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Abstract

Few-shot named entity recognition (NER) de-001
tects named entities within text using only a002
few annotated examples. One promising line003
of research is to leverage natural language de-004
scriptions of each entity type: the common la-005
bel PER might, for example, be verbalized as006
“person entity.” In an initial label interpretation007
learning phase, the model learns to interpret008
such verbalized descriptions of entity types. In009
a subsequent few-shot tagset extension phase,010
this model is then given a description of a pre-011
viously unseen entity type (such as “music al-012
bum”) and optionally a few training examples013
to perform few-shot NER for this type. In this014
paper, we systematically explore the impact of015
massively scaling up the number and granular-016
ity of entity types used for label interpretation017
learning. To this end, we leverage WikiData018
to create a dataset with orders of magnitude019
of more distinct entity types and descriptions020
as currently used datasets. We find that this021
increased signal yields strong results in zero-022
and few-shot NER in in-domain, cross-domain,023
and even cross-lingual settings (e.g. increasing024
F1 ↑14.7 pp. on FewNERD and ↑9.0 pp. on025
Chinese OntoNotes). Our findings indicate sig-026
nificant potential for improving few-shot NER027
through heuristical data-based optimization.028

1 Introduction029

Few-shot named entity recognition (NER) refers to030

identifying and classifying named entities within031

text by learning from a few annotated examples.032

A widely adopted strategy in few-shot NER em-033

ploys transfer learning with pre-trained language034

models (PLMs) to interpret labels based on their se-035

mantic meaning (Yang and Katiyar, 2020; de Lichy036

et al., 2021; Das et al., 2022; Ma et al., 2022a,b,c;037

Chen et al., 2023; Zhang et al., 2023). The main038

idea is that such models learn to interpret a natural039

language description of an entity type for use in a040

word-level decoder. They learn in two phases:041

Figure 1: Few-shot NER requires an initial label in-
terpretation learning phase using the entity types of a
source dataset. We propose learning from orders of mag-
nitude more distinct types and more expressive label
semantics than current NER datasets by using existing
entity linking datasets annotated with WikiData infor-
mation.

1. a label interpretation learning phase on an 042

NER-annotated dataset with a set of entity 043

types and their verbalizations. For instance, 044

the common label PER might be verbalized 045

as "person entity." In this phase, the model 046

learns to associate entity type verbalizations 047

with matching NER annotations. 048

2. a few-shot tagset extension phase in which 049

the model is expanded to previously unseen 050

entity types using only a new verbalization 051

and optionally a few example annotations. For 052

instance, to extend the model to recognize the 053

names of music albums, one would only need 054

to provide a verbalization ("music album") 055

and a few examples. 056

Data limitations. However, as Figure 1 indicates, 057

prior studies used only very limited numbers of 058

distinct entity types for label interpretation learn- 059
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ing. This is an artifact of relying on common NER060

