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ABSTRACT

Recent studies have demonstrated that good pruning masks of neural networks
emerge early during training, and that they remain largely stable thereafter. In
a separate line of work, it has also been demonstrated that the eigenspace of the
loss Hessian shrinks drastically during early training, and remains largely stable
thereafter. While previous research establishes a direct relationship between in-
dividual network parameters and loss curvature at training convergence, in this
study we investigate the connection between parameter pruning masks and Hes-
sian eigenspaces, throughout the entire training process and with particular atten-
tion to their early stabilization. To quantify the similarity between these seemingly
disparate objects, we cast them as orthonormal matrices from the same Stiefel
manifold, each defining a linear subspace. This allows us to measure the similar-
ity of their spans using Grassmannian metrics. In our experiments, we train an
unpruned deep neural network and demonstrate that these two subspaces overlap
significantly—well above random chance—throughout the entire training process
and not just at convergence. This overlap is largest at initialization, and then
drops and stabilizes, providing a novel perspective on the early stabilization phe-
nomenon and suggesting that, in deep learning, largest parameter magnitudes tend
to coincide with the directions of largest loss curvature. This early-stabilization
and high-overlap phenomenon can be leveraged to approximate the typically in-
tractable top Hessian subspace via parameter inspection, at only linear cost. The
connection between parameters and loss curvatures also offers a fresh perspective
on existing work, tending a bridge between first- and second-order methods.

1 INTRODUCTION

Deep neural networks (DNN5s) often benefit from a large number of parameters; but not all param-
eters are equally important. Frequently, a substantial portion of the weights can be pruned, i.e. re-
moved, during or at the end of training, without compromising the model’s performance (see Blalock
et al., 2020; Hoefler et al., 2021). One efficient method to identify these pruned subnetworks is via
the parameter’s magnitude (Han et al., 2015). Interestingly, these subnetworks materialize very early
in training (Frankle & Carbin, 2019), and once they emerge, their topology stops changing signifi-
cantly (Achille et al., 2019; You et al., 2020). In other words, competitive subnetworks crystallize
early in training and remain stable thereafter (Section 2.2).

A parallel line of research focuses on the Hessian matrix of the loss, which characterizes the
loss landscape’s curvature. Among other things, the Hessian is used to understand generalization
(e.g. Hochreiter & Schmidhuber, 1997; Keskar et al., 2017), improve neural network training (e.g.
Martens, 2016; Rodomanov & Nesterov, 2021), tune hyperparameters (e.g. LeCun et al., 1992; Co-
hen et al., 2021), tackle overconfidence (e.g. Kristiadi et al., 2021), or prune networks (e.g. LeCun
et al., 1989). Multiple studies determined empirically that the Hessian spectrum separates into two
parts: the bulk subspace, with near-zero eigenvalues, and the fop subspace with significantly larger
eigenvalue magnitudes (e.g. Dauphin et al., 2014; Sagun et al., 2018). Importantly, Gur-Ari et al.
(2018) reported that, after a few initial training steps, the gradient predominantly lies within the
top subspace. Moreover, the top eigenspace remains relatively stable throughout training. Analo-
gously to pruning, this line of research indicates that the top Hessian eigenspace crystallizes early
in training and tends to remain stable throughout the training (Section 2.1).
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Figure 1: Pruning masks and top Hessian subspaces exhibit early crystallization and stabiliza-
tion. Additionally, both spaces show a similarity well above random chance. (l/eft) The mini-
batch loss Lg, followed by the early compression of the Hessian spectrum A and the overlap be-
tween parameter magnitude pruning masks and top Hessian subspaces (bottom). Note how overlap
is well above random chance (illustrated by the dotted gray line for p = 0.2), and how it stabi-
lizes after an initial decay. (right) The depicted distance matrices showcase the stabilization of both
parameter pruning masks in terms of their Intersection over Union (IoU) (top) and top Hessian sub-
spaces in terms of their overlap (bottom), as reported in (You et al., 2020) and (Gur-Ari et al., 2018).
See Section 5 and Figures 4, 9 and 10 for extended results and interpretations.

In this work, we explore the similarity between these two—currently largely independent—Iines of
research, noticing that both report early emergence and subsequent stabilization of much smaller
sub-structures. Such a study is necessary because, while the Optimal Brain Damage (OBD) frame-
work (LeCun et al., 1989) establishes a direct link between individual parameter magnitudes and
loss curvature, it does so at training convergence, and hence does not address early emergence or
stabilization of pruning masks and Hessian subspaces. On the other hand, train-time analysis of
the Hessian typically focuses on global or layer-wise parameter groups (e.g. Papyan, 2020; Sankar
et al., 2021), and it does not connect loss curvatures to arbitrary parameter subsets. We propose
a method to connect parameter pruning masks to Hessian eigenspaces in a training-sensitive and
stabilization-aware manner. Specifically, we make the following contributions:

1. We characterize pruning masks my (which select k parameters and discard the rest), as
rank-k orthogonal matrices (Section 3), belonging to the same Stiefel manifold as any ma-
trix formed by k Hessian eigenvectors. This allows us to directly compare both their spans
via Grassmannian metrics.

