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Abstract

Vision transformers have demonstrated remarkable performance on a variety of
computer vision tasks. In this paper, we illustrate the effectiveness of the de-
formable vision transformer for single-stage pedestrian detection and propose a
spatial and multi-scale feature enhancement module, which aims to achieve the op-
timal balance between speed and accuracy. Performance improvement with vision
transformers on various commonly used single-stage structures is demonstrated.
The design of the proposed architecture is investigated in depth. Comprehensive
comparisons with state-of-the-art single- and two-stage detectors on different pedes-
trian datasets are performed. The proposed detector achieves leading performance
on Caltech and Citypersons datasets among single- and two-stage methods using
fewer parameters than the baseline. The log-average miss rates for Reasonable
and Heavy are decreased to 2.6% and 28.0% on the Caltech test set, and 10.9%
and 38.6% on the Citypersons validation set, respectively. The proposed method
outperforms SOTA two-stage detectors in the Heavy subset on the Citypersons
validation set with considerably faster inference speed.

1 Introduction

Pedestrian detection is a popular task subordinate to object detection in computer vision. This task
aims to locate and classify pedestrians in images or videos accurately. Pedestrian detection is very
important as it serves as the prerequisite of various vision tasks [1], such as human-centric tasks
(person re-identification [2, 3], person search [4], human pose estimation [5] etc.) and more generic
multi-object tracking [6]. It has been applied to autonomous driving [7, 8], video surveillance [9] and
action tracking. In this paper, we focus on the detection based on RGB images.

Pedestrian detection suffers from significant occlusion and varying scales. Intra- and inter-class
occlusion occur when a pedestrian is occluded by other pedestrians or objects like cars, bicycles etc.
Both significantly reduce the discriminative features and destroy the regular shape of pedestrians. For
varying scales, large pedestrians tend to have more informative features. Still, they are difficult to
fully extract from a vast region, while features of small targets are compact but relatively ambiguous
with less preserved details. In summary, the fluctuating amount and varying shape of effective features
are the core problems. They challenge the capabilities of feature extraction modules, which act as a
long-standing bottleneck in pedestrian detection.
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To deal with these problems, two-stage methods [10–15] based on Fast [16] and Faster R-CNN [16]
have pervaded pedestrian detection tasks owing to the high detection accuracy. These methods first
make coarse predictions of targets via the Region Proposal Network (RPN), then refine the bounding
boxes and predict the final scores based on the features inside the proposal regions. In addition to
methods for general object detection, pedestrian detectors take advantage of unique characteristics of
targets, such as the mask of visible parts [17, 10] and key points of human bodies [18]. However, the
inference speed of these methods is limited by the repeated predictions which makes them hard to be
applied to real-world scenes.

To achieve faster inference, single-stage approaches, which only make one round prediction, are
developed [19] and applied to pedestrian detection [20–24]. However, they suffer from decreased
detection accuracy. The miss rates of two-stage methods in the Reasonable subset on Caltech are
reduced to less than 4% [14, 10, 25, 18], while those for single-stage methods are larger than 4.5%
[22]. For the Citypersons validation set, the miss rates for the former are less than 40% in the Heavy
subset, which is much lower than the latter (42% [24]). In this paper, we aim to improve the detection
accuracy, especially in Reasonable and Heavy subsets, and to narrow the gap between single- and
two-stage methods with fast inference.

Typical single-stage detectors use anchors (SSD [26]) or are anchor-free (CSP [22]). The former
generates rectangular bounding boxes with different aspect ratios and scales centered at each pixel of
the feature maps at certain levels. Anchor scales are designed to be smaller at lower levels to facilitate
the detection of small objects. These methods predict the offsets w.r.t. the upper left position, height
and width of the anchor. Taking CSP as an example, the latter method only predicts the logarithm
height and offsets w.r.t. centers of each pixel. For anchor-based single-stage detectors, ALFNet [21]
refines anchors progressively with stacked prediction blocks to remedy the lack of proposal regions.

