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ABSTRACT

Decentralized training introduces critical security risks when executed across
untrusted, geographically distributed nodes. While existing Byzantine-tolerant
literature addresses data parallel (DP) training through robust aggregation methods,
pipeline parallelism (PP) presents fundamentally distinct challenges. In PP, model
layers are distributed across workers where the activations and their gradients flow
between stages rather than being aggregated, making traditional DP approaches
inapplicable. We propose SENTINEL, a verification mechanism for PP training
without computation duplication. SENTINEL employs lightweight momentum-
based monitoring using exponential moving averages (EMAs) to detect corrupted
inter-stage communication. Unlike existing Byzantine-tolerant approaches for DP
that aggregate parameter gradients across replicas, our approach verifies sequential
activation/gradient transmission between layers. We provide theoretical conver-
gence guarantees for this new setting that recovers classical convergence rates
when relaxed to standard training. Experiments demonstrate successful training of
billion-parameter LLMs across untrusted distributed environments with hundreds
of workers while maintaining model convergence and performance.

1 INTRODUCTION

Large Language Models (LLMs) have fundamentally reshaped artificial intelligence, demonstrating
exceptional performance across diverse tasks (OpenAI, 2023; Yang et al., 2024; Jiang et al., 2024;
Dubey et al., 2024; MetaAI, 2025; Bi et al., 2024; DeepSeek-AI et al., 2025). Training state-of-the-
art LLMs, however, requires substantial computational resources (reportedly tens of thousands of
co-located GPUs for models like GPT-4 (Walker II, 2023), Llama-4 (MetaAI, 2025), Qwen2.5 (Yang
et al., 2024), etc.) with corresponding energy and financial costs. This has motivated research into
decentralized training approaches to broaden participation in LLM development (Ryabinin et al., 2021;
Yuan et al., 2022; Ryabinin et al., 2023). Decentralized training, which extends distributed training to
trustless settings, allows independent collaborators to pool their computational resources, potentially
over large distances, to develop models without relying on massive centralized infrastructure.

Decentralized training of LLMs over networks of interconnected devices is made possible through
two primary parallelization approaches: data and pipeline parallelism. Data parallelism (DP) (Li
et al., 2020; Zhao et al., 2023) distributes different batches of training data across workers nodes,
however requires each node to fit the entire model which is not practical for billion-parameter models
in decentralized settings. Pipeline parallelism (PP) (Krizhevsky et al., 2017; Huang et al., 2019)
partitions the model across stage-wise across worker nodes, with each responsible for distinct model
stages (groups of layers), but requires high-bandwidth connections and suffers from node dropout.
Combining these complementary approaches reduces the size limitation of DP and the vulnerability
of PP, and have enabled frameworks such as SWARM (Ryabinin et al., 2023) to train billion-
parameter LLMs through internet-scale communication among distributed nodes. By leveraging these
parallelization techniques, such frameworks aim to achieve high node utilization while minimizing
bandwidth requirements, hoping to make large-scale model training more widely accessible.

While optimizing communication bandwidth and fault tolerance have been the primary
focus in decentralized training research (Ryabinin et al., 2021; Douillard et al., 2023;
2025; Ajanthan et al., 2025), the success of incentive-driven decentralized training criti-
cally hinges on the integrity and trustworthiness of participating nodes (Lu et al., 2024).
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Figure 1: Scatter plot of F1-scores vs. val-
idation loss for more than 75 different at-
tack setups. Strong attacks (higher loss) are
caught more often (high F1-score), while
weak attacks may slip through. Our verifica-
tion method thus catches the most harmful
attacks that would disrupt training.

Malicious actors in DP configurations can corrupt global
updates through parameter gradient poisoning, while in PP
(layer-wise model parallelism), adversaries can sabotage
intermediate activations or activation gradients between
model stages. Such vulnerabilities underscore the need for
robust mechanisms in a decentralized PP training setting.
Traditional Byzantine-tolerant methods, designed designed
to prevent simpler DP threat models (Malinovsky et al.,
2024; Gorbunov et al., 2022; Mhamdi et al., 2018) fail to
address the cascading failures induced by partitioned model
execution in pipeline parallel (Lu et al., 2024).

In this paper, we provide the first comprehensive explo-
ration of secure and verifiable PP decentralized training
by identifying and addressing vulnerabilities unique to this
setting. We formalize a suite of malicious attacks tailored
for this setting, for which traditional checkpoint-based ver-
ification is ineffective (Arun et al., 2025). To counter this,
we propose a lightweight verification mechanism using ver-
ifier nodes, trusted intermediaries placed between stages, that continuously monitor computational
integrity without requiring full model replication or impeding training throughput.

