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ABSTRACT
Depression is a prevalent mental health disorder that significantly
impacts individuals’ lives and well-being. Early detection and in-
tervention are crucial for effective treatment and management of
depression. Recently, there are many end-to-end deep learning
methods leveraging the facial expression features for automatic
depression detection. However, most current methods overlook
the temporal dynamics of facial expressions. Although very recent
3DCNN methods remedy this gap, they introduce more compu-
tational cost due to the selection of CNN-based backbones and
redundant facial features. To address the above limitations, by con-
sidering the timing correlation of facial expressions, we propose a
novel framework called FacialPulse, which recognizes depression
with high accuracy and speed. By harnessing the bidirectional na-
ture and proficiently addressing long-term dependencies, the Facial
Motion Modeling Module (FMMM) is designed in FacialPulse to
fully capture temporal features. Since the proposed FMMM has
parallel processing capabilities and has the gate mechanism to mit-
igate gradient vanishing, this module can also significantly boost
the training speed. Besides, to effectively use facial landmarks to
replace original images to decrease information redundancy, a Fa-
cial Landmark Calibration Module (FLCM) is designed to eliminate
facial landmark errors to further improve recognition accuracy. Ex-
tensive experiments on the AVEC2014 dataset andMMDA dataset (a
depression dataset) demonstrate the superiority of FacialPulse on
recognition accuracy and speed, with the average MAE (Mean Ab-
solute Error) decreased by 22%, and the recognition speed increased
by 100% compared to state-of-the-art baselines.

CCS CONCEPTS
• Applied computing→ Life and medical sciences.

KEYWORDS
Depression detection, Temporal facial landmarks

1 INTRODUCTION
Depression is a common mental health problem. According to the
World Health Organization, over 264 million people worldwide
were clinically diagnosed with depression in 2020, leading to se-
vere consequences such as addiction, impulsive behavior, and sui-
cide. Therefore, early detection plays a crucial role in significantly
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mitigating the harm caused by depression. Due to the scarcity of
healthcare personnel, the exploration of automatic detection of de-
pression gained attention in past years. In particular, human faces
are acknowledged as a primary communication channel and a piv-
otal conduit for conveying crucial information about mental states,
intentions, and personality traits. Past psychological research em-
phasized the reliability of non-verbal facial behaviors as indicators
of depression [28]. Motivated by this, this paper aims to investigate
the potential of recognizing facial emotion for early depression
detection.

Latest advancements in computer vision contribute to the au-
tomatic recognition of human facial behaviors [4, 21, 31], which
facilitates automated analysis of depression from facial videos
[7, 9, 14, 33]. However, there are three main limitations of existing
methods: 1) Overlooking temporal facial characteristics. Individuals
with depression exhibit fewer spontaneous facial expressions of
emotion compared to healthy individuals, which indicates unique
temporal features are contained in the facial expressions of de-
pressed patients. Extensive experiments demonstrated significant
improvements in recognition accuracy with Convolutional Neu-
ral Networks (CNNs) over conventional methods [7, 33]. However,
these CNN-based methods treat a video as a collection of static im-
ages, focusing on spatial features while inevitably overlooking tem-
poral characteristics and the dynamic nature of facial expressions.
2) Complex model architectures induce more computational cost. To
comprehensively capture both temporal and spatial characteris-
tics, CNN-RNN and 3DCNN methods [9, 14] emerged as preferred
choices. However, these detection methods heavily rely on complex
models or data-enhanced techniques, which require longer calcula-
tion time and higher costs. 3) Rely on redundant raw facial features.
Traditional approaches mostly relied on raw images as input. How-
ever, the use of raw images as input inevitably causes information
redundancy. The main reason is that these original images may
contain a significant amount of task-irrelevant information, such as
background and lighting conditions, which necessitates the model
to handle a surplus of redundant data.

To address the above limitations, we propose an efficient frame-
work named FacialPulse, which contains the two primarymodules:
the Facial Motion Modeling Module (FMMM) and the Facial Land-
mark Calibration Module (FLCM). The motivation and introduction
of these two modules are provided as follows:

• Modeling Facial Motion Based on Temporal Sequences:
Each emotion manifests a unique temporal pattern, and the tem-
poral modeling approach offers a novel perspective for facial
expression recognition. Fig. 1 shows the motion curves of both
depressed people and normal people in the same task. The shown
face motions are AU12 and AU15. AU12 and AU15 represent the
upward and downward movement of the mouth, respectively. It
can be clearly observed that the variation curves of depressed
people appear smoother than those of normal people. In contrast

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Change intensity of facial action units with de-
pressed patients and normal people in the same task scenario.
The vertical axis denotes the magnitude of these variations,
while the horizontal axis tracks the progression of video
frames.

to other mental disorders, since the facial motion changes of de-
pression are not obvious, depression detection requires prolonged
and continuous monitoring of changes in facial expressions. To
better capture the characteristics of depression, by using the
Bidirectional Gated Recurrent Unit (BiGRU) as the backbone, we
propose a module that harnesses the bidirectional nature and
addresses long-term dependencies for temporal modeling. To
capture evolving patterns and characteristics more effectively,
this module emphasizes the temporal sequence and contextuality
of facial features. Besides, since incorporating parameter sharing
and temporal dependencies, this module provides a significant
advantage in training speed.