In the past year, most research has focused on the fusion of representative features [27–32] to improve
single-stage methods. For example, [30] enhances features via increasing semantic information at a
low level and enriches the localization information at a high level. Similarly, [32] fuses the feature
maps with different scales in adequate proportions. [29, 31] also explore new strategies to aggregate
multi-level features. These feature enhancements are mainly performed along the dimension of
feature level due to the intrinsically unbalanced feature information between shallow and deep feature
levels. However, this unbalance also exists in two-stage detectors. As such, this is not the particular
reason for the poorer accuracy of single-stage methods.

The general architecture of single- and two-stage detectors are compared in Figure 1. Assuming
that the training strategies and the detection head are the same for both methods, the difference in
the architecture lies in the information fed into the detection head. For two-stage methods, both
positions and features of the proposal regions are fed into the detection head. These proposals contain
potential pedestrians. Thereby, the detection head classifies spatially target-focused features with
fewer background interruptions and refines the bounding boxes by predicting small offsets from the
proposal positions. For single-stage methods, each pixel in the feature map serves as the ‘proposal
region’ with no pre-estimated positions. The receptive fields of these pixels share the same size, which
may be too small to include sufficient information for large targets or so large that the background
information overwhelms the useful features. This is more challenging for the classifier compared to
two-stage methods. Additionally, single-stage methods have to regress from scratch, which is more
difficult than simple refinement. Thus, the lack of spatially target-focused feature representation and
the prediction of bounding boxes from scratch are the two key bottlenecks hindering the improvement
of single-stage detectors.

To make the features fed into the detection head concentrate on the targets or other helpful information
automatically without the assistance of proposal regions, we take advantage of vision transformers in
this paper. Vision transformers describe the pairwise dependency of each entity in the feature map
with attention weights. The output weighted averaged feature is the adaptive aggregation of important
entities (with higher attention weights) while the disturbing information (with lower attention weights)
is suppressed. Using such attention mechanism on top of the backbone enables the single-stage
detector to supplement spatially filtered features easily for subsequent classification and regression. In
this case, the modified detector makes the best use of the fast inference originating from single-stage
methods and more effective features. Our main contributions are as follows:

• Demonstrate the effectiveness of the deformable vision transformer in improving the accu-
racy of commonly used single-stage detectors on pedestrian datasets.
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• Extend the application of vision transformers on top of the backbone in pedestrian detection
tasks.

• Achieve the best performance among single-stage detectors on the Caltech test set and
Citypersons validation set while maintaining fast inference and reducing the number of
parameters.

• Narrow the gap of detection accuracy between the single- and two-stage methods in pedes-
trian detection.

Figure 1: Generic detection pipeline of the single- and two-stage detectors. The detection head
consists of two parallel branches for classification and regression.

2 Related works

Currently, vision transformers are used to establish general-purpose backbones (ViT [33] and Swin
Transformer [34]) or stack on top of the backbone (DETR [35]). Since we focus on pedestrian
detection, this paper explores the latter case. DETR consists of the convolution backbone, six encoders
and decoders and the prediction head. It is an inspiring end-to-end detector but is memory-consuming.
DETR requires massive memory to store the self-attention weights within each Multi-Head Self-
Attention (MHSA) layer. The memory cost is linear to the number of attention heads and is square
to the number of pixels in the down-sampled feature map. Additionally, first and second-order
momentums in optimization introduce further memory cost in the training procedure. In pedestrian
detection, more attention heads and relatively large down-sampled feature maps are preferred to
enhance detection accuracy, especially for small targets. This results in memory explosion using
DETR. To this end, deformable DETR [36] is proposed. It only needs the attention weights at several
sampling locations rather than each pixel in the feature map. The memory cost of the attention weights
is linear to the number of pixels, which makes training with high resolutions possible. Experiments
show that the deformable DETR outperforms the Faster R-CNN [37] and DETR on COCO 2017
validation set [38].

So far, vision transformers show great potential, but they have rarely been applied to pedestrian
detection in the form of DETR or its variants. This is because it has been observed that they perform
worse than the commonly used Faster R-CNN on CrowdHuman dataset [39] and require tenfold
training time [40]. Although [40] proposed using dense object queries and the rectified attention
field to enhance scale-adaptive feature extraction in the decoding phase, the modified deformable
DETR still shows a limited advantage over the traditional Faster R-CNN. This implies that rigidly
putting the whole six encoder-decoder pairs into the pedestrian detector may not be cost-effective.
As an example, BoTNet [41] only substitutes the convolution layers in residual bottleneck blocks
in the last stage of ResNet [42] for MHSA layers, but it produces strong performance on ImageNet
validation set [43]. Inspired by this and the limitation above, our work only utilizes a single encoder
of the deformable vision transformer as an adaptive feature extractor and applies it to commonly used
single-stage detectors for better detection accuracy and fast inference.