Our method, called SENTINEL, implements a momentum-based anomaly detection system that tracks
exponential moving averages (EMAs) of activations and gradients across pipeline stages. At each
stage of the model, verifier nodes compute statistical divergence metrics between observed signals
and their EMA baselines. Deviations exceeding adaptively calibrated thresholds, determined via
inter-quartile range (IQR) analysis, are flagged for potential malicious activity. This lightweight veri-
fication introduces minimal computational overhead while enabling early detection of both gradient
and activation tampering attacks. Empirical evaluations demonstrate that our system successfully
detects and mitigates various attacks in decentralized PP setups scaling beyond hundreds of workers,
maintaining training integrity and convergence stability despite the presence of malicious participants.

The primary contributions of our work are summarized as follows:

• We present the first comprehensive study of vulnerabilities unique to decentralized training with
hybrid data–pipeline parallelism, and introduce a suite of training-interruption attacks that serve
as benchmarks for evaluating the security of future systems.

• We propose a lightweight verification method, dubbed SENTINEL, that leverages momentum-
based monitoring at verifier nodes. Our theoretical analysis demonstrates that undetected
malicious workers have a negligible impact on the convergence properties (see Fig. 1).

• We perform extensive experiments in distributed settings involving hundreds of workers, vali-
dating the effectiveness of our verification framework in mitigating malicious behaviors within
realistic decentralized training scenarios by achieving consistently high (> 90%) F1 scores.

• We integrate our method with SWARM parallelism to demonstrate its remarkable versatility in
real-world decentralized training ecosystems.

2 PROBLEM STATEMENT

In this section, we outline our hybrid DP-PP architecture and threat model for decentralized training,
focusing on malicious worker behavior. Additional vulnerabilities are detailed in App. B.

2.1 THREAT MODEL

We consider a distributed pipeline parallel neural network composed of p stages and n worker
nodes (see Fig. 2b & c). The network outputs y = F (x) = fp ◦ fp−1 ◦ · · · ◦ f1(x). At itera-
tion t the parameters are θt = (θ

(1)
t , . . . ,θ

(p)
t ) ∈ RDtotal , where each stage s has parameters

θ
(s)
t ∈ RDs and Dtotal =

∑p
s=1 Ds. Each stage s is is replicated across ds worker nodes oper-

ating in parallel, thus n =
∑p

s=1 ds. Parameters θ(s) are shared across stage replicas, however

2
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Figure 2: Distributed threat models. (a) In DP, workers hold full model replicas and only send weight gradients.
Traditional Byzantine-tolerant methods consider this case and use robust aggregation. (b & c) The threat
model considered in this paper (see Sec. 2.1). In PP, workers hold individual layers, and send intermediate
activations h and activation gradients g, thus corruptions directly affect other workers. (b) In the standard
setting there is a fixed grid of pipeline stages and data parallel replicas, and communication is routed through
our verifier nodes. (c) In the SWARM setting designed for decentralized setups, data is stochastically routed
by trainer nodes. Workers send their computations (h and g) to trainers, who then route them to an available
worker in the next stage. Our proposed verifiers can seamlessly be added on top of these trainer nodes (App. H).

each replica processes a distinct mini-batch. Thus, worker (s, r) computes replica-specific activa-
tions h(s,r) = fs(h

(s−1,r);θ(s)) ∈ Rm on the forward pass, and replica-specific activation gradients
g(s,r) = ∇h(s−1,r)L(θ) on the backward pass where L(θ) is the training loss.

In current decentralized PP training frameworks such as SWARM (Ryabinin et al., 2023), workers
exchange activations and activation gradients between pipeline stages without verification. Unlike
federated learning (McMahan et al., 2017) where attacks primarily target weight gradient poisoning,
PP setups are vulnerable to training-interruption attacks, where malicious workers can silently disrupt
training by sending corrupted signals. This is particularly challenging because corruptions in early-
stage workers may only become apparent in workers of later layers: errors can amplify due to model
non-linearities and only surpass detection thresholds after several stages, allowing attackers to avoid
detection and potentially flagging honest workers due to this cascading effect. For a comprehensive
comparison between the DP and PP setup, please refer to Q0 in App. A.

