Large-Scale Label Interpretation Learning for Few-Shot Named Entity
Recognition

Anonymous ACL submission

Abstract

Few-shot named entity recognition (NER) de-
tects named entities within text using only a
few annotated examples. One promising line
of research is to leverage natural language de-
scriptions of each entity type: the common la-
bel PER might, for example, be verbalized as
“person entity.” In an initial label interpretation
learning phase, the model learns to interpret
such verbalized descriptions of entity types. In
a subsequent few-shot tagset extension phase,
this model is then given a description of a pre-
viously unseen entity type (such as “music al-
bum”) and optionally a few training examples
to perform few-shot NER for this type. In this
paper, we systematically explore the impact of
massively scaling up the number and granular-
ity of entity types used for label interpretation
learning. To this end, we leverage WikiData
to create a dataset with orders of magnitude
of more distinct entity types and descriptions
as currently used datasets. We find that this
increased signal yields strong results in zero-
and few-shot NER in in-domain, cross-domain,
and even cross-lingual settings (e.g. increasing
F1 114.7 pp. on FewNERD and 19.0 pp. on
Chinese OntoNotes). Our findings indicate sig-
nificant potential for improving few-shot NER
through heuristical data-based optimization.

1 Introduction

Few-shot named entity recognition (NER) refers to
identifying and classifying named entities within
text by learning from a few annotated examples.
A widely adopted strategy in few-shot NER em-
ploys transfer learning with pre-trained language
models (PLMs) to interpret labels based on their se-
mantic meaning (Yang and Katiyar, 2020; de Lichy
et al., 2021; Das et al., 2022; Ma et al., 2022a,b,c;
Chen et al., 2023; Zhang et al., 2023). The main
idea is that such models learn to interpret a natural
language description of an entity type for use in a
word-level decoder. They learn in two phases:
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Figure 1: Few-shot NER requires an initial label in-
terpretation learning phase using the entity types of a
source dataset. We propose learning from orders of mag-
nitude more distinct types and more expressive label
semantics than current NER datasets by using existing
entity linking datasets annotated with WikiData infor-
mation.

1. a label interpretation learning phase on an
NER-annotated dataset with a set of entity
types and their verbalizations. For instance,
the common label PER might be verbalized
as "person entity." In this phase, the model
learns to associate entity type verbalizations
with matching NER annotations.

2. a few-shot tagset extension phase in which
the model is expanded to previously unseen
entity types using only a new verbalization
and optionally a few example annotations. For
instance, to extend the model to recognize the
names of music albums, one would only need
to provide a verbalization ("music album")
and a few examples.

Data limitations. However, as Figure 1 indicates,
prior studies used only very limited numbers of
distinct entity types for label interpretation learn-



ing. This is an artifact of relying on common NER
datasets such as CoNLL-03 (Tjong Kim Sang and
De Meulder, 2003), OntoNotes (Pradhan et al.,
2012), WNUT-17 (Derczynski et al., 2017), or
FewNERD (Ding et al., 2021), which only con-
tain a small number of distinct entity types (be-
tween 4 and 66 types). Furthermore, the majority
of their entity types have a simple semantic defini-
tion, such as “person,” “location,” or “organization,”
and occur across several datasets. We hypothesize
that these limitations overly constrain the semantic
signal that is observed during label interpretation
learning, thus constituting a main limiting factor to
few-shot NER.

Contributions. With this paper, we introduce LIT-
SET (label interpretation learning by scaling entity
typing) and systematically investigate the intuition
that increasing the number of distinct entity types
and their descriptive granularity in label interpre-
tation learning improves few-shot NER capability.
To this end, we heuristically create a dataset with
orders of magnitude more distinct entity types than
commonly employed (see Figure 1) and use it for
extensive experimentation. In more detail, our con-
tributions are:

* We present experiments to validate our hy-
pothesis on the largest existing NER dataset
(FewNERD). We find that few-shot perfor-
mance increases with label interpretation
learning on more distinct entity types and
more expressive descriptions (cf. Section 2).

* To massively scale up label interpretation
learning, we present an approach for deriving
a dataset with orders of magnitude more gran-
ular entity type annotations. Our approach
leverages an existing entity linking dataset and
enriches it with type descriptions from Wiki-
Data (Vrandeci¢ and Krotzsch, 2014) (cf. Sec-
tion 3).