3 Method

Deformable Vision Transformer Encoder: The deformable vision transformer encoder (Figure
2) takes the L feature maps

{
zl
}L

l=1
with height Hl and width Wl at scale l and reference points,
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Figure 2: Left: The structure of the deformable vision transformer encoder. It is the same as the
encoder in DETR except that the key tensor is removed while reference points are required. Mid:
The MSDA averages the features at sparse sampling locations across different scales with weights
computed from the query tensor. Right: Feed-Forward Network (FFN).

which are the positions of grid centers of the feature maps, as inputs. It outputs the enhanced feature
maps with the same resolution as the input. The input feature maps are first added by fixed encoded
positional [35] and learnable level information [36] to disambiguate spatial and scale positions, then
projected to the query feature map zq via a linear layer. The feature maps also generate the value
feature maps zv with a linear layer but without encoding. The query feature map zq, value feature
map zv together with the pre-generated reference points are sent to the Multi-Scale Deformable
Attention (MSDA) layer to enhance spatially adaptive features, followed by a Feed-Forward Network
(FFN). In summary, the encoder supplements the semantic information of input feature maps via the
embedded attention layer and FFN.

Multi-Scale Deformable Attention: The MSDA layer sums the selected entities at sampling locations
in the value feature map zv with predicted attention weights by each corresponding query entity.
These attention weights W are the linear projection of query features zq followed by a softmax
operator along scale and sampling point dimensions. For a single query entity, it only needs NhNlNp

attention weights, representing the significance of selected value features at different attention heads,
scales, and points. Selections are decided by the sampling locations which are the summation of
reference points p and sampling offsets ∆p which is the embedding of the query features. At each
float sampling location, the selected value feature is bilinear interpolated for accuracy and training
offset predictor. With weight, sampling locations and selected value features prepared, the q-th
element of the separate output feature zso,h ∈ RNq×cv (Nq =

∑L
l=1 HlWl, cv is the number of

channels ) at attention head h (total Nh heads) is

zso,h
q =

Np∑
p=1

L∑
l=1

Wplhqvpql+∆pplhq
(1)

where p, q, l and h index the sampling offsets, elements of the deformable attention feature zo,
the scale of value v and attention head. Wplhq is a value from the weight W ∈ RNq×Nh×L×Np .
p ∈ RNq×L×2 and ∆p ∈ RNq×Nh×L×Np×2 are the reference points and sampling offsets. pql and
∆pplhq denote the position of a single reference point and one of its corresponding sampling offsets
respectively. The separate output features from Nh attention heads are projected to the q-th element
of the final output deformable attention feature zo by a linear layer expressed as

zo
q =

Nh∑
h=1

W ′
hz

so,h
q (2)

where W ′
h ∈ Rc×cv denotes the learnable weight for the h-th attention head.

Proposed Feature Enhancement Module: The features are enhanced owing to the self-attention
mechanism to supplement the spatially adaptive features across multiple scales. The proposed module
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Figure 3: The overall architecture of the proposed feature enhancement module.

simply consists of convolution/deconvolution and normalization layer pairs ahead of and after the
deformable encoder and a final feature fusion step as illustrated in Figure 3. In this module, input
feature maps from the backbone are first upsampled with deconvolution layers or encoded with
the convolution layer to generate multi-scale feature maps

{
zl
}3

l=1
. They are followed by group

normalization to prevent the Internal Covariate Shift (ICS) that might be inducted by subsequent
linear operations in the deformable encoder. The encoder yields enhanced multi-scale feature maps.
Enhanced features are upsampled to keep the resolution as (H/4,W/4) for accurate detection. They
are normalized via L2Norm [22] before concatenation along the channel dimension. This makes the
features at different scales contribute equally to the final feature representation fed into the detection
head. Concatenated features are compressed along the channel dimension to reduce the network
parameters. The output feature maps can be fed into the detection head used in SSD, CSP etc. Except
for this standard structure, the use of convolution/deconvolution layers can be adjusted according to
the resolution of input, and the concatenation step can be removed if predictions are made at separate
levels.