• Facial Landmark Calibration Module (FLCM): Facial land-
marks are a set of points outlining the contours of distinctive
facial features and are sufficient for describing geometric infor-
mation. Thus, instead of using the original raw image as input,
we choose facial landmarks as input to detect depression with
less information redundancy since facial landmarks contain key
points of facial information while eliminating the impact of ir-
relevant areas on recognition. Although previous research has
demonstrated the improvement effect of facial landmarks in facial
emotion recognition [29], facial landmarks are rarely emphasized
in depression detection. Furthermore, existing approaches do not
take into account the accumulative errors in landmark detec-
tion. To ensure the accuracy and precision of landmark detection,
we further introduce a novel landmark calibration module. By
minimizing jittering, this module enhances the recognition ca-
pability of landmarks, which significantly facilitates the reliable
integration of landmarks and deep temporal features.

In a nutshell, by considering the distinctive temporal charac-
teristics of facial expressions in various depressed individuals, we
further combine both preceding and subsequent contextual infor-
mation to analyze comprehensive temporal information. Besides,
to reduce the redundancy of input information, we employ facial
landmarks as input to detect depression. Furthermore, to ensure
the accuracy of the landmarks and remove the accumulative errors,
we propose a novel calibration module by minimizing jittering. The
introduction and calibration of landmarks significantly improve
the reliability of the captured temporal features.

We evaluate FacialPulse on two datasets (i.e., AVEC2014 [34]
and MMDA [17]), which demonstrate that FacialPulse outper-
forms the baseline methods by a large margin and decreases the
training time (including preprocessing time) by 2×. Overall, the
main contributions of this paper can be summarized as follows:

• By using the BiGRU as the backbone, a facial motion mod-
eling module (FMMM) is proposed to better capture the
characteristics of depression. This module harnesses the
bidirectional nature, addresses long-term dependencies for
temporal modeling, and emphasizes the temporal sequence
and contextuality of facial features, which significantly im-
proves recognition accuracy.

• To ensure the accuracy of the landmarks and remove the
accumulative errors, we propose a novel calibration module
(FLCM) byminimizing jittering. The calibration of landmarks
further improves the captured temporal feature reliability.

• Extensive experiments on various datasets demonstrate the
superiority of FacialPulse on recognition accuracy and speed,
with the average MAE (Mean Absolute Error) decreased by
22%, and the recognition speed increased by 2× compared
to state-of-the-art baselines.

2 RELATEDWORK
In this section, we first discuss the input difference related to state-
of-the-art (SOTA) facial expression recognition-based depression
detection methods in (Sec. 2.1). Then, the differences in network
frameworks used by different SOTA methods are further discussed
in (Sec. 2.2). By showing the differences in network inputs and the
structure of related SOTA methods, the shortcomings and differ-
ences of existing methods are clearly highlighted.

2.1 Facial Landmarks Detection
Emotion recognition [20, 26] heavily relies on facial feature de-
tection [22, 32] and it is extremely necessary to extract effective
facial features. Facial landmarks, as one of the crucial facial features
in various computer vision tasks [27, 36], play a pivotal role in
capturing both spatial and temporal information related to facial
expressions [23].

Classical parametric methods, e.g., Active Appearance Mod-
els [30], Constrained Local Models, Supervised Descent Variant
Method, and Cascade Regression Algorithm [12], can effectively
detect facial landmarks. Due to the user-friendly interfaces and high
detection speeds, these parametric methods are widely employed
and integrated into open-source image processing libraries.

Recently, deep learning models, e.g., cascade CNNs, Convolu-
tional Pose Machines, and Constrained Local Models, have emerged
in computer vision and can extract facial landmarks with high accu-
racy. Similarly, since the extracted landmark can significantly boost
the recognition speed, these deep learning-based facial landmark
extraction methods are widely integrated into open-source toolkits,
like OpenFace.

Although using accurate facial landmarks for face normaliza-
tion significantly improves recognition accuracy, the low quality of
landmark detection directly downgrades the final system perfor-
mance. Many studies [2] emphasize the significance of precision in
detected landmarks. Furthermore, the intrinsic jitter noises of facial



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FacialPulse: An Efficient RNN-based Depression Detection
via Temporal Facial Landmarks ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Input
Pre-
proccess

Scoremerge

......

.. . ...

