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Abstract

Recent efforts in LLM alignment have focused001
on constructing large-scale preference datasets002
via human or Artificial Intelligence(AI) an-003
notators. However, such approaches rely on004
instance-wise supervision, incurring substan-005
tial annotation cost and limited interpretability.006
In this paper, we propose ZEBRA—a model007
behavior-wise zero-annotation framework that008
constructs preference data by leveraging model009
behavior knowledge derived from benchmark010
performances.011

ZEBRA binarizes response pairs by evaluat-012
ing the quality and similarity of their origin013
models, entirely bypassing instance-level an-014
notation. This allows scalable, controllable,015
and cost-effective alignment data generation.016
Empirical results show that ZEBRA achieves017
alignment performance comparable to instance-018
supervised methods, despite requiring no man-019
ual or model-based labeling.020

1 Introduction021

Aligning large language models (LLMs) with hu-022

man preferences is an essential step toward mak-023

ing them both useful and safe. A common way024

to achieve this is through instance-wise labeling,025

where pairs of model responses are compared one026

by one to see which is better. Well-known methods027

like Reinforcement Learning from Human Feed-028

back (RLHFOuyang et al. (2022a)) and Artificial029

Inteligence(AI)-based labeling(RLAIFLee et al.)030

often use this strategy.031

However, instance-wise labeling faces two ma-032

jor challenges. First, it is very costly, whether it033

involves human annotators or additional compu-034

tational resources for LLM-based labeling(Zhang035

et al., 2024; Zheng et al., 2023). Second, it lacks a036

global view of the model’s behavior(Ji et al., 2023).037

Since each response pair is judged in isolation, it038

is difficult to consider broader factors. For exam-039

ple, whether fluency should outweigh factual accu-040
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Figure 1: Human annotation(Ouyang et al., 2022a) and
AI labeler-based RLAIF(Cui et al., 2023) use instance-
wise annotations, while ZEro-annotation Behavior-
based Response Alignment(ZEBRA) applies model
behavior-wise annotation based on model behavioral
knowledge, which captures proficiency and similarity
across models. M is the model, Ri is the generated re-
sponse from Mi about Instruction Q. N is the number
of preference dataset and K is the number of models

racy. Or whether a model’s outputs are consistently 041

aligned with certain policies(Wang et al., 2025). 042

This can lead to labeling noise, mistakes, and lim- 043

ited interpretability. 044

To address these limitations, we propose a new 045

preference binarization approach called ZEro- 046

annotation Behavior-based Response Alignment 047

(ZEBRA) (Figure 1). The main idea is: (1) extract 048

each model’s behavioral patterns from its past per- 049

formance trajectories, (2) measure and compare 050

these behaviors in terms of model strength or simi- 051

larity, and (3) assign preferences at the model level 052

rather than for each individual response pair. 053

We implement this idea through three key com- 054

ponents. First, we define Model Behavior Knowl- 055

edge (MBK) for LLMs (discuss in Section 4.1). 056

Second, we propose a way to quantify and collect 057

MBK from objective data sources such as bench- 058

mark performance. Third, we introduce three strate- 059

gies—based on superiority, similarity, and a hy- 060
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brid—to construct a binarization dataset in a zero-061

