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ABSTRACT

Lifelong learning algorithms enable models to incrementally acquire new knowl-
edge without forgetting previously learned information. Contrarily, the field of
machine unlearning focuses on explicitly forgetting certain previous knowledge
from pretrained models when requested, in order to comply with data privacy reg-
ulations on the right-to-be-forgotten. Enabling efficient lifelong learning with the
capability to selectively unlearn sensitive information from models presents a crit-
ical and largely unaddressed challenge with contradicting objectives. We address
this problem from the perspective of simultaneously preventing catastrophic for-
getting and allowing forward knowledge transfer during task-incremental learn-
ing, while ensuring exact task unlearning and minimizing memory requirements,
based on a single neural network model to be adapted. Our proposed solution,
privacy-aware lifelong learning (PALL), involves optimization of task-specific
sparse subnetworks with parameter sharing within a single architecture. We ad-
ditionally utilize an episodic memory rehearsal mechanism to facilitate exact un-
learning without performance degradations. We empirically demonstrate the scal-
ability of PALL across various architectures in image classification, and provide
a state-of-the-art solution that uniquely integrates lifelong learning and privacy-
aware unlearning mechanisms for responsible AI applications.

1 INTRODUCTION

Lifelong learning algorithms enhance the ability of machine learning models to incrementally ac-
quire new skills or integrate new knowledge over time from sequentially observed data (van de Ven
et al., 2022). This continual learning capability is essential for models to stay relevant in dynamic
environments where the observed data distributions change. A widely studied challenge in this
setting is to mitigate catastrophic forgetting, addressing the loss of prior knowledge as new tasks
are learned. There has been various strategies proposed to prevent forgetting, while exploiting for-
ward knowledge transfer to efficiently improve performance in new tasks. However, these lifelong
learning approaches conventionally do not consider the factor of ensuring data privacy, whereas
selectively forgetting (or unlearning) certain knowledge may be required to comply with the legal
regulations on the right-to-be-forgotten (Mantelero, 2013) (e.g., deleting prior information from per-
sonalized recommendation systems). This introduces an additional dimension of complexity, which
requires novel lifelong learning solutions that can ensure unlearning for privacy-awareness.

The field of machine unlearning focuses on explicitly removing the influence of specific data points
from pretrained models (Cao & Yang, 2015). Ensuring exact unlearning, where the model is guar-
anteed to behave as if the unlearned data was never observed, presents a significant challenge that
generally requires partial model retraining (Bourtoule et al., 2021). In particular, current unlearning
solutions assume previous or all data to be available to facilitate exact unlearning, which does not
apply to lifelong learning settings where the data is only sequentially observed. Accordingly, recent
works have started to explore solutions at the intersection of task-incremental lifelong learning and
machine unlearning (Shibata et al., 2021; Liu et al., 2022; Chatterjee et al., 2024), primarily via
inexact unlearning methods which does not guarantee privacy for all previously learned tasks.

We consider a similar lifelong learning problem, where the learning sequence may include exact
task unlearning requests for any of the previously learned tasks, with no access to prior data. A
naive solution in this particular setting is to train independent models for each task, and discard the
models corresponding to the tasks to be exactly unlearned upon request (Liu et al., 2022). However,
this is inefficient since it does not enable knowledge transfer from prior tasks, and becomes mem-
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ory demanding as the number of tasks increase. From a novel perspective, we present an efficient
solution to this multidimensional problem by using a fixed-capacity neural network architecture.

We propose privacy-aware lifelong learning (PALL) as a novel framework that completely alleviates
catastrophic forgetting, facilitates selective knowledge transfer from previously learned tasks, en-
sures exact task unlearning guarantees when requested, and provides a state-of-the-art solution to
lifelong learning and unlearning with minimal model memory requirements. Our approach is
based on jointly optimizing task-specific sparse subnetwork connectivity structures and their param-
eters within a single fixed-capacity model, and isolating this knowledge by freezing its parameters
to prevent catastrophic forgetting. We facilitate learnable knowledge transfer through shared param-
eters by allowing this optimization process to also leverage connections with frozen weights from
previous tasks, if preferred. We perform exact unlearning by resetting the subnetwork parameters
that are optimized on the task to be unlearned, and use an episodic memory rehearsal mechanism
to recover any performance degradation in the other tasks that may occur due to reinitialization of
shared parameters which are unlearned. Our contributions are summarized as follows:

• We formulate a task-incremental learning and unlearning problem with strong privacy con-
siderations, where exact unlearning is possible for all tasks during their lifetime.

• We present privacy-aware lifelong learning (PALL) as a memory-efficient algorithmic so-
lution to this problem, which enables learning without catastrophic forgetting, allows learn-
able forward knowledge transfer, and ensures exact unlearning guarantees by design.

• We empirically demonstrate scalability of PALL on both convolutional benchmark archi-
tectures and attention-based vision transformers, yielding a stable performance in highly
dynamic lifelong learning scenarios with randomly arriving unlearning requests.