(a)Facial Landmark Calibration Module (b)Facial Motion Modeling Module

BDI-II
score

BDI-II
score

OpenFace
framei+1

framei+1

Predicted

framei+1

Detected

Measurement 
update

Prior 
knowledge 

 
Gain

framei framei+1

PLK

PLK
 FC

Filtered

Figure 2: Illustration of the overall pipeline of FacialPulse, which contains two primarymodules: (a) Facial LandmarkCalibration
Module and (b) Facial Motion Modeling Module. The input is a video and the output is the subject’s BDI-II questionnaire score.

landmarks inevitably interfere with its temporal features. However,
existing SOTA methods do not effectively calibrate the various er-
rors of landmarks, which further makes it difficult to promote the
method. To overcome these issues, a calibration module is proposed
in this paper (called FLCM) to eliminate the accumulative errors
for higher accuracy of landmark detection.

2.2 Facial-Based Automatic Depression
Recognition

Psychological studies [8][18] indicate that the variations in facial ex-
pressions can serve as predictive indicators of individual depression
severity. Consequently, numerous researchers endeavor to estab-
lish the mapping between facial features and depression scores via
machine learning techniques.

Initially, hand-crafted methods generally utilize specific feature
descriptors to represent depression, where Edge Orientation His-
togram (EOH) and Local Binary Pattern (LBP) are used as spatial
features to encode images. For example, He et al. [15] proposed
the MRLBP-TOP framework to capture spatial information of fa-
cial microstructure in video segments. Subsequently, a local pattern
LSOGCP [25] was proposed to further extract detailed facial texture.
However, the hand-crafted features used in the aforementioned
works heavily rely on experience and expertise, which implies that
the essential information related to depression may be lost when
manually extracting features.

To overcome this problem, researchers are inclined to detect
depression based on deep learning architecture, especially CNN-
based models. Specifically, He et al. [13] parted the face into 24
small blocks and further adopted attention mechanisms and an
aggregation method to enhance spatial significance. Meanwhile,
Melo et al. [9] proposed that inserting maximizing and differentia-
tion blocks into 2D-CNNs to capture facial changes can improve
recognition accuracy.

To further capture spatiotemporal features to detect depression,
various SOTA methods employed 3D-CNNs to encode temporal in-
formation. For instance, Zhou et al. [38] developed a strategy based
on 3D-CNN that combines label distribution and metric learning

to enhance the representation capability for spatiotemporal infor-
mation. C3D technology was employed in [7] to extract spatiotem-
poral features to enhance depression-related information through
attention blocks. This operation effectively reduced noise and sum-
marized video-level depression information. Similarly, He et al. [14]
proposed a 3D CNN framework equipped with a spatiotemporal
feature aggregation module to accurately characterize depression
cues in video segments.

Although the above methods achieve satisfactory performance
by extracting facial depression information with CNNs, most of
them require high time complexity. Furthermore, these methods
overlook the continuity of facial expressions in depressed individu-
als, which results in the limitation of detecting temporal features of
depression. To effectively solve this problem and to better capture
correlations in consecutive facial expressions, by focusing on the
temporal sequence of facial expressions, we devise a target FMMM
to capture the accurate depression characteristics.

3 METHODS
3.1 Overview
The workflow of the proposed depression detection framework Fa-
cialPulse is illustrated in Fig. 2, which is composed of two modules:
Facial Landmark Calibration Module (FLCM) in Sec. 3.2 and Facial
Motion Modeling Module (FMMM) in Sec. 3.3. In particular, the
FLCM is used for the meticulous calibration of facial landmarks to
eliminate accumulative errors while the FMMM is employed to cope
with long-term dependencies for temporal modeling and empha-
size the temporal sequence and contextuality via the bidirectional
nature of BiGRU.

3.2 Facial Landmark Calibration Module
To effectively extract facial Landmarks from original images, we
first conduct face detection on each video frame to estimate the
facial bounding box and preserve the region of interest that con-
tains the face. Then, based on the processed facial image, 68 facial
landmarks are further extracted to outline the facial contour. Finally,
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Figure 3: Illustration on the movements of facial landmarks
during an expression that appears stable. An Action Unit
(AU) is calculated by two specific landmarks, representing
different action areas. For example, AU5 depends on the 22nd
and the 23rd Landmarks, while AU12 and AU15 correspond
to those related to the mouth.

an affine transformation [37] is employed to achieve point-to-point
alignment [11] and localization.

Given the fact that landmark detection is essential for capturing
facial features, how to guarantee the accuracy of facial landmarks
is a critical issue. Fig. 3 shows the movements of different facial
landmark units during an expression that appears stable. AU5 and
AU7 denote the units near the eye area, while AU12 and AU15
express the units near the mouth area. We can observe that despite
seemingly stable facial expressions, there is still a discernible fluc-
tuation in facial landmarks, which significantly disrupts temporal
consistency. This phenomenon clearly explains the importance of
effectively detecting facial landmarks.

