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ABSTRACT

In graph neural networks (GNNs), both node features and labels are examples of
graph signals, a key notion in graph signal processing (GSP). While it is common
in GSP to impose signal smoothness constraints in learning and estimation tasks,
it is unclear how this can be done for discrete node labels. We bridge this gap
by introducing the concept of distributional graph signals. In our framework, we
work with the distributions of node labels instead of their values and propose
notions of smoothness and non-uniformity of such distributional graph signals.
We then propose a general regularization method for GNNs that allows us to
encode distributional smoothness and non-uniformity of the model output in semi-
supervised node classification tasks. Numerical experiments demonstrate that our
method can significantly improve the performance of most base GNN models in
different problem settings.

1 INTRODUCTION

We consider the semi-supervised node classification problem (Kipf & Welling, 2017) that determines
class labels of nodes in graphs given sample observations and possibly node features. Numerous
graph neural network (GNN) models have been proposed to tackle this problem. One of the first
models is the graph convolutional network (GCN) (Defferrard et al., 2016). Interpreted geometrically,
a GCN aggregates information such as node features from the neighborhood of each node of the
graph. Algebraically, this process is equivalent to applying a graph convolution filter to node feature
vectors. Subsequently, many GNN models with different considerations are introduced. Popular
models include the graph attention network (GAT) (Velic̄ković et al., 2018) that learns weights
between pairs of nodes during aggregation, and the hyperbolic graph convolutional neural network
(HGCN) (Chami et al., 2019) that considers embedding of nodes of a graph in a hyperbolic space
instead of a Euclidean space. For inductive learning, GraphSAGE (Hamilton et al., 2017) is proposed
to generate low-dimensional vector representations for nodes that are useful for graphs with rich node
attribute information. While new models draw inspiration from GCN, GCN itself is built upon the
foundation of graph signal processing (GSP).

GSP is a signal processing framework that handles graph-structured data (Shuman et al., 2013; Ortega
et al., 2018; Ji & Tay, 2019). A graph signal is a vector with each component corresponding to a node
of a graph. Examples include node features and node labels. Moreover, convolutions used in models
such as GCN are special cases of convolution filters in GSP (Shuman et al., 2013). All these show the
close connections between GSP theory and GNNs.

In GSP, signal smoothness (over the graph) is widely used to regularize inference tasks. Intuitively, a
signal is smooth if its values are similar at each pair of nodes connected by an edge. One popular
way to formally define signal smoothness is to use the Laplacian quadratic form. There are numerous
GSP tools that leverage a smooth prior of the graph signals. For example, Laplacian (Tikhonov)
regularization is proposed for noise removal in Shuman et al. (2013) and signal interpolation (Narang
et al., 2013). In Chen et al. (2015), it is used in graph signal in-painting and anomaly detection. In
Kalofolias (2016), the same technique is used for graph topology inference.

However, for GNNs, it is remarked in Yang et al. (2021, Section 4.1.2) that “graph Laplacian
regularization can hardly provide extra information that existing GNNs cannot capture”. Therefore, a
regularization scheme based on feature propagation is proposed. It is demonstrated to be effective
by comparing with other methods such as Feng et al. (2021) and Deng & Zhu (2019) based on
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adversarial learning and Stretcu et al. (2019) that co-trains GNN models with an additional agreement
model, which gives the probability that two nodes have the same label. We partially agree with the
above assertion regarding graph Laplacian regularization, while remaining reservative about its full
correctness. In this paper, we propose a method that is inspired by Laplacian regularization. As our
main contribution, we introduce the notion of distributional graph signals, instead of considering
graph signals. Analogous to the graph signal smoothness defined using graph Laplacian, we define the
smoothness of distributional graph signals. Together with another property known as non-uniformity,
we devise a regularization scheme for GNNs in node classification tasks. This approach is easy to
implement and can be used as a plug-in regularization term together with any given base GNN model.
Its effectiveness is demonstrated with numerical results.

2 DISTRIBUTIONAL GRAPH SIGNALS

In this section, we motivate and introduce distributional graph signals based on GSP theory.

2.1 GSP PRELIMINARIES AND SIGNAL SMOOTHNESS

In this subsection, we give a brief overview of GSP theory (Shuman et al., 2013). The focus is on the
discussion of graph signal smoothness.

Let G = (V, E) be an undirected graph with V the vertex set and E the edge set. Suppose the size of
the graph is n = |V|. Fix an ordering of V . Then, the space of graph signals can be identified with
the vector space Rn, with a graph signal x ∈ Rn, which assigns its i-th component to the i-th vertex
of G. By convention, signals are in column form, and x(i) is the i-th component of x.

In GSP, the key notion is the graph shift operator. Though there are several choices for the graph
shift operator, in our paper, we consider a common choice: LG , the Laplacian of G, defined by
LG = DG − AG , where DG ,AG are the degree matrix and adjacency matrix of G, respectively.
The Laplacian LG is positive semi-definite and symmetric. By the spectral theorem, it has an
eigendecomposition LG = UGΛGU

⊤
G . In the decomposition, ΛG is a diagonal matrix, whose diagonal

entries {λ1, . . . , λn} are eigenvalues of LG . They are non-negative and we assume λ1 ≤ . . . ≤ λn.
The associated eigenbasis {u1, . . . ,un} are the columns of UG . In GSP, an eigenvector with a small
eigenvalue (and hence a small index) is considered to be smooth. The signal values of such a vector
have small fluctuations across the edges of G.

Given a graph signal x, its graph Fourier transform is x̂ = U⊤
G x, or equivalently, x̂(i) = ⟨x,ui⟩,

for 1 ≤ i ≤ n. The components x̂(i) of x̂ are called the frequency components of x. Same as above,
the signal x is smooth if x̂(i) has a small absolute value for large i. Quantitatively, we can define its
total variation by

T (x) =
∑

(vi,vj)∈E

(x(i)− x(j))2 = x⊤LGx. (1)

It is straightforward to compute that T (ui) = λi. This observation indicates that it is reasonable to
use total variation as a measure of smoothness. Minimizing the total variation of graph signals has
many applications in GSP as we have pointed out in Section 1.

2.2 STEP GRAPH SIGNALS

Let S be a finite set of numbers. A step graph signal with respect to (w.r.t.) S is a graph signal x such
that all its components take values in S, i.e., x ∈ Sn.
Example 1. For the simplest example, consider the classical Heaviside function H on R defined
by H(x) = 1, for x > 0 and H(x) = 0, for x ≤ 0. It is a non-smooth function, as it is not even
continuous at x = 0. On the other hand, let G be the path graph with 2m+ 1 nodes embedded on the
real line by identifying the nodes of G with the integers in the interval [−m,m]. Then H induces a
step graph signal h on G. Same as the Heaviside function H , the signal h should be considered to be
a non-smooth graph signal.