2. We review popular Grassmannian metrics and analyze their computational and statistical
properties. We empirically identify the overlap metric as advantageous (Section 4).

3. We provide empirical evidence that the similarity between spaces induced by m; magni-
tude pruning masks (obtained from a network that has not been pruned) and top-%k Hessian
eigenspaces is substantially larger than random chance throughout the whole training pro-
cess. This overlap is largest at initialization, then drops and stabilizes, providing a novel
perspective on the early stabilization phenomenon and suggesting that, in deep learning,
largest parameter magnitudes tend to coincide with the directions of largest loss curvature
(Figure 1 and Section 5).

There are multiple ways in which a connection between Hessian eigenspaces and parameter masks
may be useful: (1) High similarity between parameter magnitudes and loss curvatures may be an
indicator of common underlying phenomena, supporting the research of an early phase of neural
network training (Frankle et al., 2020b) and complementing the Fisher Information Matrix approach
used by Achille et al. (2019). (2) Since pruning masks can be obtained in linear time, our results
suggest new ways for fast and effective low-rank Hessian approximations, with application to e.g.
pruning and optimization methods as proposed by Hassibi et al. (1993); Gur-Ari et al. (2018). Early
stabilization can also be further leveraged, as discussed in, e.g. You et al. (2020). (3) If parameters
carry information about loss curvatures, novel characterizations of existing methods may be possible
e.g. by bridging the gap between first- and second-order methods.
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2 BACKGROUND AND RELATED WORK

We consider a supervised classification or regression setup with a training set Dirain
{(n,yn)})_; of labeled data (x,,,y,) € X x Y, stemming from an unknown true data-generating
distribution P. The DNN fg(z) : X — Y maps inputs « to predictions g via parameters § € R”.
A loss function ¢: Y x Y — Ry penalizes differences between prediction ¢ and true label y. The
goal is then to minimize the inaccessible risk Lp(0) = §¢(fo(x),y)dP via the proxy empirical
risk Lp,,.,, (0) == & SN (¢(fo(zn),yn)). For typically large N, we can approximate Ly, (6)
using mini-batches B ¢ Dy i, of B « N samples. Furthermore, we assume that f and £ are twice
differentiable, which allows us to access the gradient vector g(0) := VoL(0) e RP, indicating the
direction of steepest increase for the local loss, and the Hessian matrix H () := V3L(6) e RP*P,
providing information about the curvature of the local loss landscape'.

2.1 THE HESSIAN IN DEEP LEARNING

As outlined in Section 1, H plays a prominent role across a wide range of deep learning (DL)
applications, showcasing its significance. A useful characterization of H is through its eigendecom-
position H :==UAU T= Zil )\zuzuzT Here, U is orthogonal, with column eigenvectors u;, and
A is diagonal and real-valued with eigenvalues |\1|> ... > |Ap|. We call U*) := {u;}F_, the top-k
eigenbasis of H, and span(U (k)Y the top-k eigenspace. A relevant result is that the top-k eigen-
decomposition H*) := Zle A\iusu] minimizes |[H — H®)|| for all unitarily invariant norms
(Golub & Van Loan, 2013).

Recent literature has extensively investigated the Hessian spectrum of DNNs, revealing that the
eigenvalues are typically clustered into at least two parts: (1) the bulk of eigenvalues with near-zero
magnitude and (2) a few fop eigenvalues that have significantly larger magnitude (e.g. Sagun et al.,
2018; Papyan, 2019). These top eigenvalues display interesting traits, such as class/cross-class co-
variance structures in classification tasks (Papyan, 2020), or training regimes with A\; often hovering
around %, in the so-called edge of stability (Cohen et al., 2021). As for the Hessian eigenspace,

Li et al. (2018) showed that projecting the whole space onto a few random, fixed dimensions still
allows Stochastic Gradient Descent (SGD) to perform competitively—provided enough dimensions
are given—leading to the idea of an intrinsic dimensionality of problems. In contrast, (Gur-Ari
et al., 2018) observed that this restriction to a lower-dimensional, fixed subspace seems to happen
spontaneously anyway: after a brief initial period of training, the gradient predominately lies within
a small subspace spanned by the few top Hessian eigenvectors and this space changes little over
the remaining training process. Still, some authors note that some of the observed phenomena are
heavily reliant on specific optimizer and model choices Li et al. (2018); Ghorbani et al. (2019).