Facial movements tend to be smaller during depression expres-
sions. Unfortunately, facial landmark detection noise has a greater
negative impact in scenarios with minor facial movements. Hence,
it is significant to obtain a more accurate sequence of facial land-
marks when detecting depression. To solve this problem, we design
the Facial Landmark Calibration Module to mitigate the impacts
of abnormal fluctuations for further improving the detection accu-
racy of facial landmarks. FLCM is composed of motion landmark
prediction and landmark error filtering, which we will introduce in
detail below.

3.2.1 Motion Landmark Predition. During dynamic changes in fa-
cial expressions, the position of landmark pixels should remain
almost the same during small periods. However, there may be some
jitter in the actual detected facial landmarks. Landmarks with large
jitter will cause significant errors in the detection results. Therefore,
we use the optical flow algorithm to predict the facial landmark po-
sition of the current frame to provide a reference for the detection
results of the next frame. Then, we compare the predicted facial
landmark with the currently detected facial landmark. Points with a
large difference between the detected value and the predicted value
indicate that there is a larger jitter and these points will be discarded.

In particular, the sparse optical flow can selectively track a subset
of points in the image rather than track all points. Considering the
proposed motion estimation is based on facial key point sequences,
we adopt the sparse optical flow to predict motion landmarks. Due
to the reduction of tracking points, the use of sparse optical flow
further improves the training speed.

Assuming that the pixel coordinates 𝐼 (𝑥,𝑦, 𝑡) in the initial frame
denote the value of the pixel 𝐼 (𝑥,𝑦) at time 𝑡 , and the pixel moves
(𝑑𝑥 , 𝑑𝑦) after a time interval 𝑑𝑡 . Since the pixel is usually stable
over a short period and its intensity remains constant, this process
can be formulated as:

𝐼 (𝑥,𝑦, 𝑡) = 𝐼 (𝑥 + 𝑑𝑥 , 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡 ) . (1)

Assuming the motion is negligible over a short period, Taylor’s
formula can be employed to express this relationship. Thus, the
Eq. 1 can be reformulated as:

𝜕𝐼
𝜕𝑥

𝜕𝑥
𝜕𝑡 + 𝜕𝐼

𝜕𝑦
𝜕𝑦
𝜕𝑡 + 𝜕𝐼

𝜕𝑡 = 0, (2)

where 𝜕𝐼
𝜕𝑥 and 𝜕𝐼

𝜕𝑦 denotes the gradient of pixel 𝐼 in the horizontal
direction (𝑥 direction) and vertical direction (𝑦 direction), respec-
tively. For simplicity, we represent 𝜕𝐼

𝜕𝑥 and 𝜕𝐼
𝜕𝑦 as 𝐼𝑥 and 𝐼𝑦 . Besides,

the coordinate change velocity parameters 𝜕𝑥
𝜕𝑡 and 𝜕𝑦

𝜕𝑡 are denoted
as𝑢 and 𝑣 , respectively. Hence, the Eq.2 can be simplified as follows:

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0, (3)

where 𝑢 and 𝑣 , as two parameters of the optical flow field, numeri-
cally describe changes in pixel positions between adjacent frames.
These two parameters can directly represent the motion of objects
or scenes in the image.

There are significant challenges in calculating the parameter
values of 𝑢 and 𝑣 . When we use one single pixel to calculate the cor-
responding parameter values, there are two unknown parameters
that cannot be effectively solved from one motion equation. Consid-
ering that adjacent points within the same exhibit similar motions,
we first choose several points (the chosen point number denoted
as 𝛾 ) in an adjacent block matrix 𝑛 × 𝑛 to replace a single pixel to
achieve a target that uses multiple equations to solve the goal of
two unknown parameters. Then, we employ the Lucas-Kanade (LK)
algorithm [40] to calculate the values of 𝑢 and 𝑣 , i.e.,

𝐼𝑥1𝑢 + 𝐼𝑦1𝑣 = −𝐼𝑡1,
𝐼𝑥2𝑢 + 𝐼𝑦2𝑣 = −𝐼𝑡2,

.

.

.

𝐼𝑥𝛾𝑢 + 𝐼𝑦𝛾𝑣 = −𝐼𝑡𝛾 . (4)
Due to the fact that the least squares algorithm has a small error
in the fitting process, we employ this algorithm to solve the above
motion equations. Therefore, Eq. 4 can be rewritten as matrix form:

𝐼𝑥1 𝐼𝑦1
𝐼𝑥2 𝐼𝑦2
.
.
.

.

.

.

𝐼𝑥𝛾 𝐼𝑦𝛾


[
𝑢

𝑣

]
=


−𝐼𝑡1
−𝐼𝑡2
.
.
.