datasets such as CoNLL-03 (Tjong Kim Sang and061

De Meulder, 2003), OntoNotes (Pradhan et al.,062

2012), WNUT-17 (Derczynski et al., 2017), or063

FewNERD (Ding et al., 2021), which only con-064

tain a small number of distinct entity types (be-065

tween 4 and 66 types). Furthermore, the majority066

of their entity types have a simple semantic defini-067

tion, such as “person,” “location,” or “organization,”068

and occur across several datasets. We hypothesize069

that these limitations overly constrain the semantic070

signal that is observed during label interpretation071

learning, thus constituting a main limiting factor to072

few-shot NER.073

Contributions. With this paper, we introduce LIT-074

SET (label interpretation learning by scaling entity075

typing) and systematically investigate the intuition076

that increasing the number of distinct entity types077

and their descriptive granularity in label interpre-078

tation learning improves few-shot NER capability.079

To this end, we heuristically create a dataset with080

orders of magnitude more distinct entity types than081

commonly employed (see Figure 1) and use it for082

extensive experimentation. In more detail, our con-083

tributions are:084

• We present experiments to validate our hy-085

pothesis on the largest existing NER dataset086

(FewNERD). We find that few-shot perfor-087

mance increases with label interpretation088

learning on more distinct entity types and089

more expressive descriptions (cf. Section 2).090

• To massively scale up label interpretation091

learning, we present an approach for deriving092

a dataset with orders of magnitude more gran-093

ular entity type annotations. Our approach094

leverages an existing entity linking dataset and095

enriches it with type descriptions from Wiki-096

Data (Vrandečić and Krötzsch, 2014) (cf. Sec-097

tion 3).098

• We comprehensibly evaluate label interpreta-099

tion learning on our derived corpus against100

classical setups for zero- and few-shot NER101

in in-domain, cross-domain, and cross-lingual102

settings (cf. Section 4).103

We find that label interpretation learning on our104

heuristically derived corpus matches and, in many105

cases, significantly outperforms strong baselines.106

Our findings indicate significant potential for im-107

proving few-shot NER through heuristical data-108

based optimization.109

To enable the research community to reproduce 110

and leverage this work, we release the generated 111

dataset and source code under the Apache 2 license 112

at: (inserted after review) 113

2 Validation Experiment for Impact of 114

Entity Types and Label Descriptions 115

We first conduct an experiment to validate the intu- 116

ition that a richer training signal for label interpre- 117

tation learning positively impacts few-shot NER. 118

To this end, we create a set of training datasets for 119

label interpretation learning that each contain the 120

same number of entities but vary in the number 121

of distinct entity types and their label verbaliza- 122

tion. We then compare the few-shot NER ability of 123

models trained on each of these datasets. 124

2.1 Experimental Setup 125

Definitions. To evaluate few-shot NER, an existing 126

dataset D is split based on its labels L: the label 127

interpretation training split DLIT and a few-shot 128

fine-tuning split DFS . The corresponding labels of 129

each split LLIT and LFS are set such that LLIT ∪ 130

LFS = L and LLIT ∩ LFS = ∅. 131

Dataset. We use FewNERD in our experiment 132

since it is the largest existing dataset w.r.t. the num- 133

ber of distinct entity types (66 types). We set the 134

labels of DLIT to be the 50 most occurring en- 135

tity types and the labels of DFS to be the 16 least 136

occurring. We perform an analysis along two di- 137

mensions: 138

• To measure the impact of increasing the num- 139

ber of distinct entity types in label interpre- 140

tation learning, we create 5 versions of the 141

training data containing 3, 5, 10, 30, and all 142

50 labels, respectively. Importantly, all 5 ver- 143

sions are of the same size and contain the same 144

number of labeled entities (10k). 145

• To measure the impact of richer verbalizations, 146

we define 3 different labels semantics: (1) a 147

"cryptic" unique, random 2-character label, 148

(2) a "short" description as regularly used ac- 149

cording to research and (3) a "long" descrip- 150

tion with examples (cf. Appendix A). 151

To exclude the respective labels from each split, 152

we follow prior work and mask labels LLIT in DFS 153

and LFS in DLIT with the O-token (meaning no 154

named entity). 155

Few-shot model. We employ the frequently used 156

bi-encoder architecture (Blevins and Zettlemoyer, 157
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Figure 2: F1 scores for few-shot NER tagset extension depending on how many distinct entity types were seen in
label interpretation learning (columns), and how label types were verbalized (rows). We report F1 scores averaged
over five seeds. We observe that (1) more distinct labels during label interpretation training and (2) more semantically
expressive labels improve few-shot NER.

2020; Ma et al., 2022a; Zhang et al., 2023) with158

two bert-base-uncased transformers as our back-159

bone architecture. For few-shot tagset exten-160

sion, we sample a support set S by k-shot down-161

sampling DFS . The support set S contains each162

label from LFS exactly k times. We sample three163

different support sets using different seeds and re-164

port the averaged micro-F1 scores over these itera-165

tions.166

2.2 Results167

Figure 2 shows the results of tagset extension when168

performing label interpretation learning on corpora169

with different numbers of labels (columns) and170

different verbalization methods (rows). For each171

label interpretation learning, we report the average172

F1-score for tagset extension for 1-shot, 5-shot, and173

10-shot learning, respectively.174

Improved generalization with more types. We175

observe that the number of distinct labels seen176

during label interpretation training increases the177

generalization in few-shot settings independent of178

the label semantics used. We find improvements179

from +3.0 F1 (cf. L = 3 vs. L = 50, label semantic:180

cryptic) up to 8.7 F1 (cf. L = 3 vs. L = 50, label181

semantic: short) on average in pp.182

More expressive descriptions helpful. We also 183

find that increasing the expressiveness of label ver- 184

balizations strongly improves the few-shot perfor- 185

mance. This observation is independent of the 186

number of labels seen in label interpretation learn- 187

ing, such that we find improvements ranging from 188

+16.8 F1 (cf. label semantics: simple vs. long, with 189

L = 3) up to 22.0 F1 (cf. label semantics: simple 190

vs. long, with L = 50) on average in pp. 191

These observations support our intuition that a 192

richer training signal in label interpretation learning 193

improves few-shot NER performance. 194

3 Large-Scale Label Interpretation 195

Learning 196

As our validation experiment found a positive im- 197

pact of increasing the number and expressivity of 198

entity types, we now aim to scale the signal for 199

label interpretation learning to orders of magnitude 200

more entity types. To this end, we heuristically 201

derive an NER-annotated dataset we call LITSET 202

using entity disambiguation and WikiData (Sec- 203

tion 3.1). We also present a small modification to 204

the bi-encoder network to handle a very large space 205

of entity types (Section 3.2). 206
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Figure 3: An example annotation of a sentence in ZELDA. WikiData can provide distinct descriptions and labels
about the respective entity, whereas the annotations, compared to existing datasets, would be less informative if not
misleading.

