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Abstract
LiDAR-based 3D object detection has seen impressive advances
in recent times. However, deploying trained 3D detectors in the
real world often yields unsatisfactory performance when the dis-
tribution of the test data significantly deviates from the training
data due to different weather conditions, object sizes, etc. A key
factor in this performance degradation is the diminished generaliz-
ability of pre-trained models, which creates a sharp loss landscape
during training. Such sharpness, when encountered during testing,
can precipitate significant performance declines, even with mi-
nor data variations. To address the aforementioned challenges, we
propose dual-perturbation optimization (DPO) for Test-time
Adaptation in 3D Object Detection (TTA-3OD). We minimize
the sharpness to cultivate a flat loss landscape to ensure model
resiliency to minor data variations, thereby enhancing the gener-
alization of the adaptation process. To fully capture the inherent
variability of the test point clouds, we further introduce adversar-
ial perturbation to the input BEV features to better simulate the
noisy test environment. As the dual perturbation strategy relies
on trustworthy supervision signals, we utilize a reliable Hungar-
ian matcher to filter out pseudo-labels sensitive to perturbations.
Additionally, we introduce early Hungarian cutoff to avoid error
accumulation from incorrect pseudo-labels by halting the adapta-
tion process. Extensive experiments across three types of transfer
tasks demonstrate that the proposed DPO significantly surpasses
previous state-of-the-art approaches, specifically on Waymo →
KITTI, outperforming the most competitive baseline by 57.72% in
AP3D and reaching 91% of the fully supervised upper bound. Our
code is available at https://github.com/Jo-wang/DPO.
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1 Introduction
LiDAR-based 3D object detection has gained significant attention
with the rapid advancements in autonomous driving [10, 25, 31,
37, 38, 48] and robotics [42, 84], where mainstream 3D detectors
are developed to interpret pure point clouds or fuse multimodal
knowledge, commonly incorporating camera images [8, 36, 64].
However, deploying either point clouds-based or multimodal 3D
detection models in real-world scenarios often leads to performance
degradation due to distribution shifts between the training data
and the encountered real-world data. For instance, a 3D detector
trained on the nuScenes dataset [2] might suffer a performance drop
when applied to the KITTI dataset [14] due to variations in object
sizes and the number of beams. This is known as cross-dataset
shift. Additionally, the shift can arise from real-world disturbances,
termed as corruption-based shift [11, 20, 28], which includes
challenges like diverse weather conditions and sensor malfunctions.
Moreover, multiple factors are likely to be concurrent, for instance,
deploying a 3D detector in a different city while suffering severe
snow. This scenario is termed as composite domain shift.

Domain adaption has been discovered [5, 39, 68, 69] to mitigate
the performance gap brought by various domain shifts. In 3D ob-
ject detection, this involves aligning features between the labeled
training data and the shifted test data to learn a domain-invariant
representation [40, 79, 81] or conducting self-training with the
aid of selected pseudo-labels [6, 32, 47, 73, 74]. However, these ap-
proaches necessitate extensive training over multiple epochs on
both training and test sets, rendering them impractical for adapta-
tion to the streaming data. Moreover, the exposure of the training
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data can significantly compromise its privacy, especially when it
contains sensitive user information (e.g., user vehicle trajectories
and individuals).

To bridge the performance gap induced by domain shifts, while
safeguarding the training data privacy and enabling swift adapta-
tion, test-time adaptation (TTA) emerges as an ideal solution. Prior
research on TTA typically adapts a source pre-trained model to the
unlabeled test data, either through updating a selected subset of
parameters (e.g., BatchNorm layers) [46, 55, 63], or employing the
mean-teacher model [58, 65, 66, 77] within a single epoch. However,
these TTA works currently applied in image classification are inad-
equate for addressing the dual demands (i.e., object localization and
classification) for supervision signals inherent in detection tasks.
Within this context, MemCLR [62] stands out by refining the Region
of Interest (RoI) features of detected objects through a transformer-
based memory module for 2D object detection. Nevertheless, the
stored target representations derived from the source pre-trained
model cause performance degradation due to distribution shifts.
These limitations pose significant challenges in utilizing previous
TTA techniques for 3D object detection.

To tackle these challenges, our goal is to devise an effective strat-
egy for adapting the 3D detection model to various data shifts. We
observe a common performance decline when the model encoun-
ters unfamiliar scenes. This degradation primarily occurs as the
model tends to converge to sharp minima in the loss landscape dur-
ing training [13]. Such convergence makes the model vulnerable
to slight deviations in the test data, leading to a performance drop.
Furthermore, high variability and limited availability of the test data
significantly increase the vulnerability of the pre-trained source
model. In response, we propose DPO to secure adaptation general-
izability and robustness through a worst-case Dual-Perturbation
Optimization in both model weight and input spaces. Specifically,
at the model level, we apply a perturbation in the weight space
[13] to the model’s parameters to maximize loss within a prede-
fined range, thereby optimizing the model toward noise-tolerant
flat minima. However, due to the notable discrepancies between
the training and testing scenes, merely weight perturbation is in-
sufficient to fully address the extensive variability and complexity
encountered in the 3D testing scenes. To overcome this, we aug-
ment our approach by incorporating an adversarial perturbation
on the BEV feature of the test sample via element-wise addition.
Once the model is adapted to maintain stability despite perturbed
inputs, it becomes more resilient to noisy data, thereby enhancing
its robustness. The generalization and robustness of the adaptation
model heavily rely on accurate supervision—that is, adapting the
detection model based on reliable pseudo-labeled 3D boxes. The su-
pervision signals offered in previous works are either too weak for
3D detection tasks [46, 63] or excessively dependent on pre-trained
source models [62], which might be compromised by domain shifts.
To this end, we introduce a reliableHungarianmatcher to ensure
trustworthy pseudo-labels by filtering out 3D boxes that exhibit
high matching costs before and after perturbations. The underlying
assumption is that, given arbitrary perturbations, the prediction
is more trustworthy if the model can still produce consistent box
predictions. A consistently low Hungarian cost for pseudo-labels
across recent test batches indicates the model has been sufficiently

robust to shifts/noise in the test domain. Hence, to preserve gener-
alization and minimize unnecessary computational expenses, we
propose an Early Hungarian Cutoff strategy based on the Hun-
garian costs. We apply a moving average of the cost values from
the current and all previous batches to determine when to cease the
adaptation. Our approach exhibits state-of-the-art results surpass-
ing previous TTA methods. We summarize our key contributions
as follows:

• We introduce TTA in LiDAR-based 3D object detection (TTA-
3OD). To the best of our knowledge, this is the first work to adapt
the 3D object detector during test time. To tackle the challenge in
TTA-3OD, we prioritize the importance of model generalizability
and reliable supervision.
• We propose a dual-perturbation optimization (DPO) mechanism,
which maximizes the model perturbation and introduces input
perturbation. This strategy is key to maintaining the model’s
generalizability and robustness during updates.
• We leverage a Hungarian matching algorithm to facilitate the
selection of noise-insensitive pseudo-labels, to bolster adapta-
tion performance through self-training. This further serves as a
criterion for appropriately timing the cessation of model updates.
• By conducting thorough evaluations of DPO across various sce-
narios, including cross-domain, corruption-based, and notably
complex composite domain shifts, our approach showcases out-
standing performance in LiDAR-based 3D object detection tasks,
specifically on Waymo→ KITTI, outperforming the most com-
petitive baseline by 57.72% in AP3D, and achieve 91% of the fully
supervised upper bound.

2 Related Work
2.1 Domain Adaptive 3D Object Detection
Adaptation for 3D Object Detection focuses on transferring knowl-
edge from 3D detectors trained on labeled source point clouds to
unlabeled target domains, effectively reducing the domain discrep-
ancies across diverse 3D environments such as variations in object
statistics [61, 67], weather conditions [20, 72], sensor differences
[19, 49, 71], sensor failures [28], and the synthetic-to-real gap [9,
30, 50]. Strategies to overcome these challenges include adversarial
feature alignment [81], 3D pseudo-labels [6, 7, 23, 33, 47, 51, 60, 73–
75], the mean-teacher model [21, 40] for prediction consistency, and
contrastive learning [79]. Nonetheless, these cross-domain adapta-
tion methods typically necessitate adaptation over multiple epochs,
making them less suited for real-time test scenarios.