Step graph signals occur naturally in semi-supervised node classification tasks. In particular, if S is
the set of all possible class labels, then the labels of the nodes of G form a step graph signal c w.r.t. S
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on G. We expect that analogous to Example 1, c can possibly be non-smooth. To demonstrate, we
analyze c using its Fourier transform ĉ (cf. Section 2.1). More specifically, we take G0 to be the main
connected component of the Cora graph Sen et al. (2008) and c to be the ground truth labels. We also
generate a random signal r following the same empirical distribution (on S) estimated using c. We
show plots of both Fourier transforms ĉ and r̂ in Fig. 1. We see that the high-frequency components
of the ground truth labels c can be large, and it is even possible that its spectrum, i.e., frequency
components, resemble that of a random signal. The observations support our speculation about the
non-smoothness of the step signals. Therefore, in order to leverage signal smoothness to enhance
model performance, we need to find an alternative to the step (label) signals. This also supports the
remark of Yang et al. (2021) regarding Laplacian regularization from a different point of view (see
also the experiments in Section 4.2).

Figure 1: Plots of ĉ and r̂ for Cora.

2.3 DISTRIBUTIONAL GRAPH SIGNALS AND MARGINALS

We want to use probability theory to introduce the notion of “smoothness” for step signals in the
next section. For preparation, in this subsection, we formally introduce distributional graph signals
and discuss how they arise naturally in GNNs. Our theory (e.g., in Definition 1 and equation (3)) is
based on probability measures defined on metric spaces. To this end, we endow any discrete space S
with the discrete metric d(s1, s2) = 1 if s1 ̸= s2 ∈ S and 0 otherwise. For Rn, one can use the usual
Euclidean metric or any other norm.

Definition 1. For a metric space M = Sn or Rn, let P(M) be the space of probability measures
on M (w.r.t. the Borel σ-algebra) having finite second moments. An element µ ∈ P(M) is called
a distributional graph signal. The marginals of a distributional graph signal µ are the marginal
distributions N = {µi : 1 ≤ i ≤ n} w.r.t. the n coordinates of either Sn or Rn.

To understand why a distribution µ is related to GSP, consider a step graph signal (resp. ordinary
graph signal) x in Sn (resp. Rn). It induces the delta distribution δx in P(Sn) supported at x. Its
marginals are the delta distributions {δx(i) : 1 ≤ i ≤ n}. Therefore, Definition 1 subsumes ordinary
graph signals as special cases.
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Figure 2: We give an example of the marginals of a distributional graph signal. We notice that for X1,:,
the probability weights are equal and it is hard to determine the argmax of the 3 classes. Moreover,
the weights of the 2nd class have large differences along a few edges, e.g., (v2, v3), (v3, v4). These
features make prediction unreliable. We propose solutions to such issues in this paper.

Distributional graph signals also occur naturally in GNN models (illustrated in Fig. 2). As in the
previous subsection, let S be the set of all possible class labels of size m and Mn,m(R) be the space
of n×m matrices. For a typical model M such as the GCN, the last stage of the pipeline usually
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consists of the following steps1:

Logits: O ∈Mn,m(R) Softmax:ϕ−−−−−→ X = ϕ(O) ∈Mn,m(R) argmax−−−−−→ Output labels: c ∈ Sn. (2)

The i-th row Xi,: of X can be viewed as the weights of a probability distribution µX,i on S. They
do not directly give a distributional graph signal in P(Sn). However, we shall interpret NX =
{µX,i, 1 ≤ i ≤ n} as the marginals of some unknown distributional graph signal, and NX is the
main subject of study in this paper. In order to mimic the ways smoothness of graph signals is used in
GSP, we introduce an appropriate notion of the total variation of distributional graph signals in the
next section.

3 REGULARIZED GRAPH NEURAL NETWORKS

In this section, we study smoothness and non-uniformity properties of distributional graph signals in
Section 3.1 and Section 3.2 respectively. Each of these subsections yields an expression that we want
to minimize. They are combined in Section 3.3 to give the proposed regularization term.

3.1 TOTAL VARIATIONS AND LAPLACIAN REGULARIZATION

The goal of this subsection is to introduce and compare different notions of total variation associated
with distributional graph signals and their marginals that leverage signal smoothness. First of all,
given µ ∈ P(M) for M = Sn or Rn, its total variation can be modified directly from (1) as follows:

T (µ) = Ex∼µT (x) =

∫ ∑
(vi,vj)∈E

d(x(i),x(j))2 dµ(x). (3)

where d is the metric on S or R.

However, in many cases of interest such as GNNs, only marginals of some µ are observed (cf.
Section 2.3). We want to define total variation in such a situation as well. We borrow ideas from
the prototype of the Wasserstein metric (Villani, 2009), which we recall now. The notations and
assumptions follow those of Definition 1.

Definition 2. For µ1, µ2 ∈ P(M), the Wasserstein metric W (µ1, µ2) between µ1, µ2 is defined by

W (µ1, µ2)
2 = inf

γ∈Γ(µ1,µ2)

∫
d(x, y)2 dγ(x, y),

where Γ(µ1, µ2) is the set of couplings of µ1, µ2, i.e., the collection of probability measures on
M×M whose marginals are µ1 and µ2, respectively.

It can be verified that W (·, ·) indeed defines a metric on P(M) (see Villani (2009)). As a special
case, if δx and δy are delta distributions supported on x, y ∈ M, then W (δx, δy) = d(x, y). The key
insight is that we want to take infimum over all possible distributions given the prescribed marginals;
and whatever we define, it should subsume (1) as a special case for a collection of delta distributions.

Definition 3. Given N = {µi : 1 ≤ i ≤ n} with µi ∈ P(S) (resp. µi ∈ P(R)), for 1 ≤ i ≤ n,
then the total variation of N is defined as:

T (N ) = inf
µ∈Γ(N )

T (µ), (4)

where Γ(N ) is the collection of all distributional graph signals in P(Sn) (resp. P(Rn)) whose
marginals agree with N .

Though an important theoretical tool, the Wasserstein metric is usually difficult to compute explicitly.
On the other hand, if G is the graph with 2 nodes connected by an edge and N = {µ1, µ2}, then
T (N ) = W (µ1, µ2)

2. As a consequence, finding the exact value of T (N ) can be challenging.
Therefore, we next introduce approximations that can be more readily computed.

1To simplify the presentation, we assume that all models considered have the intermediate softmax step,
though some implementations omit this part using the fact that the exponential function is increasing.

4



For N = {µi : 1 ≤ i ≤ n} with µi ∈ P(S), let µs ∈ Rn be the graph signal of probability weights
of s ∈ S, i.e., µs(i) is the probability weight of µi at s. We can also stack these signals as a matrix
XN whose columns are µs. Based on the GSP version of total variation (cf. (1)), we introduce two
more versions of total variation that are easy to compute.

Definition 4. Given N = {µi : 1 ≤ i ≤ n} with µi ∈ P(S), we define the ℓ1 and ℓ2 versions of
total variations as:

• T1(N ) =
∑

s∈S
∑

(vi,vj)∈E |µs(i)− µs(j)|, and

• T2(N ) =
∑

s∈S
∑

(vi,vj)∈E
(
µs(i)−µs(j)

)2
= Tr(X⊤

N LGXN ), where Tr is the matrix
trace.

The complexity of computing either T1 or T2 is at most O(|S||E|), and it involves only matrix
multiplication for T2. In addition, T , T1 and T2 satisfy the following relation.