One fundamental issue that greatly limits the scope and scale of DL experiments that can be done
is that H is extremely large—typically prohibitive—which renders the computation of many re-
lated quantities unfeasible. As a consequence, most scalable methods are matrix-free, and rely on
Hessian-Vector Products (HVPs) to compute linear maps of H in linear memory and time (Pearlmut-
ter, 1994). Examples are the computation of individual rows/columns, traces (Hutchinson, 1989),
diagonal entries (Becker & LeCun, 1989; Martens et al., 2012), spectral densities (Yao et al., 2020;
Papyan, 2018), and top-k Hessian eigenpairs (Golub & Van Loan, 2013; Halko et al., 2011). To make
those more accessible, specialized DL libraries have been developed recently to provide broader ac-
cess to these Hessian quantities (e.g. Dangel et al., 2020; Yao et al., 2020; Elsayed & Mahmood,
2022), but this is an active field of research, and efficiently accessing further Hessian quantities re-
mains a major challenge. An example of this, relevant for our work, is that in order to link strong
directions of curvature with arbitrary parameters, one needs to access arbitrary sub-matrices of U
(since rows of U are associated with specific parameters, and columns with specific eigenvalues).

2.2 NEURAL NETWORK PRUNING

Pruning involves removing parameters while maintaining performance. By eliminating irrelevant
weights, the pruned model is smaller, more computationally efficient, and may even converge faster

'In general, with H we refer to any Hessian of the loss. If we want to emphasize the data domain, we use
a subindex, e.g. Hp refers to the Hessian of the mini-batch loss L.



Under review as a conference paper at ICLR 2024

and generalize better (e.g. Gale et al., 2019; Blalock et al., 2020; Hoefler et al., 2021). In DL, pruning
is typically characterized via element-wise multiplication of parameter vector 8 with a boolean
pruning mask my, € B with k entries with a value of 1, and 0 for the rest. This yields a pruned
neural network f,,,, -g (), where a subset of the parameters is permanently fixed to 0. We refer to a
mask as k-sparse when it has exactly k non-zero elements, and define the ratio p(m) := X: mi/D as
a measure of sparsity. For non-boolean vectors, we rather want to measure whether a small subset of
parameters 8, contains a large proportion of the energy. When the subset ¢ is assumed to be known,
this can be directly expressed as the ratio: /@(0)2 = |16.113/|16)12 (see Hurley & Rickard (2009) for
other cases and further discussion).

Competitive performances can be often achieved with p~ [1%, 10%] (Hoefler et al., 2021), but this
is dependent on the task, model and pruning method. Various methods have been proposed to deter-
mine good pruning masks, which differ mainly in the ranking criterion, i.e. determining weights to
prune, and the pruning schedule, i.e. determining when to prune. Structured pruning methods use
an architecture-specific ranking criterion; unstructured methods are architecture-agnostic (e.g. Liu
et al., 2017). One simple, competitive and widely used unstructured ranking criterion is magnitude
pruning, which involves removing parameters with the smallest absolute values (Han et al., 2015).

A pivotal observation was that good pruning masks can already exist upon initialization (Frankle
& Carbin, 2019) or very early in training (Frankle et al., 2020a). Training only these subnetworks
from scratch can yield competitive performance. This phenomenon is known as the Lottery Ticket
Hypothesis (LTH). Nonetheless, identifying such “winning tickets” remains a hard task. Recent
work has further demonstrated that parameter magnitude rankings and thus pruning masks stabilize
early in training. You et al. (2020) compared Hamming distances between periodically extracted
pruning masks and found that they stop changing early in training, yielding the Early-Bird Lottery
Tickets (EBLTs). This phenomenon is in line with the loss of information plasticity reported in
Achille et al. (2019), and resonates with the theme of early emergence followed by stabilization that
was also observed for the top Hessian subspace and that is central to our work.

3 PRUNING AS ORTHOGONAL PROJECTIONS

Our focus is to quantify the connection between pruning masks and top-k Hessian eigenspaces, since
both are reported to undergo early crystallization and stabilization. We thus require a way to relate
a mask to a subspace. In this section, we show that both U¥) and a k-sparse> mask 1, can be
characterized as elements of the same compact Stiefel manifold 0P ** := {Q: Qe RP** QTQ =
I}, where I} is the rank-% identity matrix (Absil et al., 2004). We can then ask: how similar are
the spans of such elements?

Reordering parameters: Recall from Section 2.1 that we assumed Hessian eigenvalues sorted by
descending magnitude, exposing a single cutting point between top and bulk eigenspace at dimen-
sion k. To simplify notation, we impose a similar condition, by defining a permutation matrix P
for any given mask m, such that the mask entries are grouped in selected (i.e. all k entries where
m equals 1) and discarded (i.e. all indexes where m equals 0), offering also a single cutting point:

m:=P m=(1,1,1,...0,0,0). Without loss of generality, we permute the parameters § = P8
accordingly, as well as the rows and columns of the Hessian H =P HP =UAU". Thus,
(m,0, H) = (1,0, H) is an isomorphism, H and H are similar, and the loss curvature remains
unaltered (éTlfIé =0THO).

Masking as an orthogonal projection: Using P, any k-sparse masking can be expressed as:

P'(myo0) =m00 = .0 = (Iok 8) 0= (IO’“) (I 0)0 =1Ip,I),0 (1)

Note that Ip j € BP >k which we define as the subset of QP ** with boolean entries.