2.2 Test-time Adaptation in 2D Vision Tasks
Test-time adaptation (TTA) [34, 70] is designed to address domain
shifts between the training and testing data [70] during inference
time. As a representative, Tent [63] leverages entropy minimization
for BatchNorm adaptation. Subsequent works [16, 22, 43, 44, 53]
such as EATA [45], identifies reliable and nonredundant samples
to optimize. DUA [41] introduces adaptive momentum in a new
normalization layer whereas RoTTA [77] and DELTA [83] lever-
age global statistics for batch norm updates. Furthermore, SoTTA
[17] and SAR [46] improve BatchNorm optimization by minimizing
the loss sharpness. Alternatively, some approaches optimize the
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entire network through the mean-teacher framework for stable su-
pervision [59, 65], generate reliable pseudo-labels for self-training
[18, 78], employ feature clustering [4, 26, 66], and utilizing aug-
mentations to enhance model robustness [80]. However, these TTA
methods are developed for general image classification. Addition-
ally, MemCLR [62] applies TTA for image-based 2D object detection,
using a mean-teacher approach to align instance-level features. Nev-
ertheless, the applicability of these image-based TTA methods to
object detection from 3D point clouds remains unexplored.

2.3 Generalization through Flat Minima
The concept of flat minima has been demonstrated to enhance
model generalization. A prime example is SAM [13], which im-
proves generalization by simultaneously optimizing the original
objective (e.g., cross-entropy loss) and the flatness of the loss surface.
Besides, ASAM [29] aligns the sharpness with the generalization
gap by re-weighting the perturbation according to the normaliza-
tion operator. To deal with the presence of multiple minima within
the perturbation’s reach, GSAM [85] minimizes the surrogate gap
between the perturbed and the original loss to avoid sharp minima
with low perturbed loss. Moreover, GAM [82] introduces first-order
flatness, which controls the maximum gradient norm in the neigh-
borhood of minima. Current research on flat minima focuses mainly
on supervised learning. While in TTA, the effectiveness of these
strategies significantly relies on supervision signals and the shift
severity of the test data, which suggests that the anticipated advan-
tages of flat minima might not consistently materialize as expected.

3 Method
3.1 Notations and Task Definition
Considering a neural network-based 3D object detector 𝑓𝑆 (·;ΘS)
parameterized by ΘS , which is pre-trained on a labeled training
point clouds drawn from the source distribution DS , Test-Time
Adaptation for 3D Object Detection (TTA-3OD) aims to adapt
𝑓S (·;ΘS) to the unlabeled test point clouds {𝑋𝑡 }𝑇𝑡=1 ∼ DT during
test time in a single pass. DS ≠ DT as the test point clouds are
shifted due to varied real-world conditions. Here, 𝑋𝑡 represents
the 𝑡-th batch of test point clouds, with 𝑓𝑡 (·;Θ𝑡 ) indicating the 3D
detection model adapted for the 𝑡-th batch.
Challenges in TTA-3OD. The primary challenges of TTA-3OD lie
in two aspects: (1) adapting the 3D detection model to unfamiliar
test scenes often generates large and noisy gradients, leading to an
unstable adaptation process. This instability hampers the model’s
ability to generalize effectively to the target domain; (2) uncon-
trollable variations in the testing scenes, such as environmental
changes or sensor inaccuracies, can significantly compromise the
quality and integrity of 3D scenes. Consequently, models trained
on clean datasets struggle to maintain effectiveness and robust-
ness when facing such distorted data, drastically diminishing their
adaptation performance.

To address the above two challenges, our method fundamentally
enhances 1) the model’s generalization and stability when adapting
to new domains and 2) its robustness against noisy/corrupted data,
by optimizing the sharpness of the loss landscape during model
adaptation with the proposed dual-perturbation applied to both the
model’s weights and input data.

3.2 Minimizing Sharpness in the Weight Space
The sharpness of the training loss, is the rate of change in the sur-
rounding region of the loss landscape. It has been identified to be
empirically correlated with the generalization error [15, 24, 27]. Mo-
tivated by this, recent works propose to reduce the loss sharpness
during the training phase, aiming to improve the generalization
capabilities of the model. One notable example is Sharpness-Aware
Minimization (SAM), which enhances model training by integrat-
ing and optimizing the worst-case perturbations in model weights.
The fundamental principle of SAM is that by minimizing the loss
with respect to maximally perturbed weights within a vicinity, the
entire vicinity (i.e., all losses within it) is minimized. This directs the
optimization trajectory toward a flat minima in the loss landscape.
A flat minima is indicative of superior generalization capabilities,
as the loss over it is less sensitive to large perturbations and/or
noise in the model weights, unlike sharp minima.

In the context of TTA-3OD, the loss sharpness [1] during the
adaptation can be formally defined as follows:

Definition 3.1 (Loss Sharpness). The sharpness of the loss
Ldet (𝑋𝑡 ;Θ𝑡 ) is of 3D detection model 𝑓𝑡 (·;Θ𝑡 ) to test the 𝑡-th batch
of target point cloud 𝑋𝑡 , denoted as 𝑠 (Θ𝑡 , 𝑋𝑡 ), is given by

𝑠 (Θ𝑡 , 𝑋𝑡 ) ≜ max
∥𝜖 ∥2≤𝜌

Ldet (𝑋𝑡 ;Θ𝑡 + 𝜖) − Ldet (𝑋𝑡 ;Θ𝑡 ) . (1)

Here, 𝜖 is a perturbation vector in the weight space such that its
Euclidean norm is bounded by 𝜌 .

Previous literature [12, 13, 29, 35, 82, 85] calculates the sharpness
by the loss between model predictions 𝑓𝑡 (𝑋𝑡 ) and its ground truth
labels 𝑌𝑡 . While no supervision is available during test time, a soft
loss [17, 46, 63] is commonly employed with selective supervision.
Next, the optimization of the detection loss and its sharpness is
defined as:

min
Θ𝑡

max
∥𝜖𝑤 ∥2≤𝜌

Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 + 𝜖𝑤) . (2)

The inner optimization aims to find a perturbation 𝜖𝑤 on model
weights Θ𝑡 within a Euclidean ball of radius 𝜌 to maximize the
detection loss Ldet, which is calculated based on the generated
pseudo-labels 𝑌𝑡 . To obtain the worst-case 𝜖𝑤 , we draw inspiration
from [13] to approximate the inner optimization by the first-order
Taylor expansion:

𝜖∗𝑤 (Θ𝑡 ) ≜ argmax
∥𝜖𝑤 ∥2≤𝜌

Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 + 𝜖𝑤)

≈ argmax
∥𝜖𝑤 ∥2≤𝜌

Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 ) + 𝜖⊤𝑤∇Θ𝑡
Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 )

= argmax
∥𝜖𝑤 ∥2≤𝜌

𝜖⊤𝑤∇Θ𝑡
Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 ).

(3)

Then 𝜖𝑤 (Θ𝑡 ), which satisfies this approximation, is derived by
resolving a dual norm problem:

𝜖𝑤 (Θ𝑡 ) = 𝜌 × sign(∇Θ𝑡
Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 ))

×
|∇Θ𝑡
Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 ) |

∥∇Θ𝑡
Ldet (𝑋𝑡 ;𝑌𝑡 ;Θ𝑡 )∥2

.
(4)

To expedite computation, we omit the second-order term.
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Figure 1: (1) Loss contour for weight perturbation 𝜖𝑤 (left);
(2) The loss profile view for input perturbation 𝜖𝑧 (right).
Our goal is to optimize the loss towards flat minima while
ensuring the model’s resilience to data perturbations. Darker
colors indicate lower loss values.

While this improvesmodel generalization by targeting non-sharp
minima within the loss landscape, the optimized perturbations to
weights do not directly deal with variations and/or noise of the input
test scenes. When facing the test data, the detection performance
is substantially degraded due to the severe data-level corruptions
in the test point cloud. For example, when suffering heavy snow
and shifted object scales, simultaneously, the performance drops
from 73.45% to 3.84% in AP3D. The empirical evidence suggests that
augmenting the baseline model with SAM [46] results in a marginal
improvement of only 0.9% in AP3D, indicating its ineffectiveness in
bridging the domain gap in the test 3D scenes.