To address these vulnerabilities, we introduce dedicated “verifier nodes” as trusted intermediaries for
lightweight verification (see Fig. 2b). These verifier nodes intercept and validate all training signals
exchanged between stages, operating efficiently even on CPU hardware with minimal overhead. Their
key advantage is localizing malicious behavior at specific stages, preventing cascading corruption
effects inherent to pipeline parallelism. In frameworks like SWARM(Ryabinin et al., 2023), verifier
nodes are a simple extension to “trainer nodes” that handle orchestration between workers (see Fig. 2c,
App. H). Formally, our threat model with verifier nodes is defined as follows:

Definition 1 (Data and Pipeline Parallel Threat Model). Consider a neural network trained in a
distributed system with the PP setup described above. We position trusted “verifier” nodes between
consecutive stages, through which all communication is routed and thus can be validated, and our
goal is to detect and exclude malicious participants. Explicitly, let Bs ⊂ {1, 2, . . . , ds} be the subset
of malicious worker nodes at stage s, with the fraction of malicious workers defined as γs = |Bs|/ds,
and we assume γs < 1/2. Our objective is to detect the malicious subset Bs. 1

In our threat model, malicious actors can employ various strategies to disrupt training. Next, we
introduce these attacks based on their computational requirements and potential impact on the training.

Attack Variants. Let x represent any activation or gradient vector potentially manipulated by a
compromised node, with x̂ denoting its manipulated version. We consider the following attacks:

• Constant Attack: The attacker submits a constant vector without performing the assigned
computation, i.e., x̂ = c, such as vectors of negative ones or zeros.

1We assume the first and last layers are managed by honest workers, as they process user data and compute
the loss and thus require protection. We also assume that the malicious workers cannot collude with each other.

3
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• Random Value Attack: The attacker replaces vector elements with values randomly drawn
from a standard normal distribution: x̂ ∼ N (0, I).

• Scaling Attack: The attacker scales the vector by a factor α, i.e., x̂ = αx.
• Random Sign Attack: The attacker flips each vector element’s sign with probability p.
• Bias Addition Attack: The attacker introduces random noise to the vector: x̂ = x+ ϵ, where
ϵ ∼ N (0, σ2I). For stealthier attacks, σ can be chosen to match the original vector’s magnitude.

• Delay Attack: The attacker use past values: x̂t = xt−k where k denotes the delay steps
• Invisible Noise Attack: Inspired by the ALIE attack (Baruch et al., 2019), the attacker replaces

benign values with statistically subtle boundary values: x̂ = µ+ zmax

(
σ ⊙ ϵ

)
, where µ is the

original vector’s mean, σ its element-wise standard deviation, zmax =
√
2 · erfinv(2p− 1), with

p = 1− α being the quantile threshold, erfinv is the inverse error function, and ϵ ∼ N (0, I).

3 MOMENTUM-BASED VERIFICATION OF WORKER NODES

Vanilla pipeline parallelism remains vulnerable to corrupted communications in both forward and
backward propagation. When malicious workers inject corrupted activations or activation gradients,
the effects can cascade through the network, potentially compromising model convergence with
minimal detectability. Naı̈ve methods like full computation duplication (Rajput et al., 2019; Lu et al.,
2024) guarantee detection but reduce training throughput, while random sampling verification fails as
some attacks that can damage training within just a few iterations (see Fig. 7).

We introduce SENTINEL: a lightweight, statistically principled verification mechanism that leverages
EMA of activations and their gradients to establish reliable reference points for detecting anomalous
behavior. We design an algorithm to adaptively set the thresholds of our anomaly detection tests
using the IQR. Under relaxed assumptions, we analytically prove that undetected corrupted worker
nodes under our verification framework have negligible impact on final model convergence.

3.1 PROPOSED METHOD

Motivation. The key insight driving our approach is that in healthy distributed training scenar-
ios, each worker’s activations and gradients should exhibit statistical consistency with the overall
population. Existing work duplication methods such as Lu et al. (2024) would require significant
computational resources as they need to allocate half of their resources for work verification. EMAs
offer three critical advantages as the foundation for our proposed lightweight verification:

• Computational Efficiency: Computing and updating EMA statistics requires minimal computa-
tion and memory overhead (O(m) complexity where m is the activation/gradient size), making
it suitable for resource-constrained verifier nodes.

• Temporal Smoothing: The EMA naturally smooths out mini-batch noise while capturing the
underlying distribution of legitimate worker outputs, creating a robust reference point.

• Adaptivity to Training Dynamics: As training distributions shift, the EMA automatically
adjusts to these shifts while remaining resistant to abrupt deviations from malicious workers.