Partitioning H: Consider now the following partition of the reordered Hessian:

*This can be extended to masks with other sparsities using Schubert varieties (Ye & Lim, 2016).
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With this partition, Uk — (“{,) is the top-k Hessian eigenbasis, whereas (Vv‘{,) represents the bulk

eigenbasis. Conversely, the rows of (V[W) correspond to the selected parameters, and (V|W) to the

discarded ones. Since U is orthogonal, so is 0(k), and thus an element of OP**. Note how this
partition exposes the interaction between top eigenspace and arbitrary parameter subsets.

4 MEASURING SIMILARITY OF SUBSPACES VIA GRASSMANNIAN METRICS

Given that both k-sparse pruning masks and the top-k Hessian eigenspace can be cast as elements
of the same Stiefel manifold, we now want to quantify their similarity. Specifically, we are only
interested in the similarity of their spanned spaces, not the particular basis, as two distinct elements
of OP** can have the same span, e.g. by permuting their columns. This problem is addressed by
Grassmannian metrics, which we review in Section 4.1, and analyze in more depth in Section 4.2,
finding that overlap provides an informative, stable, popular and potentially scalable metric.

4.1 GRASSMANN MANIFOLDS AND THEIR METRICS

Grassmann manifolds are extensively studied (Bendokat et al., 2020) and find relevant application in
various fields like physics (e.g. Witten, 1988), numerics (e.g. Absil et al., 2004) and, more recently,
DL (e.g. Gur-Ari et al., 2018; Zhang et al., 2018; Dangel et al., 2022). A Grassmann manifold Gy p
is the set of all k-dimensional subspaces of a given D-dimensional Euclidean space. Two matrices
(Q:,Q;) € (0P, x OP>*) map to the same element ge Gy, p if and only if they have the same span.
Therefore, the subset of all matrices in QP ¥ that map to g; == span(Q;) forms an equivalence

class S;D) ={Q;: Q;Z;=Q, ZJ-TZ]- =1} (e.g. Edelman et al., 1998; Absil et al., 2004).

A desirable property of Grassmann manifolds is the availability of closed-form expressions for their
geodesics (i.e. the shortest paths between any two elements in G) and metric functions. We can thus
measure distances between subspaces in an interpretable and computationally amenable manner:
geodesics from g, to g; follow circular trajectories, and therefore their distance can be interpreted as
the “amount of rotation” needed to go from one space to another. Such rotations can be succinctly
expressed in terms of principal angles o;_,; € [0, g]k , and they can be efficiently obtained from

OP** matrices via their Singular Value Decomposition (SVD):
Q! Q; = L,.;diag (cos(oi-;))R/.,;, L, R orthogonal. 3)

Since Q;,Q; have orthonormal columns, cos(o;-,;) € [0,1]* (e.g. Neretin, 2001), and more similar
spans will yield larger singular values, which translate to smaller rotations. Importantly, singular
values are invariant under similarity:

diag (cos(ai-;)) = L,QI Q;Ri-; = LiL (2] Q[ )(Q; Z,)R;_;. “)

In other words, they are invariant under the action of Z, which means that o does not change if
we replace an input matrix with any other matrix from the same equivalence class (see definition
for S;D ). The family of functions that satisfy this invariance, plus the axioms of metric spaces,
form the family of Grassmannian metrics (e.g. Qiu et al., 2005), each capturing a different notion
of distance between subspaces (e.g. largest principal angle vs. sum of principal angles). In the
following, we highlight popular metrics from the literature (e.g. Edelman et al., 1998). We abbreviate
dist, (gi, 9;) = f(0i;) as dist, = f(o), where * refers to any unitarily invariant norm:

a) Geodesic distance: This is the arc length of the geodesic between the respective spaces in
G, defined as dist, = ||o[|2€ [0, Z+/k].

b) Chordal norm: dist, ,, obtained by minimizing ||Q;Z; — Q, Z, ||, over orthogonal matri-
ces (Z1, Z) (for that reason it is also called Hausdorff distance). The {5 and ¢ norms
admit a closed-form solution in terms of principal angles: dist., = [|2sin (10)(|€[0, /2]
and dist.,=||2sin (10)|]2€[0, v2k].
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¢) Projection norm: Also called the gap metric, it uses the unique orthogonal projector rep-
resentation of a given subspace, i.e. ¥; = Q;Q/, as follows: dist,, , = || ¥, —¥,||,. Here,
we also have closed-form expressions for the /5 and £ norms: dist,, , =||sin(o) || €[0, 1]

and dist,, . = [|sin(e) |2 € [0, VE].

d) Fubini-Study: This quantity is a measure of the acute angle between both spaces, general-
ized to higher dimensions: dist, =arccos (|det(Q] Q;)|) =arccos ([, cos(a;)) €10, 5].