3.3 Minimizing Sharpness in the Input Space
To surmount the above challenge, we strengthen the model’s re-
silience against shifted input point clouds by optimizing the model
with perturbed input. Rather than randomly mimicking test pertur-
bations, our approach focuses on learning an adversarial perturba-
tion that represents the worst-case corruption to the input data. The
underlying rationale is that optimizing the detection model with
maximal perturbed data within a given vicinity induces robustness
to any perturbations encountered within that vicinity. As shown in
Figure 1, we simultaneously guide the detection model toward the
flat minima in both weight and input space, such that the model
can stably generalize to the test data with any potential noises.

To introduce perturbations into the input batch, we incorporate
an adversarial perturbation mask 𝜖𝑧 into the bird’s eye view (BEV)
feature map 𝑍𝑡 through element-wise addition to each grid of the
BEV map. This is because the 3D detector primarily localizes object
proposals from the BEV map, which contains rich spatial informa-
tion about 3D instances. Thus, even minimal perturbations to the
feature map can cause significant spatial shifts in the instances,
leading to misalignment in the final predicted 3D bounding boxes.
To seek the worst-case perturbation 𝜖𝑧 within the input space that
maximizes detection loss, we formulate the optimization problem
as follows:

𝜖∗𝑧 (𝑍𝑡 ) ≜ argmax
∥𝜖𝑧 ∥2≤𝜌

Ldet (𝑍𝑡 + 𝜖𝑧 ;𝑌𝑡 ;Θ𝑡 ). (5)

Similar to approximating 𝜖𝑤 (Θ𝑡 ), we derive the approximated
𝜖𝑧 (𝑍𝑡 ) within the input space. This resulting perturbation mask
𝜖𝑧 shares the same dimension as the latent feature map 𝑍𝑡 and is
applied to 𝑍𝑡 via element-wise addition, yielding the perturbed
feature map 𝑍𝑡 + 𝜖𝑧 .

The final objective is to train the detection model with the op-
timal dual-perturbation in both model (𝜖𝑤 ) and input space (𝜖𝑧 ).
To this end, we approximate the gradient by substituting 𝜖𝑤 and
𝑍𝑡 + 𝜖𝑧 into Eqn. (2), then performing differentiation to calculate
the gradient 𝑔:

𝑔 = ∇Θ𝑡
Ldet (𝑍𝑡 + 𝜖𝑧 ;𝑌𝑡 ;Θ𝑡 ) |Θ𝑡+𝜖𝑤 . (6)

Finally, the detection loss and its sharpness, calculated with the
perturbed test batch, can be jointly minimized by:

min
Θ𝑡

max
∥𝜖𝑤 ∥2≤𝜌
∥𝜖𝑧 ∥2≤𝜌

Ldet (𝑍𝑡 + 𝜖𝑧 ;𝑌𝑡 ;Θ𝑡 + 𝜖𝑤), (7)

where the inner optimization is solved through approximation
(i.e., Eqn. (3)–(5)) and the outer optimization goal is achieved by
stochastic gradient descent (SGD) with the gradient 𝑔 calculated
in Eqn. (6). The step-by-step workflow of the proposed DPO is
introduced in Algorithm 1.

3.4 Reliable Hungarian Matcher
However, the pursuit of flat minima in both the input and weight
spaces depends on the gradients guided by high-quality supervi-
sion. Previous SAM-based TTA methods selectively adapt high-
confidence samples [17, 46, 76], as they assume that confidence
reflects prediction reliability. Nevertheless, acquiring effective su-
pervision in the TTA-3OD task is challenging due to the low-quality
pseudo-labeled boxes, 𝑌𝑡 = {𝑏1, · · · , 𝑏𝑁𝑡

}, used for calculating the
detection loss Ldet, where 𝑁𝑡 represents the number of predicted
boxes in the current batch 𝑡 . This issue arises from the difficulties
the source-trained model 𝑓𝑆 (·;ΘS) faces in accurately predicting
3D boxes around objects in the test point clouds, which subjects to
significant shifts or corruptions.

To obtain reliable pseudo-labeled boxes that are robust to the
test data noise, we aim to select those 3D boxes unaffected by
optimized perturbations (Sect. 3.3). The rationale is that con-
sistency in box predictions between clean inputs and perturbed
input features 𝑍𝑡 + 𝜖𝑧 from the model before and after perturbation
demonstrates resilience to noises 𝜖𝑧 . The box prediction from the
𝑡-th perturbed input batch is defined as:

�̃�𝑡 = {𝑏1, · · · , 𝑏𝑀𝑡
} = 𝑓𝑡 (𝑍𝑡 + 𝜖𝑧 ;Θ𝑡 + 𝜖𝑤), (8)

where𝑀𝑡 is the number of predicted boxes at batch 𝑡 after pertur-
bation. To measure the consistency between 𝑌𝑡 and �̃�𝑡 , we adopt
Hungarian matching [3, 54], an effective bipartite matching tech-
nique that guarantees optimal one-to-one alignment between two
sets of box predictions. Specifically, We ensure both sets are of
equal size by augmenting the smaller set (assuming𝑀𝑡 < 𝑁𝑡 ) with
∅ until it matches 𝑁𝑡 in size. To achieve optimal bipartite matching
between the equal-sized sets, the Hungarian algorithm is applied
to find a permutation of 𝑁𝑡 elements 𝑝 ∈ P𝑁𝑡

that minimizes the
matching cost:

𝑝 = argmin
𝑝∈P𝑁𝑡

𝑁𝑡∑︁
𝑛

Cbox (𝑏𝑛 ;𝑏𝑝 (𝑛) ). (9)

The cost Cbox (·; ·) integrates intersection-over-union (IoU) and
L1 distance to account for the central coordinates, dimensions, and
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Figure 2: Illustration of the proposed Hungarian matcher for
obtaining reliable supervision. We employ the Hungarian
algorithm to compute the cost for each pseudo-labeled 3D
box (i.e., predictions before perturbation) when paired with
its optimally matched counterpart in predictions after per-
turbation. The reliability of the 3D boxes is categorized into
three tiers—high, medium, and low—based on the computed
matching cost. During TTA, only 3D boxes of high reliability
(e.g., ID 1, 2) are used for updating model weights, and those
of low reliability (e.g., ID 4) are treated as background.

orientations of a pair of boxes: 𝑏𝑛 and its corresponding matched
box 𝑏𝑝 (𝑛) indexed by 𝑝 (𝑛).

Utilizing the derived optimal assignment 𝑝 , each pseudo-labeled
box 𝑏𝑛 is associated with its corresponding minimal-cost match,
denoted as Cbox (𝑏𝑛 ;𝑏�̃� (𝑛) ). Note that when𝑏𝑛 pairs with the empty
set ∅, we assign the cost to be infinite, indicating that the corre-
sponding box is too noise-sensitive to be accurately localized within
the perturbed point clouds.

We categorize the reliability of each pseudo-label 𝑏𝑛 into three
distinct levels by the thresholds C1 and C2:

high if Cbox (𝑏𝑛 ;𝑏�̃� (𝑛) ) < C1,
low if Cbox (𝑏𝑛 ;𝑏�̃� (𝑛) ) > C2,
medium otherwise.

