 80.6 / 1.5 / 0.85

Table 2: Agentic browsing. Judge Acc (LLM-as-a-judge with frozen prompts), CP (%), MSE (lower
is better), and normalized Cost.

2*Method GAIA WebArena

Acc CP MSE Cost Acc CP MSE Cost

RAG 41.2 62.0 2.5 1.00 45.0 65.0 2.4 1.05
FiD 44.5 64.0 2.4 1.25 47.2 66.5 2.3 1.30
ReAct 47.1 67.3 2.2 1.50 50.6 68.9 2.1 1.55
Self-RAG 49.0 70.5 2.1 1.40 52.0 72.1 2.0 1.45
DARE-Agent (ours) 53.4 79.2 1.6 0.90 55.8 81.0 1.5 0.88

5.2 AGENTIC BROWSING: GAIA AND WEBARENA

Table 2 reports judge-based accuracy, CP/MSE, and cost. DARE-Agent outperforms all baselines with
larger gains than in fixed-corpus settings, highlighting the benefit of recency- and authority-aware
selection when browsing the open web.

Takeaways. Learned gates stop earlier when evidence suffices (cost < 1) and authority/recency
priors improve source choice (higher CP, smaller MSE).

5.3 ABLATIONS AND SENSITIVITY

We ablate on the union of all tasks (Table 3). Removing domain-aware gating or DPO causes the
largest drops. Removing authority/recency weighting notably decreases CP, confirming its role in
verifiability.

Table 3: Ablations (macro-averaged). "Quality" is mean of NQ/Hotpot F1 and PubMed Acc.

Variant Quality CP (%) MSE Cost
DARE-Agent (full) 72.3 80.2 1.6 0.89
- Gating 70.6 76.1 1.8 1.05
- Authority/Recency 71.0 73.4 1.9 0.88
- LossMask 71.5 77.2 1.7 0.90
- DPO 70.1 74.3 1.7 0.91

Sensitivity to budgets. Under low budgets (Bsearch=1, tokretr≤2k), DARE-Agent retains 97% of
its medium-budget quality while Adaptive-RAG drops to 94%. At high budgets, both saturate, but
DARE achieves Pareto dominance by stopping earlier on easy instances.

8
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5.4 LEARNED GATE BEHAVIOR BY DOMAIN

Averaging learned gates by domain (Table 4) shows biomedicine prefers larger k,m (breadth and
redundancy reduction), while finance-like tasks in GAIA select smaller m and slightly higher λ
(precision via recency-weighting).

Table 4: Mean ± std of gates by domain: top-k (k), evidence cap (m), MMR trade-off (λ), remaining
rounds (r).

Domain k m λ r
Open-domain (NQ/Hotpot) 4.2 ± 1.0 2.0 ± 0.4 0.55 ± 0.09 1.7 ± 0.7
Biomedicine (PubMedQA) 5.6 ± 1.1 2.6 ± 0.5 0.62 ± 0.08 2.1 ± 0.6
Finance-like (GAIA) 3.8 ± 0.9 1.8 ± 0.4 0.58 ± 0.07 1.5 ± 0.6

5.5 PROCESS METRICS: WHY VERIFIABILITY IMPROVES

Higher CP and lower MSE arise from: (i) authority/recency-adjusted ranking (Eq. 5) that shifts
mass to credible, timely sources; (ii) DPO on composite preferences (Eq. 8) discouraging redundant
citations and excess cost; and (iii) loss masking (Eq. 9) focusing learning on policy tokens rather than
copied spans.

Takeaways. Learned gates stop earlier when evidence suffices (cost < 1) and authority/recency
priors improve source choice (higher CP, smaller MSE). For all reports, the evaluation judge is frozen;
a small-split check with an open-source judge yields consistent conclusions (Appendix).

6 CONCLUSION

We presented DARE-Agent, which turns domain awareness into explicit, learnable control over
retrieval and evidence within short, auditable trajectories, and aligns agents to multi-objective quality
(accuracy, verifiability, cost) via an RL-free SFT→DPO pipeline with evidence masking. Under
matched budgets, DARE-Agent improves citation precision, reduces minimal sufficient evidence and
cost, and traces stronger accuracy–cost Pareto fronts across fixed-corpus QA and agentic browsing.

Positioning. Our focus is a reproducible, auditable, RL-free path to agent alignment under matched
budgets, prioritizing verifiability and efficiency alongside accuracy rather than chasing peak single-
metric performance.