Training: For anchor-free cases, namely CSP, the loss function follows [22]. The overall loss consists
of three parts as Equation(3) where Lc, Lh and Lo stand for the center heatmap loss, height map loss
and offset loss. Weights for each loss λc, λs and λo are set as 0.01, 1 and 0.1 [22]. For anchor-based
cases, namely SSD or ALFNet, the multi-task loss function is formulated with two objectives as
Equation(4) [21] where λcls is experimentally set as 0.01 in the following experiments.

Laf = λcLc + λsLh + λoLo (3)

Lab = λclsLcls + Lloc (4)

Inference: For anchor-free single-stage methods, the predicted width is the height multiplied by the
uniform aspect ratio 0.41 [22]. If not specified, bounding boxes with scores above 0.01 are kept and
merged by Non-Maximum Suppression (NMS) with the IoU threshold of 0.5.

4 Experiments

4.1 Settings

Datasets: The proposed detector is evaluated on two commonly used public pedestrian datasets:
Caltech [44] and Citypersons [45]. The Caltech dataset is an approximately 10 hours of 480x640
video taken in a single urban city. The standard training set contains about 250k frames with 350k
bounding boxes. In our experiments, the training data augmented by 10 folds containing 42782
images with 13674 persons and the standard test set containing 4024 images with corresponding new
annotations [46] and fixed aspect-ratio for bounding boxes [47] are used. Citypersons training set
recorded across 18 different cities, 3 seasons and various weather conditions with 19654 persons in
2975 high resolution (1024x2048) images. The validation set contains 500 images across 3 cities.

Training Details: If not specified, the ResNet50/VGG16 pre-trained on ImageNet, Adam with moving
average weights [48] and step learning rate schedule are applied. Data augmentation techniques
including random horizontal flips with a probability of 0.5 and scaling are applied. For Caltech,
additional random color distortion and cropping are implemented. The input images are rescaled to
336x448 and 640x1280 for Caltech and Citypersons datasets respectively. The detectors are trained
with a single NVIDIA GeForce RTX 3090 GPU for 10 and 75 epochs with batch size 16 and 4 on
Caltech and Citypersons respectively using the anchor-free CSP detection head. The base learning
rate is 0.5e-4 and decreased by a factor of 0.5 after 6 and 60 epochs respectively. Initialization is
performed with a randomly chosen and fixed seed. Tools provided by [47] are used in the experiments.
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Metrics: Log-average Miss Rate (denoted as MR−2 or miss rate in this paper) over False Positive
Per Image (FPPI) in the range [10−2, 100] is calculated over Reasonable, Small, Heavy, and All
subsets defined in Table 1. The lower the MR−2 the better.

Table 1: The experimental settings of four subsets.

Subset Reasonable Small Heavy All

Height [50, inf] [50, 75] [50, inf] [20, inf]
Visibility [0.65, inf] [0.65, inf] [0.2, 0.65] [0.2, inf]

4.2 Ablation Experiments

Effectiveness of Enhanced Feature Maps: For generality, the proposed module is applied to three
commonly used single-stage structures in pedestrian detection: anchor-based, progressive refinement,
and anchor-free.

For anchor-based single-stage methods, like SSD300 [26], Table 2 shows that the proposed module
shows stable and significant improvement in all three subsets with an IoU threshold of 0.5 in NMS.

For refined anchors, we append two Convolutional Predictor Blocks [21] after the feature maps
at the last three stages of the backbone and an extra stage. The second block refines the coarse
anchors predicted by the first block. Table 3 demonstrates that even though the anchors are refined
progressively to remedy the lack of proposal regions, the separate enhancement at each level can bring
improvement in certain subsets (level 0 improves Reasonable and All subsets, level 1, 2 improves
Heavy subset). The combination of multi-level inputs brings in stable improvement in all the subsets.