(10)

To guide the model towards flat minima with trustworthy supervi-
sion, we selectively adapt the model with high-quality bounding
boxes and treat those of low quality as background, as shown in
Figure 2. To dynamically set the thresholds C1 and C2, we record
the minimum costs of pseudo-labeled boxes from previous batches
in a sorted array 𝐴costs, then determine C1 and C2 as the upper and

Algorithm 1 DPO for TTA-3OD

Input: 𝑓𝑆 (·;ΘS): source pre-trained model, {𝑋𝑡 }𝑇𝑡=1 ∼ DT : target
point clouds to test, 𝜂: step size, 𝐶stop: early-stop threshold

Output: 𝑓𝑡 (·;Θ𝑡 ): model adapted to the target point clouds.
Initiate the weights Θ1 = ΘS
for 𝑡 = 1, · · · ,𝑇 do

Generate predictions 𝑌𝑡 ← 𝑓𝑡 (𝑋𝑡 ;Θ𝑡 ) as pseudo-label
Compute perturbations 𝜖𝑧 , 𝜖𝑤 via Eqn. (3)–(5)
Generate prediction �̃�𝑡 with perturbations via Eqn. (8)
Refine 𝑌𝑡 by reliable Hungarian matcher with �̃�𝑡 via (9)–(11)
Compute gradient approximation 𝑔 via Eqn. (6)
Update weights: Θ𝑡+1 = Θ𝑡 − 𝜂𝑔
/** check early stopping **/
Compute the Hungarian matching cost 𝐶𝑡

ema via Eqn. (12)
if 𝐶𝑡

ema ≤ 𝐶stop then break
Infer the remaining batches with 𝑓𝑡 (𝑋𝑡 ;Θ𝑡 )

end if
end for

lower 𝛼 quantiles:
C1 = 𝐴costs [⌈𝛼 × 𝑛⌉], C2 = 𝐴costs [⌈(1 − 𝛼) × 𝑛⌉],

where 𝐴costs = sort({Cbox (𝑏𝑛 ;𝑏�̃� (𝑛) )}),

𝑏𝑛 ∈ {𝑌1} ∪ · · · {𝑌𝑡 }, 𝑏𝑛 ∈ {�̃�1} ∪ · · · {�̃�𝑡 }.
(11)

The ceiling function ⌈·⌉ ensures that the index for 𝐴costs is always
an integer. Adopting global thresholds C1 and C2 derived from all
historical costs facilitates more precise categorization of pseudo-
labeled boxes into high and low-quality categories.

3.5 Early Hungarian Cutoff
While the Hungarian matcher significantly enhances the quality of
pseudo-labels, the correctness of the selected pseudo-labels cannot
be entirely guaranteed. Even a small number of incorrect pseudo-
labels once learned and accumulated, can lead to substantial per-
formance degradation. Furthermore, updating the 3D detector de-
mands significant computational resources and time. Identifying an
optimal stopping point for the adaptation process is thus crucial.

In this regard, we suggest using the Hungarian cost as a crite-
rion to halt the adaptation process. The rationale is that a lower
Hungarian cost for a given batch indicates the pseudo-labels are
more accurate, thereby making the update process more reliable.
Additionally, a consistently low Hungarian cost of pseudo-labels
is crucial. Therefore, we introduce the use of a moving average to
balance the current and all previous costs:

𝐶𝑡
ema = 𝛾𝐶𝑡

box + (1 − 𝛾)
∑︁

𝐶𝑡−1
box ,

where 𝐶𝑡
box =

1
𝑁𝑡

𝑁𝑡∑︁
𝑛

Cbox (𝑏𝑛 ;𝑏�̃� (𝑛) ), 𝑏𝑛 ∈ 𝑌𝑡 , 𝑏𝑛 ∈ �̃�𝑡 ,
(12)

is the average Hungarian cost of all boxes in the current batch 𝑡 .
𝐶𝑡
ema represents the moving average of the Hungarian cost, and 𝛾

denotes the decay rate. A threshold𝐶stop is further set for the mov-
ing average cost. When it falls below the threshold, the adaptation
process is halted, the model thus transitions to the inference mode
for all subsequent batches.
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Table 1: Results of test-time adaption to 3D scenes under cross-dataset shift. We report APBEV / AP3D at moderate difficulty.
Oracle means fully supervised training on the target dataset. The best adaptation results are highlighted in bold.

Method Venue TTA Waymo→KITTI nuScenes→KITTI
APBEV / AP3D Closed Gap APBEV / AP3D Closed Gap

No Adapt. - - 67.64 / 27.48 - 51.84 / 17.92 -
SN CVPR’20 × 78.96 / 59.20 +72.33% / +69.00% 40.03 / 21.23 +37.55% / +5.96%

ST3D CVPR’21 × 82.19 / 61.83 +92.97% / +74.72% 75.94 / 54.13 +76.63% / +65.21%
Oracle - - 83.29 / 73.45 - 83.29 / 73.45 -
Tent ICLR’21 ✓ 65.09 / 30.12 −16.29% / +5.74% 46.90 / 18.83 −15.71% / +1.64%

CoTTA CVPR’22 ✓ 67.46 / 35.34 −1.15% / +17.10% 68.81 / 47.61 +53.96%/ +53.47%
SAR ICLR’23 ✓ 65.81 / 30.39 −11.69% / +6.33% 61.34 / 35.74 +30.21% / +32.09%

MemCLR WACV’23 ✓ 65.61 / 29.83 −12.97% / +5.11% 61.47 / 35.76 +30.62% / +32.13%
DPO - ✓ 75.81 / 55.74 +52.20% / +61.47% 73.27 / 54.38 +68.13%/+65.66%

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets and TTA-3OD Tasks. Our experiments are car-
ried out on three widely used LiDAR-based 3D object detection
datasets: KITTI [14], Waymo [56], and nuScenes [2]. Addition-
ally, the recently released KITTI-C dataset [28], which simulates
real-world corruptions, is incorporated to pose the TTA-3OD chal-
lenge. Following prior works [6, 73, 74], we address cross-dataset
test-time adaptation tasks (e.g., Waymo → KITTI and nuScenes
→ KITTI), involving adaptation across (i) object shifts (e.g., scale
and point density variations), and (ii) environmental shifts (e.g.,
changes in deployment locations and LiDAR configurations). Fur-
thermore, we evaluate adaptation performance against real-world
corruptions (e.g., KITTI→ KITTI-C), including conditions such
as fog, wet conditions (Wet.), snow, motion blur (Moti.), missing
beams (Beam.), crosstalk (Cross.T), incomplete echoes (Inc.), and
cross-sensor interference (Cross.S). Experiments also extend to the
challenging scenarios of composite domain shifts (e.g., Waymo
→ KITTI-C), where inconsistencies across datasets and corruptions
coexist within the test 3D scenes.

4.1.2 Implementation Details. We leverage the OpenPCDet
framework [57]. Experiments are conducted on a single NVIDIA
RTX A6000 GPU with 48 GB of memory. We opt for a batch size of 8
and fix the hyperparameters 𝜌 = 1𝑒 − 4, 𝛼 = 0.08, 𝛾 = 0.5, 𝜂 = 10−3.
For evaluation purposes, we adhere to the official metrics of the
KITTI benchmark, reporting the average precision for the car class
in both 3D (i.e., AP3D) and bird’s eye view (i.e., APBEV) perspectives,
calculated over 40 recall positions and applying a 0.7 IoU threshold.
The closed gap [73] is calculated as: APmethod −APNo Adapt.

APOracle −APNo Adapt.
× 100%.

4.1.3 Baseline Methods. We integrate a voxel-based backbone
(i.e., SECOND) into our proposed method and evaluate it against a
comprehensive array of baseline approaches:
• No Adapt.: directly inferring the test data with a model pre-
trained on the source domain, without any adaptation.
• SN [67]: weakly supervised domain adaptive 3D detection that
adjusts source object sizes using target domain statistics.
• ST3D [73]: an unsupervised domain adaptation method for 3D
detection, utilizing multi-epoch pseudo-labeling for self-training.
• Tent [63]: a fully TTA method that optimizes BatchNorm layers
by minimizing the entropy of predictions.

• CoTTA [65]: a TTA strategy that leverages mean-teacher frame-
work to provide supervisory signals through augmentations and
employs random neuron restoration to retain source knowledge.
• SAR [46]: an advancement beyond Tent, employing sharpness-
aware minimization for selected supervision.
• MemCLR [62]: TTA for image-based object detection usingmean-
teacher to align the instance-level features by a memory module.
• Oracle: a fully supervised model trained on the test scenes.