* We comprehensibly evaluate label interpreta-
tion learning on our derived corpus against
classical setups for zero- and few-shot NER
in in-domain, cross-domain, and cross-lingual
settings (cf. Section 4).

We find that label interpretation learning on our
heuristically derived corpus matches and, in many
cases, significantly outperforms strong baselines.
Our findings indicate significant potential for im-
proving few-shot NER through heuristical data-
based optimization.

To enable the research community to reproduce
and leverage this work, we release the generated
dataset and source code under the Apache 2 license
at: (inserted after review)

2 Validation Experiment for Impact of
Entity Types and Label Descriptions

We first conduct an experiment to validate the intu-
ition that a richer training signal for label interpre-
tation learning positively impacts few-shot NER.
To this end, we create a set of training datasets for
label interpretation learning that each contain the
same number of entities but vary in the number
of distinct entity types and their label verbaliza-
tion. We then compare the few-shot NER ability of
models trained on each of these datasets.

2.1 Experimental Setup

Definitions. To evaluate few-shot NER, an existing
dataset D is split based on its labels L: the label
interpretation training split DT and a few-shot
fine-tuning split D%, The corresponding labels of
each split £X17 and £ are set such that £2/T U
LS = Land L1170 LFS = .

Dataset. We use FewNERD in our experiment
since it is the largest existing dataset w.r.t. the num-
ber of distinct entity types (66 types). We set the
labels of D™/T" to be the 50 most occurring en-
tity types and the labels of DS to be the 16 least
occurring. We perform an analysis along two di-
mensions:

* To measure the impact of increasing the num-
ber of distinct entity types in label interpre-
tation learning, we create 5 versions of the
training data containing 3, 5, 10, 30, and all
50 labels, respectively. Importantly, all 5 ver-
sions are of the same size and contain the same
number of labeled entities (10k).

* To measure the impact of richer verbalizations,
we define 3 different labels semantics: (/) a
"cryptic" unique, random 2-character label,
(2) a "short" description as regularly used ac-
cording to research and (3) a "long" descrip-
tion with examples (cf. Appendix A).

To exclude the respective labels from each split,
we follow prior work and mask labels £2/7 in DS
and £ in DT with the O-token (meaning no
named entity).

Few-shot model. We employ the frequently used
bi-encoder architecture (Blevins and Zettlemoyer,
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Figure 2: F1 scores for few-shot NER tagset extension depending on how many distinct entity types were seen in
label interpretation learning (columns), and how label types were verbalized (rows). We report F1 scores averaged
over five seeds. We observe that (/) more distinct labels during label interpretation training and (2) more semantically

expressive labels improve few-shot NER.

2020; Ma et al., 2022a; Zhang et al., 2023) with
two bert-base-uncased transformers as our back-
bone architecture. For few-shot tagset exten-
sion, we sample a support set S by k-shot down-
sampling DS, The support set S contains each
label from £ exactly k times. We sample three
different support sets using different seeds and re-
port the averaged micro-F1 scores over these itera-
tions.

2.2 Results

Figure 2 shows the results of tagset extension when
performing label interpretation learning on corpora
with different numbers of labels (columns) and
different verbalization methods (rows). For each
label interpretation learning, we report the average
F1-score for tagset extension for 1-shot, 5-shot, and
10-shot learning, respectively.

Improved generalization with more types. We
observe that the number of distinct labels seen
during label interpretation training increases the
generalization in few-shot settings independent of
the label semantics used. We find improvements
from +3.0 F1 (cf. L =3 vs. L =50, label semantic:
cryptic) up to 8.7 F1 (cf. L =3 vs. L =50, label
semantic: short) on average in pp.

More expressive descriptions helpful. We also
find that increasing the expressiveness of label ver-
balizations strongly improves the few-shot perfor-
mance. This observation is independent of the
number of labels seen in label interpretation learn-
ing, such that we find improvements ranging from
+16.8 F1 (cf. label semantics: simple vs. long, with
L =3)up to 22.0 F1 (cf. label semantics: simple
vs. long, with L = 50) on average in pp.

These observations support our intuition that a
richer training signal in label interpretation learning
improves few-shot NER performance.

3 Large-Scale Label Interpretation
Learning

As our validation experiment found a positive im-
pact of increasing the number and expressivity of
entity types, we now aim to scale the signal for
label interpretation learning to orders of magnitude
more entity types. To this end, we heuristically
derive an NER-annotated dataset we call LITSET
using entity disambiguation and WikiData (Sec-
tion 3.1). We also present a small modification to
the bi-encoder network to handle a very large space
of entity types (Section 3.2).