e) Overlap: The overlap = 1||®;Q;[|% € [0, 1] quantity was used in Gur-Ari et al. (2018)
to measure subspace similarity. It is not a metric per se, since it is highest for equiva-
lent subspaces and decreases with their distance, but it is a bijection of dist,, ., as follows:

1 2 _ 1 T 2 _ 1 2 . 2 _ 1 Jiat2

#IiQ;ll5 = £ 1Qi Q7 = gllcos(o)|[F =1=|[cos(a) [ =1 -, dist,, p.
While the above metrics apply to any pair of matrices from QP**, there are also relevant metrics
specific to B>, that can be characterized in a similar manner. Consider an arbitrary pair of k-sparse
matrices (1m;,m;), and their corresponding orthogonal projectors ® := diag (). Then we have:

i) IoU: Typically used as an evaluation metric, it is defined as the relative number of entries

present in both masks, i.e. [oU := ﬁﬂﬁj €[0,1]. Then we have m; nm; = ||®;®;||% =

k-overlap, and if both masks are k-sparse, we also have m; um; = 2k — (m; mmj) =

k(2 — overlap), yielding the bijection overlap = 12_&%%

ii) Hamming distance: This quantity, defined as the minimum number of bit-flips needed to
pass from one mask to another, was used in You et al. (2020) to measure distances between
pruning masks. It is in fact a Grassmannian metric: disty :=||m; — m;||3=||®;—®;||% =
dist;F € [0, k], which means that the bijection overlap =1— 1 dist, also holds.

4.2 COMPARING GRASSMANNIAN METRICS

We now conduct a synthetic experiment to identify the most insightful Grassmannian metric for com-
paring pruning masks and Hessian eigenspaces. The experiment also provides baselines to discern
when a given metric value can be considered “larger than chance”. We also explore computational
costs associated with each metric and discuss their potential scalability for larger-scale DL scenarios.

Setup: We compute the reviewed Grassmannian metrics a) to e) between randomly drawn matrices
from Q" and masks from B**P. We use the subgroup algorithm (Diaconis & Shahshahani, 1987)
to sample matrices uniformly from Q* and column permutations of Ip j to sample uniformly
from B*P. To determine if the metrics behave differently for masks than for general orthogonal
matrices, we inspect three different modalities: pairs of matrices (O-to-Q), masks (B-to-B), and
matrix-mask pairs (O-to-B). We normalize all metrics, denoted by distg, to be in [0, 1], with 1
indicating highest similarity (i.e. smallest distance). We want to inspect how the distribution of the
metrics changes as a function of height D and width-to-height ratio r:= %. First, given fixed values
of r, we study the distribution of all Grassmannian metrics as a function of D (Figure 2). Addi-
tionally, given fixed values of D we study how the Grassmannian metrics change as a function of r
(Figure 3). Appendix A.2 provides supplementary details, including figures for the other modalities.

All distributions become predictable as D increases: The expectation of all metrics converges to a
fixed value as D increases (Figure 2). Furthermore, the variance of all observed distributions tends
to shrink. While results are unstable for very low D, they stabilize already for moderate values of
D, well below the typical DL regime. Thus, we can use the measured “converged” expectations as
random baselines to compare against (see Table 1 in Appendix A.2). Furthermore, it can be shown
analytically that the expectation of overlap equals % (a proof is included in Appendix A.1).

Metrics display either shrinking or proportional behavior as D increases: Although all distri-
butions become predictable, not all of them are informative. The top row in Fig. 2 showcases the
shrinking metrics (dist; 5, dist;5 and distg) whose expectation collapses to zero as D increases.
On the contrary, all metrics portrayed in the bottom row exhibit proportional behavior, with their
expectation converging to a value that seems to only depend on . Mathematically, all shrinking met-
rics are dominated by the extremal principal angles, whereas proportional metrics rely on a balanced
aggregation of all angles.
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Figure 2: Grassmannian metrics for random pairs of matrices (Q;,Q,) ¥ (OP** QP*F) as
a function of D. Each subplot shows a different metric, and each color corresponds to a different
ratio r = %. For each (D, k), we sample 50 random pairs and report the median of the resulting
distribution (line plot) as well as the 5-95 percentiles (shaded regions). See Section 4.2 for details.

Mask-vs-mask metrics have larger variance, and in some cases lower expectations: All distri-
butions for the mask-vs-mask modality have higher variance compared to the other modalities (see
Appendix A.2). Furthermore, the distributions for the distz and distzy metrics seem to follow lower
trajectories for the mask-vs-mask modality, compared to the other modalities. This is not the case
for dist;r and overlap, whose expectation does not seem to be affected by the modality.

Extremal values of r lead to saturation, except for overlap: Most metrics exhibit a nonlinear be-
havior near the extremes (Figure 3). This is particularly extreme for shrinking metrics, but saturation
can also be observed in the proportional metrics. The only exception is overlap, whose expectation
is linear as shown in Appendix A.1.