2 RELATED WORK

2.1 LIFELONG LEARNING

Lifelong learning, or continual learning, explores the ability of machine learning models to adapt and
learn continuously from a sequentially observed stream of data (De Lange et al., 2021; van de Ven
et al., 2022; 2024). The central challenge is to address the problem of catastrophic forgetting, which
is a widely studied phenomenon caused by traditional learning algorithms resulting in loss of previ-
ously acquired knowledge as new tasks are learned. Approaches to lifelong learning are also ideally
expected to allow forward knowledge transfer, by using information from previous tasks to enhance
performance on new ones. This is primarily a biologically inspired motivation towards designing
models that mimic the brain’s ability to continually and efficiently learn new skills by leveraging
previous experiences (Kudithipudi et al., 2022; Wang et al., 2023a; 2024). Different lifelong learn-
ing scenarios are categorized as task-, class- or domain-incremental learning, which vary in terms of
the target variable spaces. We focus on the task-incremental learning setting, which maintains sepa-
rate label spaces for each task and assumes that the task is known by the agent. Existing approaches
can be broadly divided into regularization-based, rehearsal-based, and architecture-based methods.

Regularization-based methods, such as elastic weight consolidation (EWC) (Kirkpatrick et al.,
2017), learning without forgetting (LwF) (Li & Hoiem, 2017), synaptic intelligence (Zenke et al.,
2017), and memory-aware synapses (Aljundi et al., 2018), aim to ensure that the network retains
previously acquired knowledge while learning new ones by penalizing the updates to the parameters
that are crucial for previously learned tasks in different ways.

Rehearsal-based methods, such as experience replay (Rolnick et al., 2019; Chaudhry et al., 2019)
and generative modeling based rehearsal (Shin et al., 2017), store episodic training set exemplars in
a buffer or use auxiliary generative models to synthesize and replay past data during training. These
methods also extended to utilize gradient episodic memory (GEM) (Lopez-Paz & Ranzato, 2017), or
combine replay with knowledge distillation to maintain balanced data representations (Rebuffi et al.,
2017). Recently, dark experience replay (DER++) (Buzzega et al., 2020) proposed to regularize
training with logit penalties to stabilize learning with respect to samples from the buffer. These
methods were also lately used to improve lifelong learning with transformers (Wang et al., 2022).

Architecture-based methods exploit context-specific model components and reconfigure the neu-
ral network backbone structure. Progressive neural networks (Rusu et al., 2016) and dynamically
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expandable neural networks (Yoon et al., 2017) adjust the model by expanding the network layers to
add new capacities for new tasks when needed. To completely eliminate forgetting, the expert gate
method duplicates the model for each new task and uses an input gating mechanism to use the rele-
vant expert at test-time (Aljundi et al., 2017). Considering limited model memory budget settings,
another line of work proposes to use distinguished sets of parameters via task-specific subnetworks
within a fixed model, which are kept frozen to alleviate forgetting. PackNet (Mallya & Lazebnik,
2018) and CLNP (Golkar et al., 2019) use magnitude-based pruning to obtain these sparse subnet-
works, by reusing all weights from previous tasks for knowledge transfer. Recently, methods that
partially reuse the weights from previous subnetworks were developed to allow selective knowledge
transfer. Specifically, Dekhovich et al. (2023) used heuristic weight importance scores for pruning
based on neuron activations, and winning subnetworks (WSN) (Kang et al., 2022) employ the idea
of trainable importance scores to obtain task-specific subnetworks with selective weight sharing.

2.2 MACHINE UNLEARNING

Machine unlearning is the process of removing the influence of specific data points from a model
(Cao & Yang, 2015; Ginart et al., 2019), in order to re-establish privacy following a user’s request
for certain data samples, e.g., her/his own, to be deleted from the training set of the model, to comply
with legal regulations on the right-to-be-forgotten (Mantelero, 2013). Besides updating the training
set, unlearning methods modify the pretrained model to remove any influence of these samples, such
that complete retraining is not needed to prevent membership inference attacks (Shokri et al., 2017).

Exact unlearning methods aim to completely remove the influence of targeted data, ensuring the
model behaves as if the data was never observed. Beyond certified data removal from smaller scale
linear models (Guo et al., 2020), exact unlearning from neural networks generally requires compute-
efficient model retraining methods. The state-of-the-art approach SISA (Bourtoule et al., 2021)
partitions the training set into disjoint shards and trains separate models on each shard, such that
unlearning only requires retraining on affected shards. This idea was later extended to exploit data
dependency structures across shards for efficiency (Dukler et al., 2023). Other examples include
leveraging ensemble learning of multiple one-class tasks to reduce retraining costs (Yan et al., 2022),
or minimizing parameters of the architecture for faster retraining (Yu et al., 2022).

Approximate unlearning methods manipulate model parameters using gradient based information
to perform more efficient (but inexact) unlearning with faster retraining (Wu et al., 2020; Golatkar
et al., 2020; Sekhari et al., 2021; Graves et al., 2021; Neel et al., 2021). However, such inexact
solutions have been shown to require rigorous evaluations due to potentially misleading interpreta-
tions (Goel et al., 2022; Hayes et al., 2024), and involve further privacy and fairness implications
for the other samples in the datasets (Chen et al., 2021; Zhang et al., 2023). Notably, approximate
unlearning methods also do not generalize in a setting with adaptive requests (Gupta et al., 2021),
which refers to the scenario where unlearning requests arrive sequentially rather than all at once.