N

<
ZELDA (Leo ] {Kanner] ‘the ’ (Johns] (Hopkins] (Hospital] ‘ first ’ ‘used ’ ‘ ’
CoNLL-03 Person Organization
Annotation L N )
FewNERD Person-Scholar Building-Hospital
Annotation L ] L )
(o . . N o . A
Description: American physician and psychiatrist Description: hospital in Baltimore, Maryland, United
(1894-1981) States
|II |I I Labels: person, omnivore, mammal, natural person, Labels: teaching hospital, university hospital,
WIKIDATA human institution, medical facility, medical organization,
hospital
- AN J

Figure 3: An example annotation of a sentence in ZELDA. WikiData can provide distinct descriptions and labels
about the respective entity, whereas the annotations, compared to existing datasets, would be less informative if not

misleading.
Dataset Label length  # Distinct types
CoNLL-03 9.8+£29 4
WNUT17 8.3+2.38 6
OntoNotes 9.8+ 8.5 18
FewNERD 173+ 7.6 66
LITSET 99.8 £45.4 ~817k

Table 1: Average label description length (in characters)
and distinct entity types of NER datasets. Label length
and distinct entity types for LITSET refers to all annota-
tions as indicated in Figure 3

3.1 LITSET Dataset

The task of entity disambiguation is closely related
to NER. Here, an already detected entity is disam-
biguated by linking it to an existing knowledge base
such as Wikipedia or WikiData. Existing training
and evaluation datasets for entity disambiguation
thus contain named entities marked with links to
entries in the WikiData knowledge base.

One advantage of WikiData is that it contains
fine-grained labels and free-form text descriptions
of entities in the knowledge base. For instance, the
entity "John Hopkins Hospital" (see Figure 3) has
the free-form description "hospital in Baltimore,
Maryland" and belongs to the classes "teaching
hospital”, "university hospital", and many others.
As the Figure shows, these labels are significantly
more fine-grained than CoNLL-03 and even FewN-
ERD entity types which simply classify it as an
"organization" or a "hospital" respectively.

Deriving LITSET. In our approach, we leverage
these classes and descriptions as type annotations.

As base entity disambiguation dataset, we use the
recently released ZELDA (Milich and Akbik, 2023)
benchmark as it represents a broad range of topics,
making it a suitable dataset for the general domain.
For each linked entity in the dataset, we retrieve
the types and descriptions from WikiData and use
them as NER annotations.

However, as Figure 3 illustrates, each linked
entity belongs to multiple WikiData classes and
has a potentially long description. For this rea-
son, we subsample the annotations to bring their
length more in line with standard NER datasets.
Specifically, for each entity z;, we uniformly
sample whether we annotate it with either the
description attribute or the labels attribute
(cf. Figure 3). When utilizing the labels attribute,
we randomly select the number of tags following a
geometric distribution with p = .5. Subsequently,
we uniformly sample tags from the label attribute
until the number of tags is reached. Lastly, we
concatenate the selected tags for final annotation.

3.2 Backbone Architecture

We conduct our experiments based on the widely
adopted bi-encoder model due to its simplicity.
The model utilizes two separate transformers to
encode tokens and labels, respectively. The first
transformer generates embeddings e; € RYV*H for
all tokens, where N represents the number of to-
kens and H denotes the hidden size of the model.
The second obtains the [CLS]-token embeddings
e; for the labels, which are converted into natural
language. We employ cross-entropy loss and derive



final predictions with

y = arg max softmazx(e; - ;)

However, training a model, including the bi-
encoder, with a wide array of distinct classes is non-
trivial. With £ denoting the set of labels, the shape
of label representations is e; € RI“I*H Given that
|L| =~ 105 (cf. Figure 1), we aim to circumvent
the resulting matrix multiplication for two reasons:
(1) potential computational limitations and (2) op-
timization difficulty. To alleviate these issues, we
restrict our consideration to labels present in the
current batch £, with |£;| < |£]| for loss calcula-
tion.

While the resulting dataset has the potential to
be applied to various few-shot NER methods if the
aforementioned issues are addressed, we leave this
exploration to future research.