Dataset Label length # Distinct types

CoNLL-03 9.8± 2.9 4
WNUT17 8.3± 2.8 6
OntoNotes 9.8± 8.5 18
FewNERD 17.3± 7.6 66

LITSET 99.8± 45.4 ~817k

Table 1: Average label description length (in characters)
and distinct entity types of NER datasets. Label length
and distinct entity types for LITSET refers to all annota-
tions as indicated in Figure 3

3.1 LITSET Dataset207

The task of entity disambiguation is closely related208

to NER. Here, an already detected entity is disam-209

biguated by linking it to an existing knowledge base210

such as Wikipedia or WikiData. Existing training211

and evaluation datasets for entity disambiguation212

thus contain named entities marked with links to213

entries in the WikiData knowledge base.214

One advantage of WikiData is that it contains215

fine-grained labels and free-form text descriptions216

of entities in the knowledge base. For instance, the217

entity "John Hopkins Hospital" (see Figure 3) has218

the free-form description "hospital in Baltimore,219

Maryland" and belongs to the classes "teaching220

hospital", "university hospital", and many others.221

As the Figure shows, these labels are significantly222

more fine-grained than CoNLL-03 and even FewN-223

ERD entity types which simply classify it as an224

"organization" or a "hospital" respectively.225

Deriving LITSET. In our approach, we leverage226

these classes and descriptions as type annotations.227

As base entity disambiguation dataset, we use the 228

recently released ZELDA (Milich and Akbik, 2023) 229

benchmark as it represents a broad range of topics, 230

making it a suitable dataset for the general domain. 231

For each linked entity in the dataset, we retrieve 232

the types and descriptions from WikiData and use 233

them as NER annotations. 234

However, as Figure 3 illustrates, each linked 235

entity belongs to multiple WikiData classes and 236

has a potentially long description. For this rea- 237

son, we subsample the annotations to bring their 238

length more in line with standard NER datasets. 239

Specifically, for each entity xi, we uniformly 240

sample whether we annotate it with either the 241

description attribute or the labels attribute 242

(cf. Figure 3). When utilizing the labels attribute, 243

we randomly select the number of tags following a 244

geometric distribution with p = .5. Subsequently, 245

we uniformly sample tags from the label attribute 246

until the number of tags is reached. Lastly, we 247

concatenate the selected tags for final annotation. 248

3.2 Backbone Architecture 249

We conduct our experiments based on the widely 250

adopted bi-encoder model due to its simplicity. 251

The model utilizes two separate transformers to 252

encode tokens and labels, respectively. The first 253

transformer generates embeddings et ∈ RN×H for 254

all tokens, where N represents the number of to- 255

kens and H denotes the hidden size of the model. 256

The second obtains the [CLS]-token embeddings 257

el for the labels, which are converted into natural 258

language. We employ cross-entropy loss and derive 259
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final predictions with260

ŷ = argmax softmax(et · el)

However, training a model, including the bi-261

encoder, with a wide array of distinct classes is non-262

trivial. With L denoting the set of labels, the shape263

of label representations is el ∈ R|L|×H . Given that264

|L| ≈ 106 (cf. Figure 1), we aim to circumvent265

the resulting matrix multiplication for two reasons:266

(1) potential computational limitations and (2) op-267

timization difficulty. To alleviate these issues, we268

restrict our consideration to labels present in the269

current batch Lb with |Lb| ≪ |L| for loss calcula-270

tion.271

While the resulting dataset has the potential to272

be applied to various few-shot NER methods if the273

aforementioned issues are addressed, we leave this274

exploration to future research.275

4 Experiments276

We evaluate the impact of label interpretation train-277

ing in various tagset extension settings. Through-278

out all experiments, we compare label interpreta-279

tion learning on LITSET with training on different280

baseline datasets. Specifically, we conduct the fol-281

lowing experiments:282

1. In-domain transfer: Identical domain in la-283

bel interpretation learning and few-shot fine-284

tuning (cf. Section 4.1).285

2. Cross-domain transfer: Different domain in286

label interpretation learning and few-shot fine-287

tuning (cf. Section 4.2).288

3. Cross-lingual transfer: Identical domain in289

label interpretation learning and few-shot fine-290

tuning, but languages differ between both291

phases (cf. Section 4.3).292

Further, we support our experiments by analyz-293

ing the impact of different label semantics used294

between label interpretation learning and few-shot295

fine-tuning (cf. Section 4.1). At last, we refer to296

our ablation experiments on the impact of different297

transformer models as label encoder and negative298

sampling (cf. Appendices D and E).299

4.1 Experiment 1: In-Domain Transfer300

This experiment replicates the most common eval-301

uation setup for few-shot tagset extension, where302

both DLIT and DFS are sourced from the same303

Figure 4: Exemplary illustration on the INTRA and
INTER settings of FewNERD experiments.