annotation, cost-free manner.062

A major advantage of our approach is that it063

creates response pairs based on model superior-064

ity without any additional human or LLM label-065

ing. By classifying models with higher benchmark066

scores as “positive” and those with lower scores as067

“negative,” we can systematically label preferences068

throughout the dataset. This significantly reduces069

the cost of annotation and, because MBK visual-070

izes each model’s behavior pattern, increases the071

interpretability of the preference decisions.072

Through extensive experiments, we show that073

ZEBRA achieves performance comparable to ex-074

isting instance-wise labeling methods in the Ultra-075

feedback(Cui et al., 2023) dataset—without any076

extra labeling cost.077

In summary, our contributions are as follows:078

• We introduce ZEBRA, a zero-annotation079

alignment framework that determines prefer-080

ences from quantified model-level behavior,081

bypassing instance-level supervision.082

• We demonstrate that the Model Behavior083

Knowledge (MBK) from benchmark perfor-084

mance offers alignment signals comparable to085

instance-wise labeling.086

• We empirically show that ZEBRA matches the087

performance of established methods such as088

RLHF and RLAIF, yet requires no additional089

labeling cost.090

2 Preliminaries091

2.1 Instance-Level Preference Construction092

Most existing preference learning frameworks for093

LLM alignment—such as Reinforcement Learn-094

ing from Human Feedback(RLHF, Ouyang et al.095

(2022a)) and AI-generated preference methods096

(RLAIF, Lee et al.)—rely on instance-level pair-097

wise supervision. Given an instruction x, multiple098

candidate responses {r1, r2, ..., rk} are scored or099

ranked by either human annotators or automated100

scoring models. This generates preference tuples101

(x, ri ≻ rj), where ri is preferred over rj under102

some evaluation criteria (e.g., helpfulness, truthful-103

ness, coherence).104

The preference construction process typically105

involves:106

• Generating multiple responses per instruction107

using different models or decoding strategies.108

• Computing preference labels via either human 109

judgment or model-based scoring (e.g., GPT- 110

4(OpenAI, 2023)). 111

• Aggregating these labels into a pairwise 112

dataset for alignment tuning. 113

2.2 Challenges of Instance-Level Supervision 114

While instance-level supervision has proven effec- 115

tive in aligning LLMs, it remains costly, noisy, and 116

difficult to scale. Despite its popularity, instance- 117

level supervision suffers from three core limita- 118

tions: 119

1. Costly evaluation: Annotating or scoring 120

each response pair requires substantial human 121

or computational effort. 122

2. Preference triviality: When candidate re- 123

sponses differ significantly in quality, the pref- 124

erence label becomes trivial, contributing little 125

to alignment learning. 126

3. Instruction-level variance: Difficulty and 127

ambiguity in the instruction x can introduce 128

noise into the preference signal, especially for 129

automated labelers. 130

These limitations underscore the need for alter- 131

native approaches that construct preference signals 132

without relying on per-instance scoring. 133

2.3 Motivation for Model Behavior-Level 134

Preference 135

We propose that instead of relying on per-instance 136

evaluation, one can leverage the intrinsic capa- 137

bilities of the response-generating models them- 138

selves. As models exhibit differences in core com- 139

petencies measurable via standardized benchmarks, 140

we hypothesize this can replace instance-level an- 141

notations. 142

3 ZEro-annotation Behavior-based 143

Response Alignment Framework 144

3.1 Instance-level Annotation vs. 145

Model behavior-level Annotation 146

Traditional instance-level binarization relies heav- 147

ily on detailed, provided by human or AI annota- 148

tors(Zhang et al., 2024; Sharma et al., 2024). Each 149

pairwise comparison demands significant effort and 150

resources to maintain consistency and interpretabil- 151

ity. Such an approach often results in annotation 152

noise, limited scalability, and considerable expense. 153
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In contrast, our proposed ZEBRA framework154

leverages intrinsic behavioral knowledge derived155

from model performance across various bench-156

marks, ZEBRA systematically matches and pairs157

responses. Responses from models with proven158

higher competencies form positive labels, while159

those from models with lower competencies be-160

come negative labels. This innovative model-level161

approach drastically reduces annotation costs, mini-162

mizes noise, and enhances scalability. Additionally,163

the behavior similarity-based matching provides ex-164

plicit control over the difficulty and nuance of pref-165

erence comparisons, leading to clearer and more166

meaningful alignment outcomes.167

3.2 Model Behavior Knowledge168

While most preference-learning pipelines focus169

on differences between individual responses,170

our approach highlights Model Behavior Knowl-171

edge (MBK)—the comprehensive record of each172

model’s past behaviors and capabilities. We define173

MBK using two sets of metrics:174

• Superiority: How much better (or worse) a175

model is compared to others, based on overall176

or task-specific proficiency.177

• Similarity: How likely a model is to behave178

similarly to other models.179

These metrics provide a principled basis for180

quantifying both a model’s general strength and181

its behavioral proximity to its peers. Within a182

preference-learning pipeline, superiority functions183

as a global preference signal: when one model con- 184

sistently outperforms another across standardized 185

benchmarks, its responses are considered prefer- 186

able overall. 187

Conversely, behavioral similarity facilitates the 188

systematic construction of challenging compari- 189

son sets. When two models are behaviorally simi- 190

lar—for example, they exhibit comparable reason- 191

ing performance—their responses become difficult 192

to distinguish. Training on such hard-to-distinguish 193

pairs guides the preference learner to focus on sub- 194

tle qualitative differences, resulting in more nu- 195

anced and robust alignment. 196

3.3 Model Behavior Evaluation using 197

Benchmark Performances 198

To capture MBK in a practical, objective way, we 199

rely on external benchmark performance data for 200

each LLM. Many models are already evaluated 201

across diverse, standardized tasks (e.g., reasoning, 202

factual accuracy, instruction-following). We aggre- 203

gate these benchmark scores to form each model’s 204

MBK profile. 205

Benchmark performance offers several advan- 206

tages for extracting MBK: 207

• It provides reliable metrics for the core com- 208

petencies of large language models. 209

• It enables straightforward comparison and 210

aggregation across multiple models. 211

• Because benchmark scores are published and 212

fixed at release, they impose no constraints on 213
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subsequent data or model expansion.214

The list of benchmarks used in our analysis is215

provided in Figure 3.216

Figure 4 illustrates how the behavioral similar-217

ities inferred from benchmark performance can218

reflect actual model similarities. For example, the219

LLaMA-2-13b model exhibits a pattern closely re-220

sembling that of its 7b counterpart. In contrast,221

WizardLM-7b demonstrates a markedly different222

behavioral trajectory.223

We define a model’s ability vector vi ∈ Rm224

across m benchmark tasks:225

vi =
[
s
(1)
i , s

(2)
i , . . . , s

(m)
i

]
,226

where s
(b)
i is the normalized score of model Mi227

on benchmark b, reflecting its relative capability in228

a specific behavioral dimension (e.g., knowledge,229

reasoning, instruction-following). These standard-230

ized behavior vectors serve as the foundation for231

both quality-based and similarity-based anchoring,232

enabling zero-annotation binarization of prefer-233

ence pairs without per-instance supervision.234

3.4 Benchmark-based Model Behavior235

Quantification236

To effectively binarize preference data, it is es-237

sential to quantify model behavior from two com-238

plementary perspectives: behavior quality and be-239

havior similarity. ZEBRA leverages benchmark-240

derived measures of these aspects to systemati-241

cally pair positive responses with suitable nega-242

tive counterparts. By quantifying both the absolute243

competency of individual models and the relative244

similarity between models, ZEBRA ensures that245

each positive-negative pair captures meaningful246

contrasts in model capabilities, thus maximizing247

alignment informativeness.248

Model Behavior Superiority (MB-SUP) quan-249

tifies the overall behavioral competency of model250

Mi as the aggregate of its normalized benchmark251
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Figure 4: Hexagonal radar plots visualizing model abil-
ity profiles. Models judged as similar exhibit compara-
ble benchmark performance trajectories, while different
models show clearly divergent patterns.