Limitations and Future Work. Reliance on domain inference and curated authority priors may
encode bias; timestamps can be noisy; CP/MSE judgments via LLM-as-a-judge are imperfect.
Future work: uncertainty-calibrated stopping, counterfactual learning of authority/recency to mitigate
bias/drift, adversarial filtering for noisy sources, multi-modal/table/code tools, and light bandit-style
adaptation at test time with auditability preserved.
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ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. This work uses only public datasets (NQ, HotpotQA,
2WikiMultiHopQA, PubMedQA) and publicly accessible webpages in GAIA/WebArena; no human-
subject studies, PII, or sensitive data were collected. We do not bypass access controls, robots
directives, or terms of service. Main risks include erroneous or overconfident outputs and bias from
allowlists/host priors or timestamp noise. Mitigations: authority/recency act as soft weights; diversity
via MMR; CP/MSE probes with early stopping favor minimal, truly supportive evidence; short,
auditable trajectories with logs. Results are not medical, legal, or financial advice; high-stakes use
requires expert oversight.

REPRODUCIBILITY STATEMENT

We fix random seeds, cache retrieval results and judge decisions, and provide an anonymous arti-
fact containing: (i) index scripts and checksums; (ii) retriever configuration (BM25 + BGE-M3),
fusion/MMR settings; (iii) all prompts (classification, planning, search, answer, judge); (iv) SFT/DPO
hyperparameters, masking rules, and training recipes; (v) budget settings and cost normalization code;
(vi) evaluation scripts (EM/F1, judge-based accuracy, CP/MSE/Redun); (vii) minimal auditable logs
(proposed vs. clipped gates, evidence IDs, proxies, token/latency counters). Decoding parameters and
gate ranges are fixed. The LLM-as-a-judge and its prompts are frozen; a small split is cross-checked
with an open-source judge. Cached artifacts avoid network nondeterminism and enable repeatable
runs.
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A DISCLOSURE ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

Components. An instruction-tuned LLM serves as planner/generator; a lightweight instruction-tuned
model performs domain classification; sentence-embedding models (e.g., BGE-M3) support retrieval
and redundancy checks; a compact NLI head aids CP/MSE proxies. A frozen LLM-as-a-judge is used
offline to grade answer correctness and evidence support for reporting and preference construction; it
is not used at inference and does not affect runtime cost.

Training and alignment. We use SFT on short, auditable trajectories and DPO on composite
preferences; retrieved spans are masked during loss to reduce label leakage.

Writing assistance. LLMs were used only for minor grammar/wording edits; all technical content
and decisions are by the human authors.

Safeguards and responsibility. Model versions and judge prompts are frozen; a small split is
cross-checked with an open-source judge. All data/models follow licenses; no sensitive data were
used. LLMs are not authors; human authors take full responsibility. Significant LLM usage is
disclosed here.

B PROMPTS

B.1 DOMAIN CLASSIFICATION PROMPT

You are a domain classification expert operating in a double-blind review
setting.

Given a user query {q}, infer the domain and produce soft preferences for
authority

and recency. Output JSON only, no extra text.

{
"domain": "biomedicine|law|finance|open-domain|other",
"confidence": 0.xx, // [0,1]
"topic_keywords": ["k1","k2","k3"], // short, query-derived terms
"time_sensitivity": "low|medium|high", // your estimate from the

query
"predicted_half_life_days": N, // map from domain defaults

when applicable
"allowlist_weights": {

"hosts": { "example.org": 0.8, "...": 0.xx }, // domain-shaped soft
weights

"doc_types": { "guideline": 0.9, "systematic_review": 0.85, "
peer_reviewed": 0.8 },

"recency_bias": 0.xx // [0,1], higher = prefer
newer docs

},
"justification": "1-2 sentences explaining the domain choice and

weighting",
"safety": { "double_blind_ok": true }

}

Rules:
- If confidence < 0.6, set domain="open-domain" and emit a generic,

neutral allowlist.
- Weights are soft preferences, not hard constraints; all values must be

within [0,1].
- Do not include any personal identifiers, institution names, or non-

anonymous links.
Query: {q}

B.2 PLANNER PROMPT

12
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[ROLE] You are the Planner in a short, auditable loop: think search
information answer.

Clip-and-Execute (budget clipping, authority/recency re-ranking, MMR, CP/
MSE/Cost probes,

early stopping) is handled by the system, not by you.