Theorem 1. Given N = {µi : 1 ≤ i ≤ n} with µi ∈ P(S), we have

T2(N ) ≤ T1(N ) ≤ 2T (N ).

Moreover, T1(N ) = 2T (N ) if G is a tree.

The discussion and proof of a more general result can be found in Appendix D. The upshot is that if
we expect T (N ) to be small for some N , then so are necessarily T1(N ) and T2(N ). In view of
computation cost, we mainly use T2 in the design of the regularization model in Section 3.3. Note
that this is analogous to the Laplacian regularization in GSP.

3.2 NON-UNIFORMITY

As discussed in Section 2.3, a base GNN model may output a matrix X (in (2)), with associated
NX = {µX,i, 1 ≤ i ≤ n}. For node classification problems, it is desirable that there is less ambiguity
in the decision for each node so that one can pinpoint the correct class label. Mathematically, this
requires that each µX,i deviates from the uniform distribution U(S) on the finite set of label classes S,
measured by the Wasserstein metric W (µX,i,U(S)). The following result is proved in Appendix D.

Lemma 1. For a fixed sequence of non-positive numbers (ai)1≤i≤n, there is a constantC independent
of X such that

Tr(X⊤DX) + C ≥ 2
∑

1≤i≤n

aiW (µX,i,U(S))2, (5)

where D is the diagonal matrix with diagonal entries (ai)1≤i≤n. Moreover, Tr(X⊤
o DXo) ≤

Tr(X⊤DX) ≤ Tr(X⊤
u DXu), where Xo is a matrix with each row a one-hot vector and Xu is the

matrix with each entry 1/|S|.

As we want each µX,i to deviate from the uniform distribution, the right-hand side of (5) should be
made small (as negative as possible). This is ensured if the proxy Tr(X⊤DX), which is easy to
compute, is small. Moreover, we notice that Xu (resp. Xo) corresponds to uniform (resp. δ) marginal
distributions. The second half of the statement suggests that minimizing Tr(X⊤DX) may drive
marginals, i.e., rows of X , to comply with non-uniformity. Numerical experiments in Section 4.2
support that this proxy works well. We use this term in conjunction with T2 introduced in Section 3.1
in our proposed regularized model.

3.3 THE LOSS FUNCTION WITH REGULARIZATION

Suppose we are given a base GNN model, denoted by M. Let F be the matrix of input feature vectors
and Θ be the parameter space for M. Assume M has a loss function LM, and the model is set to
solve the optimization problem minθ∈Θ LM(F , θ).

Consider the steps given in (2). We have X = ϕ(O) viewed as a matrix of probability weights. For
regularization, we introduce another loss L0 to supplement LM. Sections 3.1 and 3.2 suggest that L0

should consist of two parts L0 = L1 +L2. The loss L1 (cf. Definition 4) is related to the smoothness
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of the distributional graph signal X and takes the form L1(X) = Tr(X⊤LGX) = Tr(X⊤(DG −
AG)X). On the other hand, L2 prevents the distributional signal from being uniform and can be
explicitly expressed as L2(X) = Tr(X⊤DX) for a suitably chosen negative semi-definite diagonal
matrix D (cf. Lemma 1). Summing up L1 and L2, we have L0(X) = Tr

(
X⊤(DG −AG +D)X

)
.

In our experiments, we take D = In −DG and obtain the easily computable loss
L0(X) = Tr

(
X⊤(In −AG)X

)
.

In summary, if we express the output of the second last layer of M as O = ψ(F , θ) of input F and
model parameters θ, then the regularized model R-M of M solves the optimization:

min
θ∈Θ

LR-M(F , θ) = min
θ∈Θ

LM(F , θ) + η · L0

(
ϕ ◦ ψ(F , θ)

)
, (6)

where the coefficient η is a tunable hyperparameter and ◦ denotes function composition. In the
regularized model R-M, we do not make any other changes to the based model M apart from using
the new loss function LR-M during training. A schematic illustration is shown in Fig. 3 (a).

O

Base modelM

c

LM(·)

φ

φ(O)
η · L0(·)

+

R-M

F

ψ

(a) (b)

. . . . . .

X

φ ηX · L0(·)

φ(X)

R-module

Figure 3: This figure illustrates in (a) how R-M is constructed upon the base model M, and in (b) an
R-module that can be used at different places in GNN models.

3.4 FURTHER DISCUSSIONS

Most regularization methods introduce a penalty to supplement the base model loss. For example, in
the recent work, P-reg (Yang et al., 2021) proposes to apply a propagation matrix (e.g., the normalized
adjacency matrix) to the output features. The model penalizes large discrepancies, measured by
a metric such as squared error distance, between the original and transformed features. In LEreg
(Ma et al., 2021), intra-energy and inter-energy losses are introduced. Both are variants of the total
variation (1). The novelty lies in introducing a “merged graph” with each node representing a whole
label class. All these works are related to the smoothness prior used in GSP theory (Section 2.1). In
this paper, we take a fundamentally different view of graph signals by treating a distribution as a
signal. This allows a principled and straightforward adaption of existing GSP approaches, as long as
we have suitable notions of the signal’s total variation. Moreover, non-uniformity does not have a
counterpart for ordinary graph signals, which are essentially delta distributions.

Compared to GSP as well as other regularization methods such as P-reg and LEreg, a salient feature
of our method is that the matrix In −AG in L0 is in general not positive semi-definite. Therefore,
the infimum of L0(X) can be −∞ if the domain of the entries of X is unbounded. This is another
reason why restricting to distributional graph signals is essential.

The proposed regularization is primarily for node classification as distributional graph signals can be
interpreted as the likelihoods of class labels. However, the method can be extended to other tasks
through an R-module (Fig. 3 (b)) that consists of the following steps:

• Apply ϕ (e.g., softmax) that turns a feature X into a matrix of probability weights ϕ(X).
• Plug ϕ(X) in the loss ηXL0 with tunable coefficient ηX .

Given a base model, multiple R-modules can be inserted at different places of the model pipeline, and
all the losses are combined with the original loss of the model. The insight is that useful node features
for graph learning tasks should be inherently associated with smooth and non-uniform distributional
graph signals. We demonstrate this approach with link prediction and graph classification tasks in
Appendix C.
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4 EXPERIMENTS

In this section, we verify the empirical performance of our proposed regularization method based on
both Euclidean and hyperbolic GNN models. We consider node classification under both transductive
and inductive settings. The datasets used include Cora, Citeseer, Pubmed, (Amazon) Photo, CS,
Airport, Disease, and PPI (Sen et al., 2008; Namata et al., 2012; Zhang & Chen, 2018; Shchur et al.,
2018; Fey & Lenssen, 2019; Chami et al., 2019; Szklarczyk et al., 2016). Their statistics are given in
Appendix A. For our regularization method, the source code is provided in Appendix B. No further
tuning of the base model is needed. We compare with base models and benchmarks in Section 4.1, and
with variants of our model in Section 4.2. Other graph learning tasks are discussed in Appendix C.