scores: 252

MB-SUP(Mi) =
1

m

m∑
k=1

s
(b)
i . (1) 253

This scalar value serves as the ranking basis for 254

constructing Behavioral Superiority Anchors. 255

Model Behavior Similarity (MB-SIM) be- 256

tween models Mi and Mj is defined as the sim- 257

ilarity between their behavior vectors: 258

MB-SIM(Mi,Mj) = similarity(vi, vj). 259

Higher values indicate stronger alignment in 260

general-purpose capabilities, and MB-SIM serves 261

as the criterion for selecting comparable model 262

pairs in Behavioral Similarity Anchoring. 263

3.5 Strategy of Preference Binarization 264

ZEBRA introduces multiple strategies to systemat- 265

ically convert benchmark-derived model behaviors 266

into binary preference pairs. Based on how MB- 267

SUP and MB-SIM are utilized, our strategies can 268

be clearly categorized as follows on Figure 5. 269

We detail each strategy below: 270

Strategy 1: Superiority-first Anchoring (SUP) 271

In this strategy, we explicitly select the top-two 272

models based on their MB-SUP scores: the highest- 273

scoring model (top-1) and the second-highest- 274

scoring model (top-2). Responses from the top-1 275

model serve as positive anchors, while responses 276
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from the top-2 model become negative counter-277

parts. This approach emphasizes explicit quality278

distinctions, clearly defining superior responses279

and ensuring meaningful, informative alignment280

contrasts.281

Strategy 2: Similarity-first Anchoring (SIM)282

Responses from models sharing similar behavioral283

patterns (high MB-SIM) are paired first. Within284

these pairs, the response from the model with285

higher MB-SUP is selected as the anchor (posi-286

tive response). This strategy emphasizes behavioral287

similarity, enhancing nuanced alignment compar-288

isons.289

Strategy 3: Hybrid Anchoring (SUP+SIM)290

Model pairs are selected by simultaneously con-291

sidering both MB-SUP and MB-SIM criteria. This292

balanced approach ensures each response pair re-293

flects meaningful contrasts in model quality, while294

maintaining behavioral similarity for refined gran-295

ularity.296

These strategies enable ZEBRA to flexibly and297

effectively tailor preference construction according298

to the desired granularity, alignment objectives, and299

computational resources. Figure 5 represent the300

example of each strategy.301

3.6 Zero-Annotation Preference Construction302

Given a set of instructions X and a pool of303

response-generating models M, the construction304

proceeds as follows:305

1. Model Behavior Evaluation: Each model306

Mi ∈ M is benchmarked across m tasks to307

obtain model’s ability vector vi.308

2. Pair Selection: Using a chosen strategy, a set309

of model pairs P = {(Mi,Mj)} is selected310

where MB-SIM(Mi,Mj) ≥ τ . we set τ at 0.1, 311

as cosine similarity values below this thresh- 312

old indicate a lack of meaningful similarity 313

between models. 314

3. Response Mapping: For each instruction x ∈ 315

X , the corresponding responses {ri, rj} from 316

(Mi,Mj) are retrieved. 317

4. Preference Assignment: A binary label is 318

assigned via: 319

Pref(ri, rj) =

{
1 if Spref(Mi) > Spref(Mj),

0 otherwise.
320

This pipeline constructs a binarized preference 321

dataset at scale without any manual or per-instance 322

scoring. Figure 2 shows the total process of the 323

pipeline. 324

4 Experimental Setup 325

In this paper, we propose the ZEBRA framework. 326

To validate the functionality of this framework and 327

the characteristics of Alignment Tuning, we con- 328

ducted experiments to address the following Re- 329

search Questions (RQs): 330

• RQ1: Does MB-SIM represent the models’ 331

similarity? 332

• RQ2: Does strategies affect the binarization 333

process? 334

• RQ3: Does ZEBRA reduce annotation cost 335

and computational overhead compared to 336

instance-level methods? 337
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4.1 Alignment Dataset338