2.3 SELECTIVE FORGETTING IN LIFELONG LEARNING

Unlearning in lifelong learning settings has been recently explored in the context of beneficial forget-
ting (Wang et al., 2023b), as opposed to the problem of catastrophic forgetting that continual learning
generally focuses on. One of the earliest methods, learning with selective forgetting (LSF) (Shibata
et al., 2021), modifies models to make incorrect predictions on the unlearned data, by using auxil-
iary mnemonic codes to manipulate the input space. However, this only yields inexact unlearning,
since poor model performance does not ensure privacy. Other works have similarly explored inex-
act unlearning methods, both for task-incremental learning using knowledge deposit modules (Ye
et al., 2022) or student-teacher knowledge distillation mechanisms (Chatterjee et al., 2024), as well
as class-incremental learning with data representation based approaches (Zuo et al., 2024).

Exact unlearning via dataset sharding and retraining (Bourtoule et al., 2021) is not applicable to
lifelong learning, since there is no access to previous datasets. Recently, the continual learning and
private unlearning (CLPU) framework (Liu et al., 2022) explored a related problem with another
baseline approach. Specifically, CLPU defines task-incremental learning with instructions to tem-
porarily or permanently learn the given tasks, and ensures exact unlearning on temporarily learned
tasks by training independent models which are deleted upon request. In an open-world scenario
with privacy guarantees on any continually learned task, this solution becomes memory inefficient.
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3 PRIVACY-AWARE LIFELONG LEARNING (PALL)

3.1 PRELIMINARIES

Lifelong Learning: Consider a sequence of task IDs t ∈ Γ where Γ = {1, . . . , T} in a supervised
task-incremental learning scenario with training datasets Dt = {(xt

1, y
t
1), . . . , (x

t
n, y

t
n)}, and test

datasets Dt
test = {(xt,test

1 , yt,test
1 ), . . . , (xt,test

n′ , yt,test
n′ )}, where x ∈ X and y ∈ Yt denote the raw data

and labels. The learner trains a neural network model fθ with parameters θ ∈ Rd, by applying
a learning algorithm L on Dt to sequentially optimize θt ∼ L(θt−1,Dt), often based on a cross-
entropy loss ℓce(x, y;θ), and estimates a probability distribution over Yt via softmax(fθ(xt)).

In lifelong learning, the learner loses access toD<t = {D1, . . . ,Dt−1} when learning task t. More-
over, for fixed model capacity, θt depends on θτ for all τ < t. This necessitates tailored learning
algorithms to alleviate catastrophic forgetting, such that performance on D<t

test can be maintained,
while ideally achieving forward knowledge transfer by leveraging information from prior tasks.

Exact Task Unlearning: We consider a scenario where the learner is expected to unlearn part of the
previously observed training datasets, i.e., a forget set, due to privacy related concerns. We define
the forget set to be the whole training dataset Dτ corresponding to a previously learned task τ .1 For
a learning algorithm L applied to D≤t, and a previously observed task dataset Dτ to be unlearned,
an exact task unlearning mechanism U uses θt as a reference and returns a model such that:

U
(
θt ∼ L

(
θ0,D≤t

)
, τ

)
=p L

(
θ0,D≤t \Dτ

)
, (1)

where =p indicates that the models share the same probability distribution. Specifically, if the
unlearned model possesses no information about Dτ , an adversary cannot differentiate this model
from a model trained on D≤t \Dτ from scratch based on L, thus U achieves exact unlearning. In
lifelong learning, this constitutes a challenging problem since there is no access to previous datasets.

3.2 PROBLEM STATEMENT

We formulate a generalized lifelong learning problem with privacy considerations, by extending the
traditional task-incremental learning setup to allow exact task unlearning instructions. We consider
that the learner receives a sequence of r requests R1:r, consisting of T task learning and Nu task
unlearning instructions which are provided in a logically consistent order (i.e., a task can only be un-
learned after it has been learned). We assume that all tasks are to be learned once without repetition.
The i-th requestRi in the sequenceR1:r is defined as follows:

R1:r = [R1,R2, . . . ,Rr], such that
{Ri = (t,Dt,L) if task learning,
Ri = (t,U) if task unlearning,

(2)

where L and U are flag variables to indicate if the instruction corresponds to a learning or unlearning
request. Furthermore, the learner keeps a dictionary Ωi of the currently learned task IDs that were
not unlearned: Ωi ← Ωi−1 ∪ {t} if learning task t, and Ωi ← Ωi−1 \ {t} if unlearning task t.

The learner’s goal is to solve this problem by defining a learning algorithm L, and an unlearning
algorithm U , to be applied sequentially based onRi to optimize the model parameters to achieve:

θi ∼


L
(
θi−1,Dt

)
s.t. min

θ

1

|Ωi|
∑
t∈Ωi

E(x,y)∼Dt
test
[ℓce(x, y;θ)] if Ri = (t,Dt,L),

U
(
θi−1, t

)
s.t. U

(
θi−1, t

)
=p L

(
θ0,D[τ∈Ωi]

)
if Ri = (t,U).

(3)

A holistic solution to this problem would mitigate catastrophic forgetting as new tasks are learned,
allow forward knowledge transfer for efficient learning, ensure privacy-awareness with exact
unlearning guarantees, and minimize memory requirements of the algorithm. Our formulation
differs from the CLPU (Liu et al., 2022) setting by generalizing the problem in terms of its privacy
constraints such that any task can always be exactly unlearned (i.e., all tasks are temporarily learned).