4.1 PERFORMANCE ON NODE CLASSIFICATION PROBLEMS

4.1.1 TRANSDUCTIVE LEARNING MODELS

In this subsection, we consider transductive tasks, in which there is a single graph containing both
labeled training nodes and test nodes. The base models include GCN (Defferrard et al., 2016), GAT
(Velic̄ković et al., 2018), GraphSAGE (Hamilton et al., 2017) (abbreviated as SAGE) and GraphCON
(Rusch et al., 2022) (abbreviated as CON). Implementation details are given in Appendix B.

In addition to comparison with base models, we use models having a similar structure to our approach
as benchmarks. More specifically, we implement different versions of P-reg in (Yang et al., 2021),
denoted by P-GCN and P-GAT (based on popular GNN models GCN, GAT), and different versions of
LEReg (Ma et al., 2021), denoted by L-GCN and L-GAT. The parameters are tuned as suggested by
the respective papers. We also have the Laplacian method, denoted by LAP, in which the final class
label c is used in the loss L0. For a fair comparison, tests are performed under the same hardware
and software environment. Similar considerations are applied in Section 4.1.2 and 4.1.3.

We also compare with BVAT (Deng & Zhu, 2019), GAM (Stretcu et al., 2019), and GraphAT (Feng
et al., 2021) (the results are taken from literatures though they are unreported for Photo and CS).
The test accuracies (in %) are shown in Table 1. In each row, best performers are highlighted in blue
and red for our approach and benchmarks, respectively. An underlined entry means no noticeable
performance improvement over the base model is observed. In general, we see that our proposed
regularized models improve upon their respective base models with significant performance gain in
many cases (cf. Appendix E). Moreover, our method can match up with or even outperform many
benchmarks.

Table 1: Transductive learning models.

Comparison w/ base models Benchmarks

Dataset GCN R-GCN GAT R-GAT SAGE R-SAGE CON R-CON LAP P-GCN P-GAT L-GCN L-GAT BVAT GAM GraphAT

Cora
81.0
±1.07

83.4
±0.24

83.1
±0.61

83.7
±0.40

81.8
±0.65

82.6
±0.31

83.9
±1.12

84.4
±1.52

80.7
±0.89

80.4
±0.61

81.2
±0.65

81.5
±0.45

82.6
±0.75

83.4
±1.01

82.3
±0.48

82.5
±0.60

Citeseer
70.6
±0.48

73.6
±0.70

68.7
±0.69

70.7
±1.23

70.6
±0.47

72.0
±0.28

73.5
±1.27

74.6
±1.16

70.7
±0.64

70.4
±0.87

70.3
±0.76

71.1
±0.59

69.0
±0.94

73.9
±0.54

72.7
±0.62

73.5
±0.38

Pubmed
79.2
±0.29

79.9
±0.40

76.9
±0.77

76.9
±0.77

77.8
±0.31

78.7
±0.53

79.1
±1.16

80.0
±1.18

79.1
±0.73

79.0
±0.31

76.9
±0.95

78.7
±0.25

73.5
±0.47

78.0
±0.84

79.6
±0.63

79.1
±0.20

Photo
91.1
±0.55

91.4
±0.49

91.4
±0.41

92.5
±0.42

90.0
±0.36

92.2
±0.42

90.3
±0.64

91.1
±0.43

91.1
±0.43

91.6
±0.20

91.6
±1.10

91.5
±0.28

92.0
±0.45 - - -

CS
90.5
±0.14

91.2
±0.65

90.8
±0.40

91.7
±0.25

90.5
±0.08

91.8
±0.10

90.5
±0.44

90.8
±0.36

90.6
±0.11

90.5
±0.14

90.8
±0.40

90.5
±0.10

90.8
±0.34 - - -

4.1.2 HYPERBOLIC MODELS

Base models considered in Section 4.1.1 generate embedding of nodes in Euclidean spaces. However,
it is argued in works such as Chami et al. (2019) that for certain datasets such as Airport and Disease,
one should consider embedding nodes in hyperbolic spaces and perform feature aggregation in the
tangent spaces of hyperbolic spaces. Such a consideration is plausible as certain graphs are inherently
hyperbolic (measured by δ-hyperbolicity, see Bridson & Haefliger (1999)).

In this subsection for Airport and Disease datasets, we use hyperbolic versions of their Euclidean
counterparts HGCN Chami et al. (2019), and HGAT Gulcehre et al. (2019) as base models. We also
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consider the interactive model GIL that combines both Euclidean and hyperbolic approaches Zhu
et al. (2020). The comparison results are shown in Table 2. Again, we see a general improvement by
using the proposed regularization, which yields performance comparable with benchmarks.

Table 2: Hyperbolic models.

Comparison w/ base models Benchmarks

Dataset HGCN R-HGCN HGAT R-HGAT GIL R-GIL LAP P-HGCN P-HGAT L-HGCN L-HGAT

Airport 88.8
±1.38

89.3
±1.42

89.9
±0.83

91.0
±1.63

90.3
±2.12

91.4
±1.39

88.8
±1.38

88.9
±1.42

90.0
±1.11

88.7
±1.57

89.7
±1.14

Disease 91.3
±1.04

92.1
±1.09

90.4
±1.24

91.3
±1.31

91.2
±1.52

91.2
±1.52

92.2
±1.01

92.1
±1.07

90.2
±2.14

92.2
±0.95

90.4
±1.53

4.1.3 INDUCTIVE LEARNING MODELS

In contrast with transductive learning, inductive learning requires one to deal with unseen data outside
the training set. For example, in the PPI dataset, different graphs correspond to different human tissues
and we test two out of 24 graphs that are unseen during training. Though the citation datasets Cora,
Citeseer, and Pubmed are for transductive learning, we modify the datasets following Mishra et al.
(2021) that use the induced subgraph of training nodes during training. During validation and testing,
we use induced subgraphs of validation nodes and testing nodes with training nodes, respectively.
The nodes that are being predicted are unseen during training.

The base models are GCN, GAT, as well as GraphSAGE that is primarily designed for inductive
learning tasks. The performance comparison between the base models and their regularized versions
is shown in Table 3. The conclusion agrees with those observed in the previous subsections.

Table 3: Inductive learning models

Comparison w/ base models Benchmarks

Dataset GCN R-GCN GAT R-GAT SAGE R-SAGE LAP P-GCN P-GAT L-GCN L-GAT

Cora 72.7
±1.35

73.2
±1.20

70.6
±1.89

72.0
±1.77

72.8
±0.77

73.1
±1.13

72.8
±1.22

73.4
±0.75

72.8
±1.34

73.6
±1.15

72.3
±0.80

Citeseer 65.5
±1.33

66.4
±1.27

63.4
±2.57

63.8
±2.18

64.6
±1.31

65.0
±1.15

66.1
±0.98

65.7
±1.92

63.0
±1.24

65.9
±2.55

63.5
±1.80

Pubmed 73.2
±1.57

73.8
±0.95

72.8
±1.01

73.8
±1.15

73.3
±0.90

73.5
±0.81

73.5
±1.52

73.5
±1.19

73.4
±0.85

73.4
±1.49

72.9
±1.42

PPI 70.2
±2.06

71.3
±0.51

97.6
±0.54

98.2
±0.11

72.6
±1.37

72.6
±1.37

70.8
±0.70

69.7
±2.04

98.0
±0.23

69.8
±1.42

98.2
±0.12

4.2 ANALYSIS AND ABLATION STUDIES

We analyze our model with R-GCN, which has significant gain as compared with its base model
(cf. Table 1). The graph G0 = (V0, E0) is the main connected component of Cora. Specifically, we
want to study whether R-GCN indeed generates distributional graph signals with desired properties.
For smoothness (cf. Section 3.1), we have interpreted earlier ϕ(O) of the output features of O as
weights of marginal distributions. For the column ϕ(O):,1, we take the subvector indexed by V0, then
normalize and denote it by x (analysis of other columns are in Appendix G). We compute its Fourier
transform x̂ and inspect its high-frequency components. We show x̂ for different epochs in Fig. 4. We
also show the spectral plots for the last epoch (epoch 200) of GCN and of the signal of (normalized)
ground truth labels. We see a clear shrinkage of high-frequency components for R-GCN (epoch 200).