[INPUT]
- user_question: {q}
- domain: {d}
- budgets: {B_search3, tok_retr4k, t o k _ g e n 1k }
- thresholds: {tau_c=0.75 (CP), tau_m=2 (MSE)}
- optional_executor_feedback (may be absent):

{ r_remaining, CPc_est, MSE_est, cost_counters, E_brief }

[OBJECTIVES]
1) Sense-and-Propose: infer task facets under {d}, then propose gates

g_hat = {lambda_hat, k_hat, r_hat, m_hat, b_hat}, with ranges:
- lambda_hat [0.3, 0.8] // MMR trade-off (higher = stronger de-

duplication)
- k_hat [1, 8] // candidate pool size per round
- r_hat {0,1,2,3} // remaining rounds under B_search
- m_hat {1,2,3} // cap for minimal sufficient evidence

in the final answer
- b_hat: soft authority/recency preferences (hosts/doc_types/

recency_bias in [0,1])
Briefly justify each choice with respect to coverage, cost, authority,

and expected CP/MSE.

2) Decide next step:
- If (CPc_est tau_c AND MSE_est tau_m) OR any budget would be

exceeded by another search,
set decision="answer"; otherwise decision="search".

- Note: the system may still early-stop based on its own probes.

3) Emit 1 2 precise queries consistent with b_hat (avoid near-
duplicates; anonymous only).

[OUTPUT FORMAT STRICT]
<think>
- 2 4 sentence analysis of the task and remaining information gaps
- gates_t = {lambda_hat: x.xx, k_hat: K, r_hat: R, m_hat: M, b_hat:

{...}}
- decision = "search" | "answer"
- sources_to_trust: prioritized hosts/types implied by b_hat
- rationale: how gates_t is expected to improve C P / M S E / C o s t
</think>
<search>
["query_1", "query_2"] // If decision="answer", output [] here
</search>

B.3 ANSWER GENERATION PROMPT

[ROLE] You generate the final answer strictly grounded in the selected
evidence returned by

Clip-and-Execute. Use the minimal sufficient set E* with |E*| m_hat.

[INPUT]
- user_question: {q}
- domain: {d}
- last_planner_summary (read-only): {gates_t, decision, sources_to_trust}
- information: a list of items, each exactly as:

[indexN][Title: ...][Content: ...][Url: ...]
- thresholds: {tau_c=0.75, tau_m=2}
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- m_cap: {m_hat}

[RULES]
- Faithfulness: Every non-trivial claim must be supported by at least one

item in E*.
- Minimality: Prefer the smallest E* that keeps CP tau_c and MSE

tau_m; do not exceed m_hat.
- Clarity & Brevity: 1 2 concise paragraphs or a short bullet list

answering the question directly.
- Uncertainty: If gaps remain, state what is uncertain and which evidence

would resolve it.
- Double-blind: Do not reveal identities; cite only by [index] as

provided in ‘information‘.

[OUTPUT FORMAT STRICT]
<answer>
- Direct conclusion (what, whether, or under what conditions)
- Key justifications with inline citations [indexX]
- Applicable conditions/exceptions and risks (if any) with citations
- If applicable: residual uncertainty and needed evidence
- Citations: [indexA, indexB] // the final minimal evidence set
</answer>

B.4 ANSWER CORRECTNESS PROMPT

You are a strict but fair grader. Given:
- question: {q}
- pred_answer: {text}
- gold_or_reference: {gold text or structured key facts}
- (optional) cited_indices: [index ids] with evidence snippets

Return JSON only:
{

"label": "correct|partially_correct|incorrect",
"correct": true|false, // true iff label == "correct"
"coverage": "high|medium|low", // how completely the answer

addresses the question
"severity": "none|minor|major", // impact of any issues on

factual correctness
"issues": {

"missing_key_points": ["..."],
"unsupported_claims": ["..."],
"contradictions": ["..."]

},
"citation_check": {

"available": true|false,
"citation_precision": 0.xx, // fraction of citations that

truly support
"audit": [ {"index": "index1", "label": "support|refute|irrelevant"}

]
},
"mse_estimate": 1|2|3, // minimal number of citations

required (rough)
"rationale": "brief justification referencing the provided gold/

evidence"
}

Criteria:
- "correct": all key claims supported; no material errors or

contradictions.
- "partially_correct": core idea right but missing/support issues on 1

key claim.
- "incorrect": any material error or contradiction with the gold/

reference.
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Notes:
- Judge faithfulness to provided evidence/gold over style or verbosity.
- Do not introduce external knowledge beyond what is provided.