4.2 Experimental Results
4.2.1 Cross-dataset Shifts. We conducted extensive experiments
on two cross-dataset TTA-3OD tasks, evaluating APBEV, AP3D,
and closed gap, as presented in Table 1. Compared to direct in-
ference (i.e. No Adapt.), our experiments revealed that existing
TTA baselines might negatively impact adaptation in 3D object
detection especially on APBEV for the Waymo→ KITTI task, indi-
cating the importance of tailoring a TTA method specifically for
3D detection tasks. Additionally, compared to the most competitive
baseline, CoTTA, DPO achieves significant improvements in AP3D,
with increases of 57.7% and 14.2% for the Waymo→ KITTI and
nuScenes→ KITTI tasks, respectively. Similarly, DPO significantly
outperforms CoTTA in APBEV, demonstrating a considerable mar-
gin. Besides, DPO effectively reduces the closed gap, demonstrating
a closure of about 61.47% and 65.66% for the Waymo → KITTI
and nuScenes→ KITTI tasks, correspondingly, in AP3D. Moreover,
it achieves up to 91% and 87.5% of the fully supervised Oracle’s
performance in APBEV for the respective tasks. Overall, our pro-
posed DPO not only surpasses all TTA baselines but also delivers
performances competitive with those of Unsupervised Domain
Adaptation (UDA) and fully supervised learning, highlighting its
effectiveness in bridging domain gaps in 3D object detection.

4.2.2 Corruption Shifts. We evaluated DPO’s efficacy against
corruption-induced shifts on KITTI→ KITTI-C with heavy severity
of eight real-world corruption by AP3D in hard difficulty scenarios.
As indicated in Table 2, DPO outperforms all TTA baselines in
terms of Mean AP3D, exceeding the performance of the closest
competitive baseline, Tent, by 1.2%. DPO consistently achieves
top performance across most corruption types, demonstrating the
enhanced robustness of DPO and its effectiveness in adapting 3D
models to a wide array of corrupted environments.
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Table 2: Results of KITTI→ KITTI-C on heavy corruptions.

No Adapt. Tent CoTTA SAR MemCLR DPO

Fog 68.23 68.73 68.49 68.14 68.23 68.72
Wet. 76.25 76.36 76.43 76.23 76.25 76.89
Snow 59.07 59.50 59.45 58.78 58.74 60.80
Moti. 38.21 38.15 38.62 38.12 37.57 38.71
Beam. 53.93 53.85 53.98 53.75 53.49 54.06
CrossT. 75.49 74.67 72.22 74.51 74.25 75.52
Inc. 25.68 26.44 27.35 26.42 27.47 27.16
CrossS. 41.08 41.17 40.80 40.63 40.90 42.09
Mean 54.74 54.86 54.67 54.57 54.61 55.49

Figure 3: Results (AP3D) of adapting across composite shifts
(Waymo→ KITTI-C) at the heavy corruption level. Lighter
shades indicate higher performance.

4.2.3 Composite Domain Shifts. To address the most chal-
lenging shift in 3D scenes, which merges both cross-dataset dis-
crepancies and corruptions, we conducted experiments to adapt
3D detectors from Waymo to KITTI-C (heavy corruption). The
outcomes are represented in Figure 3. Notably, the shades in the
last column (DPO) are significantly lighter than those in all other
columns (TTA baselines) at various difficulty levels (moderate and
hard), indicating DPO’s superior performance. In particular, the per-
formance without any adaptation (column 1) significantly declines,
illustrating the compounded challenges of composite shifts. For
example, only 8.38% AP3D is recorded for Motion Blur and 3.84%
AP3D for Incomplete Echoes at the moderate level. Conversely,
against the most competitive baseline (column 3), our approach
notably enhances adaptation performance for these challenging
corruptions by 75.13% and 61.36%, respectively. Direct inference
for Incomplete Echoes at hard difficulty yields only a 3.51% in AP3D,
whereas our method markedly increases this by more than 231.62%,
achieving a 53.97% improvement over the highest baseline. In sum-
mary, existing TTA methods fall short in navigating significant
domain shifts (i.e., composite domain shifts) in 3D scenes, while
DPO could effectively tackle these challenges.

4.3 Parameter Sensitivity
4.3.1 Sharpness Radius 𝜌 . To understand the impact of varying
the sharpness radius 𝜌 on AP3D and APBEV, we conduct an analysis
at the moderate difficulty level for the nuScenes→ KITTI task,
keeping all other hyperparameters fixed. We explored a range of
𝜌 values from 10−4 to 10−1. The left part of Figure 4 illustrates
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Figure 4: Sensitivity to radius 𝜌 in SAM (left), and the pseudo-
label threshold 𝛼 (right) on nuScenes→ KITTI.

Table 3: Ablation study on the nuScenes→KITTI task. APBEV
(left) and AP3D (right) (%) are reported for three levels of
difficulty. The best results are highlighted in bold.

Pert. Θ𝑡 Pert. 𝑍𝑡 Matcher Easy Moderate Hard

- - - 76.51/58.78 62.68/43.64 59.93/39.87√
- - 82.14/56.36 70.86/47.18 68.91/44.62√ √

- 80.42/60.50 72.42/49.28 70.77/46.20√
-

√
81.08/62.88 73.09/49.60 71.86/47.19√ √ √
83.11/66.19 73.27/54.38 72.21/52.66

that variations in 𝜌 exhibit a minimal influence on APBEV, con-
trasting with AP3D, which demonstrates significant performance
variability when the perturbation radius is adjusted to 0.1. This
discrepancy can be attributed to two primary factors. Firstly, an
increase in perturbation radius adversely affects adaptation perfor-
mance. Secondly, a larger perturbation radius results in the selection
of a reduced number of pseudo-labeled 3D boxes for self-training
due to the increased divergence in model predictions. However,
when employing a perturbation radius within a smaller range (e.g.,
10−4-10−2), the stability of AP3D is notably enhanced.

4.3.2 Pseudo-label Threshold 𝛼 . The pseudo-label threshold
𝛼 shows a consistent pattern for APBEV, remaining stable across
different values. However, a low threshold (i.e., 0.04) causes a drop
in AP3D as too few pseudo-labeled 3D boxes are selected to update
model weights. This emphasizes the need for an appropriate propor-
tion of pseudo-labels for adaptation. For 𝛼 values between 0.08 and
0.20, APBEV and AP3D remain stable, with maximum fluctuations of
0.83 and 0.07, respectively. This stability highlights the robustness
of the selected threshold.

4.4 Ablation Study
4.4.1 Impact of Components. To understand how individual
components of DPO affect overall performance, we conduct an abla-
tion study by incrementally adding each component to adaptation
and evaluating performance on the nuScenes→ KITTI task. Ta-
ble 3 shows the impact of these components on the KITTI dataset
at three difficulty levels, measured by AP score. Here, Pert. Θ𝑡

represents weight space perturbation, Pert. 𝑍𝑡 denotes input pertur-
bation, and Matcher refers to the Hungarian Matching mechanism
for pseudo-label selection. Compared to the self-training baseline
(row 1), adding weight space perturbation (row 2) significantly im-
proves APBEV but reduces AP3D (58.78→ 56.36 at easy difficulty),
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Figure 5: Performance trend and variation in the number
of point clouds for weight updates across different early-
stopping thresholds 𝐶stop.

Table 4: DPO variations for model updating strategies.

# of Params Speed APBEV AP3D
Full 12,182,565 0.33s / frame 75.81 55.74
BatchNorm 268,288 0.31s / frame 75.12 55.51

Table 5: DPO results of Waymo→ KITTI using PV-RCNN.

TTA Method No Adapt. Tent CoTTA SAR Mem-CLR Ours

APBEV 63.60 55.96 67.85 59.77 55.92 68.45
AP3D 22.01 27.49 38.52 21.33 15.77 51.55

indicating limitations of SAM for the TTA-3OD task. Incorporating
input perturbation (row 3) and using dual perturbation improves
performance, increasing APBEV and AP3D across all difficulty lev-
els. The Hungarian matcher enhances pseudo-label selection with
weight perturbation alone, as shown by the performance gains
over weight perturbation alone (rows 2, 4). Using all proposed DPO
components yields the highest performance for both APBEV and
AP3D across all difficulty levels.
4.4.2 Impact of Early Hungarian Cutoff. We examine the ef-
fectiveness of early Hungarian cutoff on the nuScenes→Waymo
task in Figure 5. When the Hungarian cost in Eqn. (12) falls below
a specified threshold, e.g.,𝐶stop = 4.8, the model updates its weights
using self-training on the first 48 test point clouds and then infers
the remaining point clouds directly, skipping further self-training.
The moving-average Hungarian cost converges rapidly during self-
training. For instance, using the first 64 test samples reduces the
cost from 4.8 to 3.8 and significantly improves performance (9.37 in
AP3D). In contrast, reducing the cost from 3.6 to 3.4 with 144 test
samples only marginally improves performance (3.53 in AP3D) due
to error accumulation in pseudo-labels. These results underscore
the value of the Hungarian cost-based early stopping mechanism,
which leverages a small portion of test batches to enhance perfor-
mance without excessive computational cost.
4.4.3 Impact of Updating Strategies. We explore updating only
the BatchNorm (BN) vs. the full model for adaptation on Waymo
→ KITTI. As shown in Table 4, updating BN (only 2% of the total
parameters) results in a slight decrease of 0.41% in AP3D and a
slight increase in speed by 0.02s per frame. This demonstrates that
our method remains effective even when only a small fraction of
the parameters are updated.
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Figure 6: Efficiency analysis of Waymo→ KITTI task.