For non-uniformity (cf. Section 3.2), we collect in the set KR-GCN (resp. KGCN) the probability
weights for all the label classes and nodes, i.e., 18956 entries of ϕ(O) for epoch 200 of R-GCN (resp.
GCN). Non-uniformity suggests that KR-GCN contains less values near the average 1/7 and more
values near 1, as compared with KGCN. To verify, we compare |KR-GCN ∩ [1/7− ϵ1, 1/7 + ϵ1]| with
|KGCN ∩ [1/7 − ϵ1, 1/7 + ϵ1]|, and |KR-GCN ∩ [1 − ϵ2, 1]| with |KGCN ∩ [1 − ϵ2, 1]|. The plots for
different choices of (small) ϵ1, ϵ2 are shown in Fig. 5. The results agree with our speculation.
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Figure 4: Spectral plots of (normalized) signals of probability weights and ground truth labels.

Figure 5: Number of instances of output probability weights within a given range.

Next, we conduct experiments on different R-GCN variants to validate the effectiveness of the
components of our model. Recall that the newly introduced loss L0 has two components L1 and
L2, accounting for smoothness and non-uniformity of distributional graph signals. We introduce
modifications of R-GCN as follows: (a) R1-GCN: we only retain L1 in the loss; (b) R2-GCN: we
only retain L2 in the loss, and (c) R3-GCN: we input O directly in the loss without applying ϕ. In this
case, the entries of O are not bounded, we only keep L1, which is positive semi-definite, in the loss
(cf. Section 3.3). The results are shown in Table 4. We see that R-GCN remains the most effective as
compared with its variants. This suggests that each component of R-GCN plays a useful role.

Table 4: Ablation study

Cora Citeseer Pubmed

R-GCN 83.4± 0.24 73.6± 0.70 79.9± 0.40

R1-GCN 80.8± 0.69 70.7± 0.67 79.2± 0.56
R2-GCN 82.0± 0.65 72.8± 0.92 79.5± 0.61
R3-GCN 69.6± 1.75 64.5± 1.79 75.7± 0.57

5 CONCLUSION

In this paper, we introduce the notion of distributional graph signals and total variations that measure
the smoothness of such signals. Based on this and the concept of non-uniformity, we propose a
regularization scheme that can be applied directly to enhance the performance of many GNN models.
The method is analogous to the regularization method of a smooth signal prior in GSP.
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P. Velic̄ković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks.
In ICLR, 2018.

C. Villani. Optimal Transport, Old and New. Springer, 2009.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In ICLR, 2019.

P. Yanardag and S. Vishwanathan. Deep graph kernels. In KDD, 2015.

H. Yang, K. Ma, and J. Cheng. Rethinking graph regularization for graph neural networks. In AAAI,
2021.

M. Zhang and Y. Chen. Link prediction based on graph neural networks. In NIPS, 2018.

L. Zhao and L. Akoglu. PairNorm: Tackling oversmoothing in GNNs. In ICLR, 2020.

D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency.
In NIPS, 2004.

S. Zhu, S. Pan, C. Zhou, J. Wu, Y. Cao, and B. Wang. Graph geometry interaction learning. In NIPS,
2020.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic
functions. In ICML, 2003.

11



A APPENDIX: DATA STATISTICS

In Table 5, we provide statistics of datasets used in Section 4.

Table 5: Dataset statistics

Dataset Nodes Edges Classes Features

Cora 2708 5429 7 1433

Citeseer 3327 4732 6 3703

Pubmed 19717 44338 3 500

Photo 7487 119043 8 745

CS 18333 81894 15 6805

Disease 1044 1043 2 1000

Airport 3188 18631 4 4

PPI Ave. 2373 Ave. 34171 121 50

B APPENDIX: MODEL IMPLEMENTATION

In this appendix, we provide the source code for the loss function L0 and the implementation of the
regularization method. In addition, we give details of the base models used. For the source code, we
assume PyTorch and the Deep Graph Library (dgl) are used.

In Fig. 6, we first import modules and packages (though not all packages are used for the other code
segments below):

Figure 6: Import modules and packages.

In “my_loss” function (Fig. 7), we implement the loss L0 (cf. Section 3.3). For the inputs of “my_loss”,
“g” is a dgl graph, and “x” corresponds to O in Section 3.3.

Figure 7: “my_loss” function.

Suppose “loss1” (computed using “loss_fcn”) is the loss of the base model, we compute “loss2” for
L0 (Fig. 8). They are combined as in (6), using the tunable coefficient “eta”.
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Figure 8: The regularization term.

As we have mentioned in the paper, we do not need to make any other changes to the based model.
Details of the base models used in Section 4 are given as follows (links are for published works and
not associated with the authors of the current paper):

• In Section 4.1.1, based models for GCN, GAT, SAGE and the datasets Cora,
Citeseer, Pubmed are from https://github.com/dmlc/dgl/tree/master/
examples/pytorch. For packages, we use torch 1.12.1 and dgl 0.9.0.

• In Section 4.1.1, based models for GCN, GAT, SAGE and the datasets Photo
and CS are from https://github.com/dmlc/dgl/tree/0.7.x/examples/
pytorch. For packages, we use torch 1.10.2, dgl 0.7.2 and cuda 10.2.

• In Section 4.1.1, the base model for CON is from https://github.com/tk-rusch/
GraphCON. For packages, we use Torch-geometric 2.0.4, Torch-scatter 2.0.9, Torch-sparse
0.6.14, Torchdiffeq 0.2.3, and torch 1.10.1 py3.8 cuda11.3 cudnn8.2.0_0.

• In Section 4.1.2, the base models are from https://github.com/CheriseZhu/
GIL. For packages, we use Torch 1.8.1+cu101, Torch-cluster 1.5.9, Torch-geometric 1.3.0,
Torch-scatter 1.3.0, Torch-sparse 0.4.0 and Torch-spline-conv 1.2.1.

• In Section 4.1.3, the base models are from https://github.com/dmlc/dgl/tree/
0.7.x/examples/pytorch. For packages, we use torch 1.10.2, dgl 0.7.2 and cuda
10.2.