Computational aspects: Given @Q; and @, all metrics reviewed in Section 4.1 can be expressed
in terms of principal angles, which can be computed at the cost of a thin matrix multiplication and
an SVD as presented in Eq. (3). The Hausdorff distances can also be alternatively formulated as an
optimization objective, but this is not in closed form and the runtime depends on the optimization
procedure. The matrix formulation of projection norms is in closed form, but it involves large Dx D
projector matrices. The B”** metrics can be expressed in terms of element-wise mask operations,
which can be computed in linear time and memory. The real bottleneck in our computations is ob-
taining one of the involved matrices, namely U™, since the number of parameters even in realistic
DL setups is prohibitive even for k in the dozens.

A case for overlap: As a result of the above discussion, we consider overlap the most suitable
metric for our purposes, since: (1) It is informative: Given a fixed sparsity (as is the case in our
work), its uniformly random behavior is predictable (i.e. converging and low-variance) as well as
informative (i.e. non-shrinking). Furthermore, its expectation behaves linearly, and we know analyt-
ically that it equals £. (2) It is computationally efficient: While it still requires to obtain U ¥, its
matrix formulation involves thin matrices only, allowing us to avoid the use of large D x D projector
matrices and the SVD computation, which is one reason it has been used in related literature (e.g.
Gur-Ari et al., 2018; Dangel et al., 2022). (3) It is related to other metrics: overlap can be mapped to
other popular metrics such as the Hamming distance, IoU, or dist, ; via bijections (see Section 4.1).

5 PRUNING MASKS AND HESSIAN EIGENSPACES OVERLAP SIGNIFICANTLY

We now investigate the similarity between parameter magnitude pruning masks and top Hessian
eigenspaces, as a function of training progress. Figure 1 highlights the main results of this section,
and comprehensive results are reported in Figs. 4, 9 and 10.

Setup: As discussed in Section 4.2, all reviewed metrics require knowledge of the Hessian
eigenspace. Due to the computational costs involved in obtaining U™, we have to limit the size of
the neural network that we use. At the same time, we need an network that is sufficiently large to
allow for the existence of redundant parameters. A sweet spot is provided by the Multi-Layer Percep-
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Figure 3: Grassmannian metrics for random pairs of matrices (Q1,Q-) " (0P** OP**) as a
function of r = %. Each subplot shows a different metric, and each color corresponds to a different
dimension D. For each (D, k), we sample 50 random pairs and report the median of the resulting

distribution (line plot) as well as the 5-95 percentiles (shaded regions). See Section 4.2 for details.

tron (MLP) from Martens & Grosse (2015) which, featuring only 7030 parameters, is able to achieve
zero training loss when trained on a 16 x 16 subsampled version of MNIST. We borrow the same
setup, but use SGD with a learning rate of 0.3 to train the model, achieving a test accuracy of 96.4%
after 50 epochs. At initialization, we isolate 500 samples from the training set and 500 from the
validation set to compute the respective Hessians Hy,.q;, and H,.4;. During training, for each step

t € {0,5,10,...,2000}, we record the network parameters 8*), as well as HY Ht(élt Then,

train’
we define m,(f) to be 1 for the k-largest parameters by magnitude, and O otherwise. At each step ¢,
(t)
k

and the top eigenspace o™ ®,

train
2,018, ang
overlap(Ut(fS)t(“), Ut(ek S)t(tﬂ‘)) . Note that we use the pruning masks to define the subspace, but we
do not apply them, i.e. we do not prune but simply observe the potential pruning masks. This is de-
sirable: if we pruned the model during training, we would be restricting the parameter space, which
could artificially boost the overlap between m, and U %),

we compute the Grassmannian metrics between the span of m

For any two steps t;,t;, we also compute IoU(m,(fi), m,(:j )), overlap(Ut(szm

Both subspaces experience early collapse and stabilization: As we can see in Figure 9, the spar-
sity metric x for both @ and A raises, and a minority of the support quickly ends up condensing a
majority of the norm. Furthermore, we observe that the pairwise similarities between subsequent
magnitude pruning masks, as well as top Hessian eigenspaces, remain high after only a few training
steps (Figure 10 and left and center subplot of Figure 1). Thus, our setup experiences the scenario
of early emergence followed by stabilization highlighted in Section 2.

Both subspaces overlap significantly: Interestingly, computing the Grassmannian metrics between
the pruning masks and the top Hessian subspaces reveals that there is a significant similarity between
these two spaces (Figure 4 and right subplot of Figure 1). The overlap between them is much larger
than random chance, i.e. the random baseline established in the previous section. We further observe
that the overlap is largest directly at initialization, and then decays but stabilizes well above random
chance. This is in resonance with the idea of loss of plasticity (Achille et al., 2019).