For preference binarization, we utilized the Ultra-339

Feedback dataset (Cui et al., 2023), which includes340

diverse responses generated by both commercial341

and open-source language models. It provides mul-342

tiple model responses, making it suitable for con-343

structing a strong RLAIF baseline, for which we344

adopted the original score aggregation method. In345

contrast, ZEBRA uses only the response pool with-346

out referencing any scores, ensuring a clean com-347

parison focused on the binarization strategy.348

Model coverage. UltraFeedback contains out-349

puts from 17 LLMs: GPT-4(OpenAI, 2023),350

GPT-3.5 Turbo(Ouyang et al., 2022b), and351

Bard(Waisberg et al., 2024). Additionally, sev-352

eral models from the Llama family were included,353

such as Llama-2 (7B, 13B, and 70B)-chat(Touvron354

et al., 2023), UltraLM-13B(Cui et al., 2024), Wiz-355

ardLM (7B, 13B, and 70B)(Xu et al., 2023),356

Vicuna-33B(Zheng et al., 2024), and Alpaca-357

7B(Taori et al., 2023). Beyond the Llama-based358

architectures, the dataset also features responses359

from other notable models, including Falcon-360

40B-instruct(Almazrouei et al., 2023), MPT-30B-361

chat(Team, 2023), StarChat-Beta(Tunstall et al.,362

2023), and Pythia-12B(Biderman et al., 2023).363

Although the Ultrafeedback dataset contains re-364

sults from UltraLM-65B(Cui et al., 2024), its per-365

formance could not be accurately assessed. To366

maintain the reliability of our evaluation, we ex-367

cluded these results from the dataset composition.368

4.2 Models369

We fine-tuned and evaluated Llama-3.1-(3B, 8B)-370

Instruct(Dubey et al., 2024) and Qwen2.5-(3B,371

8B)-Instruct(Yang et al., 2024) on the ZEBRA-372

binarized dataset. This setup enables cross-family373

comparison and quantifies the alignment gains374

from behavior-aware preference construction.375

4.3 Training Algorithm for Alignment Tuning376

We tested two different learning method for align-377

ment tuning using the ZEBRA Framework:378
• Supervised Fine-Tuning (SFT)379

• Direct Preference Optimization (DPO)380

(Rafailov et al., 2024)381
The implementation details are provided in Ap-382

pendix A. The full source code, benchmark results,383

and preference binarization scripts will be released384

after publication via our project repository under385

the MIT License. The snapshot corresponding to386

this paper is version-tagged.387
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Figure 6: PCA-based visualization of relationships
among models(Maćkiewicz and Ratajczak, 1993). The
axes reflect similarity-based variance. Similar models
are positioned closer to each other. Circle colors indicate
clusters identified by hierarchical clustering.

5 Experimental Results 388

5.1 RQ1: Dataset Reconstruction using 389

ZEBRA 390

The proposed ZEBRA framework enables the appli- 391

cation of a unified Total Ranking map across the en- 392

tire dataset, facilitating a structured and consistent 393

preference mapping process. Utilizing this recon- 394

structed preference dataset, we conducted model 395

training while ensuring that each critic’s binarized 396

response was systematically incorporated. The ef- 397

fectiveness of this reconstructed dataset was as- 398

sessed by evaluating the trained models on stan- 399

dardized benchmarks. The detailed results of these 400

evaluations are presented in Appendix C. 401

For evaluation, we employed prediction-based 402

assessment methodologies across all benchmark 403

tasks. Specifically, for ARC, MMLU, and MMLU- 404

Pro, we adapted the MMLU-Pro evaluation frame- 405

work, modifying only the multiple-choice options 406

to align with our dataset. For IFeval, we leveraged 407

its native evaluation framework to ensure consis- 408

tency in assessment. 409

To analyze the relationships between models, 410

we computed SUP and SIM by normalizing eval- 411

uation results across six benchmark tasks. Fig- 412

ure 6 presents a Principal Component Analysis 413

(PCA)(Maćkiewicz and Ratajczak, 1993) visualiza- 414

tion of these relationships, illustrating distinct clus- 415

tering patterns among models. Generally, smaller- 416

scale models tend to cluster in the first quadrant, 417

models with closer Model Behavior relationships 418

in the second quadrant, while Llama-based models 419

and models exceeding 10B parameters are predom- 420

inantly distributed in the third and fourth quad- 421

rants. This distribution underscores the critical role 422
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Knowledge Reasoning Instruction-Following
Category Strategy Average MMLU MMLU-Pro ARC-Easy ARC-Challenge IFeval
Baseline RLAIF 0.31 0.36 0.15 0.40 0.40 0.28

ZEBRA(Ours)
SUP 0.31(-0.00) 0.33 0.15 0.40 0.37 0.30
SIM 0.29(-0.02) 0.34 0.15 0.36 0.33 0.29

SUP+SIM 0.29(-0.02) 0.30 0.14 0.41 0.39 0.23

Table 1: Performance Comparison Between Instance-wise Binarized Data (Baseline) and Model Behavior-wise
Binarized Data (Ours). The baseline corresponds to instance-wise scored RLAIF (Cui et al., 2023). The highlighted
cells indicate performance that is equal to or higher than the baseline. Bold text shows the best performance on the
benchmarks.

Comparison t pt Mean Δ pperm

SUP vs BL -0.3541 0.7282 -0.0066 0.7345
SIM vs BL -0.4374 0.6680 -0.0047 0.7585
SUP+SIM vs BL -1.4472 0.1684 -0.0296 0.2011

Table 2: Paired t-test and permutation test (10,000 shuffles)
comparing each anchoring strategy with the baseline (BL).