Detailed model setups are contained in the respective github links. For example, according to https:
//github.com/dmlc/dgl/blob/master/examples/pytorch/gcn/train.py, for
GCN and datasets Cora, Citeseer, Pubmed, two convolution layers with 16 hidden units are used. The
dropout rate is set to be 0.5. Adam optimizer is used with the learning rate 1e− 2 and weight decay
5e− 4. On the other hand, according to https://github.com/dmlc/dgl/blob/master/
examples/pytorch/gat/train.py, for GAT and datasets Cora, Citeseer, Pubmed, two graph
attention layers with 8 hidden units and 8 heads are used. The dropout rate is set to be 0.6. Adam
optimizer is used with a learning rate 5e− 3 and weight decay 5e− 4. As the regularization does not
change the base model, the exact same setups are used.

In Table 6, we provide the values for the coefficient η used in Section 4 (irrelevant fields are filled
with “-”). We briefly describe the strategy of choosing η. We fix a lower bound (= 10−5) and an
upper bound (= 1) for η, both are loose. We perform a search analogous to binary search within the
range based on validation performance. The scaling factor for the search can be different from 2: we
use a large scaling factor to identify an interval with significant performance improvement and then
perform a fine-scale search within the interval. If no performance improvement is observed within the
initial range, then we declare the regularization does not show improvement for the given base model.

Table 6: Choices of η

Cora Citeseer Pubmed Photo CS Airport Disease Cora (ind.) Citeseer (ind.) Pubmed (ind.) PPI

R-GCN 0.2 0.3 0.02 0.005 0.05 - - 0.001 0.0005 0.001 0.001

R-GAT 0.25 0.25 - 0.02 0.05 - - 0.0005 0.01 0.05 0.0001

R-SAGE 0.2 0.2 0.02 0.02 0.1 - - 0.01 0.1 0.001 -

R-CON 0.01 0.05 0.001 0.01 0.005 - - - - - -

R-HGCN - - - - - 0.01 0.001 - - - -

R-HGAT - - - - - 0.01 0.001 - - - -

R-GIL - - - - - 0.01 - - - - -
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C APPENDIX: LINK PREDICTION AND GRAPH CLASSIFICATION

We follow Section 3.4 to apply the proposed regularization method to link prediction and graph
classification.

For link prediction (Liben-Nowell & Kleinberg, 2007; Zhang & Chen, 2018), we want to predict
whether two nodes in a network are likely to have a link. Suppose a base GNN model for link
prediction is given. We insert an R-module (Fig. 3 (b)) to the last node feature matrix in the model
pipeline. The loss of the R-module is added directly to the original loss. We test on Cora and Airport
datasets with base models: GCN, GAT, HGCN, and GIL. The results are shown in Table 7. Except
for HGCN, we see that the regularization can enhance the performance of the base models.

Table 7: Link prediction. The best performer is highlighted in blue.

GCN R-GCN GAT R-GAT HGCN R-HGCN GIL R-GIL

Cora 88.1
±1.08

88.4
±1.20

88.8
±1.41

89.1
±1.26

93.3
±0.43

93.3
±0.43

91.1
±13.4

94.6
±7.99

Airport 93.0
±0.44

93.2
±0.37

93.6
±0.61

93.6
±0.61

97.6
±0.13

97.6
±0.13

97.3
±3.73

97.7
±3.27

We next consider graph classification. For such a task, we want to determine the class label of each
graph in a dataset containing multiple graphs. Graph classification is closely related to the theoretical
problem of graph isomorphism test, and GIN (Xu et al., 2019) is a GNN model that explores such
a connection. We use GIN and the variant GIN2 with the learnable importance of the target node
compared to its neighbors, as base models. Similarly to link prediction, we insert an R-module
(Fig. 3 (b)) to the last node feature matrix in the model pipeline. We test with bioinformatics datasets
MUTAG and PTC (Yanardag & Vishwanathan, 2015), following the protocol described in (Xu et al.,
2019) and report the 10-fold cross validation accuracy. Comparison results are shown in Table 8. The
regularization indeed works for both models.

Table 8: Graph classification. The best performer is highlighted in blue.

GIN R-GIN GIN2 R-GIN2

MUTAG 87.7± 8.80 89.9± 6.40 86.7± 6.77 89.3± 7.98

PTC 64.6± 8.53 64.8± 5.91 64.8± 9.37 66.3± 9.63

D APPENDIX: PROOFS OF THEORETICAL RESULTS

In this appendix, we discuss and prove a general result that implies Theorem 1. In addition, we also
prove Lemma 1. We start with a computation of the Wasserstein distance.

Suppose S = {s1, . . . , sm} is a finite discrete set and d is the discrete metric on S. For µ, ν ∈ P(S),
let (µ(si))1≤i≤n and (ν(si))1≤i≤n be their respective probability weights.

Lemma 2.

W (µ, ν)2 =
1

2

∑
1≤i≤m

|µ(si)− ν(si)|.
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Proof. Let γ =
(
γ(si, sj)

)
1≤i,j≤m

be in Γ(µ, ν). We have∑
1≤i≤m

∑
1≤j≤m

γ(si, sj)d(si, sj)
2

=
∑

1≤i≤m

∑
1≤j ̸=i≤m

γ(si, sj)

=
∑

1≤i≤m

 ∑
1≤j≤m

γ(si, sj)− γ(si, si)


=

∑
1≤i≤m

(µ(si)− γ(si, si))

≥
∑

1≤i≤m

(µ(si)−min(µ(si), ν(si)).

(7)

As W (µ, ν)2 is defined by taking the infimum of the left-hand side over all γ ∈ Γ(µ, ν), we
have W (µ, ν)2 ≥

∑
1≤i≤m

(
µ(si) − min(µ(si), ν(si)

)
. By the same argument, we also have

W (µ, ν)2 ≥
∑

1≤i≤m

(
ν(si)−min(µ(si), ν(si)

)
. Summing up these two inequalities, we have

2W (µ, ν)2 ≥
∑

1≤i≤m

(
µ(si) + ν(si)− 2min(µ(si), ν(si)

)
=

∑
1≤i≤m

|µ(si)− ν(si)|.

Therefore, to prove the lemma, it suffices to show that there is a γ such that γ(si, si) =
min

(
µ(si), ν(si)

)
. For this, we prove a slightly more general claim: if non-negative numbers

(xi)1≤i≤m and (yi)1≤i≤m satisfy
∑

1≤i≤m xi =
∑

1≤j≤m yi = a, then there are non-negative
(zi,j)1≤i,j≤m such that

∑
1≤j≤m zi,j = xi, 1 ≤ i ≤ m,

∑
1≤i≤m zi,j = yj , 1 ≤ j ≤ m, and

zi,i = min(xi, yi), 1 ≤ i ≤ m.