4 Experiments

We evaluate the impact of label interpretation train-
ing in various tagset extension settings. Through-
out all experiments, we compare label interpreta-
tion learning on LITSET with training on different
baseline datasets. Specifically, we conduct the fol-
lowing experiments:

1. In-domain transfer: Identical domain in la-
bel interpretation learning and few-shot fine-
tuning (cf. Section 4.1).

2. Cross-domain transfer: Different domain in
label interpretation learning and few-shot fine-
tuning (cf. Section 4.2).

3. Cross-lingual transfer: Identical domain in
label interpretation learning and few-shot fine-
tuning, but languages differ between both
phases (cf. Section 4.3).

Further, we support our experiments by analyz-
ing the impact of different label semantics used
between label interpretation learning and few-shot
fine-tuning (cf. Section 4.1). At last, we refer to
our ablation experiments on the impact of different
transformer models as label encoder and negative
sampling (cf. Appendices D and E).

4.1 Experiment 1: In-Domain Transfer

This experiment replicates the most common eval-
uation setup for few-shot tagset extension, where
both DT and DS are sourced from the same

All labels £ Label inter- Few-shot
coarse fine pretation training | fine-tuning
actor actor
person
;5 director director
=)
& island island
mountain mountain
actor actor
person
% director director
H
= island island
mountain mountain

Figure 4: Exemplary illustration on the INTRA and
INTER settings of FewNERD experiments.

NER dataset. Our baseline is the default approach
of label interpretation learning on DT’ which is
"in-domain" since it shares the same textual domain
and entity granularity as the evaluation data. We
compare this baseline against label interpretation
learning on LITSET.

4.1.1 Experimental Setup

We use OntoNotes and FewNERD in our ex-
periments, as they have important properties:
OntoNotes covers different domains and languages
such that we can measure the transferability of our
approach. FewNERD comes with two annotation
types: coarse labels £ (8 classes) and fine labels
L7 (66 classes). £7 are subclasses of the £¢ such
that the entity mentions of both annotations are
identical, only their surface form differs. Thus,
we can evaluate our dataset against FewNERD in
two ways: (1) the INTRA setting in which we split
the labels based on coarse annotations, and (2) in
which we split based on the fine annotations (cf.
Figure 4).

We split each dataset into two equally sized label
sets. To reduce the impact of randomness, the ran-
dom split is repeated three times. We then perform
few-shot fine-tuning runs with three different seeds
for each random split.

Comparison with LITSET. To focus solely on
understanding the impact of scaling entity types
without the influence of increased entity detection,
we downsample LITSET to match the number of
entity mentions in each baseline dataset. Further,
to make a fair comparison, we remove labels from
our approach that match those in the baseline labels
LS and mask them with the 0-token. However,



Evaluation data D™ for Label interpretation learning 0-shot 1-shot 5-shot 10-shot Avg.
tagset extension from: data D7 from:

LITSET 32+10 30.7T+£53 51.9+52 57.9£62 35.9

w/ all labels 09+04 201450 47.7+6.0 54.1+59 30.7

FewNERDx1rA w/ labels only 3.7+05 143+£83 296+70 375£6.1 21.3

w/ description only 1.0£03 198+£88 37579 462+£59 26.1

FewNERD x4 (Baseline) 5.8+04 89+43 314+92 384£75 211

LITSET 87+17 21.9+84 40.1+72 484+6.2 29.5

w/ all labels 35+13 20.0+95 384+83 465+6.3 27.1

OntoNotes w/ labels only 0.1+01 143+83 296=£69 375+6.1 204

w/ description only 42+13 198£88 375£79 46.2+£59 269

OntoNotes (Baseline) 02+01 11.24+93 383+£12.0 54.9£7.6 26.2

LITSET 24.3+06 39.8+29 49.1+19 52.1+19 41.3

w/ all labels 176 +25 36.1+£47 472+30 504+£24 378

FewNERD nrer w/ labels only 29+06 24.7+£18 379+£17 4244+£20 272

w/ description only 16.2£20 374+29 478+22 509+19 38.1

FewNERD xrer (Baseline) 10.6 £0.8 38.4+31 50.4+31 53.3+26 382

Table 2: Evaluation of zero- and few-shot tagset extension for three datasets (FewNERDjnrrs, Ontonotes,
FewNERD g ). We compare the baseline approach of using in-domain data for label interpretation learn-
ing against using LITSET. Despite lacking the in-domain advantage of the baselines, training on LITSET matches or
significantly outperforms the in-domain baseline in nearly all settings. Best scores in bold, 2nd best underlined.

we note that due to our sampling method, LITSET
annotations may not always be consistent. Thus,
we can only ensure excluding exact overlaps with
the few-shot domain.