Thus, we design SENTINEL to contain four key components: (1) using EMAs as statistical reference
points, (2) selecting appropriate distance measures for deviation detection, (3) implementing adaptive
thresholds for anomaly detection, and (4) handling cascading effects in the distributed architecture.
Below, we elaborate on each of these components. For a detailed step-by-step overview of our
approach, please refer to Alg. 1 in the Appendix. Furthermore, we refer the interested reader to
App. H for an overview of how SENTINEL gets integrated in SWARM (Ryabinin et al., 2023).

Exponential Moving Average as Reference Point. We leverage the EMA of activations and
gradients at each layer as a statistical reference point to detect deviations. Since the EMA serves as a
robust approximation of the expected value (Robbins & Monro, 1951), it is effective for detecting
anomalies. For non-malicious actors, we only expect small deviations since the optimization trajectory
typically remains smooth. Formally, each verifier node maintains a running EMA of activations:

m
(s)
t (h) = βhm

(s)
t−1(h) + (1− βh)

1

ds

ds∑
r=1

h
(s,r)
t , (1)

4
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where m
(s)
t (h) denotes the EMA of activations at stage s, and βh ∈ [0, 1) is the decay rate. A

similar equation is used to capture the EMA of gradients m(s)
t (g) with decay rate βg ∈ [0, 1).

To establish a reliable initial estimate, we employ a “warm-up” phase with only honest workers,
during which the EMA statistics are collected and stabilized before verification begins (for additional
explanation, please see Q4 in App. A.) After the warm-up period, each time workers submit new
signals, the verifier conducts a lightweight statistical test comparing these signals with the established
EMA. The deviation determines whether a worker is flagged as malicious. Formally, for activation
h
(s,r)
t submitted by worker (s, r), the verifier calculates:

Γ
(s,r)
t := Ω

(
h
(s,r)
t ,m

(s)
t−1(h)

)
, (2)

where Ω(·, ·) is a suitable distance measure. A worker is flagged as malicious if Γ(s,r)
t > τ , and we

skip updating the EMA to maintain verification integrity. We use a similar detector for g(s,r)
t .

Choice of Distance Measure Ω. The distance function critically impacts verification sensitivity.
Rather than using a single metric, we employ a collection of metricsM, including mean absolute
difference, normalized Euclidean distance, sliced Wasserstein distance, and sign flip ratio, to robustly
detect various attack types. A worker is flagged if it exceeds the threshold for any metric. The diverse
set of metrics provides robustness against various attack vectors, as different attacks may manifest in
different statistical properties. Formal definition of our metrics is provided in App. D.

Automatic Threshold τ Updates. Each distance metric requires a threshold τ to flag anomalous
behavior. During the initial “warm-up” period mentioned earlier, we collect valid deviations for each
metric at every stage and compute the IQR. We then use Tukey’s fences (Tukey, 1977) to establish
valid deviation bounds. In particular, let Hs

l denote the history of valid deviations over the past l
iterations collected from all ds workers at stage s. Let q1, q2, and q3 be the 25th, 50th (median), and
75th percentiles of these deviations. We define our test statistic as:

if |Γ(s,r)
t − q2| ≥ k(q3 − q1)⇒ flag node (s, r) as malicious (3)

where k = 1.5 is the conventional choice (Tukey, 1977). We choose to adaptively adjust k through
an iterative process that widens or narrows thresholds to maintain a chosen false positive rate (e.g., <
1%). This dynamic threshold continuously incorporates new benign deviations into the historical
window, enabling the verification system to automatically adapt to evolving data changes throughout
training (see Fig. 11). The details of this method is given in Alg. 5 in the Appendix.

Handling Cascading Effects. In our PP-based distributed architecture, corrupted activations from
an early stage can affect downstream workers, potentially causing misclassification of honest nodes.
We address this with two complementary mechanisms:

1. Bottom-up Malicious-Node Identification: When a worker at stage s is flagged as malicious,
the verifier notifies all downstream verifiers to pause their deviation statistics for the affected
mini-batch and label subsequent anomalies as “tainted by upstream.” To maintain uninterrupted
training, in the backward pass verifiers send the stored gradient EMA, enabling parameter updates
without revealing any behavioral change. For more information see App. E.2 and Fig. 5.