of model training data, training algorithms, and423

scale in determining Model Behavior relationships424

among models.425

We further verify that anchor pairs selected by426

SIM indeed yield semantically closer responses.427

Using a TF–IDF(Ramos, 2003), we obtain an aver-428

age response-pair similarity of 0.4623 for the most429

similar model pair (MB-SIM ↑) versus 0.4129 for430

the least similar model pair (MB-SIM ↓). This431

12% relative gap confirms that high-MB-SIM an-432

choring indeed surfaces finer-grained yet coherent433

preference signals.434

These findings highlight the effectiveness of the435

ZEBRA framework in reconstructing preference436

datasets, providing a more structured and informa-437

tive approach to model alignment.438

5.2 RQ2: Performance of ZEBRA439

Binarization440

To assess the effectiveness of ZEBRA binariza-441

tion, we examined whether model performance can442

serve as an indicator of data quality. The results of443

this comparison are presented in table 1. Across all444

benchmark tasks, the Model Behavior-based scor-445

ing metric, SUP, demonstrates performance lev-446

els nearly equivalent to the instance-wise RLAIF447

method, with a minimal deviation of only 0.008.448

Notably, for MMLU-Pro and IFeval, ZEBRA-449

based binarization even surpasses the RLAIF base-450

line by approximately 0.01, indicating that struc-451

tured preference mapping via Model Behavior can452

yield competitive or superior alignment outcomes.453

Table 1 shows the results of the average scores for454

each methodology. The detailed results, including455

average scores for each methodology, are summa-456

rized in Appendix E. 457

Statistical significance. Table 2 reports paired 458

t-tests and permutation tests (10,000 shuffles) that 459

compare each anchoring strategy with the baseline 460

instance-wise RLAIF data across the same 1 024 461

evaluation prompts. None of the strategies achieves 462

statistical significance at α=0.05, although the hy- 463

brid SUP+SIM shows the largest absolute gain 464

(−0.0296, pt=0.17, pperm=0.20). These numbers 465

indicate that ZEBRA’s zero-annotation binarization 466

maintains baseline-level alignment quality (within 467

3 pp) without incurring per-instance scoring cost, 468

even if a decisive improvement is not yet observed. 469

5.3 RQ3: Cost & Efficiency Analysis 470

Table 3 contrasts the labeling cost of ZEBRA with 471

canonical RLHF and RLAIF pipelines. The stand- 472

ing out points is below: Absolute cost gap. LLM- 473

annotated RLAIF corpora lower this to $0.6–$4 K 474

by outsourcing each pairwise judgment to GPT- 475

4, yet they still purchase every label. ZEBRA, by 476

reusing benchmark leaderboards, pays no marginal 477

cost ($0) for preference construction. Relative ef- 478

ficiency. Normalised per comparison, GPT-4 la- 479

bels (≈$0.063) are ≈×10 cheaper than human la- 480

bels (≈$0.67), but ZEBRA is orders of magnitude 481

cheaper than both because it dispenses with pair- 482

wise annotation altogether. 483

Cost matters only if quality survives. Despite a 484

zero-dollar label budget, ZEBRA matches or sur- 485

passes RLAIF baseline (Table 1); the mean perfor- 486

mance difference across six benchmarks is ≤ 0.02. 487

Consequently, ZEBRA offers a cost-minimal, 488

scalable, and annotation-free route to high- 489

quality preference data. Because the price of hu- 490

man labor or GPT-4 tokens scales linearly with 491

data volume, traditional pipelines become progres- 492

sively more expensive as models, tasks, and safety 493

domains proliferate. ZEBRA decouples alignment 494

from annotation cost: adding a new model needs 495

no further labels, and incorporating an extra bench- 496
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Category Method Pairs / Units Unit Cost (USD) Total Cost (USD)

Instance-wise
RLAIF

UltraFeedback(Cui et al., 2023) 64,000 0.252 16,128
Safer-Instruct(Shi et al., 2024) 10,254 0.063 646
OpenHermesPreferences(Huang et al., 2024) 989,000 0.126 124,614

Model behavior-wise ZEBRA (ours) 64,000 0 0

Table 3: Labeling-cost comparison between LLM-labeled RLAIF datasets, and our benchmark-table approach. cost
is estimated assuming equivalent labor per rating.

mark simply augments the behavior matrix.497

6 Conclusion498

We presented ZEBRA, a zero-annotation frame-499

work that replaces per-instance preference label-500

ing with model-behavior knowledge distilled from501

public benchmark tables. By pairing responses ac-502

cording to either behavioral superiority or similar-503

ity—or a hybrid of the two—ZEBRA constructs504

64k high-quality preference pairs at zero marginal505

cost, completely eliminating the dominant expense506

in RLHF or RLAIF pipelines.507

Experiments across 6 standardized benchmarks508

show that models fine-tuned with SUP achieve509

performance on par with, and sometimes better510

than, an RLAIF baseline. SIM and the hybrid511

SUP+SIM remain within a small, statistically in-512

significant margin of the baseline. These results513

confirm that benchmark-derived behavioral knowl-514

edge can serve as an effective proxy for preference515

supervision. Crucially, ZEBRA reduces marginal516

labeling cost to zero, reducing tens of thousands517

of dollars otherwise required for large-scale prefer-518

ence annotation.519

Future work will explore richer behavioral axes520

such as safety, toxicity, and multilingual ability;521

investigate adaptive schedules that incorporate ad-522

ditional refined pairing strategies during training;523

and evaluate how well ZEBRA preferences corre-524

late with explicit human judgments.525

7 Related Work and Background526

7.1 Alignment Tuning527

Alignment tuning has become a central focus in528

enhancing LLMs to meet user expectations and529

ethical standards(Kumar et al., 2024). Various530

preference-based learning techniques, particularly531

reinforcement learning methods(Schulman et al.,532

2017; Rafailov et al., 2024; Hong et al., 2024), have533

been developed to facilitate this tuning process.534

These methods rely on preference datasets,535

which typically contain pairs of responses gener-536

ated by models based on given instructions, with537

each pair ranked according to human or model- 538

based evaluations. Prominent alignment datasets 539

like Ultrafeedback(Cui et al., 2023), which gath- 540

ers extensive human feedback, and HH-RLHF(Bai 541

et al., 2022), which uses human-annotated pref- 542

erences, provide foundational resources for align- 543

ment. To minimize the reliance on labor-intensive 544

data curation, recent automated approaches have 545

been introduced to filter or regenerate preference 546

data based on specific criteria, promoting data con- 547

sistency and scalability. However, such approaches 548

often lack nuanced control over data quality, as 549

they fail to consider the role of the origin model’s 550

capabilities in shaping alignment effectiveness (Shi 551

et al., 2024). 552

7.2 Limitations in Existing Preference Data 553

Approaches 554

Effective preference data construction requires 555

a clear, rigorous set of criteria to ensure align- 556

ment quality across generated response pairs. Com- 557

mon criteria, including Reasoning, Truthfulness, 558

and Instruction-Following, guide the selection 559

of data that aligns with key ethical and func- 560

tional standards(Cui et al., 2023; Bai et al., 2022). 561

High-performing models, capable of producing re- 562

sponses that meet these standards, are often eval- 563

uated using benchmarks like ARC(Clark et al., 564

2018), MMLU(Hendrycks et al., 2020), and the 565

Instruction-Following eval(Zhou et al., 2023) suite, 566

which assess a model’s factual accuracy, reasoning 567

ability, and compliance with instructions. 568

The ZEBRA Framework addresses this limita- 569

tion by introducing a model behavior-level ap- 570

proach that emphasizes model compatibility in pref- 571

erence data selection. By curating preference pairs 572

based on model behavior knowledge with similar 573

core competencies in knowledge, reasoning, and 574

instruction-following—the ZEBRA Framework en- 575

hances alignment coherence and ensures stable, 576

high-quality data. 577
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Limitation578

