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Abstract— Despite the widespread use of Autonomous Un-
manned Aerial Vehicles (UAVs) in various outdoor applications,
their deployment in indoor and GPS-denied environments—such
as under dense forest canopies—continues to pose significant
challenges. Robust trajectory planning, accurate state estimation,
and effective obstacle avoidance are crucial to successful mission
completion in these complex, dynamic, and unstructured settings.
In this work, we present our open source autonomy stack
for aerial robots operating in GPS-denied environments. We
specifically focus on two critical components: (1) compensation
for inaccurate state estimation and (2) trajectory planning
in uncertain scenarios. Using these techniques, our systems
are capable of executing long-range missions in challenging
environments. We hope that the tools and methodologies
introduced in this study will accelerate the adoption and safe
deployment of UAVs in GPS-denied conditions.

I. INTRODUCTION

Simulators with realistic physics engines such as Gazebo1

and Unity2 have become powerful tools for the verification
and design of UAVs. These tools can help at every stage of
the process, from tuning low-level control loops to high-level
behavior design. Even for learning-based systems, recent
work shows that learning models trained in simulations can
generalize to real-world applications with the right sensor
abstractions [1]. However, simulators are not suitable for
long-range missions and repeatable behavior in real-world
applications. Uncertainties from UAV model discrepancies,
aerodynamic forces, and sensor noise are difficult to identify,
isolate, and model within simulated models and therefore can
affect UAV performance.

In addition, UAVs consist of multiple interconnected
subsystems whose behavior is difficult to analyze in real-world
deployments. Traditional approaches focus on the uncertainty
in one or a few of these submodules, trying to keep margins
for safe operation. For example, uncertainties and disturbances
of the control subsystem are usually validated in laboratory
environments with ground-truth positions by motion capture
systems, which provide bounds on errors. However, in real-
world deployments, tracking errors will influence the state
estimation, leading to potentially unsafe UAV operations [2].

Therefore, UAVs operating in real-world GPS-denied
environments must be resilient to these uncertainties. In this
work, we present our open source autonomy stack for UAVs
without GPS. We focus on our approaches for deploying
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Fig. 1: Platforms used in our deployments. Top: The Falcon
4 has a total weight of 4.2 kg, can fly for more than 30
minutes, and performs autonomous flights greater than 1 km
under dense forest canopies. Bottom: the Falcon 250 has
a total weight of 1.3 kg and performs missions in indoor
cluttered environments. Both platforms run all estimation,
path planning, navigation, and control algorithms onboard.

robots in real-world missions, considering the uncertainty in
the state estimation and planning modules. Experiments [3]
demonstrate that our approaches increase the accuracy and
safety of the system when performing long-range missions
in complex GPS-denied environments.

II. DEPLOYING FLYING ROBOTS IN REAL-WORLD
SCENARIOS

A. Autonomy Stack

We presented an open source software stack for GPS-denied
UAVs in [3], [4]. Our stack is composed of the following
elements:

• State estimator: We use MSCKF for our Stereo Visual
Inertial Odometry (VIO) [5], FasterLIO [6] for LiDAR
Inertial Odometry (LIO), and an off-the-shelf solution
for monocular VIO from ModalAI [7].

• Mapper: We construct an occupancy grid by combining
data from various depth sensors with odometry.

• Planner: Discussed in detail in Sec. III.
• Controller: a high-level position controller runs on the

onboard computer, and a low-level attitude controller
runs on a Pixhawk 4 flight controller.



B. Experiments

We deployed our system on two different platforms (Fig. 1)
targeting under-canopy and indoor flight, respectively. Both
platforms are powered by an Intel i7-10710U processor with
32 GB of RAM. The main difference between the platforms
lies in the perception stack:

1) Falcon 4: This platform is equipped with an Ouster
OS64-U 3D LiDAR and an Open Vision Computer (OVC)
3 [8] which provides synchronized IMU and stereo cameras.
We have used both LiDAR and VIO for state estimation.

2) Falcon 250: This platform is equipped with an Intel
Realsense D435i as its main perception sensor, coupled with
a ModalAI VOXL for state estimation.