NER dataset. Our baseline is the default approach 304

of label interpretation learning on DLIT , which is 305

"in-domain" since it shares the same textual domain 306

and entity granularity as the evaluation data. We 307

compare this baseline against label interpretation 308

learning on LITSET. 309

4.1.1 Experimental Setup 310

We use OntoNotes and FewNERD in our ex- 311

periments, as they have important properties: 312

OntoNotes covers different domains and languages 313

such that we can measure the transferability of our 314

approach. FewNERD comes with two annotation 315

types: coarse labels Lc (8 classes) and fine labels 316

Lf (66 classes). Lf are subclasses of the Lc such 317

that the entity mentions of both annotations are 318

identical, only their surface form differs. Thus, 319

we can evaluate our dataset against FewNERD in 320

two ways: (1) the INTRA setting in which we split 321

the labels based on coarse annotations, and (2) in 322

which we split based on the fine annotations (cf. 323

Figure 4). 324

We split each dataset into two equally sized label 325

sets. To reduce the impact of randomness, the ran- 326

dom split is repeated three times. We then perform 327

few-shot fine-tuning runs with three different seeds 328

for each random split. 329

Comparison with LITSET. To focus solely on 330

understanding the impact of scaling entity types 331

without the influence of increased entity detection, 332

we downsample LITSET to match the number of 333

entity mentions in each baseline dataset. Further, 334

to make a fair comparison, we remove labels from 335

our approach that match those in the baseline labels 336

LFS and mask them with the O-token. However, 337
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Evaluation data DFS for
tagset extension from:

Label interpretation learning
data DLIT from:

0-shot 1-shot 5-shot 10-shot Avg.

FewNERDINTRA

LITSET 3.2± 1.0 30.7± 5.3 51.9± 5.2 57.9± 6.2 35.9

w/ all labels 0.9± 0.4 20.1± 5.0 47.7± 6.0 54.1± 5.9 30.7

w/ labels only 3.7± 0.5 14.3± 8.3 29.6± 7.0 37.5± 6.1 21.3

w/ description only 1.0± 0.3 19.8± 8.8 37.5± 7.9 46.2± 5.9 26.1

FewNERDINTRA (Baseline) 5.8± 0.4 8.9± 4.3 31.4± 9.2 38.4± 7.5 21.1

OntoNotes

LITSET 8.7± 1.7 21.9± 8.4 40.1± 7.2 48.4± 6.2 29.5

w/ all labels 3.5± 1.3 20.0± 9.5 38.4± 8.3 46.5± 6.3 27.1

w/ labels only 0.1± 0.1 14.3± 8.3 29.6± 6.9 37.5± 6.1 20.4

w/ description only 4.2± 1.3 19.8± 8.8 37.5± 7.9 46.2± 5.9 26.9

OntoNotes (Baseline) 0.2± 0.1 11.2± 9.3 38.3± 12.0 54.9± 7.6 26.2

FewNERDINTER

LITSET 24.3± 0.6 39.8± 2.9 49.1± 1.9 52.1± 1.9 41.3

w/ all labels 17.6± 2.5 36.1± 4.7 47.2± 3.0 50.4± 2.4 37.8

w/ labels only 2.9± 0.6 24.7± 1.8 37.9± 1.7 42.4± 2.0 27.2

w/ description only 16.2± 2.0 37.4± 2.9 47.8± 2.2 50.9± 1.9 38.1

FewNERDINTER (Baseline) 10.6± 0.8 38.4± 3.1 50.4± 3.1 53.3± 2.6 38.2

Table 2: Evaluation of zero- and few-shot tagset extension for three datasets (FewNERDINTRA, Ontonotes,
FewNERDINTER ). We compare the baseline approach of using in-domain data for label interpretation learn-
ing against using LITSET. Despite lacking the in-domain advantage of the baselines, training on LITSET matches or
significantly outperforms the in-domain baseline in nearly all settings. Best scores in bold, 2nd best underlined.