4.1.2 Results

The experimental results are shown in Table 2 and
find that LITSET substantially improves the few-
shot performance in in-domain settings.

Detecting general entity types. We first observe
that classifying completely new entity types is dif-
ficult with existing datasets (cf. OntoNotes and
FewNERD (INTRA)). Even though masking all
target labels and the limited exposure to in-domain
data, our approach can effectively leverage its gen-
eral label interpretation ability to strongly out-
perform baselines. We report +14.8 F1 on av-
erage in .pp on FewNERDjyz, and +3.3 F1 on
OntoNotes. While LITSET consistently outper-
forms FewNERD (INTRA) except when k = 10 in
the OntoNotes setting.

Differentiating coarse entity types. When coarse
entity types are learned during label interpretation
training (cf. FewNERD1y1gr ), we observe that all
approaches obtain improved few-shot capabilities,
especially when k < 5. This finding suggests that
adapting to unseen labels is particularly effective
when the training includes understanding broad
categories (e.g., “person”). With LITSET, we out-

perform FewNERDyrgr in O- and 1-shot settings
(+13.7 F1 and +1.4 F1 on average in pp.) and re-
main competitive at higher k-shots.

Impact of label semantics. We measure the impact
of different heuristics for creating LITSET types.
To test this, we conduct various experiments using
LITSET with (/) only labels, (2) only descriptions,
and (3) all label information available (cf. Figure 3).
We first find using only label annotations results in
decreased performance compared to the baselines
(cf. FewNERDyrgr and OntoNotes), suggesting
the need for richer label meanings.

When using only the description annota-
tions, we notice that LITSET yields similar perfor-
mance to their respective baselines, whereas in the
FewNERDyrr setting, substantial improvements
are observed compared to the baselines.

At last, we observe that alternating shorter labels
and expressive short descriptions best prepares LIT-
SET for arbitrary target domains. In this configura-
tion, we find that LITSET substantially outperforms
all baselines.

4.2 Experiment 2: Cross-Domain Transfer

This experiment assesses the performance of L1T-
SET and its corresponding baselines when domains
of label interpretation learning and few-shot fine-
tuning differ. We selected out-of-domain datasets
to cover labels that are not present in the current



Evaluation data D™ for Label interpretation learning 0-shot 1-shot 5-shot 10-shot Avg.
tagset extension from: data DT from:
LITSET 41.3+20 254+53 51.3+34 57.7+£3.0 43.9
JNLPBA w/ all labels 42.2+18 225+£81 499438 55.8+£27 42.6
FewNERD xrer 82+15 29.5+£15.0 46.0x7.6 49.7+6.6 334
LITSET 6.1£+0.9 194+33 259+37 33.0+21 21.1
CLUB w/ all labels 73+£01 19.9+20 27.6£46 35.1+31 225
FewNERDnrer 1.74+0.2 169+18 25.5+49 322+£3.7 19.1

Table 3: LITSET outperforms FewNERD in out-of-domain settings on JINLPBA (bio-medical domain) and CLUB

(chemical domain).

NER dataset to assess the genuine few-shot aspect
of these models. We compare our approach with
FewNERDyrer in this context. The results are
presented in Table 3.

4.2.1 Experimental Setup

For out-of-domain experiments, we utilize
JNLPBA (Collier et al., 2004) (bio-medical do-
main) and the Chemical Language Understanding
Benchmark (CLUB) (Kim et al., 2023) (chemi-
cal domain). As detailed in Appendix C, our ap-
proach demonstrates transferability to datasets be-
yond those used in this experiment. However, we
excluded them from our analysis here due to their
limited number of distinct entity types and their
label overlap with baseline models.

4.2.2 Results

As Table 3 shows, we find that LITSET signifi-
cantly outperforms FewNERD with average im-
provements of +10.5 F1 on JNLPBA and +3.4 F1
on CLUB.

LITSET better transfers to new domains. While
our approach consistently outperforms FewNERD
on CLUB and JNLPBA for k-shot > 5, LITSET
achieves an average increase of +34.0 F1 pp. in
zero-shot settings on JNLPBA. This notable im-
provement can be attributed to the equal masking
procedure applied to labels in FewNERD ez and
LITSET. Since JNLPBA labels and FewNERD
labels are disjoint, no additional masking is re-
quired for FewNERD g models. Consequently,
to maintain a fair comparison, we do not mask any
labels in LITSET.