In this paper, we demonstrated that ZEBRA579

can achieve performance comparable to existing580

RLAIF without requiring annotations for SFT and581

DPO. However, due to resource and time con-582

straints, we were unable to validate our approach583

across a broader range of alignment tuning tech-584

niques. Further evaluation is needed for methods.585

Additionally, our evaluation primarily focused586

on fundamental abilities such as Reasoning, Knowl-587

edge, and Instruction-Following. However, we did588

not assess ZEBRA’s performance on other impor-589

tant values, including factuality and ethical stan-590

dard. Future work should incorporate evaluations591

reflecting these aspects.592
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A Implementation Details for Model 769

Training 770

The model was trained for a single epoch us- 771

ing bfloat16 (bf16) quantization, which optimizes 772

memory efficiency while preserving numerical pre- 773

cision. The training configuration incorporated the 774

following hyperparameters: a per-device batch size 775

of 6, gradient accumulation steps set to 4, and a 776

learning rate of 5× 10−5, with 500 warm-up steps 777

to facilitate stable convergence. 778

Training was conducted on an L40 4-GPU setup, 779

leveraging an optimized deep learning framework 780

to enhance computational efficiency. The train- 781

ing pipeline focused on performance optimization 782

through checkpointing and logging, without inter- 783

mediate model evaluation during training. 784

B Prompt template for Evaluation 785

Benchmarks 786

To determine behavior knowledge between models, 787

this paper evaluates benchmark performance and 788
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Q: {Instruction}
Options:
(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
Output:

Prompt for Benchmark Evaluation

Figure 7: Evaluation template for multiple-choice bench-
mark evaluation. The descriptive benchmark (e.g., IFe-
val) was evaluated using the same template, excluding
the option part.

compares the similarity of these numerical results.789

The benchmark performance of all 17 models con-790

sidered in this study is presented in Table 7. For the791

start and end tokens, the template recommended in792

the paper was used.793

C Evaluation Model Benchmark794

Performance795

To determine behavior knowledge relationships be-796

tween models, this paper evaluates benchmark per-797

formance and compares the similarity of these nu-798

merical results. The benchmark performance of all799

17 models considered in this study is presented800

in Table 4. The actual calculation example for801

MB − SUP and MB − SIM can be found in802

Figure 10.803

Due to the unavailability of Bard, its perfor-804

mance metrics have been substituted with those805

of Gemini-1.5-Flash.806

D Benchmark Performance807

Representation808

What benchmark represent the model capability:809

knowledge, instruction-following, and reasoning?810

Models exhibit distinct similarity patterns based811

on their capabilities, with these patterns varying812

across different evaluation metrics. Notably, model813

behavior knowledge is influenced by factors such814

as model scale and training methodology, leading815

to variations in clustering behavior across different816

capability dimensions.817

Analysis Framework To systematically investi-818

gate these relationships, we analyzed model simi-819

larities across three key capability dimensions:820

• Knowledge-Based Tasks: Unlike reasoning 821

capability, clustering in instruction-following 822

tasks is more strongly aligned with model fam- 823

ilies rather than size. This indicates that train- 824

ing methodology and architectural choices ex- 825

ert a greater influence on instruction adher- 826

ence. 827

• Reasoning Capability: Models tend to cluster 828

primarily based on parameter count, suggest- 829

ing that model size plays a dominant role in 830

shaping reasoning performance. 831

• Instruction-Following (IF) Tasks: A hierar- 832

chical influence pattern emerges, where: 833

– At the initial hierarchy, the model family 834

is the primary determinant. 835

– At the higher hierarchy, the model size 836

becomes a stronger predictor of perfor- 837

mance. 838

Figure 11 visualizes these relationships through 839

dendrograms, illustrating the hierarchical cluster- 840

ing patterns that emerge across different capability 841

dimensions. 842

Figure 8 shows the frequency of each model 843

being selected as the positive or negative under 844

each strategy. Overall, larger and more familiar 845

models tend to be chosen more frequently. 846

E Total Performance 847

Table 5 provides an aggregated view of the overall 848

performance of each model across all benchmark 849

datasets. The total performance scores were com- 850

puted by averaging the normalized scores across 851

the selected evaluation metrics, offering a holistic 852

comparison of model capabilities. 853

F Model Size and ZEBRA Strategies 854

The impact of different Strategies varies signifi- 855

cantly with model size, influencing how models 856

learn from preference data. To investigate this rela- 857

tionship, we conducted experiments using models 858

from the same family but with different parameter 859

counts, specifically comparing small models (3B 860

parameters) and larger models (7-8B parameters). 861

Our analysis reveals a clear pattern in how model 862

size determines the optimal strategy. 863

Smaller models (3B) exhibit superior perfor- 864

mance when trained using the SUP algorithm, 865

which prioritizes learning from response quality 866
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Figure 9: Visualization of performance across different models. This represents the performance when using the
DPO training method. For smaller models, using SUP results in better performance, whereas for larger models, SIM
yields better performance

within the binarized dataset. In contrast, larger mod-867

els (7-8B) achieve better results with the SIM algo-868

rithm, suggesting that response similarity becomes869

increasingly important as model size grows.870

This trend indicates that model size fundamen-871

tally influences how different models leverage pref-872

erence data. While smaller models benefit more873

from explicit learning based on absolute quality874

differences, larger models demonstrate greater sen-875

sitivity to the nuanced relationships between simi-876

lar responses in the training data. This relationship877

is visualized in Figure 9, illustrating the distinct878

learning behaviors observed across different model879

scales.880
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Model IFeval
MMLU
-STEM