we note that due to our sampling method, LITSET338

annotations may not always be consistent. Thus,339

we can only ensure excluding exact overlaps with340

the few-shot domain.341

4.1.2 Results342

The experimental results are shown in Table 2 and343

find that LITSET substantially improves the few-344

shot performance in in-domain settings.345

Detecting general entity types. We first observe346

that classifying completely new entity types is dif-347

ficult with existing datasets (cf. OntoNotes and348

FewNERD (INTRA)). Even though masking all349

target labels and the limited exposure to in-domain350

data, our approach can effectively leverage its gen-351

eral label interpretation ability to strongly out-352

perform baselines. We report +14.8 F1 on av-353

erage in .pp on FewNERDINTRA and +3.3 F1 on354

OntoNotes. While LITSET consistently outper-355

forms FewNERD (INTRA) except when k = 10 in356

the OntoNotes setting.357

Differentiating coarse entity types. When coarse358

entity types are learned during label interpretation359

training (cf. FewNERDINTER), we observe that all360

approaches obtain improved few-shot capabilities,361

especially when k < 5. This finding suggests that362

adapting to unseen labels is particularly effective363

when the training includes understanding broad364

categories (e.g., “person”). With LITSET, we out-365

perform FewNERDINTER in 0- and 1-shot settings 366

(+13.7 F1 and +1.4 F1 on average in pp.) and re- 367

main competitive at higher k-shots. 368

Impact of label semantics. We measure the impact 369

of different heuristics for creating LITSET types. 370

To test this, we conduct various experiments using 371

LITSET with (1) only labels, (2) only descriptions, 372

and (3) all label information available (cf. Figure 3). 373

We first find using only label annotations results in 374

decreased performance compared to the baselines 375

(cf. FewNERDINTER and OntoNotes), suggesting 376

the need for richer label meanings. 377

When using only the description annota- 378

tions, we notice that LITSET yields similar perfor- 379

mance to their respective baselines, whereas in the 380

FewNERDINTRA setting, substantial improvements 381

are observed compared to the baselines. 382

At last, we observe that alternating shorter labels 383

and expressive short descriptions best prepares LIT- 384

SET for arbitrary target domains. In this configura- 385

tion, we find that LITSET substantially outperforms 386

all baselines. 387

4.2 Experiment 2: Cross-Domain Transfer 388

This experiment assesses the performance of LIT- 389

SET and its corresponding baselines when domains 390

of label interpretation learning and few-shot fine- 391

tuning differ. We selected out-of-domain datasets 392

to cover labels that are not present in the current 393
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Evaluation data DFS for
tagset extension from:

Label interpretation learning
data DLIT from:

0-shot 1-shot 5-shot 10-shot Avg.

JNLPBA
LITSET 41.3± 2.0 25.4± 5.3 51.3± 3.4 57.7± 3.0 43.9

w/ all labels 42.2± 1.8 22.5± 8.1 49.9± 3.8 55.8± 2.7 42.6

FewNERDINTER 8.2± 1.5 29.5± 15.0 46.0± 7.6 49.7± 6.6 33.4

CLUB
LITSET 6.1± 0.9 19.4± 3.3 25.9± 3.7 33.0± 2.1 21.1

w/ all labels 7.3± 0.1 19.9± 2.0 27.6± 4.6 35.1± 3.1 22.5

FewNERDINTER 1.7± 0.2 16.9± 1.8 25.5± 4.9 32.2± 3.7 19.1

Table 3: LITSET outperforms FewNERD in out-of-domain settings on JNLPBA (bio-medical domain) and CLUB
(chemical domain).