Impact of inconsistent annotations. Furthermore,
we observed that LITSET underperforms by -4.1 F1
pp. compared to the baseline in 1-shot settings on
JNLPBA. Additionally, its performance is inferior
even compared to the 0-shot scenario. This indi-
cates the instability of few-shot fine-tuning with

LITSET at very low k. Upon further qualitative
analysis of the generated dataset, we discovered
that annotations from entity linking benchmarks
like ZELDA might not be consistently annotated
(cf. Appendix F). This inconsistency could be one
possible reason for the observed performance drops.
However, as k increases, our approach demon-
strates the ability to quickly adapt to the target
domain once again.

4.3 Experiment 3: Cross-Lingual Transfer

In this experiment, we utilized the multilingual
x1m-roberta-base model to assess the transfer-
ability of LITSET across languages. English
OntoNotes was employed as the baseline for label
interpretation training since ZELDA is an English
corpus. The results are shown in Table 4.

Results. We find strong improvements across all
k-shots on the Arabic and Chinese segments of
OntoNotes, namely +3.9 F1 and +9.0 F1 on aver-
age in pp., respectively. These findings underscore
our model’s ability to discern subtle annotation
differences across languages despite the similar
contexts between label interpretation learning and
few-shot fine-tuning in the baseline. This empha-
sizes our model’s robust understanding of labels in
multilingual scenarios.

Furthermore, we observed that utilizing
xlm-roberta-base also improves LITSET’s
performance in monolingual settings, as discussed
in Section 4.1. We were able to reduce the previous
performance gap at k = 10 from -6.5 F1 to -0.5 F1
on average in pp., thereby increasing the overall
performance from +3.3 F1 to +6.5 F1.

5 Related Work

Despite advancements achieved through pre-
trained word embeddings (Peters et al., 2018; Ak-
bik et al., 2018; Devlin et al., 2019; Liu et al., 2019;



Evaluation data D™ for Label interpretation learning 0-shot 1-shot 5-shot 10-shot Avg.
tagset extension from: data DT from:
OntoNotes (EN) LITSET (EN) 99+32 274+85 46.4+6.7 555£64 34.8
OntoNotes (EN) 03£01 159484 41.1+150 56.0+12.7 28.3
LITSET (EN) 0.0+00 7.2+£6.1 14.84+6.3 22.0+58 14.7
Ontonotes (AR)
Ontonotes (EN) 0.0+0.0 4.7+47 12.8 £4.8 14.9+7.9 10.8
LITSET (EN) 3.0£09 227+86 37.6+50 42.8+50 26.5
Ontonotes (ZH)
Ontonotes (EN) 1.6+0.3 10.8+£59 262+£69 31.2+79 17.5

Table 4: Tag set extension with baseline pre-finetuning and few-shot fine-tuning in the same domain. LITSET
outperforms models that are pre-finetuning on in-domain data when pre-finetuning is done on a small number of

labels.

Yamada et al., 2020; Raffel et al., 2020), few-shot
NER focuses explicitly on generalizing to previ-
ously unseen label categories by leveraging a small
number of labeled examples.

Metric learning (Vinyals et al., 2016; Snell et al.,
2017) is a common approach for few-shot NER
(Fritzler et al., 2019; Wiseman and Stratos, 2019;
Ziyadi et al., 2020) and employs a distance metric
to learn a shared representation space and assign
labels based on class prototypes (Yang and Katiyar,
2020; Hou et al., 2020; Ma et al., 2022a; Han et al.,
2023). Additional components like contrastive loss
(Das et al., 2022; Layegh et al., 2023) or meta-
learning (de Lichy et al., 2021; Ma et al., 2022c;
Wang et al., 2022a) often further improve the per-
formance. Our approach aligns with this research
direction because we employ the bi-encoder archi-
tecture as proposed in Ma et al. (2022a); Zhang
et al. (2023) with an adapted loss calculation. How-
ever, prior work did not investigateimpact of the
dataset used for label interpretation learning. We
instead increase the richness of the training signal
learning label verbalizations. Our approach may
thus be applied to all prior work that relies on la-
bel verbalizations, but may require architectural
adaptations to accommodate arbitrary labels.