We prove this by induction on m. The case for m = 1 is trivially true by taking z1,1 = x1 = y1. For
m ≥ 2, without loss of generality, we assume that x1 ≥ y1 and x2 ≤ y2. Then we choose z1,1 = y1,
z2,2 = x2, z1,j = 0, 1 < j ≤ m and zi,2 = 0, 1 ≤ i ̸= 2 ≤ m. As a result, we form another two
sequences of non-negative numbers x1−y1, x3, . . . , xm and y2−x2, y3, . . . , ym with both summing
to a− x2 − y1. By the induction hypothesis, we are able to find non-negative (z′i,j)1≤i,j≤m−1 for
the two new sequences of length m− 1 each. It suffices to let zi,j = z′i−1,j−1 for i > 1 or j > 2 and
zi,1 = z′i−1,1 for i > 1 (illustrated in Fig. 9). This proves the claim and hence the lemma.

zi,1 zi,j

z′i−1,1 z′i−1,j−1

y1

x2

0

00

0

0

Figure 9: The relations between zi,j and z′i,j .

To state and prove a general form of Theorem 1, we need to introduce a few more notions. We fix
marginal distributions N = {µi : 1 ≤ i ≤ n} with µi ∈ P(S). For any pair of nodes vi and vj and
s ∈ S, define

ρi,j(s) = µj(s)/µi(s) if µj(s) ≤ µi(s) and 1 otherwise. (8)
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More generally, if P = (vi0 , . . . , vil) is a directed path on G from vi0 to vil , then

ρP (s) =
∏

0≤j<l

ρij ,ij+1
(s).

It is important to point out that ρP can be computed directly as long as N is given.

In the graph G, suppose H is a spanning tree and v0 is a fixed (root) node. Let EH be the edge set of H
and E ′ = E\EH. For each edge e = (vi, vj), let Pi (resp. Pj) be the unique path on H connecting v0
and vi (resp. vj). Moreover, v0 is an endpoint of Pi ∩ Pj , and let vk be the other endpoint of Pi ∩ Pj .
Denote by Qi (resp. Qj) be the direct path (on H) from vk to vi (resp. vj) (see Fig. 10). We introduce

ti,j(s) = µi(s) + µj(s)− 2µk(s)ρQi
(s)ρQj

(s). (9)

Definition 5. Define

TH,v0(N ) =
∑
s∈S

∑
(vi,vj)∈E

ti,j(s).

vi

vj

e = (vi, vj) ∈ E ′

v0

vk

Qi

Qj

H

Figure 10: An example of paths Qi and Qj .

We can compute the special case where G = H is a tree. Notice that for an edge e = (vi, vj) ∈ EH
directed from vi to vj , then vk = vi and Qi = {vi}, Qj = e and ρQi

(s) = 1. If µi(s) ≥ µj(s), then
2µk(s)ρQi

(s)ρQj
(s) = 2µi(s) · µj(s)/µi(s) = 2µj(s). Hence, we have

µi(s) + µj(s)− 2µk(s)ρQi
(s)ρQj

(s) = µi(s)− µj(s) = |µi(s)− µj(s)|.

The case µi(s) < µj(s) is similar, and in summary

ti,j(s) = µi(s) + µj(s)− 2µk(s)ρQi
(s)ρQj

(s) = |µi(s)− µj(s)| (10)

Therefore, for any v0, we have

TH,v0
(N ) =

∑
s∈S

∑
(vi,vj)∈E

|µi(s)− µj(s)|

=
∑
s∈S

∑
(vi,vj)∈E

|µs(i)− µs(j)| = T1(N ),
(11)

where µs(i) is same as µi(s) (cf. Section 3.1).

Following the notations in Section 3.1, we have the following generalization of Theorem 1.
Theorem 2. For any spanning tree H of G and root node v0, we have

T2(N ) ≤ T1(N ) ≤ 2T (N ) ≤ TH,v0(N ).

Before proving the result, we remark that although TH,v0(N ) is defined in a convoluted way, it can
however be computed directly given N ,H and v0. Therefore, the result gives computable upper and
lower bounds of T (N ).
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Proof. As |µs(i)− µs(j)| ≤ 1, it is trivially true that T2(N ) ≤ T1(N ).

To show T1(N ) ≤ 2T (N ), we first claim that T (N ) = infµ∈Γ(N ) T (µ) is achieved for some
µ0 ∈ Γ(N ). The map α : Γ(N ) → R, µ 7→ T (µ) is continuous. On the other hand, Γ(N ) is a
compact subset of a Euclidean space. This is because P(Sn) is a bounded subset of Rmn

with the
components corresponding to weights of the joint distribution. Moreover, Γ(N ) is closed because
the condition to have the prescribed marginal distributions is a set of linear conditions. By the extreme
value theorem, inf α is achieved for some µ0 ∈ Γ(N ). For each edge (vi, vj) ∈ E , let µ0,i,j be
the marginal distribution of the pair (vi, vj). The marginals of µ0,i,j are µi and µj at vi and vj
respectively. We have

T (N ) = T (µ0) =

∫ ∑
(vi,vj)∈E

d(x(i),x(j))2 dµ0(x)

=
∑

(vi,vj)∈E

∫
d(x(i),x(j))2 dµ0(x)

=
∑

(vi,vj)∈E

∫
d(y(i),y(j))2 dµ0,i,j(y)

Def. 2
≥

∑
(vi,vj)∈E

W (µi, µj)
2

Lem. 2
=

1

2

∑
(vi,vj)∈E

∑
s∈S

|µs(i)− µs(j)| =
1

2
T1(N ).

We now prove 2T (N ) ≤ TH,v0(N ). Given a spanning tree H and node v0, we construct µH,v0 ∈
Γ(N ) using ideas from the theory of Bayesian networks (Bishop, 2006) as follows. We make H
directed by requiring that each edge is pointed away from the (root) node v0. As a consequence, each
node has at most 1 incoming edge. Let x = (xi)1≤i≤n be the random vector with xi the (random)
label at vi. For each directed edge (vi, vj) in H, let µi,j ∈ Γ(µi, µj) be a distribution that realizes
W (µi, µj), which give a conditional probability weights

pi,j = {pi,j(s, s′) : s, s′ ∈ S} = {p(xj = s′ | xi = s) : s, s′ ∈ S}.
By Bishop (2006) Section 8.1 (8.5), there is a distribution µH,v0 ∈ Γ(N ) such that its marginal for
each edge (vi, vj) ∈ EH is µi,j . For each edge (vi, vj) ∈ E ′, let µ′

i,j be the marginal of µH,v0 to
the pair (vi, vj). As µi,j realizes W (µi, µj), by Lemma 2, µi,j(s, s) = min(µi(s), µj(s)) for each
s ∈ S. In particular, pi,j(s, s) = ρi,j(s) (cf. (8)). More generally, if P is a directed path in H from vi
to vj , then the following inequality holds

pi,j(s, s) ≥ ρP (s). (12)

According to the definition, we have T (N ) ≤ T (µH,v0) = SEH + SE′ . The summand

SEH =
∑

(vi,vj)∈EH

∫
d(y(i),y(j))2 dµi,j(y)

is the summation over the edges of EH, while

SE′ =
∑

(vi,vj)∈E′

∫
d(y(i),y(j))2 dµ′

i,j(y)

is the summand over E ′. For SEH , we have seen that for each edge (vi, vj) ∈ EH∫
d(y(i),y(j))2 dµi,j(y)

Lem. 2
=

1

2

∑
s∈S

|µi(s)− µj(s)|

(10)
=

1

2

∑
s∈S

(
µi(s) + µj(s)− 2µk(s)ρQi(s)ρQj (s)

)
,
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where the right-hand-side is the term 1
2 ti,j(s) (cf. (9)) that corresponds to (vi, vj) in 1

2TH,v0(N ).