NER dataset to assess the genuine few-shot aspect394

of these models. We compare our approach with395

FewNERDINTER in this context. The results are396

presented in Table 3.397

4.2.1 Experimental Setup398

For out-of-domain experiments, we utilize399

JNLPBA (Collier et al., 2004) (bio-medical do-400

main) and the Chemical Language Understanding401

Benchmark (CLUB) (Kim et al., 2023) (chemi-402

cal domain). As detailed in Appendix C, our ap-403

proach demonstrates transferability to datasets be-404

yond those used in this experiment. However, we405

excluded them from our analysis here due to their406

limited number of distinct entity types and their407

label overlap with baseline models.408

4.2.2 Results409

As Table 3 shows, we find that LITSET signifi-410

cantly outperforms FewNERD with average im-411

provements of +10.5 F1 on JNLPBA and +3.4 F1412

on CLUB.413

LITSET better transfers to new domains. While414

our approach consistently outperforms FewNERD415

on CLUB and JNLPBA for k-shot > 5, LITSET416

achieves an average increase of +34.0 F1 pp. in417

zero-shot settings on JNLPBA. This notable im-418

provement can be attributed to the equal masking419

procedure applied to labels in FewNERDINTER and420

LITSET. Since JNLPBA labels and FewNERD421

labels are disjoint, no additional masking is re-422

quired for FewNERDINTER models. Consequently,423

to maintain a fair comparison, we do not mask any424

labels in LITSET.425

Impact of inconsistent annotations. Furthermore,426

we observed that LITSET underperforms by -4.1 F1427

pp. compared to the baseline in 1-shot settings on428

JNLPBA. Additionally, its performance is inferior429

even compared to the 0-shot scenario. This indi-430

cates the instability of few-shot fine-tuning with431

LITSET at very low k. Upon further qualitative 432

analysis of the generated dataset, we discovered 433

that annotations from entity linking benchmarks 434

like ZELDA might not be consistently annotated 435

(cf. Appendix F). This inconsistency could be one 436

possible reason for the observed performance drops. 437

However, as k increases, our approach demon- 438

strates the ability to quickly adapt to the target 439

domain once again. 440

4.3 Experiment 3: Cross-Lingual Transfer 441

In this experiment, we utilized the multilingual 442

xlm-roberta-base model to assess the transfer- 443

ability of LITSET across languages. English 444

OntoNotes was employed as the baseline for label 445

interpretation training since ZELDA is an English 446

corpus. The results are shown in Table 4. 447

Results. We find strong improvements across all 448

k-shots on the Arabic and Chinese segments of 449

OntoNotes, namely +3.9 F1 and +9.0 F1 on aver- 450

age in pp., respectively. These findings underscore 451

our model’s ability to discern subtle annotation 452

differences across languages despite the similar 453

contexts between label interpretation learning and 454

few-shot fine-tuning in the baseline. This empha- 455

sizes our model’s robust understanding of labels in 456

multilingual scenarios. 457

Furthermore, we observed that utilizing 458

xlm-roberta-base also improves LITSET’s 459

performance in monolingual settings, as discussed 460

in Section 4.1. We were able to reduce the previous 461

performance gap at k = 10 from -6.5 F1 to -0.5 F1 462

on average in pp., thereby increasing the overall 463

performance from +3.3 F1 to +6.5 F1. 464

5 Related Work 465

Despite advancements achieved through pre- 466

trained word embeddings (Peters et al., 2018; Ak- 467

bik et al., 2018; Devlin et al., 2019; Liu et al., 2019; 468
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Evaluation data DFS for
tagset extension from:

Label interpretation learning
data DLIT from:

0-shot 1-shot 5-shot 10-shot Avg.

OntoNotes (EN)
LITSET (EN) 9.9± 3.2 27.4± 8.5 46.4± 6.7 55.5± 6.4 34.8

OntoNotes (EN) 0.3± 0.1 15.9± 8.4 41.1± 15.0 56.0± 12.7 28.3

Ontonotes (AR)
LITSET (EN) 0.0± 0.0 7.2± 6.1 14.8± 6.3 22.0± 5.8 14.7

Ontonotes (EN) 0.0± 0.0 4.7± 4.7 12.8± 4.8 14.9± 7.9 10.8

Ontonotes (ZH)
LITSET (EN) 3.0± 0.9 22.7± 8.6 37.6± 5.0 42.8± 5.0 26.5

Ontonotes (EN) 1.6± 0.3 10.8± 5.9 26.2± 6.9 31.2± 7.9 17.5

Table 4: Tag set extension with baseline pre-finetuning and few-shot fine-tuning in the same domain. LITSET
outperforms models that are pre-finetuning on in-domain data when pre-finetuning is done on a small number of
labels.