4.4.4 Sensitivity to 3D Backbone Detector. To validate the
effectiveness of DPO, we assess the performance sensitivity when
coupled with a two-stage, point- and voxel-based backbone detec-
tor: PVRCNN [52]. The results of TTA baselines and our approach
from Waymo to KITTI are summarized in Table 5. Our observa-
tions indicate that changing the backbone has a significant impact
on the performance of baseline TTA methods. Conversely, our
proposed method not only exhibits stability but also achieves a
remarkable performance enhancement (33.83% in AP3D) over the
leading baseline. Besides, DPO also achieves state-of-the-art APBEV
performance compared to all baseline methods, emphasizing the
consistent efficacy of our approach across different backbones.

4.5 Efficiency Analysis
To assess the efficiency of DPO, we conducted a comparative analy-
sis for adaptation speed (i.e., seconds per frame) and GPU memory
usage, as illustrated in Figure 6. CoTTA is identified as the most
efficient TTA baseline for 3D object detection, demonstrating rapid
adaptation capabilities (under 0.15 seconds per frame). Conversely,
other baselines, notably SAR, required significantly more adapta-
tion time and yet underperformed, achieving APBEV of less than
66%. Despite a slightly longer processing time, DPO markedly sur-
passed all TTA baselines, showcasing its superior performance. In
terms of GPU memory consumption, CoTTA reported moderate
usage, whereas MemCLR exceeded 18,000 MiB but fell short in
performance. The proposed DPO, in contrast, not only required less
GPU memory than both MemCLR and CoTTA but also achieved
dominating adaptation performance, highlighting the efficiency
and effectiveness of our method.

5 Conclusion
In this work, we present a novel framework for Test-Time Adapta-
tion in 3D Object Detection (TTA-3OD) aimed at adapting detectors
to new unlabeled scenes with a single pass. Our approach incor-
porates worst-case perturbations at both model and input levels
to enhance robustness and generalization, thereby enabling 3D
detectors to stably adapt to any test scenes with corruptions. We
employ reliable Hungarian matching for trustworthy pseudo-label
selection, with an early cutoff to avoid computation burden and
error accumulation. Beyond point- and voxel-representation-based
3D detectors used in this paper, our future work will further vali-
date multimodal detectors with different input modalities, such as
BEVfusion [36] to verify shifts across modalities.



DPO: Dual-Perturbation Optimization for Test-time Adaptation in 3D Object Detection MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments
This research is partially supported by the Australian Research
Council (DE240100105, DP240101814, DP230101196, DP230101753).

References
[1] MaksymAndriushchenko andNicolas Flammarion. 2022. Towards Understanding

Sharpness-Aware Minimization. In Proc. International Conference on Machine
Learning (ICML). 639–668.

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. 2020.
nuScenes: A Multimodal Dataset for Autonomous Driving. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 11618–11628.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. 2020. End-to-End Object Detection with Trans-
formers. In Proc. European Conference on Computer Vision (ECCV) (Lecture Notes
in Computer Science, Vol. 12346). 213–229.

[4] Dian Chen, DequanWang, Trevor Darrell, and Sayna Ebrahimi. 2022. Contrastive
test-time adaptation. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 295–305.

[5] Zhuoxiao Chen, Yadan Luo, and Mahsa Baktashmotlagh. 2021. Conditional
Extreme Value Theory for Open Set Video Domain Adaptation. In Proc. ACM
International Conference on Multimedia Asia (MMAsia). 20:1–20:8.

[6] Zhuoxiao Chen, Yadan Luo, Zheng Wang, Mahsa Baktashmotlagh, and Zi Huang.
2023. Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling. In Proc. International Conference on Computer
Vision (ICCV). 3691–3703.

[7] Zhuoxiao Chen, Junjie Meng, Mahsa Baktashmotlagh, Zi Huang, and Yadan Luo.
2024. MOS: Model Synergy for Test-Time Adaptation on LiDAR-Based 3D Object
Detection. CoRR abs/2406.14878 (2024).

[8] Zhuoxiao Chen, Yiyun Zhang, Yadan Luo, Zijian Wang, Jinjiang Zhong, and
Anthony Southon. 2021. RoadAtlas: Intelligent Platform for Automated Road
Defect Detection and Asset Management. In Proc. ACM International Conference
on Multimedia Asia (MMAsia). ACM.

[9] Robert DeBortoli, Fuxin Li, Ashish Kapoor, and Geoffrey A. Hollinger. 2021.
Adversarial Training on Point Clouds for Sim-to-Real 3D Object Detection. IEEE
Robotics and Automation Letters 6, 4 (2021), 6662–6669.

[10] Boyang Deng, Charles R. Qi, Mahyar Najibi, Thomas A. Funkhouser, Yin Zhou,
andDragomir Anguelov. 2021. Revisiting 3DObject Detection From an Egocentric
Perspective. In Proc. Annual Conference on Neural Information Processing (NeurIPS).
26066–26079.

[11] Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang,
Hang Su, Xingxing Wei, and Jun Zhu. 2023. Benchmarking Robustness of 3D
Object Detection to Common Corruptions in Autonomous Driving. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1022–1032.

[12] Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick
Siow Mong Goh, and Vincent Y. F. Tan. 2022. Efficient Sharpness-aware Mini-
mization for Improved Training of Neural Networks. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022.

[13] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. 2021.
Sharpness-aware Minimization for Efficiently Improving Generalization. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? The KITTI vision benchmark suite. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 3354–3361.

[15] Saeed Ghadimi and Guanghui Lan. 2013. Stochastic First- and Zeroth-Order
Methods for Nonconvex Stochastic Programming. SIAM Journal on Optimization
23, 4 (2013), 2341–2368.

[16] Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-
Ju Lee. 2022. NOTE: Robust continual test-time adaptation against temporal
correlation. In Proc. Annual Conference on Neural Information Processing (NeurIPS).
27253–27266.

[17] Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju
Lee. 2024. SoTTA: Robust Test-Time Adaptation on Noisy Data Streams. In Proc.
Annual Conference on Neural Information Processing (NeurIPS).

[18] Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J Zico Kolter. 2022. Test time
adaptation via conjugate pseudo-labels. In Proc. Annual Conference on Neural
Information Processing (NeurIPS). 6204–6218.

[19] Qiqi Gu, Qianyu Zhou, Minghao Xu, Zhengyang Feng, Guangliang Cheng, Xue-
quan Lu, Jianping Shi, and Lizhuang Ma. 2021. PIT: Position-Invariant Transform
for Cross-FoV Domain Adaptation. In Proc. International Conference on Computer
Vision (ICCV). 8741–8750.

[20] Martin Hahner, Christos Sakaridis, Mario Bijelic, Felix Heide, Fisher Yu, Dengxin
Dai, and Luc Van Gool. 2022. LiDAR Snowfall Simulation for Robust 3D Object

Detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 16343–16353.

[21] Deepti Hegde, Velat Kilic, Vishwanath Sindagi, A Brinton Cooper, Mark Foster,
and Vishal M Patel. 2023. Source-free Unsupervised Domain Adaptation for
3D Object Detection in Adverse Weather. In Proc. International Conference on
Robotics and Automation (ICRA).

[22] Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. 2023. Mecta:
Memory-economic continual test-time model adaptation. In Proc. International
Conference on Learning Representations (ICLR).