1Differently from traditional machine unlearning studies that generally define the forget set to be a subset
of training samples or a certain class in the training dataset, we focus on whole task unlearning scenarios.
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Learn Task 1 Learn Task 2 Learn Task 3 Unlearn Task 1

R1 = (1,D1,L) R2 = (1,D2,L) R3 = (3,D3,L) R4 = (1,U)

“cat” or “dog” “horse” or “deer” “bird” or “rabbit”

Figure 1: Illustration of PALL. Task-specific subnetworks obtained after learning are indicated by
color. The subnetwork mask m2 for Task 2 contains two shared, frozen parameters from Task 1
(dashed blue lines), as well as m2 (green connections). Following the unlearning request for Task 1,
we reset all parameters trained on D1 (blue connections), and retrain any of those parameters which
were used for knowledge transfer in later tasks (shown by red connections) using experience replay.

3.3 EFFICIENT LIFELONG LEARNING WITH EXACT TASK UNLEARNING

Existing lifelong learning methods are not designed for exact task unlearning capabilities. Recent
studies have only explored inexact unlearning methods in this context (Shibata et al., 2021; Chat-
terjee et al., 2024). A naive solution to satisfy Eq. (3) would be to train independent models for
each task, where one can ensure exact unlearning by deleting the task-specific model upon request.2
However, this approach becomes infeasible under limited memory as the number of tasks increases.

We propose privacy-aware lifelong learning (PALL) as a memory-efficient hybrid solution that
utilizes an architecture-based lifelong learning approach, combined with an episodic memory re-
hearsal mechanism. We optimize task-specific subnetworks within a single architecture with limited
model memory, where the associated parameters are kept frozen to eliminate catastrophic forgetting.
During task-specific subnetwork optimization, we allow learnable knowledge transfer to future tasks
by selectively reusing parameters from previous task subnetworks (Kang et al., 2022). We ensure
exact task unlearning by resetting the associated task subnetwork upon request, and use experience
replay to mitigate potential performance degradations in the other tasks that may occur due to the
reinitialization of shared parameters. PALL is illustrated in Figure 1 and described in detail below.

Given a task learning requestRi = (t,Dt,L), our goal is to optimize a sparse subset of the current
parameters θi−1, and a binary subnetwork mask mt ∈ {0, 1}d, which will be used for inference on
task t. We perform this by jointly optimizing the parameters that are unused in previous tasks, and
task-specific importance scores st, which quantifies the significance of each parameter:

min
θ,st

E(x,y)∼Dt [ℓce (x, y;θ⊙mt(st))] . (4)

We compute mt at each iteration using the current largest |st| values on a per layer basis, based on a
connectivity rate α (e.g., α = 0.1 indicates 90% sparsity) (Ramanujan et al., 2020). Since we do not
want to change the parameters trained on previous tasks, we perform masking of parameter updates:

θ ← θ−η
(
∂ℓce

∂ θ
⊙ (1−Mi−1)

)
, st ← st−η

(
∂ℓce

∂ st

)
, (5)

where Mi−1 =
∨

j∈Ωi−1
mj denotes the cumulative binary mask which identifies the combined set

of used and frozen subnetwork parameters until the i-th request. The scores st are optimized via a
straight-through estimator on the binarizing mask mt(st) during backpropagation.

This objective allows learnable forward knowledge transfer by optimizing st for all parameters of
the model without masking, such that mt for different tasks can be overlapping to share parame-

2This is identical to the recently proposed CLPU solution (Liu et al., 2022) in our experimental setting that
requires exact unlearning guarantees for any continually learned task.
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ters. We indicate the parameter indices which are specifically trained using data from Dt with the
submask mt, and mt−mt correspond to the shared, frozen parameter indices from previous tasks.
After task learning, we discard st and store the final mt in a dictionary of binary subnetwork masks
Mi = {mj | j ∈ Ωi}. Due to the parameter masking strategy used during training, we can always
use the corresponding mt to make consistent predictions on Dt

test without catastrophic forgetting.

Importantly, we update Mi ←Mi−1 ∨mt and reset all unused parameters θi⊙ (1−Mi) by sam-
pling from the weight initialization distribution ϕ(.) after training. This ensures that no information
from Dt leaks into the remaining unused parameters outside the ones identified by mt, and helps
to ensure future unlearning guarantees. Lastly, we store a set of randomly sampled exemplars and
logits to an episodic memory buffer Bt = {(xj , yj , zj = fθi ⊙mt

(xj)) | (xj , yj) ∼ Dt}1≤j≤|Bt|.
We do not use this buffer for task learning, but will use these samples upon unlearning requests.

Given a task unlearning request Ri = (t,U), our goal is to update the model parameters θi−1,
such that the new model does not possess any information aboutDt, i.e., none of its parameters have
been optimized with the data observed from task t. We can facilitate this exactly by resetting the
parameters θi−1⊙mt, by sampling new values from the initialization distribution ϕ(.).