Yamada et al., 2020; Raffel et al., 2020), few-shot469

NER focuses explicitly on generalizing to previ-470

ously unseen label categories by leveraging a small471

number of labeled examples.472

Metric learning (Vinyals et al., 2016; Snell et al.,473

2017) is a common approach for few-shot NER474

(Fritzler et al., 2019; Wiseman and Stratos, 2019;475

Ziyadi et al., 2020) and employs a distance metric476

to learn a shared representation space and assign477

labels based on class prototypes (Yang and Katiyar,478

2020; Hou et al., 2020; Ma et al., 2022a; Han et al.,479

2023). Additional components like contrastive loss480

(Das et al., 2022; Layegh et al., 2023) or meta-481

learning (de Lichy et al., 2021; Ma et al., 2022c;482

Wang et al., 2022a) often further improve the per-483

formance. Our approach aligns with this research484

direction because we employ the bi-encoder archi-485

tecture as proposed in Ma et al. (2022a); Zhang486

et al. (2023) with an adapted loss calculation. How-487

ever, prior work did not investigateimpact of the488

dataset used for label interpretation learning. We489

instead increase the richness of the training signal490

learning label verbalizations. Our approach may491

thus be applied to all prior work that relies on la-492

bel verbalizations, but may require architectural493

adaptations to accommodate arbitrary labels.494

Template-filling and prompting methods with495

(large) language models(Lewis et al., 2020; Brown496

et al., 2020; Raffel et al., 2020; Scao et al., 2023;497

Touvron et al., 2023) have been widely used in498

few-shot NER (Cui et al., 2021; Ma et al., 2022b;499

Lee et al., 2022; Chen et al., 2022b; Kondragunta500

et al., 2023; Ma et al., 2023) tasks. However, these501

approaches, relying on masked language model502

(MLM) objectives, may not be directly comparable503

to our method due to the scale of our labels. In its504

basic form, the template-based approach requires505

one forward pass per label or is limited by the506

model’s maximum sequence length. Additionally, 507

our approach does not depend on large language 508

models, which are often unavailable or impractical 509

for few-shot NER tasks. 510

While specific efforts have been made to adapt 511

to tags in few-shot domains (Hu et al., 2022; Ji 512

et al., 2022), these studies evaluated only a limited 513

number of labels. Our approach shares similarities 514

with (Ren et al., 2022) and Chen et al. (2022a), 515

where models were pre-trained using event men- 516

tions and entity links, respectively. However, our 517

approach differs significantly. In Ren et al. (2022), 518

the pre-training objective targets at latent typing 519

of entities, whereas our approach focuses on ex- 520

plicitly scaling up entity typing of few-shot NER 521

models. Our distinction from Chen et al. (2022a) 522

lies in our exploration of the effectiveness of dis- 523

tantly supervised training in a genuine few-shot 524

context, wherein classes are not observed during 525

label interpretation training. 526

6 Conclusion 527

This paper introduces LITSET, a novel approach 528

for label interpretation training with a large-scale 529

set of entity types. We utilize an entity linking 530

dataset annotated with WikiData information, re- 531

sulting in a dataset with significantly more distinct 532

labels. We then conducted a thorough heuristical, 533

data-based optimization of few-shot NER models 534

using this dataset. Our experiments demonstrate 535

that LITSET consistently outperforms various in- 536

domain, cross-domain, and cross-lingual baselines. 537

For example, we surpass FewNERD by +14.7 F1 538

on average in pp. and Chinese OntoNotes by +9.0 539

F1 on average in pp. in low-resource settings. Our 540

method and experiments provide valuable insights 541

into the factors influencing the performance of few- 542

shot NER models utilizing label semantics. 543
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Limitations544

Our heuristic data-based optimization was an ini-545

tial exploration to understand the impact of scaling546

the number of distinct entity types during label in-547

terpretation learning on few-shot capability. Given548

our focus on this optimization, we selected a com-549

monly used backbone architecture and one entity550

linking dataset. While substantial improvements551

were achieved, it’s important to note that we did552

not explore all possible architectures and entity553

linking benchmarks. Thus, applying our approach554

with different model architectures and entity disam-555

biguation datasets might yield significantly varied556

results. Further investigation is necessary to com-557

prehensively understand how these factors interact558

and to develop more generalized few-shot NER559

models and comparable evaluation settings.560

Additionally, achieving 0-shot capability on561

completely unseen tags remains challenging, es-562

pecially in languages different from the one used563

for label interpretation training. This limitation564

highlights the need for future research and the ex-565

ploration of innovative techniques to enhance the566

adaptability of few-shot NER models in 0-shot sce-567

narios, enabling them to handle diverse domains568

and situations effectively.569

Lastly, concerning LITSET, our best results were570

obtained by learning solely from in-batch instances.571

Although this strategy is commonly used in ma-572

chine learning, there is substantial related work573

on learning from negatives, such as contrastive574

learning. We believe that exploring other archi-575

tectures and loss functions, including those from576

contrastive learning, could potentially further im-577

prove our method.578
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A FewNERD Label Semantics in877

Validation Experiment878

An overview of the label semantics used in our879

validation experiment.880

Original Label Adapted Label

O XO
location-GPE PH
person-politician EX
organization-education CE

Table 5: Extract of random two letter labels for FewN-
ERD.

Original Label Adapted Label

O XO
location-GPE geographical social-

political entity
person-politician politician
organization-education education

Table 6: Extract of short labels for FewNERD.

Original Label Adapted Label

O XO
location-GPE geographical entity such

as cities, states, coun-
tries, and political enti-
ties

person-politician politicians such as pres-
idents, senators, and
other government offi-
cials

organization-education education institutions
such as schools, col-
leges, and universities

Table 7: Extract of long labels for FewNERD.