6 CONCLUSION

We started with the observation that, at the early stages of neural network training, both pruning
masks and the loss Hessian eigenspace undergo drastic simplification and subsequent stabiliza-
tion. To investigate a possible connection between these two phenomena, we proposed a principled
methodology to quantify their similarity, in the form of Grassmannian metrics, and isolated overlap
as a particular advantageous one. Experiments using this metric support the notion of an early phase
in training. They also reveal a striking similarity between magnitude pruning masks and top Hes-
sian eigenspaces well above chance level, suggesting that in DL large parameters tend to coincide
with directions of high loss curvature. This connection opens the door to the development of novel
optimization and pruning methods, and provides a new angle for the analysis of existing ones.
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Figure 4: Different Grassmannian metrics between pruning masks and top Hessian subspaces.
Each line shows a particular sparsity level p, i.e.. the ratio of unpruned parameters or the size of
the top Hessian subspace relative to the full Hessian. All proportional metrics reveal a significant
similarity between spaces spanned by pruning masks and top Hessian subspaces well above random
chance (random baselines gathered from our synthetic experiments are shown in gray dotted lines
for p = 0.2), while shrinking metrics are effectively zero .
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A  SUPPLEMENTARY MATERIAL

A.1 EXPECTATION OF overlap FOR UNIFORMLY RANDOM MATRICES

In Section 4.2 we empirically observed that the expectation under uniformly distributed random
matrices becomes predictable for all reviewed metrics. Here we show that, for overlap, such expec-
tation equals exactly %. This lemma depends on a standard calculation that was communicated to
us by Joel A. Tropp.

Lemma A.l. Let Q1, Q2 be random matrices drawn uniformly from the Stiefel manifold QP** =
{Q:QeRP*F QTQ=1,}. Then,
k

E [overlap(span(@Q:1), span(@2))] = 5 )

Proof. We start by rewriting the definition of overlap, presented in Section 4.1, in terms of the
trace of orthogonal projectors ¥ = QQ'. We make use of the idempotence of ¥ and the unitary
invariance of the Frobenius norm:
1
Tr(0,®5%,) (6

1 1
overlap(span(Q1),span(Q2)) = E||Q1TQ2||% = %”\111‘112“% =7

1
= ETY(‘I’1‘I’2‘I’1) (7)

We further observe that, if @ is drawn uniformly, the marginal distribution of every column gq is the
uniform distribution over the Euclidean unit sphere, hence it is isotropic:

1
Elqq'] = 51Ip ®)

Where I is the rank-D identity matrix. Then, leveraging linearity of expectation, the orthogonal
projector ¥ = QQ T can be expressed as follows:

k
k
E[®] = > Eaq]] = 51Ip ©)
i=1

Now, given two independent realizations @1, Q2, we form the associated orthogonal projectors
¥y, ¥,. Write E;, E, for the expectations of the respective distributions of Q1 and Q5. Then,
leveraging independence of Q1 and @5, idempotence of ¥, and linearity of expectation and trace,
we have:

2 2

k k k
E [TI‘(\Ill‘IIQ\Ill)] = ]El [TI'(\IflEQ [‘I’Q] ‘I’l)] = E]El [TI‘(‘I’lID‘Iil)] = ﬁ Tr ID = 5 (10)

Replacing in the original definition concludes the proof. O
A.2 SYNTHETIC EXPERIMENT ON GRASSMANNIAN METRICS

This section provides details about the synthetic experiment presented in Section 4.2. Algorithm 1
details the overall procedure. We used the following values:
e Number of random (matrix or mask) samples: 7' = 50

* For Figures 2, 5 and 6 we investigate four different (fixed) ratios r € {0.4,0.2,0.05,0.01}
at several increasing dimensions d € {16, 32, 64, 128, 256, 512, 1024, 2048}.

* For Figures 3, 7 and 8 we investigated four (fixed) dimensions d € {128,256, 512,1024}
at several increasing ratios r € {0.005,0.01,0.05,0.1,0.33,0.66,0.9,0.95,0.99, 1}.

Note how, in the second case, we concentrate the width-to-height ratios around the extremes. This
is to better capture the behavior of shrinking metrics, as discussed in Section 4.2.

A.3 ADDITIONAL RESULTS FOR SECTION 5

13
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Algorithm 1: Synthetic experiment on Grassmannian metrics (see Section 4.2 for details).

Input:
Input:
Input:

Input

{D1,Ds,...}
{ri,ra, ...}

{(0,0),(0,B), (B, B)}

Input: T
1 R—J
2 forde {D;y,D,,...} do

: {distg, distz5, distzr, distp, distyr, distg, overlap}

// Matrix height (D; € N)
// Width-to-height ratio (r; €[0,1])

// Modality

// Metric (normalized)

// Number of random samples
// Result (a dictionary)