If the unlearning requestRi = (t,U) refers to the latest task that was learned inRi−1 = (t,Dt,L),
we can simply rewind this learning instruction by resetting θi−1⊙ mt. However, if the unlearning
request refers to an earlier task t which was followed by other task learning requests τ > t and
τ ∈ Ωi, then purely resetting θi−1⊙ mt will lead to a performance degradation for tasks τ , if mτ

is overlapping with mt to share parameters from task t (red connections in Figure 1). To address
this conflict between knowledge transfer and exact unlearning, we use memory buffer rehearsal and
perform a short retraining step on such affected parameters following the objective:

min
θ̄

∑
τ>t
τ∈Ωi

1

|Bτ |

 ∑
(x,y,z)∼Bτ

ℓce (x, y;θ⊙mτ ) + β ·
∑

(x′,y′,z′)∼Bτ

||fθ⊙mτ
(x′)− z′||22

 , (6)

where θ̄ denotes the affected subset of parameters within θ that were reset, which are indicated by∨
τ>t,τ∈Ωi

(mτ ∧mt). Eq. (6) is a generalized formulation used in various rehearsal based lifelong
learning methods, where β = 0 would yield vanilla experience replay (Chaudhry et al., 2019) and
β = 0.5 yields DER++ (Buzzega et al., 2020). We perform Nf retraining iterations for Eq. (6).
Finally, we delete Bt and mt, and re-compute Mi =

∨
j∈Ωi

mj . Our algorithm is in Appendix A.2.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND MODELS

We performed experiments with sequential CIFAR10 (S-CIFAR10: 5 tasks× 2 classes), CIFAR100
(S-CIFAR100: 10 tasks × 10 classes) and TinyImageNet (S-TinyImageNet: 20 tasks × 10 classes,
40 tasks × 5 classes, or 100 tasks × 2 classes) datasets. We used ResNet-18 and ResNet-34 models
in S-CIFAR10/100 experiments which are commonly used as benchmarks in lifelong learning, and
attention-based ViT-T/8 architectures with S-TinyImageNet (see Appendix A.1 for details).

We designed lifelong learning scenarios with T task learning instructions, and Nu randomly chosen
task unlearning instructions, which are arranged in a logically consistent manner, e.g., a user request
sequence on S-CIFAR10 with Nu = 3 can be: R1:8 = [(1,D1,L), (2,D2,L), (3,D3,L), (2,U),
(4,D4,L), (3,U), (5,D5,L), (1,U)]. Experiments are repeated using 20 random seeds (unless
stated otherwise) for a given Nu, which results in randomly changing the allocation of the classes
into different tasks, as well as the unlearning instructions and their order withinR1:r.

4.2 MODEL TRAINING AND EVALUATIONS

Baseline Methods: We compare our results against state-of-the-art lifelong learning baselines: se-
quential learning by directly finetuning the model on each new task (Sequential), elastic weight
consolidation (EWC) (Kirkpatrick et al., 2017), learning without forgetting (LwF) (Li & Hoiem,
2017), learning with selective forgetting (LSF) (Shibata et al., 2021), gradient episodic memory
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(GEM) (Lopez-Paz & Ranzato, 2017), experience replay (ER) (Chaudhry et al., 2019), dark expe-
rience replay (DER++) (Buzzega et al., 2020), PackNet (Mallya & Lazebnik, 2018), winning sub-
networks (WSN) (Kang et al., 2022), and task-specific independent model training (Independent)
which is equivalent to the naive solution by CLPU (Liu et al., 2022) in our problem setting.

These baseline approaches, except for LSF (Shibata et al., 2021) and Independent (Liu et al., 2022),
are not originally designed with task unlearning capabilities. Thus, we adapt these methods to the
current problem. Particularly for GEM, ER and DER++, for task unlearning, we perform finetuning
for Nf iterations on the remaining episodic memories and predict uniform distributions using the
unlearned task’s episodic memories to accelerate forgetting, prior to removing the corresponding
episodic memory of the unlearned task. For Sequential, EWC, LwF, PackNet and WSN, we do not
perform any changes to the model parameters for task unlearning. We only discard the algorithm-
specific stored variables associated with the task to be unlearned, e.g., the subnetwork masks in
PackNet and WSN (see “Unlearning Implementations” under Appendix A.2 for further details).

Training Configurations: We use a stochastic gradient descent (SGD) optimizer with momentum
for 20 epochs per S-CIFAR10/100 task learning instruction, with a batch size of 32, learning rate of
0.01, and weight decay with parameter 0.0005. For S-TinyImageNet, we use an Adam optimizer for
100 epochs with a batch size of 256, and a cosine annealing learning rate scheduler with an initial
value of 0.001. Here, we do not use weight decay but instead apply dropout to intermediate activa-
tions of ViT-T/8 with p = 0.1 (Steiner et al., 2022). All methods requiring a memory buffer had a
total capacity of 500 and 1000 samples (evenly split across tasks) in S-CIFAR and S-TinyImageNet
experiments, respectively. Unless otherwise specified, we use Nf = 50 and β = 0.5 for Eq. (6). Our
implementations will be made publicly available. Further details are presented in Appendix A.2.

Evaluation Metrics: We evaluate average test set accuracies for the remaining learned tasks after
processing R1:r, i.e., tasks in the set Ωr, and the average test set accuracies for the unlearned tasks
after processingR1:r, i.e., tasks in the set Γ \ Ωr, denoted as Al and Au as follows:

Al =
1

|Ωr|
∑
t∈Ωr

ar,t, Au =
1

Nu

∑
t∈Γ\Ωr

ar,t, (7)

where ai,t denotes the accuracy on Dt
test after request i was completed. We expect better privacy-

aware lifelong learning methods to have higher Al, and chance-level Au by performing random
classification on unlearned tasks. However, it is important to note that a lowerAu does not necessar-
ily correspond to an exact unlearning guarantee. We include Au only to evaluate inexact unlearning
baselines through a weak measure. We leave detailed investigation of inexact unlearning methods
with better metrics, e.g., via empirical privacy auditing (Steinke et al., 2024), for future work.