MMLU
-pro

Hellaswag
ARC
-Easy

ARC
-Challenge

GPT-4 0.939 1.000 1.000 1.000 1.000 1.000
GPT-3.5-turbo 0.743 0.724 0.498 0.856 0.952 0.847

Bard 1.000 0.754 0.912 0.852 0.847 0.779
Llama-2-7b-chat 0.017 0.439 0.164 0.612 0.693 0.521
Llama-2-13b-chat 0.011 0.519 0.261 0.664 0.691 0.561
Llama-2-70b-chat 0.000 0.705 0.496 0.760 0.819 0.671

UltraLM-13b 0.473 0.380 0.146 0.424 0.510 0.446
WizardLM-7b 0.333 0.261 0.128 0.755 0.283 0.296
WizardLM-13b 0.151 0.426 0.098 0.801 0.703 0.530
WizardLM-70b 0.390 0.433 0.296 0.833 0.800 0.720

Vicuna-33b 0.440 0.623 0.217 0.717 0.811 0.635
Alpaca-7b 0.100 0.184 0.055 0.000 0.331 0.283

Falcon-40b-instruct 0.007 0.682 0.043 0.787 0.749 0.545
MPT-30b-chat 0.102 0.394 0.165 0.013 0.881 0.706

Starchat 0.065 0.221 0.000 0.025 0.000 0.000
Pythia-12b 0.010 0.000 0.006 0.028 0.095 0.260

GPT-4
GPT-3.5
-turbo

Bard
Llama-2

-7b
-chat

Llama-2
-13b
-chat

Llama-2
-70b
-chat

UltraL
M

-13b

Wizard
LM-7b

Wizard
LM-13b

Wizard
LM-70b

Vicuna
-33b

Alpaca
-7b

Falcon
-40b

-instruct

MPT
-30b
-chat

Starchat
Pythia
-12b

GPT-4 1.000 0.983 0.994 0.869 0.890 0.911 0.956 0.869 0.872 0.942 0.949 0.803 0.832 0.767 0.546 0.589
GPT-3.5
-turbo 0.983 1.000 0.973 0.915 0.922 0.919 0.990 0.899 0.928 0.979 0.987 0.846 0.886 0.813 0.517 0.645

Bard 0.994 0.973 1.000 0.822 0.843 0.864 0.951 0.864 0.836 0.921 0.926 0.769 0.779 0.726 0.518 0.548
Llama-2
-7b-chat 0.869 0.915 0.822 1.000 0.996 0.978 0.888 0.851 0.985 0.962 0.957 0.830 0.984 0.845 0.422 0.679
Llama-2
-13b-chat 0.890 0.922 0.843 0.996 1.000 0.992 0.885 0.855 0.977 0.960 0.956 0.818 0.979 0.831 0.455 0.663
Llama-2
-70b-chat 0.911 0.919 0.864 0.978 0.992 1.000 0.871 0.829 0.947 0.942 0.941 0.813 0.954 0.827 0.483 0.634
UltraLM

-13b 0.956 0.990 0.951 0.888 0.885 0.871 1.000 0.890 0.913 0.963 0.981 0.852 0.868 0.807 0.533 0.643
WizardLM-

7b 0.869 0.899 0.864 0.851 0.855 0.829 0.890 1.000 0.920 0.925 0.903 0.566 0.856 0.535 0.439 0.479
WizardLM

-13b 0.872 0.928 0.836 0.985 0.977 0.947 0.913 0.920 1.000 0.977 0.968 0.776 0.978 0.778 0.419 0.643
WizardLM

-70b 0.942 0.979 0.921 0.962 0.960 0.942 0.963 0.925 0.977 1.000 0.985 0.822 0.930 0.811 0.406 0.694

Vicuna-33b 0.949 0.987 0.926 0.957 0.956 0.941 0.981 0.903 0.968 0.985 1.000 0.857 0.945 0.833 0.536 0.647

Alpaca-7b 0.803 0.846 0.769 0.830 0.818 0.813 0.852 0.566 0.776 0.822 0.857 1.000 0.783 0.990 0.418 0.785
Falcon-40b

-instruct 0.832 0.886 0.779 0.984 0.979 0.954 0.868 0.856 0.978 0.930 0.945 0.783 1.000 0.788 0.529 0.605
MPT-30b

-chat 0.767 0.813 0.726 0.845 0.831 0.827 0.807 0.535 0.778 0.811 0.833 0.990 0.788 1.000 0.335 0.798

Starchat 0.546 0.517 0.518 0.422 0.455 0.483 0.533 0.439 0.419 0.406 0.536 0.418 0.529 0.335 1.000 0.021

Pythia-12b 0.589 0.645 0.548 0.679 0.663 0.634 0.643 0.479 0.643 0.694 0.647 0.785 0.605 0.798 0.021 1.000

Calculate

Benchmark Performances

Normalize(min-max)

Figure 10: The process of calculating MB − SUP and MBSIM . Benchmark performance is normalized using
min-max normalization, and the overall SIM is performed using cosine similarity.
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Model IFeval MMLU-STEM MMLU-pro Hellaswag ARC-easy ARC-Challenge Average Score