B WikiData labels881

Given all entity mentions from the entity linking882

dataset, we source various information from Wiki-883

Data in natural language and annotate those entities884

with it. In the following, we present the selected885

attributes along with their respective definitions,886

which will serve as our labels:887

1. x instance-of y: Entity x is a particular888

example and instance of class y. For example,889

entity K2 is an instance of a mountain.890

2. y subclass-of z: Instance y is a subclass891

(subset) of class z. For example, instance class892

volcano is a subclass of a mountain.893

3. description: A short phrase designed to dis- 894

ambiguate items with the same or similar la- 895

bels. 896

We note that the instance-of and 897

subclass-of categories commonly encom- 898

pass multiple tags rather than being limited to 899

a single tag, as demonstrated in the example in 900

Figure 3. We also refer to ?? for information 901

on filtering improper information obtained by 902

WikiData. 903

C Transfer on Additional Datasets 904

In this ablation, we show that our approach also 905

transfers to the well-known datasets of CoNLL and 906

WNUT. However, we excluded such datasets from 907

our main experiments due to their limited amount 908

of distinct labels (e.g., 4 labels for CoNLL, 6 labels 909

for WNUT). 910

Figure 5: LITSET transfers to other datasets than the
ones used in our main experiments. However, we ex-
cluded these datasets due to their limited number of
distinct labels.
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D Using Sentence-Transformers as Label911

Encoder912

In this experiment, we investigate whether the913

sentence-transformer all-mpnet-base-v2 can ef-914

fectively help to better understand label semantics.915

Sentence transformers have been trained on a sim-916

ilarity objective, making them intriguing for our917

model to act as an enhanced label encoder. While918

LITSET performs consistently better compared to919

the baseline, we find that the standard sampling920

approach (using the bert-base-uncased trans-921

former) works better.922

E The Impact of Negative Examples923

In this experiment, we investigate the impact of924

integrating negative labels L− in each batch. To925

do so, we additionally sample negative labels from926

L\Lb until the desired number of labels is reached927

and include them for loss calculation, which could928

potentially lead to a better generalization in few-929

shot settings due to the increased signal during930

loss calculation. The results are shown in Table 9.931

We can observe that including more labels in each932

batch harms the performance. While prior work933

(Epure and Hennequin, 2022; Wang et al., 2022b)934

has shown that this is beneficial in few-shot settings,935

we find that LITSET works best when only using936

the label present in the batch for loss calculation.937

Since we randomly sample additional labels, it is938

possible, if not likely, to sample similar labels that939

are not true negatives and thus not advantageous940

when using cross-entropy loss.941

F Annotation Noise in ZELDA942

We find ZELDA, in some cases, is not consis-943

tently annotated which may effect the few-shot944

fine-tuning performance for in settings with very945

low k.946
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Evaluation data DFS for
tagset extension from:

Label interpretation learn-
ing data DLIT from:

1-shot 5-shot 10-shot Average

FewNERDINTRA
FewNERDINTRA 10.7± 7.4 37.8± 9.8 49.1± 8.4 32.5

LITSET 27.6± 4.1 49.2± 3.4 54.7± 4.8 43.8

FewNERDINTER
FewNERDINTER 23.4± 2.4 42.3± 3.8 48.5± 3.1 38.1

LITSET 36.6± 2.0 44.3± 2.0 47.7± 2.1 42.9

Table 8: Using sentence transformers as the label encoder. While ZELDA compares relatively better compared to the
in-domain baseline, using sentence-transformers hurt the performance compared to the default bert-base-uncased
transformer.

Evaluation data DFS for tagset ex-
tension from:

Label interpretation learn-
ing data DLIT from:

1-shot 5-shot 10-shot Average

(/w # max. negative labels per
batch)

FewNERDINTRA

LITSET (0) 20.1± 5.0 47.7± 6.0 54.1± 5.9 40.6

LITSET (64) 20.1± 4.8 47.5± 5.0 53.2± 6.6 40.3

LITSET (128) 18.9± 4.9 46.4± 3.9 52.7± 5.9 39.3

FewNERDINTER

LITSET (0) 36.1± 4.7 47.2± 3.0 50.4± 2.4 44.6

LITSET (64) 35.2± 4.1 47.4± 2.6 50.5± 2.4 44.4

LITSET (128) 34.7± 3.3 47.3± 2.7 50.4± 2.3 44.1

Table 9: The few-shot generalization of LITSET does not improve with a fixed number of labels per batch (we
sample additional labels for loss calculation until, e.g., 64 labels are present). We find the best training setup to be
only using the labels present in the current batch.

Annotation noise in ZELDA

annotated [. . . ] which in turn creates the compound
oxyhemoglobin | protein .

missing
annotation

[. . . ] whereas in oxyhemoglobin | O it is
a high spin complex.

annotated GSTK1 promotes adiponectin | protein
multimerization

missing
annotation

[. . . ] ER stress induced adiponectin | O
downregulation [. . . ]

Table 10: Annotations in entity linking benchmark may
be inconsistent, possibly causing the 1-shot drops on
JNLPBA, given the dataset is human annotated, which
should be consistent across all sentences.
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