We evaluate the forgetting impact of task learning and unlearning requests, similar to the notion
of backward knowledge transfer in standard continual learning. Specifically, we define F l and Fu

by evaluating the average decrease in the test set performance for previously learned tasks, after
processing a task learning or unlearning request, which are formally defined as:

F l =
1

T − 1

∑
i∈{2,...,r}
Ri=(−,L)

∑
t∈Ωi−1

(ai−1,t − ai,t)

|Ωi−1|
, Fu =

1

Nu

∑
i∈{2,...,r}
Ri=(−,U)

∑
t∈Ωi

(ai−1,t − ai,t)

|Ωi|
. (8)

We expect better privacy-aware lifelong learning methods to have lower F l and Fu such that there
is no degrading backward transfer impact of learning or unlearning requests.

5 EXPERIMENTAL RESULTS

5.1 COMPARISONS TO STATE-OF-THE-ART IN LIFELONG LEARNING

In Table 1 we evaluate our approach against state-of-the-art methods in lifelong learning, by extend-
ing various methods to the experimental setting of task incremental learning and unlearning. We
consider independent model training for each task as an upper bound baseline with exact unlearn-
ing, which however requires a model size that linearly scales with the number of tasks for inference.
Our method, PALL, provides a novel, state-of-the-art solution in a privacy-aware continual learning
and unlearning setting, considering all four metrics together with model memory requirements.
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Table 1: Evaluations across different datasets and models. In this experimental setting, using inde-
pendent models (bottom row) is identical to CLPU (Liu et al., 2022). Methods with exact unlearning
perform random classification on unlearned tasks (Au). Results are averaged over 20 random seeds,
where the sequence of requests are randomly generated with Nu = 3 unlearning instructions (see
Appendix A.3.5 for worst-case results across seeds). α: task-specific subnetwork connectivity rate.

S-CIFAR10 (T = 5) S-CIFAR100 (T = 10) S-TinyImageNet (T = 20) Model Size
(Inference)Al ↑ Au ↓ F l ↓ Fu ↓ Al ↑ Au ↓ F l ↓ Fu ↓ Al ↑ Au ↓ F l ↓ Fu ↓

Sequential 70.71 72.65 13.86 0.0 35.35 40.07 13.43 0.0 19.41 21.42 7.65 0.0 
d

EWC 74.27 73.28 12.02 0.0 56.01 52.04 7.03 0.0 54.74 53.63 0.49 0.0
LwF 91.65 86.99 1.54 0.0 58.83 63.94 4.41 0.0 43.88 49.53 2.10 0.0
LSF 89.25 80.25 0.36 1.26 56.59 52.88 1.67 4.93 43.40 44.88 0.94 4.60
GEM 87.70 54.14 4.10 1.28 57.44 42.80 6.50 3.76 42.62 29.32 4.32 1.11
ER 87.88 58.48 3.45 1.61 57.63 42.69 4.67 7.91 42.30 28.02 4.44 0.64
DER++ 92.04 53.50 1.62 0.66 66.84 46.56 4.52 0.95 46.50 34.65 3.78 0.43

PackNet 94.77 75.76 0.0 0.0 75.01 58.19 0.0 0.0 60.50 50.72 0.0 0.0  d+Mi

WSN 94.15 74.76 0.0 0.0 73.64 51.52 0.0 0.0 63.67 15.16 0.0 0.0

PALL (α = 0.05) 94.01 Exact 0.0 0.30 70.60 Exact 0.0 0.51 62.14 Exact 0.0 0.64
PALL (α = 0.1) 94.50 Exact 0.0 0.24 72.35 Exact 0.0 0.40 61.36 Exact 0.0 0.72
PALL (α = 0.2) 94.34 Exact 0.0 0.60 72.50 Exact 0.0 1.10 61.11 Exact 0.0 0.91

Independent 95.19 Exact 0.0 0.0 73.22 Exact 0.0 0.0 61.69 Exact 0.0 0.0 d× |Ωi|

Regularization-based methods EWC and LwF, as well as sequential training, were indifferent to task
unlearning instructions, since the original methods are not adapted to unlearning (i.e., Au ≈ Al and
Fu = 0.0). We observed LSF to strongly mitigate catastrophic forgetting (low F l), but its use of
mnemonic codes (Shibata et al., 2021) for finetuning during unlearning was ineffective in our larger
scale problems (i.e., above chance-level Au). Rehearsal based finetuning for unlearning with GEM,
ER and DER++ resulted in better, lowerAu metrics closer to chance-levels. However, this is still an
inexact unlearning approach, and all three methods still minimally suffer from catastrophic forget-
ting (F l > 0). Architecture-based methods PackNet and WSN mitigate catastrophic forgetting with
frozen parameters (F l = 0), while only increasing the model size withMi, similar to PALL. Pack-
Net and WSN also achieve Fu = 0, since unlearning involves deletion of the corresponding mask
without any change to the parameters. However, this makes unlearning inexact, since the parameters
trained on the unlearned task remain. Generally, PackNet and WSN was found to perform well in
task learning (Al), since they are not affected by parameter resetting in unlearning (e.g., PackNet:
75.01, WSN: 73.64, PALL (α = 0.2): 72.50, Independent: 73.22 on S-CIFAR100).