−𝐼𝑡𝛾


. (5)

In this way, the fitting process of parameters 𝑢 and 𝑣 can be ex-
pressed by the following equation:
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∑𝛾

𝑖=1 𝐼
2
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−1 

−∑𝛾

𝑖=1 𝐼𝑥𝑖 𝐼𝑡𝑖

−∑𝛾

𝑖=1 𝐼𝑦𝑖 𝐼𝑡𝑖

 . (6)

Since the size of the adjacent block matrix 𝑛 × 𝑛 is a fixed number,
the LK algorithm that solves the values of the coordinate change
velocity parameters 𝜕𝑥

𝜕𝑡 and 𝜕𝑦
𝜕𝑡 may not be adaptive to pixel motions

at different scales.
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Figure 4: PLK estimates the optical flow of feature points
by employing the LK algorithm on individual layers of the
image pyramid. It iteratively refines the position and optical
flow vector of feature points across layers, enhancing both
the accuracy and stability of estimation.

To address this challenge, we employ the Pyramid Lucas-Kanade
(PLK) architecture to adaptively capture motion information of
pixels at different scales. Fig. 4 illustrates the workflow of the PLK
algorithm in our depression detection task. Specifically, to reduce
unnecessary calculations, we first construct a Gaussian pyramid of
input images, where each level represents a different scale. Then, for
each landmark pixel, iterating from the roughest granular scale, the
optical flow estimation is performed at the top level. Subsequently,
the estimated flow is propagated downward through the pyramid.
For each level of the pyramid, to generate the corresponding pixels
in the current layer, the pixels in the previous layer are aligned to
adapt to the current layer resolution. Furthermore, the LK algorithm
is employed to process current layer pixels to estimate the motion
information. It is worth noting that this process continues until
reaching the bottom level. Finally, the estimated flows of all levels
are combined to obtain the final motion estimation.

To further minimize errors caused by the calculation order, we
introduce a two-way error denoise mechanism. Specifically, we first
compare the difference in pixel motion information calculated using
the PLK algorithm from front to back and from back to front. Then,
we use the threshold method [3] to process the difference between
these two pixel motion information. According to the threshold
judgment, we further decide whether to use the landmark pixel
for depression detection. Fig. 5 depicts the selection process of
facial landmarks. We can observe that the landmark pixels with
significant positional differences calculated by the two-way error
denoise mechanism are discarded for more accurate landmark pre-
diction. On the contrary, the landmark pixels with tiny positional
differences are retained to detect depression.

Detection Prediction

������ ������+�

PLK

Predicted

������+�

Detected

������+�

Filtered

������+�

Discard  landmark 
pixels with significant 
positional differences 
after the two-way error 
denoise mechanism.

Valid information

Jitter noise

Prediction error

Detection error

Figure 5: The facial landmark calibration process.

3.2.2 Landmark Error Filtering. Fig. 5 depicts the total workflow
of the proposed calibration algorithm. During the entire calibration
process, three types of errors are effectively calibrated, namely, jit-
ter noise (denoted by the blue circle), flow prediction error (denoted
by the green triangle), and detection error (denoted by the orange
rhombus). The jitter noise is caused by the actual detected point
jitter. Although different facial landmark points are effectively se-
lected by positional differences (jitter noise elimination), there are
still a lot of flow prediction errors caused by the LK algorithm in
the prediction process. This is because the LK algorithm is a fitting
algorithm and cannot obtain accurate analytical points, there are
errors in the fitting process. These errors are actually flow predic-
tion errors. Furthermore, due to changes in facial expressions and
poor image quality, there are also errors in the landmark detection
process, and these errors are called detection errors. To compen-
sate for the inaccuracy and limitation in these two data sources
(flow prediction results and detection results), we fuse the predicted
values from the previous frame and the detected values from the
current frame to obtain more reliable and complete facial motion
information.

Since Kalman filtering proves effective in calibrating bimodal
correlation errors due to incorporating prior information into state
estimation [10], we use Kalman filtering to fuse the flow predic-
tion results and detection results to comprehensively obtain more
accurate landmark point positions.

3.3 Facial Motion Modeling Module
Since the facial expressions of depressed individuals have unique
temporal characteristics, we utilize temporal features for depression
detection. Furthermore, we verified that facial landmarks can reflect
fine-grained facial fluctuations even in subtle expression changes,
and facial landmarks can accurately represent the feature informa-
tion of facial expressions. Depressed individuals have more subtle
changes in facial expressions than other mental illnesses. Therefore,
we simultaneously model facial absolute positional information
and relative change information in individuals with depression.
We divide a video into multiple time windows and extract feature
vectors in each time window to represent the characteristics of
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facial expressions. Previously we have obtained the calibrated fa-
cial landmarks, given the calibrated landmark point 𝑈 = [𝑥,𝑦]𝑇 ,
the first type of feature vector 𝒂𝒊 which represents facial absolute
positional information, derived from landmarks [𝑼 1