For anchor-free methods, We evaluated the influence of the proposed module on the baseline CSP
[22] detector on Caltech (Table 4) and Citypersons (Table 5). Results from both datasets indicate that
with the enhanced feature maps, the miss rates are decreased significantly in Reasonable, Heavy and
All subsets, in particular, the Heavy subset witnesses a decrease of up to 7.9%, and the Reasonable
subset up to 3.1%. The additional enhancement module increases the inference time, however, they
contain fewer learnable parameters as shown in Table 6. As the combination of CSP achieves the best
results, subsequent experiments follow this implementation.

According to the above, the proposed module is effective for general single-stage detectors on
pedestrian datasets, owing to the multi-scale deformable self-attention mechanism to enhance spatially
adaptive features across levels.

Table 2: Comparison of the SSD300 detector w/o the proposed feature enhancement module on
Caltech test set with input size 300x300.

Methods IoU Enhanced feature levels Reasonable Heavy All
1 2 3 4 5

SSD300 0.5 \ 28.6 70.7 72.3
0.25 27.1 71.3 71.2

+ Enhancement module

0.5 ✓ 24.9 69.3 71.0
0.25 26.2 70.2 71.3
0.5 ✓ 25.1 68.4 71.3

0.25 26.9 69.1 71.6
0.5 ✓ ✓ ✓ 22.6 68.5 71.0

0.25 24.9 67.7 71.2
0.5 ✓ ✓ 23.9 68.4 72.2

0.25 25.6 69.1 72.6
0.5 ✓ 23.5 68.7 71.4

0.25 24.4 71.0 71.8

Feature Maps Scales: Different combinations of multi-scale feature maps
{
zl
}3

l=1
with three

downsampling ratios (1/4, 1/8 and 1/16) are compared in Table 7. In this comparison, only zo
3
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Table 3: Comparison of the progressive refinement detector w/o the proposed feature enhancement
module on Caltech test set with input size 480x640.

Enhanced feature levels Reasonable Heavy All
1 2 3

Progressive refinement \ 13.4 61.3 61.9

+ Enhancement module

✓ ✓ ✓ 12.3 60.8 61.2
✓ 13.9 59.2 61.7

✓ 13.5 60.0 62.7
✓ 12.4 61.5 59.8

Table 4: Comparison of the baseline CSP detector and the proposed detectors with the enhancement
module on Caltech test set. FPS stands for frames per second evaluated during test process with input
size 480x640.

Reasonable Heavy All FPS

CSP 6.8 50.7 62.3 39.2
+ Enhancement module 3.7 (3.1↓) 42.8 (7.9↓) 56.97 (5.3↓) 29.5

which has the same resolution as z3 is upsampled to (H/4,W/4), and is fed into the detection head
without intermediate concatenation and L2Norm. Results show that feature maps with ratios 1/4,
1/8, and 1/6 for each scale produce the best performance, which is yielded by upsampling c1 and c2
by two times while maintaining the scale of c3.

Enhanced Feature Map Scales: Fix the downsampling ratios of
{
zl
}3

l=1
as 1/4, 1/8, and 1/16,

feed different collections of multi-scale enhanced feature maps {zo
l }

3
l=1 to the detection head. Note

that the deformable encoder keeps the resolutions of the input feature maps, the downsampling ratios
for {zo

l }
3
l=1 are 1/4, 1/8 and 1/6 respectively. All the enhanced feature maps are first upsampled to

(H/4,W/4) if needed, followed by normalization when multiple feature maps are utilized. They are
then processed in three ways: 1. Cat: Concatenate them along the channel dimension followed by a
compression layer to reduce the number of channels to 256. 2. Add: Implement element-wise sum of
the enhanced feature maps. 3. Sep: No fusion operations across multi-scales; send them separately
to the detection head which doubles the number of predictions. Table 8 compares various strategies
to fuse the multi-scale enhanced feature maps. It shows that concatenation followed by L2Norm
produces the overall best results in both Reasonable and Heavy subsets on the Caltech test set.

Choice of the Normalization Method Applied to
{
cl
}3

l=1
: As Table 8 shows, GN performs best in

the Reasonable subset while L2N in the Heavy subset. Considering that the miss rate of GN is 11.6%
lower in the Reasonable subset and only 1.2% higher in the Heavy subset compared to L2N, GN is
utilized in our experiments before the encoder as presented in Figure 3.