In both platforms, the state estimation is the subsystem that
incurs most of the uncertainties. We summarize odometry
drifts in Tab. I.

Platform / Environment State Estimation Distance Drift
Falcon 4 / Forest Stereo VIO 1.1 km 0.92%
Falcon 4 / Forest LIO 1 km 0.05%

Falcon 250 / Indoor Monocular VIO 85 m 3.97%
Falcon 250 / Outdoor Monocular VIO 714 m 1.56%

TABLE I: Onboard state estimation drift without semantic
SLAM. Indoor flight is more challenging with clutter and
fewer textured objects.

III. MODEL UNCERTAINTY AND SAFETY

A. Semantic SLAM

Semantic representations offer significant advantages over
purely geometric ones, such as robustness to environmental
variations and invariance to viewpoint changes [9]. Semantics
can be used in loop closure or graph optimization approaches
to reduce drift of the state estimation through Semantic
SLAM [3], [10].

We observe a significant reduction in drift when imple-
menting semantic SLAM. For example, in complex forest
environments with the Falcon 4, we reduced the odometry
drift by 60.5% in the long-range flight mission, on a trajectory
of 1.1 km. The use of LiDAR enables more accurate LiDAR
inertial odometry but at the expense of carrying heavy-weight
sensors and reducing the autonomy of the platform. For
example, the LiDAR weighs 619 g, while the OVC only
weighs 122 g. Therefore, VIO with Semantic SLAM is an
efficient approach for long-range autonomy in size, weight,
and power (SWaP) restricted platforms.

B. Planning Under Uncertainty

Due to the noise in the sensor data and the approximations
in the SLAM algorithms, there exist uncertainties in robot
perception (i.e. potential discrepancies between the estimated
state and the true state of the robot and environment). Actively
accounting for and reducing such uncertainties is critical for
robotic exploration and mapping tasks [11].

With the states and maps provided, the robot can generate
trajectories, but it may be necessary to consider all the
errors and uncertainties to ensure the safety for real-world
deployment. Some previous work models uncertainty or noise

Fig. 2: Hierarchical planning pipeline. Left: Traditionally,
both global and local maps are over-inflated to cover bounded
noises and uncertainty. Right: The uncertainty-aware local
planner incorporates semantic objects, such as cylinders
and planes, avoiding map over-inflation. This helps navigate
narrow corridors safely.

and analyzes reachabilities [12] or develops probabilistic
collision avoidance constraints [13] to generate safe but
more conservative trajectories. As illustrated in Fig. 2, our
previous work [3] proposed a hierarchical planning framework
where high-level planning usually involves task-specific route
or behavior planning, while low-level planning considers
dynamic feasibility to generate trajectories to track. To address
noise and uncertainties, we initially employed bounded ranges
to inflate global and local maps with different resolutions,
which is a reliable but conservative method for navigating
cluttered outdoor environments. Inflating the global map is
particularly bad: As the global map is coarsely discretized
compared to the local map [3], small corridors can become
obstructed after conservative inflation. To address these issues,
we incorporate the uncertainty models of the measurement of
semantic objects [11] with trajectory optimization to avoid
over-inflation.

We deploy a similar planning pipeline on the Falcon 250
platform which has a limited Field of View. We predict the
unseen areas for robust and reliable trajectory planning [14].
We incorporate learning-based occupancy grid prediction
and semantic object detection to help with high-level goal
selection and behavior planning. We also consider the
potential information of the unknown environment to actively
yaw the robot toward unseen areas, providing safe and non-
conservative trajectories.

For both platforms, while the planners are complete in
theory, in practice, due to sensor noise and estimation errors,
the approximations can cause the algorithm to fail to find
solutions even if solutions exist. However, the rate at which
safe solutions are found is higher compared to traditional
approaches.

IV. CONCLUSION

In this study, we presented two approaches to increasing the
safety and reliability of GPS-denied UAVs using uncertainty-
aware trajectory generation and semantic information to
reduce state estimation drift. These methods enable successful
long-range missions in complex, cluttered, and unstructured
environments. Our open source stack aims to bridge the gap
between academia and industry, fostering widespread adop-
tion, and inspiring further advancements in aerial robotics.
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