[23] Chengjie Huang, Vahdat Abdelzad, Sean Sedwards, and Krzysztof Czarnecki.
2024. SOAP: Cross-Sensor Domain Adaptation for 3D Object Detection Using
Stationary Object Aggregation Pseudo-Labelling. In Proc. Winter Conference on
Applications of Computer Vision (WACV).

[24] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy
Bengio. 2020. Fantastic Generalization Measures and Where to Find Them. In
Proc. International Conference on Learning Representations (ICLR).

[25] Bo Ju, Zhikang Zou, Xiaoqing Ye, Minyue Jiang, Xiao Tan, Errui Ding, and
Jingdong Wang. 2022. Paint and Distill: Boosting 3D Object Detection with
Semantic Passing Network. In Proc. ACM International Conference on Multimedia
(MM). 5639–5648.

[26] Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Shaban, Byron Boots, and
Jaegul Choo. 2023. Cafa: Class-aware feature alignment for test-time adaptation.
In Proc. International Conference on Computer Vision (ICCV). 19060–19071.

[27] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2017. On Large-Batch Training for Deep Learning: Gen-
eralization Gap and Sharp Minima. In Proc. International Conference on Learning
Representations (ICLR).

[28] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wenwei Zhang, Jiawei Ren,
Liang Pan, Kai Chen, and Ziwei Liu. 2023. Robo3D: Towards Robust and Reliable
3D Perception against Corruptions. In Proc. International Conference on Computer
Vision (ICCV). 19937–19949.

[29] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. 2021. ASAM:
Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep
Neural Networks. In Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine
Learning Research, Vol. 139). PMLR, 5905–5914.

[30] Alexander Lehner, Stefano Gasperini, Alvaro Marcos-Ramiro, Michael Schmidt,
Mohammad-Ali Nikouei Mahani, Nassir Navab, Benjamin Busam, and Federico
Tombari. 2022. 3D-VField: Adversarial Augmentation of Point Clouds for Domain
Generalization in 3D Object Detection. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 17274–17283.

[31] Jiale Li, Hang Dai, Ling Shao, and Yong Ding. 2021. From Voxel to Point: IoU-
guided 3D Object Detection for Point Cloud with Voxel-to-Point Decoder. In Proc.
ACM International Conference on Multimedia (MM). 4622–4631.

[32] Ziyu Li, Jingming Guo, Tongtong Cao, Bingbing Liu, and Wankou Yang. 2023.
GPA-3D: Geometry-aware Prototype Alignment for Unsupervised Domain Adap-
tive 3D Object Detection from Point Clouds. In Proc. International Conference on
Computer Vision (ICCV). 6371–6380.

[33] Ziyu Li, Yuncong Yao, Zhibin Quan, Lei Qi, Zhenhua Feng, and Wankou Yang.
2023. Adaptation Via Proxy: Building Instance-Aware Proxy for Unsupervised
Domain Adaptive 3D Object Detection. IEEE Transactions on Intelligent Vehicles
(2023).

[34] Jian Liang, Ran He, and Tieniu Tan. 2023. A Comprehensive Survey on Test-Time
Adaptation under Distribution Shifts. CoRR abs/2303.15361 (2023).

[35] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. 2022. Towards
Efficient and Scalable Sharpness-Aware Minimization. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022. IEEE, 12350–12360.

[36] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L.
Rus, and Song Han. 2023. BEVFusion: Multi-Task Multi-Sensor Fusion with
Unified Bird’s-Eye View Representation. In Proc. International Conference on
Robotics and Automation (ICRA). 2774–2781.

[37] Yadan Luo, Zhuoxiao Chen, Zhen Fang, Zheng Zhang, Mahsa Baktashmotlagh,
and Zi Huang. 2023. Kecor: Kernel Coding Rate Maximization for Active 3D
Object Detection. In Proc. International Conference on Computer Vision (ICCV).
18233–18244.

[38] Yadan Luo, Zhuoxiao Chen, Zijian Wang, Xin Yu, Zi Huang, and Mahsa Bak-
tashmotlagh. 2023. Exploring Active 3D Object Detection from a Generalization
Perspective. In Proc. International Conference on Learning Representations (ICLR).

[39] Yadan Luo, Zijian Wang, Zhuoxiao Chen, Zi Huang, and Mahsa Baktashmotlagh.
2023. Source-Free Progressive Graph Learning for Open-Set Domain Adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 9 (2023), 11240–
11255.

[40] Zhipeng Luo, Zhongang Cai, Changqing Zhou, Gongjie Zhang, Haiyu Zhao,
Shuai Yi, Shijian Lu, Hongsheng Li, Shanghang Zhang, and Ziwei Liu. 2021.
Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency. In
Proc. International Conference on Computer Vision (ICCV). 8846–8855.



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Zhuoxiao Chen, Zixin Wang, Yadan Luo, Sen Wang, and Zi Huang

[41] Muhammad Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof.
2022. The NormMust Go On: Dynamic Unsupervised Domain Adaptation by Nor-
malization. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 14745–14755.

[42] Hector A. Montes, Justin Le Louedec, Grzegorz Cielniak, and Tom Duckett. 2020.
Real-time detection of broccoli crops in 3D point clouds for autonomous robotic
harvesting. In Proc. International Conference on Intelligent Robots and Systems
(IROS). 10483–10488.

[43] A. Tuan Nguyen, Thanh Nguyen-Tang, Ser-Nam Lim, and Philip H.S. Torr. 2023.
TIPI: Test Time Adaptation With Transformation Invariance. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 24162–24171.

[44] Fahim Faisal Niloy, Sk Miraj Ahmed, Dripta S. Raychaudhuri, Samet Oymak, and
Amit K. Roy-Chowdhury. 2024. Effective Restoration of Source Knowledge in
Continual Test Time Adaptation. In Proc. Winter Conference on Applications of
Computer Vision (WACV). 2091–2100.

[45] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin
Zhao, and Mingkui Tan. 2022. Efficient Test-Time Model Adaptation without
Forgetting. In Proc. International Conference on Machine Learning (ICML). 16888–
16905.

[46] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin
Zhao, and Mingkui Tan. 2023. Towards Stable Test-time Adaptation in Dynamic
Wild World. In Proc. International Conference on Learning Representations (ICLR).

[47] Xidong Peng, Xinge Zhu, and Yuexin Ma. 2023. CL3D: Unsupervised Domain
Adaptation for Cross-LiDAR 3D Detection. In Proc. Conference on Artificial Intel-
ligence (AAAI). 2047–2055.

[48] Rui Qian, Xin Lai, and Xirong Li. 2022. 3D Object Detection for Autonomous
Driving: A Survey. Pattern Recognition 130 (2022), 108796.

[49] Christoph B Rist, Markus Enzweiler, and Dariu M Gavrila. 2019. Cross-sensor
deep domain adaptation for LiDAR detection and segmentation. In Proc. Intelligent
Vehicles Symposium, (IV). 1535–1542.

[50] Khaled Saleh, Ahmed Abobakr, Mohammed Hassan Attia, Julie Iskander, Darius
Nahavandi, Mohammed Hossny, and Saeid Nahavandi. 2019. Domain Adaptation
for Vehicle Detection from Bird’s Eye View LiDAR Point Cloud Data. In Proc.
International Conference on Computer Vision (ICCV). 3235–3242.

[51] Cristiano Saltori, Stéphane Lathuilière, Nicu Sebe, Elisa Ricci, and Fabio Galasso.
2020. SF-UDA3D: Source-Free Unsupervised Domain Adaptation for LiDAR-
Based 3D Object Detection. In Proc. International Conference on 3D Vision (3DV).
771–780.

[52] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. 2020. PV-RCNN: Point-Voxel Feature Set Abstraction for
3D Object Detection. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 10526–10535.

[53] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. 2023. EcoTTA: Memory-
Efficient Continual Test-time Adaptation via Self-distilled Regularization. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 11920–11929.

[54] Russell Stewart, Mykhaylo Andriluka, and Andrew YNg. 2016. End-to-end people
detection in crowded scenes. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2325–2333.

[55] Jiachen Sun, Mark Ibrahim, Melissa Hall, Ivan Evtimov, Z. Morley Mao, Cristian
Canton-Ferrer, and Caner Hazirbas. 2023. VPA: Fully Test-Time Visual Prompt
Adaptation. In Proc. ACM International Conference on Multimedia (MM). 5796–
5806.