Our method satisfies exact unlearning (i.e., random classification Au on unlearned tasks), no catas-
trophic forgetting (F l = 0), and achieves Al metrics very close to, or higher than training indepen-
dent models with exact unlearning guarantees (e.g., Independent: 61.69, PALL (α = 0.05): 62.14
on S-TinyImageNet). Moreover, rehearsal-based retraining of the reset parameters yields relatively
low Fu (∼below 1%), which shows the efficiency of the designed unlearning process.

Henceforth, we consider α = 1/T for PALL, which is determined by the experimental setting. If the
number of tasks to be learned are not known a priori and α > 1/T , PALL will still allow learning via
knowledge transfer from frozen weights, until some tasks are unlearned to free trainable parameters.

Memory Requirements of PALL: Our method requires minimal memory overhead in the total
model size for inference, by partitioning multiple tasks within a limited number of floating-point
parameters. To achieve this, PALL stores an additional binary mask dictionaryMi, which includes
at most T masks to perform inference. This indicates d parameters (32-bits), andMi = {mj}j∈Ωi

with d-dimensional boolean (1-bit) masks. Alternatively, training independent models for each task
can reach to a maximum of d × T parameters (32-bits), in a scenario where all tasks are learned
without unlearning. Therefore, between the two existing methods for lifelong learning with exact
unlearning capabilities, PALL becomes the memory-efficient choice.

Specifically, our default ResNet-18 with d = 11.2M parameters on S-CIFAR10, ResNet-34 with
d = 21.3M on S-CIFAR100, and ViT-T/8 models with d = 5.4M on S-TinyImageNet, represented
in 32-bits had model sizes of 42.59 MB, 81.30 MB, and 20.63 MB, respectively. For PALL, as
well as PackNet and WSN, the maximum model size that can be achieved where |Ωr| = T , yielded
model sizes of 49.24 MB, 106.70 MB, and 34.41 MB, respectively, considering T additional binary
masks for each layer. In the case of independent models, this scenario yields total model sizes of
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Figure 2: Evaluations with different number of unlearning requests Nu inR1:r (averaged across 10
random seeds each), for the methods that perform retraining or finetuning after task unlearning. We
excluded GEM since the performance was similar to ER. We use α = 1/T for PALL.

212.95 MB, 813.0 MB, and 412.6 MB, respectively, indicating that PALL provides approximately
4.3×, 7.6× and 12× more model size efficient solutions with exact unlearning.

Notably, to facilitate model updates, each method also involves additional storage requirements (e.g.,
previous model weights in EWC, mnemonic codes in LSF). Similarly, PALL additionally requires
the memory buffers {Bt}t∈Ωi , which is also common in all rehearsal-based learning methods. We
further compare training times of each algorithm in Table A8 of Appendix A.3.4.

5.2 EMPIRICAL ANALYSIS OF THE TASK UNLEARNING MECHANISM

In Figure 2 we demonstrate the impact of Nu, on the methods with retraining or finetuning instruc-
tions during task unlearning. We specifically aim to assess the performance of our algorithm in
task-incremental lifelong learning scenarios with more frequent unlearning requests.

We observed that PALL yields a relatively stable performance close to the naive baseline of training
independent models without memory-efficiency considerations (red vs. blue solid lines in Figure 2).
Particularly for large Nu, PALL shows less performance degradation with a parameter reset and
retraining mechanism, than alternative inexact unlearning methods with finetuning: Al ↑ /Fu ↓ on
S-CIFAR100 at Nu = 5: LSF: 50.3/5.2, DER++: 67.7/1.1, PALL: 71.2/0.6, Indep.: 73.9/0.0, and
on S-TinyImageNet at Nu = 9: LSF: 36.9/4.9, DER++: 44.8/0.6, PALL: 59.2/0.7, Indep.: 62.1/0.0.
We present additional experiments on the scalability of PALL in longer lifelong learning scenarios
with S-TinyImageNet (T = 100) and even larger Nu, in Table A6 of Appendix A.3.3.

Impact of Retraining After Unlearning: We investigate the impact of Nf during rehearsal-based
retraining of the reset parameters in Appendix A.3.1. Mainly, our results show that simply resetting
the affected parameters without retraining yields comparably worse performance (e.g., Al for S-
CIFAR100 with Nf = 0: 70.24 vs Nf = 50: 72.35), indicating the necessity of retraining the reset
weights through a memory buffer. We were also able to achieve better performance recovery after
unlearning by using longer retraining durations (e.g., Al for S-CIFAR100 with Nf = 100: 72.46).

We also present results on the ratio of retrained parameters during unlearning, and obtained param-
eter values after retraining. We observed that only 1− 4% of the parameters needed to be retrained
via Eq. (6), resulting in weights numerically different from those before unlearning.

Influence of Episodic Memory Rehearsal: We performed ablation experiments on our choices for
the episodic memory rehearsal method in Appendix A.3.2. In brief, we observed that β = 0.5 is the
preferable choice for retraining, as previously claimed by DER++ (Buzzega et al., 2020), and using
a larger memory buffer size generally increases performance (e.g., S-CIFAR100, Al ↑ /Fu ↓ with
buffer size 200: 71.90/0.72, buffer size 500: 72.35/0.40, buffer size 1000: 73.58/0.23).