3 | forre{r;,r,..}do
4 k < max(1,round(r - d))
5 for dist € {disty, distzz, dister, distpz, distyr, dista, overlap} do
6 for (M, Ms) € {(0,0), (0,B), (B,B)} do
7 H— // Collection of samples
8 for {1,...,T} do
9 ‘ (Q1,Q2) & (MPFE MPFYH — H U dist (span(Q1), span(Q2))
10 end
1 R[d,T‘,diSt,MHMZ] —H // Gather samples into result
12 end
13 end
14 end
15 end
16 return R
distc,j distﬁ distg
— r=0.01
r=0.05
= r=0.2
=0.4
" S N
1.0 1 disty 1 dist; % dist;# overlap
0.5 1
0.0 + . FRE . . . . . .
0 1000 2000 O 1000 2000 O 1000 2000 O 1000 2000

Figure 5: Grassmannian metrics for random pairs of matrices and masks (Q1,Q>)

unif.
~

(OP>k BD>*k) as a function of D and for fixed r. Each subplot shows a different Grassman-
nian metric with the different lines indicating four different ratios r. For each value of D, we report
the median metric over 50 random pairs with the shaded regions showing the 5-95 percentiles.

Table 1: Random baselines for Grassmannian metrics. Shown are the measured expectations
(averaged over 50 samples at D = 2048) of different Grassmannian metrics between two uniformly
random matrices in Q. Ostensibly, they only depend on the width-to-height ratio r (see Section 4.2).

Metric T

0.005 0.01 0.05 0.2 04
disty 0.96289 0.94809 0.88091 0.75466 0.63464
distz> 0.99803 0.99839 0.99952 0.99954 0.99974
dister 0.97017 0.95798 0.90016 0.78246 0.66217
distpz 0.99999 0.99999 1.0 1.0 1.0
distz = 0.99752 0.99521 0.97487 0.89430 0.77473
distg 1.0 1.0 1.0 1.0 1.0
overlap 0.00495 0.00955 0.04962 0.20022 0.39980
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Figure 6: Grassmannian metrics for random pairs of masks (Q1,Q2) "¥ (BP** BP*F) as
a function of D and for fixed . Each subplot shows a different Grassmannian metric with the
different lines indicating four different ratios r. For each value of D, we report the median metric
over 50 random pairs with the shaded regions showing the 5-95 percentiles.
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Figure 7: Grassmannian metrics for random pairs of matrices and masks (Q1,Q2)
(OP>k BD>*k) as a function of ~ and for fixed D. Each subplot shows a different Grassman-
nian metric with the different lines indicating four different dimensions D. For each value of r, we
report the median metric over 50 random pairs with the shaded regions showing the 5-95 percentiles.
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Figure 8: Grassmannian metrics for random pairs of masks (Q1,Q2) "¢ (BP** BP*F) as
a function of r and for fixed D. Each subplot shows a different Grassmannian metric with the
different lines indicating four different dimensions D. For each value of r, we report the median
metric over 50 random pairs with the shaded regions showing the 5-95 percentiles.
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Figure 9: Both the parameters of the a neural network as well as their Hessian spectrum
collapse early during training. (zop) The top two subplots show the mini-batch loss Lz as well
as the train/validation/test accuracy of the model trained in Section 5. (middle) Looking at the top
20%, 5%, 1%, 0.5% of parameters by magnitude, we can see that very early during training, most of
the energy is concentrated on a small subset of the parameters (see Section 2 for a definition of ).
For example, shortly after initialization, the top 0.5% largest parameters by magnitude have roughly
/1 of the total magnitude of all parameters. (bottom) We can observe a similar behavior for the
Hessian spectrum on both the training set (fourth subplot) and the test set (fifth subplot). Only a few
steps after training, most of the energy is concentrated in only 0.5% of the eigenvalues.

16



Under review as a conference paper at ICLR 2024

p =0.005 p=0.01 p=0.05 p=02
0 1.00
i
° 0.75
& 100
£ 0.50
)
2 200 0.25
0.00
< 0 |. I . 1.00
g d i}t 0.75
T 100 T . - .
b= =R LA 2 = 0.50
i) =R 1
§ 200 -SESEEHE | i | 0.25
° . . . . 0.00
0 1.00
3 T |
3 billid 0.75
T 100 - T . - .
2 =R : = 0.50
! ) —=t . ) | i 0.25
£ 200 G i
o
T T T T 0.00

0 200 0 200 0 200 0 200

Figure 10: Both parameter pruning masks (top row) and Hessians (bottom two rows) remain
relatively stable after an initial training phase. Following You et al. (2020), the depicted matrices
represent all pairwise similarities (i.e. higher is better) from the beginning of training (top left cor-
ners) until step 240 (bottom right corners). For this reason, all matrices are symmetric and have unit
diagonals. (fop) Even when selecting only 0.5% of the parameters (left column), masks collected
at different training steps show a remarkable similarity after an initial phase of training. (middle
and bottom) The overlap metric for top Hessian eigenspaces on the train (middle) and test set (bot-
tom) extracted at different training steps and for different subspace sizes (columns). Starting from
initialization, the Hessian eigenspaces do not change significantly over the course of training. No
substantial differences in behaviour between H;.,; and Hy,..;, can be observed.
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