[56] Pei Sun et al. 2020. Scalability in Perception for Autonomous Driving: Waymo
Open Dataset. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2443–2451.

[57] OpenPCDet Development Team. 2020. OpenPCDet: An Open-source Toolbox
for 3D Object Detection from Point Clouds. https://github.com/open-mmlab/
OpenPCDet.

[58] Devavrat Tomar, Guillaume Vray, Behzad Bozorgtabar, and Jean-Philippe Thiran.
2023. TeSLA: Test-Time Self-LearningWith Automatic Adversarial Augmentation.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
20341–20350.

[59] Devavrat Tomar, Guillaume Vray, Behzad Bozorgtabar, and Jean-Philippe Thiran.
2023. TeSLA: Test-Time Self-LearningWith Automatic Adversarial Augmentation.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
20341–20350.

[60] Darren Tsai, Julie Stephany Berrio, Mao Shan, Eduardo Nebot, and Stewart
Worrall. 2023. MS3D++: Ensemble of Experts for Multi-Source Unsupervised
Domain Adaption in 3D Object Detection. CoRR abs/2308.05988 (2023).

[61] Darren Tsai, Julie Stephany Berrio, Mao Shan, Eduardo M. Nebot, and Stewart
Worrall. 2023. Viewer-Centred Surface Completion for Unsupervised Domain
Adaptation in 3D Object Detection. In Proc. International Conference on Robotics
and Automation (ICRA). 9346–9353.

[62] Vibashan VS, Poojan Oza, and Vishal M. Patel. 2023. Towards Online Domain
Adaptive Object Detection. In Proc. Winter Conference on Applications of Computer
Vision (WACV). 478–488.

[63] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor
Darrell. 2021. Tent: Fully Test-Time Adaptation by Entropy Minimization. In

Proc. International Conference on Learning Representations (ICLR).
[64] JunyinWang, ChenghuDu, Hui Li, and ShengwuXiong. 2023. DLFusion: Painting-

Depth Augmenting-LiDAR for Multimodal Fusion 3D Object Detection. In Proc.
ACM International Conference on Multimedia (MM). 3765–3776.

[65] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. 2022. Continual Test-Time
Domain Adaptation. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 7191–7201.

[66] Shuai Wang, Daoan Zhang, Zipei Yan, Jianguo Zhang, and Rui Li. 2023. Feature
Alignment and Uniformity for Test Time Adaptation. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 20050–20060.

[67] Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath Hariharan, Mark E.
Campbell, Kilian Q. Weinberger, and Wei-Lun Chao. 2020. Train in Germany,
Test in the USA: Making 3D Object Detectors Generalize. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 11710–11720.

[68] Zixin Wang, Yadan Luo, Zhi Chen, Sen Wang, and Zi Huang. 2023. Cal-SFDA:
Source-Free Domain-adaptive Semantic Segmentation with Differentiable Ex-
pected Calibration Error. In Proceedings of the 31st ACM International Conference
on Multimedia, MM 2023, Ottawa, ON, Canada, 29 October 2023- 3 November 2023.
ACM, 1167–1178.

[69] Zixin Wang, Yadan Luo, Peng-Fei Zhang, Sen Wang, and Zi Huang. 2022. Discov-
ering Domain Disentanglement for GeneralizedMulti-Source Domain Adaptation.
In Proc. International Conference on Multimedia and Expo (ICME). 1–6.

[70] Zixin Wang, Yadan Luo, Liang Zheng, Zhuoxiao Chen, Sen Wang, and Zi Huang.
2023. In search of lost online test-time adaptation: A survey. CoRR abs/2310.20199
(2023).

[71] Yi Wei, Zibu Wei, Yongming Rao, Jiaxin Li, Jie Zhou, and Jiwen Lu. 2022. LiDAR
Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection.
In Proc. European Conference on Computer Vision (ECCV), Vol. 13699. 179–195.

[72] Qiangeng Xu, Yin Zhou, Weiyue Wang, Charles R. Qi, and Dragomir Anguelov.
2021. SPG: Unsupervised Domain Adaptation for 3D Object Detection via Se-
mantic Point Generation. In Proc. International Conference on Computer Vision
(ICCV). 15426–15436.

[73] Jihan Yang, Shaoshuai Shi, ZheWang, Hongsheng Li, and XiaojuanQi. 2021. ST3D:
Self-Training for Unsupervised Domain Adaptation on 3D Object Detection. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10368–
10378.

[74] Jihan Yang, Shaoshuai Shi, Zhe Wang, Hongsheng Li, and Xiaojuan Qi. 2022.
ST3D++: denoised self-training for unsupervised domain adaptation on 3D object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[75] Yurong You, Carlos Andres Diaz-Ruiz, YanWang, Wei-Lun Chao, Bharath Hariha-
ran, Mark E. Campbell, and Kilian Q. Weinberger. 2022. Exploiting Playbacks in
Unsupervised Domain Adaptation for 3D Object Detection in Self-Driving Cars.
In Proc. International Conference on Robotics and Automation (ICRA). 5070–5077.

[76] Zhiqi Yu, Jingjing Li, Zhekai Du, Fengling Li, Lei Zhu, and Yang Yang. 2023. Noise-
Robust Continual Test-Time Domain Adaptation. In Proc. ACM International
Conference on Multimedia (MM). 2654–2662.

[77] Longhui Yuan, Binhui Xie, and Shuang Li. 2023. Robust Test-Time Adaptation
in Dynamic Scenarios. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 15922–15932.

[78] Longbin Zeng, Jiayi Han, Liang Du, and Weiyang Ding. 2024. Rethinking preci-
sion of pseudo label: Test-time adaptation via complementary learning. Pattern
Recognition Letters 177 (2024), 96–102.

[79] Yihan Zeng, Chunwei Wang, Yunbo Wang, Hang Xu, Chaoqiang Ye, Zhen Yang,
and Chao Ma. 2021. Learning Transferable Features for Point Cloud Detection
via 3D Contrastive Co-training. In Proc. Annual Conference on Neural Information
Processing (NeurIPS). 21493–21504.

[80] Marvin Zhang, Sergey Levine, and Chelsea Finn. 2022. MEMO: Test Time Ro-
bustness via Adaptation and Augmentation. In Proc. Annual Conference on Neural
Information Processing (NeurIPS).

[81] Weichen Zhang, Wen Li, and Dong Xu. 2021. SRDAN: Scale-Aware and Range-
Aware Domain Adaptation Network for Cross-Dataset 3D Object Detection. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6769–
6779.

[82] Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. 2023. Gradient
Norm Aware Minimization Seeks First-Order Flatness and Improves Generaliza-
tion. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2023, Vancouver, BC, Canada, June 17-24, 2023. IEEE, 20247–20257.

[83] Bowen Zhao, Chen Chen, and Shu-Tao Xia. 2023. DELTA: degradation-free fully
test-time adaptation. In Proc. International Conference on Learning Representations
(ICLR).

[84] Zhengxue Zhou, Leihui Li, Alexander Fürsterling, Hjalte Joshua Durocher, Jes-
per Mouridsen, and Xuping Zhang. 2022. Learning-based object detection and
localization for a mobile robot manipulator in SME production. Robotics and
Computer-Integrated Manufacturing 73 (2022), 102229.

[85] Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C.
Dvornek, Sekhar Tatikonda, James S. Duncan, and Ting Liu. 2022. Surrogate Gap
Minimization Improves Sharpness-Aware Training. In International Conference
on Learning Representations (ICLR).

https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

	Abstract
	1 Introduction
	2 Related Work
	2.1 Domain Adaptive 3D Object Detection
	2.2 Test-time Adaptation in 2D Vision Tasks
	2.3 Generalization through Flat Minima

	3 Method
	3.1 Notations and Task Definition
	3.2 Minimizing Sharpness in the Weight Space
	3.3 Minimizing Sharpness in the Input Space
	3.4 Reliable Hungarian Matcher
	3.5 Early Hungarian Cutoff

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Parameter Sensitivity
	4.4 Ablation Study
	4.5 Efficiency Analysis

	5 Conclusion
	Acknowledgments
	References