B.5 EVIDENCE SUPPORT PROMPT

Given {answer} and one cited snippet {e}, decide whether {e} supports the
specific claim

it is cited for. Return JSON only:
{ "label": "support|refute|irrelevant", "rationale": "brief explanation"

}
CP is the fraction of citations labeled "support".

C CP/MSE PROXIES AT INFERENCE

At inference time we compute ĈP/M̂SE via lightweight rules: (i) lexical match and paraphrase-aware
string overlap between the answer and evidence; (ii) an entailment check using a compact NLI head;
(iii) leave-one-out removal until support breaks to approximate MSE. These proxies trigger early
stopping and their computation time is included in Cost; the offline LLM-as-a-judge is used only for
reporting.

D HYPERPARAMETERS AND THRESHOLDS

Composite preferences. Unless noted: α=0.45, β=0.25, γ=0.15, δ=0.10, η=0.05; margin
κ=0.1. We grid search α, β ∈ {0.2, 0.25, 0.3}, γ ∈ {0.1, 0.15, 0.2}, δ ∈ {0.05, 0.1, 0.15} on
dev splits and reuse.

Stopping thresholds. τc=0.75 (CP), τm=2 (MSE), selected on dev via Pareto sweep.

DPO scale. βdpo=0.1; sensitivity (0.05–0.3) included in the artifact.

Authority/recency weighting. αa, αr ∈ [0, 0.5] (step 0.05). Final picks: open-domain
αa=0.25, αr=0.10; biomedicine αa=0.35, αr=0.05; finance-like αa=0.20, αr=0.30.

Domain half-lives τd. open-domain 365 days, biomedicine 1095 days, finance-like 90 days. Miss-
ing timestamps are imputed from URL patterns and metadata.

E COST WEIGHTS AND NORMALIZATION

We use Cost = βs #search+βr tokretr+βg tokgen+βℓ latency and report C̃ost = Cost/CostRAG
(anchor = 1.0). Unless otherwise stated, we set

βs = 1.0, βr = 5×10−4, βg = 5×10−4, βℓ = 0.1,

chosen on dev to balance search calls and token/latency terms. A ±20% sensitivity sweep does not
change conclusions (artifact).

F EVIDENCE-SPAN MASKING DETAILS

We set Mt=0 for tokens copied from retrieved spans if either: (1) BPE-LCS between yt and any
retrieved snippet ≥ 8 tokens; or (2) Semantic cosine between SBERT embeddings of 5-gram
windows ≥ 0.80. Overlaps are merged. We ablate masking in Table 3.
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Field Content

Query ID nq_dev_000123
Proposed / Clipped
Gates

ĝt={λ̂=0.58, k̂=5, r̂=2, m̂=3} / gt={λ=0.58, k=5, r=2,m=3}

Evidence (UUIDs) e1: wsj_2024_...; e2: sec_10k_...; e3: bloomberg_...
Probes CP=0.80; MSE=2; Cost: #search=2, tok_retr=2.9k, tok_gen=0.6k
Answer y: “...”, cites: [e2, e3]

Table 5: Minimal auditable log entry example.

G MINIMAL AUDITABLE LOG (TABULAR)

H JUDGE SENSITIVITY AND PROMPT FREEZING

We freeze judge prompts and model versions for all reports. On a small random split per benchmark,
an open-source judge yields consistent verdict tendencies; prompts and scripts are included in the
artifact.

I ALLOWLIST INITIALIZATION AND RE-WEIGHTING

Allowlists and host/type priors are initialized from public guideline registries and domain directories.
We periodically re-weight and plan counterfactual checks to mitigate bias/drift.

J ANONYMOUS ARTIFACT CONTENTS

The anonymous package (to be released upon acceptance or upon request during review) includes:
index build scripts/checksums, prompts, cost computation and normalization code, sampled logs, and
instructions to reproduce Table 1 and Table 2 from cached retrievals.

K CASE STUDY: DOMAIN-SPECIFIC b̂ TEMPLATES WITH DIALOG-STYLE
QUERY EXAMPLES

This section aligns with App. D: domain-specific authority/recency weights (αa, αr) and half-lives
τd.

K.1 BIOMEDICINE

App. D settings. αa=0.35, αr=0.05, τd=1095 days.

b̂ template (soft weights).