Template-filling and prompting methods with
(large) language models(Lewis et al., 2020; Brown
et al., 2020; Raffel et al., 2020; Scao et al., 2023;
Touvron et al., 2023) have been widely used in
few-shot NER (Cui et al., 2021; Ma et al., 2022b;
Lee et al., 2022; Chen et al., 2022b; Kondragunta
et al., 2023; Ma et al., 2023) tasks. However, these
approaches, relying on masked language model
(MLM) objectives, may not be directly comparable
to our method due to the scale of our labels. In its
basic form, the template-based approach requires
one forward pass per label or is limited by the

model’s maximum sequence length. Additionally,
our approach does not depend on large language
models, which are often unavailable or impractical
for few-shot NER tasks.

While specific efforts have been made to adapt
to tags in few-shot domains (Hu et al., 2022; Ji
et al., 2022), these studies evaluated only a limited
number of labels. Our approach shares similarities
with (Ren et al., 2022) and Chen et al. (2022a),
where models were pre-trained using event men-
tions and entity links, respectively. However, our
approach differs significantly. In Ren et al. (2022),
the pre-training objective targets at latent typing
of entities, whereas our approach focuses on ex-
plicitly scaling up entity typing of few-shot NER
models. Our distinction from Chen et al. (2022a)
lies in our exploration of the effectiveness of dis-
tantly supervised training in a genuine few-shot
context, wherein classes are not observed during
label interpretation training.

6 Conclusion

This paper introduces LITSET, a novel approach
for label interpretation training with a large-scale
set of entity types. We utilize an entity linking
dataset annotated with WikiData information, re-
sulting in a dataset with significantly more distinct
labels. We then conducted a thorough heuristical,
data-based optimization of few-shot NER models
using this dataset. Our experiments demonstrate
that LITSET consistently outperforms various in-
domain, cross-domain, and cross-lingual baselines.
For example, we surpass FewNERD by +14.7 F1
on average in pp. and Chinese OntoNotes by +9.0
F1 on average in pp. in low-resource settings. Our
method and experiments provide valuable insights
into the factors influencing the performance of few-
shot NER models utilizing label semantics.



Limitations

Our heuristic data-based optimization was an ini-
tial exploration to understand the impact of scaling
the number of distinct entity types during label in-
terpretation learning on few-shot capability. Given
our focus on this optimization, we selected a com-
monly used backbone architecture and one entity
linking dataset. While substantial improvements
were achieved, it’s important to note that we did
not explore all possible architectures and entity
linking benchmarks. Thus, applying our approach
with different model architectures and entity disam-
biguation datasets might yield significantly varied
results. Further investigation is necessary to com-
prehensively understand how these factors interact
and to develop more generalized few-shot NER
models and comparable evaluation settings.

Additionally, achieving 0-shot capability on
completely unseen tags remains challenging, es-
pecially in languages different from the one used
for label interpretation training. This limitation
highlights the need for future research and the ex-
ploration of innovative techniques to enhance the
adaptability of few-shot NER models in 0-shot sce-
narios, enabling them to handle diverse domains
and situations effectively.

Lastly, concerning LITSET, our best results were
obtained by learning solely from in-batch instances.
Although this strategy is commonly used in ma-
chine learning, there is substantial related work
on learning from negatives, such as contrastive
learning. We believe that exploring other archi-
tectures and loss functions, including those from
contrastive learning, could potentially further im-
prove our method.
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A FewNERD Label Semantics in
Validation Experiment

An overview of the label semantics used in our
validation experiment.

Original Label Adapted Label
o X0
location-GPE PH
person-politician EX
organization-education CE

Table 5: Extract of random two letter labels for FewN-
ERD.

Original Label Adapted Label

(¢} X0

location-GPE geographical  social-
political entity

person-politician politician

organization-education  education

Table 6: Extract of short labels for FewNERD.

Original Label

O
location-GPE

Adapted Label

X0

geographical entity such
as cities, states, coun-
tries, and political enti-
ties

politicians such as pres-
idents, senators, and
other government offi-
cials

education institutions
such as schools, col-
leges, and universities

person-politician

organization-education

Table 7: Extract of long labels for FewNERD.

B WikiData labels

Given all entity mentions from the entity linking
dataset, we source various information from Wiki-
Data in natural language and annotate those entities
with it. In the following, we present the selected
attributes along with their respective definitions,
which will serve as our labels:

1. x instance-of y: Entity x is a particular
example and instance of class y. For example,
entity K2 is an instance of a mountain.

y subclass-of z: Instance y is a subclass
(subset) of class z. For example, instance class
volcano is a subclass of a mountain.
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3. description: A short phrase designed to dis-
ambiguate items with the same or similar la-
bels.