2. Violation Counter with Forgiveness: Rather than banning a worker after one deviation, each
verifier maintains a violation counter. Severe deviations (×100 above the threshold) result in
immediate bans, while milder ones increment the counter by one. A worker is banned after c
violations, but the counter decrements after Tforgiveness consecutive clean steps, allowing recovery
from transient anomalies. We use c = 5 and Tforgiveness = 100 in our experiments.

3.2 THEORETICAL ANALYSIS

To complement our practical approach, we provide theoretical guarantees under relaxed conditions,
analyzing (1) the convergence behavior of the distributed training under bounded malicious perturba-
tions, and (2) the conditions under which our system can maintain an honest majority at each stage.

Theorem 1 (Convergence Under Bounded Perturbations (informal)). Consider a distributed
training setup that utilizes PP to split the model layers across workers and uses momentum-based
verification to verify each worker’s contribution in the forward or backward pass.a Also, assume

5
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that less than half of workers at each stage are malicious (i.e., γs < 1/2) and we use a fixed
threshold τ for worker verification using Eq. (2).b Under such relaxed conditions, training with
non-convex loss functions optimized with momentum SGD converges to a neighborhood of a
stationary point where the size of this neighborhood is directly proportional to τ .

Theorem 1 states malicious workers who evade detection by keeping perturbations below threshold τ
can only cause the final solution to deviate from the optimal solution by an amount proportional to τ .
The formal theorem is given in App. F.1. Please also visit Q8 in the FAQ (App. A).

Recall that SENTINEL relies on the assumption that fewer than half of workers at any stage are
malicious (i.e., γs < 1/2). Next, we quantify the conditions under which this assumption holds with
high probability, given a total budget of malicious workers. The proof is given in App. F.2.

Lemma 1 (Honest Majority Guarantee). Consider our distributed training system with p pipeline
stages, each replicated across d worker nodes. Let b be the total number of malicious workers,
and ϵ ∈ (0, 1) be a small positive constant. If workers are assigned to each stage randomly and
b ≤ dp/2− p

√
d/2 ln (p/ϵ), then with probability at least 1− ϵ every pipeline stage has strictly

fewer than d/2 malicious workers.

4 RELATED WORK

Our momentum-based verification approach intersects three primary research directions that have
largely evolved independently. For a more comprehensive review of related work, see App. C.
Decentralized LLM Training has emerged as a democratizing force in AI development. While
frameworks like Tasklets (Yuan et al., 2022) or SWARM (Ryabinin et al., 2023) have made significant
advances in communication efficiency and fault tolerance for non-malicious failures, they remain
vulnerable to adversarial participants. Our work aims to address these vulnerabilities.
Byzantine Robustness in Machine Learning has traditionally focused on federated learning contexts
where each worker computes complete model updates. Classic approaches like Krum (Blanchard
et al., 2017), Bulyan (Mhamdi et al., 2018), and CENTEREDCLIP (Karimireddy et al., 2021) rely on
comparing full gradients across workers, a fundamental mismatch with pipeline parallel architectures
where each worker computes only a fraction of the model. SENTINEL is specifically designed for the
unique constraints of pipeline parallelism.
Secure Distributed Systems principles inform our verifier node architecture, which draws inspiration
from trusted intermediaries in distributed computing. While preliminary work by Lu et al. (2024)
identified potential vulnerabilities in pipeline parallel training, their redundancy-based solution would
significantly reduce throughput, negating the primary benefit of distributed training. Our lightweight
verification mechanism provides robust security guarantees with minimal computational overhead.

5 EXPERIMENTAL RESULTS

In this section, we present our experimental results. Unless stated otherwise, we use a 0.6B-parameter
Llama-3 (Dubey et al., 2024; Liang et al., 2025) model (16 layers, 32 attention heads, 1024 hidden
dimension and context length) distributed across 128 workers in a 8× 16 data-pipeline parallel mesh.
We use AdamW (Loshchilov & Hutter, 2019) with initial learning rate 6e−4 as our optimizer and
train our models on FineWeb (FW) (Penedo et al., 2024), OpenWebText (OW) (Gokaslan et al.,
2019), and Common Crawl (C4) (Raffel et al., 2020) datasets for 5k steps. We randomly designate
25% of workers at each pipeline stage as malicious (2:6 malicious vs. honest ratio), with only 25%
of these activated simultaneously to soften our “no-collusion” assumption. Training begins with a
1k-step warm-up period before verification is activated. Based on validation runs on vanilla case, we
set βh = 0.9 and βg = 0.8 for activation and gradient verification. Finally, for our adaptive threshold

aWe do not consider dishonest activity during the “all-reduce” operation for syncing parameter gradi-
ents between DP replicas (which is the setting that all prior Byzantine-tolerant literature address). This is a
complimentary axis and one can utilize any prior Byzantine-tolerant work.

bThis is to relax our conditions. In practice we set this threshold automatically each iteration using the IQR.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Attack detection performance for Llama-3-0.6B on C4 dataset.