GPT-4 85.37 86.40 0.64 95.30 96.63 96.40 0.99
GPT-3.5-turbo 72.54 70.00 0.38 85.00 92.80 83.02 0.77

bard 89.33 71.80 0.59 84.70 84.43 77.13 0.86
Llama-2-7b-chat 25.19 53.10 0.20 67.50 72.14 54.61 0.41

Llama-2-13b-chat 24.82 57.80 0.25 71.20 72.05 58.02 0.45
Llama-2-70b-chat 24.07 68.90 0.38 78.10 82.20 67.66 0.58

UltraLM-13b 54.92 49.58 0.19 54.00 57.58 48.04 0.40
WizardLM-7b 45.83 42.50 0.18 77.70 39.48 34.90 0.34
WizardLM-13b 33.92 52.30 0.17 81.00 72.94 55.38 0.45
WizardLM-70b 49.51 52.70 0.27 83.30 80.68 71.93 0.58

Vicuna-33b 52.76 64.00 0.23 75.00 81.57 64.51 0.57
Alpaca-7b 30.58 37.92 0.15 23.60 43.31 33.79 0.16

Falcon-40b-instruct 24.54 67.50 0.14 80.00 76.60 56.70 0.47
MPT-30b-chat 30.70 50.40 0.20 24.53 87.12 70.73 0.38

Starchat 28.30 40.12 0.12 25.40 16.96 9.07 0.05
Pythia-12b 24.71 27.00 0.12 25.60 24.49 31.80 0.07

Table 4: Benchmark Scores for Trained Models. Multiple-choice benchmarks (MMLU-STEM, HellaSwag, ARC-
Easy, and ARC-Challenge) are evaluated based on accuracy. IFeval and MMLU-Pro are assessed using its own
metric. The average score is computed after min-max normalization.
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Benchmark Model Baseline SUP SIM SUP+SIM

MMLU-STEM

Llama-3.1-3B
SFT 0.2331 0.2679 0.2434 0.2200
DPO 0.3130 0.4868 0.2528 0.3940

Llama-3.1-8B
SFT 0.2800 0.2460 0.2660 0.2240
DPO 0.4902 0.4349 0.4867 0.2880

Qwen2.5-3B
SFT 0.2760 0.2200 0.2460 0.2500
DPO 0.4706 0.4212 0.4400 0.4580

Qwen2.5-7B
SFT 0.2800 0.2280 0.2620 0.2780
DPO 0.5120 0.3620 0.4860 0.2800

MMLU-pro

Llama-3.1-3B
SFT 0.1189 0.1230 0.1045 0.1332
DPO 0.1455 0.2193 0.1270 0.1516

Llama-3.1-8B
SFT 0.1004 0.1148 0.1045 0.1311
DPO 0.1168 0.1025 0.1168 0.1107

Qwen2.5-3B
SFT 0.1025 0.0840 0.1230 0.0820
DPO 0.2275 0.2254 0.2029 0.2111

Qwen2.5-7B
SFT 0.0861 0.1762 0.2275 0.1352
DPO 0.2377 0.1721 0.2254 0.1700

IFeval

Llama-3.1-3B
SFT 0.2494 0.2410 0.2490 0.2206
DPO 0.3765 0.4940 0.4796 0.3033

Llama-3.1-8B
SFT 0.2494 0.4210 0.2470 0.2218
DPO 0.2421 0.1882 0.2292 0.2494

Qwen2.5-3B
SFT 0.2190 0.2134 0.2122 0.2050
DPO 0.3633 0.3058 0.3094 0.1715

Qwen2.5-7B
SFT 0.2290 0.2134 0.2122 0.2083
DPO 0.3321 0.3177 0.3657 0.2407

ARC-easy

Llama-3.1-3B
SFT 0.2660 0.2460 0.2000 0.2340
DPO 0.6111 0.5547 0.2618 0.6679

Llama-3.1-8B
SFT 0.2180 0.2330 0.2400 0.2360
DPO 0.2176 0.1540 0.4720 0.0680

Qwen2.5-3B
SFT 0.2410 0.2560 0.2480 0.2560
DPO 0.8497 0.8754 0.5295 0.8157

Qwen2.5-7B
SFT 0.2550 0.2260 0.2280 0.2900
DPO 0.5700 0.6359 0.6738 0.7134

ARC-challenge

Llama-3.1-3B
SFT 0.2556 0.2492 0.2266 0.2019
DPO 0.5122 0.4551 0.2466 0.5712

Llama-3.1-8B
SFT 0.2320 0.2297 0.2761 0.2268
DPO 0.5463 0.1763 0.3596 0.2946

Qwen2.5-3B
SFT 0.2645 0.2483 0.2227 0.2343
DPO 0.7398 0.8241 0.4470 0.7078

Qwen2.5-7B
SFT 0.2343 0.2552 0.2483 0.2390
DPO 0.4432 0.5358 0.5847 0.3870

Table 5: Model Performance Comparisons on Knowledge, Instruction-Following, and Reasoning-Related Tasks.
The baseline is Instance-wise RLAIF (Cui et al., 2023). "Llama 3.1" refers to the Llama-3.1-Instruct series, and
"Qwen-2.5" refers to the Qwen2.5-Instruct series. The training methods include Supervised Fine-Tuning (SFT) and
Direct Preference Optimization (DPO). The bold text indicates the best performance for each model and training
method.
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Figure 11: Dendrogram for Evaluation Categories:
Knowledge, Reasoning, and Instruction-Following.
Clusters exceeding a specific distance threshold (0.4)
are highlighted in different colors. Models deemed sim-
ilar share the same color line. The red dotted line shows
the major groups of models in the dendrogram.
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