We note that the instance-of and
subclass-of categories commonly encom-
pass multiple tags rather than being limited to
a single tag, as demonstrated in the example in
Figure 3. We also refer to ?? for information
on filtering improper information obtained by
WikiData.

C Transfer on Additional Datasets

In this ablation, we show that our approach also
transfers to the well-known datasets of CoNLL and
WNUT. However, we excluded such datasets from
our main experiments due to their limited amount
of distinct labels (e.g., 4 labels for CoNLL, 6 labels
for WNUT).

WNUT'17
50

-

7

—e— ZELDA (ours)
no label interpretation training

40

30

avg. F1

20

10

4
k-shots

16 full

CoNLL'03

A7

—e— ZELDA (ours)
no label interpretation training
80

60

avg. F1

20

4
k-shots

16 full

Figure 5: LITSET transfers to other datasets than the
ones used in our main experiments. However, we ex-
cluded these datasets due to their limited number of
distinct labels.



D Using Sentence-Transformers as Label
Encoder

In this experiment, we investigate whether the
sentence-transformer all-mpnet-base-v2 can ef-
fectively help to better understand label semantics.
Sentence transformers have been trained on a sim-
ilarity objective, making them intriguing for our
model to act as an enhanced label encoder. While
LITSET performs consistently better compared to
the baseline, we find that the standard sampling
approach (using the bert-base-uncased trans-
former) works better.

E The Impact of Negative Examples

In this experiment, we investigate the impact of
integrating negative labels £~ in each batch. To
do so, we additionally sample negative labels from
L\ Ly until the desired number of labels is reached
and include them for loss calculation, which could
potentially lead to a better generalization in few-
shot settings due to the increased signal during
loss calculation. The results are shown in Table 9.
We can observe that including more labels in each
batch harms the performance. While prior work
(Epure and Hennequin, 2022; Wang et al., 2022b)
has shown that this is beneficial in few-shot settings,
we find that LITSET works best when only using
the label present in the batch for loss calculation.
Since we randomly sample additional labels, it is
possible, if not likely, to sample similar labels that
are not true negatives and thus not advantageous
when using cross-entropy loss.

F Annotation Noise in ZELDA

We find ZELDA, in some cases, iS not consis-
tently annotated which may effect the few-shot
fine-tuning performance for in settings with very
low k.
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Evaluation data DS for  Label inter}gretation learn- 1-shot 5-shot 10-shot Average

tagset extension from: ing data D7 from:

FewNERD FewNERD x1ra 10.7+74 378498 49.1+84 32.5
INTRA LITSET 27.6+41 49.2+34 54.7+48 43.8

FewNERD .. FewNERD x1sr 234+24 42.3+3.8 485+3.1 38.1
INTER LITSET 36.6 +2.0 44.3+20 47.7+2.1 42.9

Table 8: Using sentence transformers as the label encoder. While ZELDA compares relatively better compared to the
in-domain baseline, using sentence-transformers hurt the performance compared to the default bert-base-uncased
transformer.

Evaluation data DF for tagset ex-  Label interpretation learn- 1-shot 5-shot 10-shot Average
tension from: ing data D7 from:
(/w # max. negative labels per
batch)
LITSET (0) 20.1+50 47.7+£6.0 54.1+59 40.6
FewNERD x1ra LITSET (64) 20.1+4.8 475+£5.0 53.24+6.6 40.3
LITSET (128) 189+49 464+£39 52.7£59 39.3
LITSET (0) 36.1 4.7 472+£3.0 504+£24 44.6
FewNERD nrer LITSET (64) 352+41 474+26 50.5+24 444
LITSET (128) 34.7+£33 473127 504+£23 44.1

Table 9: The few-shot generalization of LITSET does not improve with a fixed number of labels per batch (we
sample additional labels for loss calculation until, e.g., 64 labels are present). We find the best training setup to be
only using the labels present in the current batch.

Annotation noise in ZELDA

annotated [...] which in turn creates the compound
oxyhemoglobin | protein .

missing [...] whereas in  oxyhemoglobin | O it is

annotation 4 high spin complex.

annotated ~ GSTKI1 promotes adiponectin | protein
multimerization

missing [...] ER stress induced ' adiponectin | O

annotation  downregulation [... ]

Table 10: Annotations in entity linking benchmark may
be inconsistent, possibly causing the 1-shot drops on
JNLPBA, given the dataset is human annotated, which
should be consistent across all sentences.
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