𝑖
, ..., 𝑼 68

𝑖
]𝑇 , is

generated as follows:

𝒂𝑖 = [𝑥1𝑖 , 𝑦
1
𝑖 , ..., 𝑥

68
𝑖 , 𝑦68𝑖 ] . (7)

Then, the second type of feature vector 𝒃𝒊 which represents facial
relative change information can calculated by:

𝒃𝑖 = 𝒂𝑖+1 − 𝒂𝑖

= [𝑥1𝑖+1 − 𝑥1𝑖 , 𝑦
1
𝑖+1 − 𝑦1𝑖 , ..., 𝑥

68
𝑖+1 − 𝑥68𝑖 , 𝑦68𝑖+1 − 𝑦68𝑖 ] .

(8)

These feature vectors form two feature vector sequences, which
represent the temporal feature changes of the entire facial expres-
sion. Based on the above process, we obtain two feature vector
sequences:

𝑨 = [𝒂1, ..., 𝒂𝑛]𝑇 , (9)

𝑩 = [𝒃1, ..., 𝒃𝑛]𝑇 . (10)

Since facial expressions are dynamic and temporally dependent,
and the expressions of individuals with depression may suddenly
change in a short period and exist for a long period, temporal
features are thus particularly critical in detecting depression. Con-
sidering that combining forward and reverse information flows,
which can more comprehensively capture the information in se-
quence data and mitigate information loss, Bidirectional Gated
Recurrent Unit (BiGRU) is chosen as the backbone of our network
to accurately capture the temporal features of depression expres-
sions. Empowered by BiGRU, the proposed module can take into
account both past and future information to better understand the
facial expression context and its corresponding evolution.

Specifically, we employ two BiGRU networks to encode these
sequences separately. The first BiGRU (𝑟1) models facial motion
patterns on sequence 𝑨. Its bidirectional recurrent structure is
profitable for mining temporal characteristics in landmark motion,
which effectively focuses on dynamic variations in landmarks across
consecutive frames and precisely extracts temporal information
related to depression. Then, the second BiGRU (𝑟2) processes land-
mark motion speed patterns on sequence 𝑩. By capturing temporal
features of landmark differences, this network can identify subtle
facial motion changes in a brief period, which further upgrades
sensitivity in detecting emotional fluctuations. Additionally, since
the gating mechanism of BiGRU can learn and remember patterns
in sequence data more effectively, it can also converge faster than
traditional methods and accelerate the training process.

The fully connected layers are employed after the output of each
BiGRU, which maps the representations to the depression detec-
tion level, respectively. The outputs of both streams are averaged
to obtain the final depression detection result. Since our method
comprehensively considers the two kinds of temporal features (ab-
solute positional information and relative change information) and
effectively captures long-term dependencies in time series data,
we can capture more complete and accurate temporal features to
effectively improve the accuracy of depression detection.

4 EXPERIMENTS
In this section, we first show the details of the dataset and implemen-
tation. Then, we assess both the performance and efficiency of our
proposed FacialPulse framework. Finally, ablation experiments
are conducted to investigate the impact of the devised modules.

4.1 Experimental Setup and Details
4.1.1 Datasets. We evaluate the performance of our method on
two depression datasets: the AVEC2014 dataset and an internally
collected dataset. The AVEC2014 Depression dataset [34] consists
of 300 videos from the 2014 Audio/Visual Emotion Challenge and
Workshop, including "NorthWind" and "FreeForm" tasks. In the
context of the "NorthWind" task, participants delve into a German
fable entitled "Die Sonne und der Wind," where they read through
its narrative. On the other hand, the "FreeForm" task demands
not only answering a series of questions but also recounting a
poignant childhood memory in the German language. Each task
includes 150 video segments, with 80% of them allocated for training
and the remainder for testing. In our experiments, we merge the
samples from both tasks. Subsequently, we allocate 240 samples
for training and 60 samples for testing. These videos are captured
via webcams and microphones with an average duration of two
minutes. Additionally, each video is labeled with the depression
level, which is determined by the Beck Depression Inventory-II
(BDI-II) questionnaire. Particularly, BDI-II is an estimation method
of depression levels and has depression values ranging from 0 to
63, where 0-13 implies no depression, 14-19 mild depression, 20-28
moderate, and 29-63 severe depression.

The other internally collected dataset, named the Multimodal
Dataset for Depression and Anxiety (MMDA) [17], was specifically
designed for depression and anxiety detection. All participants are
diagnosed by professional psychologists based on the combined
Hamilton Rating Scale for Depression scores and Anxiety scores.
MMDA includes visual, acoustic, and textual modalities, which are
extracted from the original interview videos. In our experiments, we
select all 300 depression detection video segments that are related
to facial expressions from this dataset.