We also investigate the influence of the random exemplar sampling method used to select the samples
to be stored in the memory buffer in Appendix A.3.2. We observed that using prioritized sampling
mechanisms (Rebuffi et al., 2017) that are different than random, did not improve performance.
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5.3 COMPARISONS TO INDEPENDENT SUBNETWORKS WITHOUT KNOWLEDGE TRANSFER

We designed an ablation experiment where we evaluate independently trained smaller architectures
with an equivalent total model size to PALL, i.e., using models with d/T parameters. Similar to our
baseline Independent, this setting also ensures exact unlearning, no catastrophic forgetting (F l = 0),
and no impact of unlearning (Fu = 0). We consider two configurations: (1) static sparsity, where T
independent sparse subnetworks with 1/T connectivity are randomly initialized within a model, (2)
dynamic sparsity, where we also optimize the sparse connectivity structure of these T independent

Table 2: Comparisons on S-TinyImageNet (40 tasks × 5
classes, and 100 tasks × 2 classes), with independent subnet-
works at 1/T sparsity. Results are averaged over 10 random
seeds with Nu = 3. PALL uses Nf = 10 retraining iterations.

T = 40 T = 100 Model Size
(Inference)Al ↑ Fu ↓ Al ↑ Fu ↓

Static Sparse (Ind.) 70.30 0.0 80.70 0.0 d+Mi

Dynamic Sparse (Ind.) 71.19 0.0 83.75 0.0 d+Mi

PALL (α = 0.01) 71.00 0.56 85.89 0.53 d+Mi

PALL (α = 0.025) 72.07 0.36 86.11 0.43 d+Mi

PALL (α = 0.05) 72.03 0.32 85.80 0.35 d+Mi

Independent 71.76 0.0 86.80 0.0 d× |Ωi|

subnetworks via score optimization.
The latter, i.e., independent mod-
els via dynamic sparsity, resembles
to PALL with the only difference
of not allowing knowledge transfer
across subnetworks via weight shar-
ing. This also eliminates the need
for a memory buffer and parameter
retraining for exact unlearning.

In Table 2, we present our results
on S-TinyImageNet with 40 or 100
tasks, where the architecture is di-
vided into very small, task-specific
subnetworks (e.g., 54K params at 99% sparsity), and learning without knowledge transfer becomes
challenging. We observed that dynamic sparsity outperforms independent subnetworks with static
sparsity, and PALL consistently outperforms all independent subnetworks with the use of knowledge
transfer, e.g., for T = 100, PALL (α = 0.025): 86.11, Dynamic: 83.75. This makes PALL favorable
in longer lifelong learning scenarios, where the number of tasks can be very high or unknown.

6 DISCUSSION

Lifelong learning and machine unlearning explores two important, yet mostly independently studied
aspects of truly adaptive, flexible, and responsible AI systems. We proposed PALL as an algorithmic
solution combining these two challenging and contradicting aspects, by satisfying all key pillars in
both domains (i.e., no catastrophic forgetting, forward knowledge transfer, exact unlearning guaran-
tees, memory-efficiency), for the first time. Our empirical evaluations demonstrate the effectiveness
and scalability of PALL in dynamic environments, where efficient task learning and exact unlearn-
ing capabilities are desired by state-of-the-art models. Notably, we have shown PALL to yield up to
12× more model size efficient solutions with better or comparable task learning performances, as
opposed to the naive baseline of training independent models to satisfy exact unlearning.

Our method is partially based on architecture-based lifelong learning methods that allow selec-
tive knowledge transfer (Kang et al., 2022; Ramanujan et al., 2020), which we innovatively ex-
tended into a hybrid learning strategy that is also equipped with a rehearsal-based lifelong learning
method (Buzzega et al., 2020). This enables our algorithm to handle exact task unlearning requests
in the presence of knowledge transfer, which was not addressed to date. Additionally, we also per-
formed critical modifications to the existing subnetwork optimization methods, such as reinitializing
the scores and unused weights after each learning request. These were required to satisfy overall ex-
act unlearning guarantees, and resulted in effective learning and unlearning abilities simultaneously.

In this work, we focus on task-incremental learning settings, where the task ID is available to the
learner. Our approach is not yet readily applicable to a class- or domain-incremental scenario where
all previously learned tasks’ label spaces are unified, since PALL disentangles the choice of the
task-specific subnetwork based on the task IDs to ensure exact unlearning. To be applicable in
these settings, PALL can be extended with a privacy-aware auxiliary algorithm to first identify the
task, and subsequently utilize task-specific subnetwork via gating (Aljundi et al., 2017; Von Oswald
et al., 2019). Our work also does not yet consider selective data unlearning, but instead performs
complete task unlearning. To achieve stricter privacy with deletion guarantees for each data sample,
our approach can be combined with differentially private optimization methods (Lai et al., 2022),
in future work. Finally, going beyond our scope on vision tasks, we believe that applying PALL to
language processing tasks in future work would also be of broad interest for responsible AI systems.
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Reproducibility Statement: We provide detailed descriptions of the training configurations and
hyperparameters of the experiments reported in this paper, in Appendix A.1 and A.2. Our algorithm
is also outlined in Appendix A.2, and our implementations will be made publicly available.
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