Number of Encoders: Based on the settings in the last part, different numbers of encoders are tested.
These encoders are connected in series. Table 9 presents that although more encoders can provide
higher-level semantic information, the best result is observed when only a single encoder is applied.
This phenomenon supports the design of BotNet [41] to some extent, which indicates that following
the whole set of six encoders and decoders in (deformable) DETR may not be suitable for specific

Table 5: Comparison of the baseline CSP detector and the proposed detectors with the enhancement
module on Citypersons validation set. FPS stands for frames per second. FPS stands for frames per
second evaluated during test process with input size 1024x2048.

Reasonable Small Heavy All FPS

CSP 11.7 14.4 41.8 38.2 8.2
+ Enhancement module 10.9 (0.8↓) 13.7 (0.7↓) 38.6 (3.2↓) 37.2 (1.0↓) 6.8
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Table 6: The number of learnable parameters in the baseline and proposed detectors.

Backbone Neck Head Total Param

CSP 23.51 M 14.68 M 1.77 M 39.96 M
+ Enhancement module 23.51 M 8.73 M 1.03 K 32.24 M

Table 7: Combinations of different resolutions of input feature maps fed into the encoder.

z1 z2 z3 Reasonable Heavy

1/4 1/8 1/16 4.1 44.7
1/4 1/16 1/16 4.2 45.9
1/8 1/8 1/16 4.6 48.5
1/4 1/8 1/8 5.9 47.8

object detection tasks. A single encoder can also work effectively with the least number of learnable
parameters, which prevents overfitting.

4.3 Comparison with the state-of-the-arts

Table 10 and Table 11 show that the proposed module achieves the lowest miss rates in Reasonable
and Heavy subsets and leading performance in the All subset on both datasets among presented
single-stage detectors.

For the Caltech dataset, the lowest miss rate (3.7%) of the proposed detector in the Reasonable subset
is 0.2% smaller than that of the two-stage KGSNet presented in the upper part of Table 10. With
pretraining on the Citypersons dataset, the miss rates on all three subsets of the Caltech dataset are
reduced significantly and reach the lowest compared to other pretrained detectors as shown in the
bottom part of Table 10. For the Citypersons dataset, the proposed two detectors even outperform the
competitive two-stage detectors in the Reasonable and especially Heavy subset with a miss rate of
38.6% which is 1.1% lower than that of the best of two-stage detectors.

Overall, with the enhanced spatially adaptive and multi-scale features, the gap between single- and
two-stage detectors in Reasonable and Heavy subsets on different detectors has been narrowed.
Surprisingly, the proposed single-stage method outperforms the accurate two-stage methods on
certain pedestrian datasets, such as the Citypersons dataset. It should be noted that two-stage methods
usually produce overall better accuracy than single-stage methods with the advantage of the region
proposal network and refined bounding boxes and at the expense of inference time. Apart from
accuracy, fast inference also matters for pedestrian detection in practical scenes. The combination of
CSP and the proposed module has a simple structure, which is easy to perform and effective. On
the contrary, the leading two-stage KGSNet, for example, takes advantage of the additional proposal

Table 8: Combinations of enhanced feature maps with different scales in different ways followed by
three Normalization Methods (NM). L2N, LN and GN stand for L2Norm, Layer Normalization and
Group Normalization respectively. 1 Train boldly without any learning rate schedules. 2 Normalization
methods applied to the enhanced feature maps after deconvolution. 3 Normalization methods applied
to the feature maps produced by the backbone before being sent to the encoder.

zo
1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

zo
2 ✓ ✓

zo
3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Add ✓ ✓
Sep ✓

NM2 L2N L2N GN1 LN1 L2N1 L2N L2N L2N L2N
NM3 GN GN GN GN GN GN GN GN GN GN GN L2N BN GN

Reasonable 4.3 5.7 4.1 7.0 3.7 4.2 5.9 6.4 4.0 3.9 3.7 4.3 4.5 5.3
Heavy 44.5 48.8 44.7 51.3 45.5 48.1 50.7 49 47.4 44.5 42.8 42.6 44.6 44.1
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Table 9: Using 1 to 4 encoders in the detection neck.