4.1.2 Evaluation Metrics. With the release of the AVEC2014
dataset, Root Mean Square Error (RMSE) and MAE are used as
metrics for the 2014 Audio/Visual Emotion Challenge and Work-
shop. After that, these two metrics have been widely adopted to
evaluate the performance of depression detection. For the sake of
fairness, we also use RMSE and MAE as evaluation metrics in the
experiments, which can be formulated as:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑠𝑖 − 𝑠𝑖 )2, (11)

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑠𝑖 − 𝑠𝑖 |, (12)

where 𝑁 is the number of participants, 𝑠𝑖 and 𝑠𝑖 denote the true
and predicted BDI-II scores for the 𝑖-th participant, respectively.

4.1.3 Experimental Details. During preprocessing, we utilize Dlib
for face and landmark detection. As for ablation studies, OpenFace
serves as an alternative detector. Each RNN in our dual-stream
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network is bidirectional, which employs GRU with 𝑘 = 64 output
units for classification. A fully connected layer with a single unit
is connected to the back of the RNN layer. We insert a dropout
layer with a rate of 0.25 between the input and the RNN. Further-
more, three dropout layers with a rate of 0.5 are embedded in the
remaining layers. The Adam optimizer with a learning rate of 0.001
is adopted. During classification, we choose the smooth 𝐿1 Loss
function, which is defined as follows:

𝑙𝑜𝑠𝑠 =

{
0.5(𝑥)2 |𝑥 | < 1,
|𝑥 | − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(13)

where 𝑥𝑖 represents the error between the predicted value and
the true value. Compared to the Mean Squared Error, the smooth
𝐿1 loss function appears to lower sensitivity to outliers, which
can significantly boost the robustness against potential outliers in
the data. The classification model is trained 500 epochs. All the
experiments are conducted on a single RTX 3090 GPU with 24GB
memory.

4.2 Performance Evaluation
4.2.1 Comparison to Existing Approaches. To verify the superiority
of FacialPulse, we compare it with other state-of-the-art methods
on the AVEC2014 dataset. Typically, methods based on deep neural
networks present better performance compared to hand-crafted
methods, which is primarily attributed to the fact that hand-crafted
features rely on the expertise of researchers. In such cases, hand-
crafted methods may not comprehensively mine depression cues,
thereby decreasing prediction accuracy. As shown in Tab. 1, we
report the results of comparative experiments with the evaluation
metrics RMSE and MAE. Among all listed pioneer depression recog-
nition methods, FacialPulse attains the top performance on MAE
and second-best performance on RMSE. In particular, since the
temporal features are deeply considered, FacialPulse surpasses
with 1.5% RMSE improvements over the previous SOTA method
[24] on AVEC 2014 datasets. By assessing RMSE and MAE, Fig. 6 (a)
indicates that FacialPulse achieves the best overall performance
among the three listed SOTA depression recognition methods.

Table 1: Analysis of performance for different methods on
AVEC2014 dataset, by evaluating RMSE and MAE.

Methods RMSE MAE

Baseline [34] /LGBP-TOP, SVR 10.86 8.86
Jan et al. [16] / EOH, LBP and LPQ, PLSR 10.50 8.44
Kaya et al. [19] /LGBP-TOP + LPQ 10.27 8.20
Zhu et al. [39] /Two CNN 9.55 7.47
Jazaery et al. [1] /Two C3D 9.20 7.22
Melo et al. [5] /Two C3D 8.31 6.59
Melo et al. [6] /ResNet-50 8.25 6.30
Melo et al. [8] /Two ResNet-50 7.94 6.20
Xu et al. [35] /MTB-DFE+SPG 7.65 6.24
Melo et al. [9] /MDN-152 7.65 6.06
Niu et al. [24] /CNN+GCE+MSV 7.56 6.01
FacialPulse 7.60 5.92

Furthermore, on an internally collected MMDA dataset, Fa-
cialPulse achieves a significant decrease in MAE compared to
a baseline (SVM) (4.35 vs 3.87). These results demonstrate the signif-
icant competitiveness of the proposed FacialPulse, which can be
attributed to the strong ability of our method to capture depression-
related temporal features.
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Figure 6: We conduct a comprehensive comparison of per-
formance and experimental time. (a) presents the compre-
hensive RMSE and MAE compared with the leading three
methods, and (b) represents the comprehensive preprocess-
ing time and training time compared with two classical meth-
ods.
4.2.2 Computational Cost Evaluation. Tab. 2 shows the experi-
mental speed comparisons of the proposed approach and several
representative baseline methods. All methods require similar pre-
processing time and FacialPulse consumes two more hours than
others due to more temporal information being considered. Not-
ing that, due to the properties of parameter sharing and parallel
computing in our method, the training time of FacialPulse is sig-
nificantly less than that of others. To observe more intuitive results
on preprocessing time and training time, Fig. 6 (b) shows that the
proposed method is significantly closer to the zero point than oth-
ers. The result clearly indicates that FacialPulse is significantly
superior to other SOTA methods in terms of training speed.