{
"hosts": {

"who.int": 0.90, "cdc.gov": 0.90, "nih.gov": 0.85, "ncbi.nlm.nih.gov
": 0.85,

"cochrane.org": 0.85, "nice.org.uk": 0.80, "ema.europa.eu": 0.75
},
"doc_types": {

"guideline": 0.90, "systematic_review": 0.85, "meta_analysis": 0.85,
"randomized_trial": 0.80, "observational_study": 0.65

},
"recency_bias": 0.35,
"notes": "Prefer high-level guidance + syntheses; prioritize last 3

10 years when relevant."
}
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Query examples (dialog-style).

User: user question: {Can antibiotics be used for a cold?} Domain
Recognition: {Medicine}

Assistant: <think>This is an evidence-based medicine question concerning
the "appropriateness of medication use for upper respiratory tract
infections." It requires distinguishing between the common cold (
mostly viral) and scenarios involving bacterial complications, and
checking authoritative guidelines and systematic reviews for
recommendations and risk evidence regarding "when antibiotics should
or should not be used." To cover both guidelines and reviews while
avoiding redundancy, the following is proposed:

gates_t = {lambda_hat: 0.60, k_hat: 5, r_hat: 2, m_hat: 2, b_hat: {"who.
int":0.9,"cdc.gov":0.9,"nih.gov":0.85,"cochrane.org":0.85,"guideline
":0.9,"systematic_review":0.85,"recency_bias":0.35}}

decision = "search"
</think>
<search>["WHO 2023 Guidelines on Antibiotic Use in Upper Respiratory

Infections",
"Clinical Differentiation Between Bacterial and Viral Cold: A Multicenter

RCT"]</search>

K.2 FINANCE-LIKE

App. D settings. αa=0.20, αr=0.30, τd=90 days.

b̂ template (soft weights).

{
"hosts": {

"sec.gov": 0.90, "federalreserve.gov": 0.85, "treasury.gov": 0.80,
"bls.gov": 0.80, "bis.org": 0.75, "imf.org": 0.75, "oecd.org": 0.70

},
"doc_types": {

"regulatory_filing": 0.90, "official_statement": 0.85,
"data_release": 0.85, "market_report": 0.75, "newswire": 0.65

},
"recency_bias": 0.80,
"notes": "Emphasize the last ~90 days; prefer primary sources and

official releases."
}

Query examples (dialog-style).

User: user question: {What are the key risk factors disclosed in {TICKER
}’s latest Form 10-K?} Domain Recognition: {Finance-like}

Assistant: <think>This is an issue centered on compliance in information
disclosure by publicly listed companies and the identification of
risk exposure. The most authoritative primary source is the latest
Form 10-K (Item 1A) on the U.S. Securities and Exchange Commission (
SEC) website. To ensure timeliness and authority, the focus will be
on the main SEC site and be restricted to documents from within the
past year:

gates_t = {lambda_hat: 0.58, k_hat: 4, r_hat: 2, m_hat: 2, b_hat: {"sec.
gov":0.9,"regulatory_filing":0.9,"official_statement":0.85,"
data_release":0.85,"recency_bias":0.8}}

decision = "search"
</think>
<search>["{TICKER} Form 10-K (Item 1A. Risk Factors) U.S. SEC",
"How to read Item 1A (Risk Factors) Investor Education (SEC)"]</

search>
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K.3 OPEN-DOMAIN

App. D settings. αa=0.25, αr=0.10, τd=365 days.

b̂ template (soft weights).

{
"hosts": {

"nasa.gov": 0.85, "britannica.com": 0.80, "loc.gov": 0.75,
"nature.com": 0.80, "science.org": 0.80, "*.edu": 0.70, "*.gov": 0.75

},
"doc_types": {

"encyclopedia": 0.80, "peer_reviewed": 0.80, "government_report":
0.75

},
"recency_bias": 0.50,
"notes": "Blend peer-reviewed / encyclopedic / government sources;

moderate recency."
}

Query examples (dialog-style).

User: user question: {When did humans first land on the Moon?} Domain
Recognition: {Open-domain}

Assistant: <think>This is a factual historical question, with
authoritative government sources and encyclopedic/academic references
preferred to ensure accuracy. The evidence minimization strategy is:
NASA official + encyclopedia e n t r y two sources are

sufficient to meet the requirement.
gates_t = {lambda_hat: 0.55, k_hat: 4, r_hat: 1, m_hat: 2, b_hat: {"nasa.

gov":0.85,"britannica.com":0.8,"encyclopedia":0.8,"government_report
":0.75,"peer_reviewed":0.8,"recency_bias":0.5}}

decision = "search"
</think>
<search>["NASA Apollo 11 Mission Overview",
"Encyclopaedia Britannica Apollo 11"]</search>
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