Number of encoders 1 2 3 4

Reasonable 3.7 4.9 4.8 5.5
Heavy 42.8 46.6 43.1 45.1

Table 10: Comparison with the state-of-the-art single- and two-stage pedestrian detectors on Caltech
test set. † Results reported by [22]. Bottom part: Pretrained on Citypersons and tested on Caltech.
The best and second-best results are in bold and underlined with red for two-stage methods (upper
part) and black for single-stage methods.

Method Backbone Stage Reasonable Heavy All

Faster R-CNN† [37] ResNet50 2 8.7 53.1 62.6
ALFNet† [21] ResNet50 1 8.1 51.0 59.1
RPN+BF† [49] VGG16 2 7.3 54.6 59.9
RepLoss† [14] ResNet50 2 5.0 47.9 59.0

CSP [22] ResNet50 1 4.5 45.8 56.9
KGSNet [18] ResNet50 2 3.9 34.2 42.2
JointDet [50] ResNet50 2 3.0 - -

PedHunter [10] ResNet50 2 2.3 - -
CSP+Proposed module ResNet50 1 3.7 42.8 56.97

ALFNet† [21] ResNet50 1 4.5 43.4 56.8
RepLoss† [14] ResNet50 2 4.0 41.8 58.6

CSP [22] ResNet50 1 3.8 36.5 54.4
CSP+Proposed module ResNet50 1 2.6 28.0 53.9

generation network, the refined bounding boxes, the key-point detector and the super-resolution
network. With these components, the inference speed of KGSNet is 5.9 FPS and 3.2 FPS (Titan X
GPU, not including the time of using ALFNet to generate the candidate proposals) on Caltech and
Citypersons datasets [18] while ours achieves 29.5 FPS and 6.8 FPS (RTX 3090 GPU) respectively.
Therefore, the enhanced single-stage pedestrian detector is cost-effective with fast inference and
competitive accuracy compared to complicated two-stage methods.

Table 11: Comparison with the state-of-the-art pedestrian detectors on Citypersons validation set. †

Results reported by [22].1 Less than 65% visibility instead of 20-65% visibility. The best and second-
best results are in bold and underlined with red for two-stage methods and black for single-stage
methods.

Method Backbone Stage Reasonable Heavy All

FRCNN† [45] VGG16 2 15.4 - -
FRCNN+Seg†[45] VGG16 2 14.8 - -

TLL+MRF [23] ResNet50 1 14.4 52.0 -
OR-CNN [15] VGG16 2 12.8 55.71 -
RepLoss [14] ResNet50 2 13.2 56.91 -
ALFNet [21] ResNet50 1 12.0 51.9 -

CSP [22] ResNet50 1 11.0 49.3 -
PRNet [24] ResNet50 1 10.8 42.0 -

MGAN+ [17] VGG16 2 11.0 39.7 -
KGSNet [18] ResNet50 2 11.0 39.7 36.2

CSP+Proposed module ResNet50 1 10.9 38.6 37.2
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5 Conclusion

The paper proposes a module to enhance spatial and multi-scale features based on a single encoder
of the deformable vision transformer to improve the detection accuracy of single-stage pedestrian
detectors with fast inference. This module is effective on commonly used single-stage structures,
including (progressively refined) anchor-based and anchor-free cases. With the CSP detection
head, more than 40% parameters are reduced in the detection neck compared to CSP; however,
this combination still achieves the best results in Reasonable and Heavy subsets among presented
single-stage detectors on both Caltech and Citypersons datasets. Utilising pre-training, the miss
rates for these subsets can be decreased to 2.6% and 28.0%, respectively, which are far better than
other single-stage methods and comparable to two-stage methods. The proposed method outperforms
SOTA two-stage detectors in the Heavy subset by 1.1% on Citypersons with slightly decreased
inference speed. This demonstrates that single-stage detectors can be improved if spatially adaptive
and multi-scale features are jointly adopted, making them cost-effective and promising. It should be
mentioned that false positives appear if the attention points of a negative reference point extend to the
target areas. Although the performance has been improved with the current module, the generation of
attention weights and sampling locations can be carefully designed to suppress the false positives for
further improvements.
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