Table 2: Comparison of different methods on time cost in-
cluding preprocessing and training.

Methods Preprocessing Training

CNN 6h 9.5h
CNN+RNN 6h 12.5h
FacialPulse 8h 0.5h

Table 3: Comparison of additional computational cost.
"Param" denotes the parameterizable training size of the
model. We also evaluate the GPU memory footprint.

Methods Param GPU

CNN 11.6M 6G
CNN+RNN 24M 9G
FacialPulse 0.5M 2.5G
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Additionally, Tab. 3 depicts the details of experimental costs in-
cluding parameter sizes and GPUmemory usage. Since FacialPulse
has a small parameter space and employs a parallel computing strat-
egy, it exhibits quite low training costs compared to others.

4.2.3 The Impact of the Calibration Module. To validate the effec-
tiveness of the proposed calibration module, we conduct a con-
firmatory experiment. We first divide facial landmarks into seven
regions. Then, different detectors (OpenFace and Dlib) are employed
to detect landmark locations. Fig. 7 illustrates the mean distance
between landmarks detected by different detectors. Using different
detectors brings different noises and the calibration module aims
to eliminate the noise and make them closer to the true position on
the ground. Thus, this process can shorten the gap in the detection
results of different landmark detectors.
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Figure 7: Compare the average distance between different
detected landmarks before and after using the calibration
module. The abscissa represents the seven types of facial or-
gans after grouping, and the ordinate represents the distance.
The term "Original" represents the results obtained using the
baseline method, while "Calibrated" denotes computation
results after integrating our calibration module.

From Fig. 7, we observe that after applying our calibration mod-
ule, the detected differences of each organ significantly reduced and
the average distance between the seven sets of landmarks decreased
by 11%, which signifies an improvement in landmark detection ac-
curacy. Due to the effectiveness of the proposed calibration module,
we successfully eliminate noise and errors to obtain more accurate
landmark positions.

4.3 Ablation Experiments
In this section, we explicitly investigate the influence of each mod-
ule in the proposed framework FacialPulse, which provides ev-
idence and a detailed explanation for the generated prominent
results.

Tab. 4 shows the performance evaluated by RMSE and MAE un-
der different ablation conditions. As a module is added, the values
of RMSE and MAE decrease to a certain extent. Notably, in this

Table 4: The impact of Kalman filter and the calibration strat-
egy in the Facial Landmark Calibration Module (FLCM).

Methods RMSE MAE

Default 7.60 5.92
w/o Kalman Filter 7.75 6.00
w/o Calibration 8.04 6.09

process, the Kalman filter effectively eliminates detection error and
prediction error, while the optical flow prediction module effec-
tively eliminates jitter noise. Each module in the Facial Landmark
Calibration Module aims to obtain more accurate landmarks and
further improve the accuracy of depression detection.

Table 5: The impact of the two branches (𝑟1 + 𝑟2) in the Facial
Motion Modeling Module (FMMM). 𝑟1 denotes the modeling
of absolute positional information, while 𝑟2 denotes the mod-
eling of relative change information.

Methods RMSE MAE

(𝑟1 + 𝑟2) 7.60 5.92
𝑟1 7.72 5.98
𝑟2 8.00 6.07

In addition to performing ablation experiments on FLCM, we also
study the impact of the two branches in the Facial Motion Modeling
Module. Tab. 5 exhibits the depression detection results of each
branch and combined branch. It can be clearly seen that the perfor-
mance is significantly improved after integrating the two branches.
By integrating absolute positional information and relative change
information, the proposed method captures more comprehensive
temporal features and achieves superior performance on both two
metrics in facial depression detection tasks.

5 CONCLUSION
We propose a novel framework (FacialPulse) aimed at improving
the accuracy and speed of depression recognition utilizing facial
expressions. FacialPulse consists of two key modules: Facial Mo-
tion Modeling Module (FMMM) and Facial Landmark Calibration
Module (FLCM). FMMM is designed to effectively capture tempo-
ral features by employing bidirectional processing and addressing
long-term dependencies. Notably, FMMM’s parallel processing capa-
bilities and gate mechanism substantially accelerate training speed.
Meanwhile, FLCM endeavors to reduce information redundancy
by utilizing facial landmarks instead of original images, thereby
enhancing recognition accuracy by eliminating errors associated
with facial landmarks. Extensive experiments are conducted on
the AVEC2014 and MMDA datasets, demonstrating the superior
performance of FacialPulse. In future work, we aim to explore the
integration of other complementary modalities into our proposed
architecture to further enhance model performance.
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