Consider (vi, vj) ∈ E ′ and we first notice the following identity:

2

∫
d(y(i),y(j))2 dµ′

i,j(y)
(7)
=

∑
s∈S

µi(s) + µj(s)− 2µ′
i,j(s, s).

To show the summand is bounded by ti,j(s), it suffices to show µ′
i,j(s, s) is bounded below by

ρQi
(S)ρQj

(s)µk(s), with vk and paths Qi, Qj be as in (9). We estimate using the construction of
µ′
i,j based on the method of Bayesian network (on directed H) as follows:

µ′
i,j(s, s) ≥ p(xi = s,xj = s,xk = s)

= p(xi = s,xj = s | xk = s)µk(s)

= pk,i(s, s)pk,j(s, s)µk(s)

≥ ρQi
(s)ρQj

(s)µk(s).

For the last equality, we use the fact that Qi∩Qj = {vk}; and hence xi,xj are independent given xk

by the Bayesian network construction. The last line follows from (12). Consequently, the inequality
that 2T (N ) ≤ TH,v0(N ) follows.

If we examine the formula of TH,v0(N ) (by changing summation order), it can be decomposed into
two parts

∑
(vi,vj)∈EH

and
∑

(vi,vj)∈E′ . The former is essentially T1 of N on the tree H. This is the
reason that Theorem 2 implies Theorem 1. Formally we have the following.

Proof of Theorem 1. It suffices to prove the last statement for G being a tree. As we have seen in (11)
that if G is a tree, then TH,v0(N ) = T1(N ). Therefore, Theorem 2 implies 2T (N ) = T1(N ), and
hence Theorem 1.

We end this section by proving Lemma 1.

Proof of Lemma 1. Using Lemma 2, we estimate

2
∑

1≤i≤n

aiW (µX,i,U(S))2

=
∑

1≤i≤n

ai
∑

1≤j≤m

∣∣∣∣Xi,j −
1

|S|

∣∣∣∣ ≤ ∑
1≤i≤n

ai
∑

1≤j≤m

(Xi,j −
1

|S|
)2

=
∑

1≤i≤n

ai
∑

1≤j≤m

X2
i,j − 2

∑
1≤i≤n

ai
∑

1≤j≤m

Xi,j

|S|
+

∑
1≤i≤n

ai
∑

1≤j≤m

1

|S|2

=Tr(X⊤DX)− 2
∑

1≤i≤n

ai
1

|S|
+

∑
1≤i≤n

ai
1

|S|

=Tr(X⊤DX)− 1

|S|
Tr(D).

Therefore, 2
∑

1≤i≤n aiW (µX,i,U(S))2 ≤ Tr(X⊤DX) + C with C = − 1
|S| Tr(D), which is

independent of X .

The last statement of the lemma follows from the simple fact that for each 1 ≤ i ≤ n, we have∑
1≤j≤m

1

|S|2
≤

∑
1≤j≤m

X2
i,j ≤ 1.
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E APPENDIX: SIGNIFICANCE OF THE PERFORMANCE

In this appendix, we analyze the significance of the performance (in Section 4.1) of the proposed
regularization method with the following setup. Suppose we have two models A and B with A having
higher average accuracy. To determine if the difference is significant, we perform the hypothesis
test for the null hypothesis that the difference in accuracy between model A and B has 0 mean. We
compute the p-value. The smaller the p-value, the higher the confidence to reject the null hypothesis
and to conclude that modelA has a better performance. A p-value less than 0.05 is typically considered
statistically significant.

In Section 4.1, we have 38 comparisons between regularized models and based models. We perform
the tests described in the previous paragraph and record the p-values. The boxplot of the p-values is
shown in Fig. 11. It indicates that in most cases, our proposed regularization significantly improves
the respective based models. On the other hand, there are 11 comparisons between our approach and
best benchmarks. We again perform the hypothesis test for each comparison and record the p-value.
The boxplot of the p-values is shown in Fig. 11. We see that in many cases, our method significantly
outperforms the benchmarks.

Figure 11: Boxplots of p-values. In each plot, the dashed line marks the 0.05 threshold.

F APPENDIX: MORE ON RELATED WORKS

Though it is argued in Yang et al. (2021) and supported by our evidence in Section 2.2 that Laplacian
regularization may have its drawbacks, it has achieved a certain degree of success in earlier works
Zhu et al. (2003); Zhou et al. (2004); Ando & Zhang (2007). These methods are based on the insight
that neighboring nodes are likely to have the same labels. In the language of GSP, they intend to
leverage the smoothness of the class label graph signal.
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On the other hand, though graph signal smoothness has been fundamental in both GSP and GNNs,
the negative effect of over-smoothing has also been examined (NT & Maehara, 2019; Oono & Suzuki,
2020)) and models are proposed to alleviate it. For example, apart from the more recent works such
as Yang et al. (2021); Ma et al. (2021) that have already been discussed in detail, PairNorm proposed
in Zhao & Akoglu (2020) encourages the similarity between connected nodes, and at the same time
adds a negative term based on distances between disconnected pairs. MADReg in Chen et al. (2020)
proposes to use step size limits to make the graph nodes receive less interference noise. In Feng et al.
(2020), randomly dropping nodes is proposed to reduce the convergence speed of over-smoothing.
Adding skip connections is also introduced in Li et al. (2019); Luan et al. (2019).

In our paper, we take a different point of view by not considering the smoothness of ordinary graph
signals. Instead, we speculate that properties such as smoothness and non-uniformity of distributional
graph signals may play important roles. Moreover, requiring a distributional graph signal to satisfy
non-uniformity partially prevents the unfavorable situation that many connected nodes have similar
marginal distributions that are approximately uniform. This can be viewed as a countermeasure to
over-smoothing intrinsically contained in our approach.

G APPENDIX: ADDITIONAL PLOTS FOR MODEL ANALYSIS

We supplement Fig. 4 by showing spectral plots of signals of probability weights ϕ(O):,i, 2 ≤ i ≤ 7
for the Cora dataset. The index i corresponds to the i-th label class. From the plots, we observe that
during the training of R-GCN, the high-frequency components indeed shrink for all the label classes.
Compared with GCN, the last epoch of R-GCN has smaller high-frequency components for the 3rd
and 5th label classes

Figure 12: Spectral plots of (normalized) signals of probability weights for the 2nd label class.
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Figure 13: Spectral plots of (normalized) signals of probability weights for the 3rd label class.

Figure 14: Spectral plots of (normalized) signals of probability weights for the 4th label class.

Figure 15: Spectral plots of (normalized) signals of probability weights for the 5th label class.

21



Figure 16: Spectral plots of (normalized) signals of probability weights for the 6th label class.

Figure 17: Spectral plots of (normalized) signals of probability weights for the 7th label class.
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