MODE ATTACK
SENTINEL (OURS) NO VERIF.

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ DET. SPEED ↓ VAL. LOSS ↓ VAL. LOSS ↓

- None (Vanilla) 100.0 100.0 100.0 N/A 3.819 3.821

A
C

T
IV

A
T

IO
N Scaling (α = −1) 100.0 100.0 100.0 6.38 3.824 4.109

Random Value 100.0 100.0 100.0 6.48 3.827 7.778
Delay (100-steps) 88.9 100.0 94.1 13.21 3.841 7.675
Bias Addition 84.6 91.7 88.0 14.57 3.830 3.892
Invisible Noise (99%) 100.0 100.0 100.0 6.48 3.826 7.682

G
R

A
D

IE
N

T Scaling (α = −1) 0.0 0.0 0.0 N/A 3.893 3.893
Random Value 100.0 100.0 100.0 1.0 3.818 9.595
Delay (100-steps) 100.0 100.0 100.0 7.33 3.826 10.157
Bias Addition 100.0 100.0 100.0 1.0 3.828 10.813
Invisible Noise (99%) 100.0 79.2 88.4 211.0 3.943 4.176

Table 2: Detection performance for training Llama-3-0.6B against mixed attacks.

DATASET
SENTINEL (OURS) VANILLA

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ DET. SPEED ↓ VAL. LOSS ↓ VAL. LOSS ↓

COMMONCRAWL 83.7 92.3 87.8 78.14 3.831 3.821
FINEWEB 81.8 92.3 86.7 66.00 3.827 3.840
OPENWEBTEXT 91.9 87.2 89.5 52.70 3.784 3.778

we use a window of past 100 steps. We relax these assumptions through various ablation studies to
study their impact. Detailed experimental settings and extended results are provided in App. G.

Metrics. We evaluate our verification method using precision (Pr), recall (Re), and F1-score to
measure effectiveness in detecting malicious workers while minimizing the false positives. To
quantify detection efficiency, we report detection speed as the average number of iterations between
the start of malicious behavior till the malicious worker gets banned. We also compare convergence
rates across methods using the average loss at the last training step on a held-out validation set.

Verification Performance. We trained Llama-3-0.6B models on the C4 dataset with and without
our verification mechanism and report the results in Tab. 1 (for more comprehensive results on C4
and other datasets, please see App. G.) Our experiments yield three key findings:

1. In pipeline parallelism, activation attacks are as threatening as gradient attacks, but their risk has
been neglected in the Byzantine-tolerant literature.

2. Attack effectiveness varies significantly between activation and gradient domains. The same
technique can severely disrupt training when targeting activations but have minimal impact when
applied to gradients (e.g., invisible noise attacks).

3. Our EMA verification method achieves high F1-scores across attack types. When attacks
produce negligible deviations and evade detection, their impact on convergence remains limited,
confirming our theoretical analysis in Theorem 1 that undetected attacks can only shift parameters
to a neighborhood of the optimum. Fig. 1 also confirms this relationship through a scatter plot of
F1-scores against validation loss of more than 75 different attack setups from Tabs. 10 to 12.

Mixed Attacks. While previous experiments examined individual attack types in isolation, real-
world scenarios typically involve adversaries employing various attack strategies simultaneously
across different nodes. To evaluate our approach under these more realistic conditions, we conduct
experiments with the Llama-3-0.6B model in a distributed training environment where 37.5% of
workers per stage are malicious (specifically, 3 malicious versus 5 honest workers per stage in an
8 × 16 mesh). All attackers begin their malicious activities simultaneously, with each attacker
randomly assigned both an attack mode (activation or gradient manipulation) and a specific attack
strategy from Sec. 2. Tab. 2 summarizes our experimental results across three datasets. The findings
demonstrate that our verification method successfully identifies most detrimental attacks, resulting
in validation loss metrics comparable to non-attacked baseline models. This robustness against
heterogeneous attack vectors highlights the effectiveness of our approach in securing pipeline parallel-
based LLM training against sophisticated adversarial scenarios.
Large-scale Experiments. To validate our approach at scale, we conduct experiments in two other
settings: (1) a 16× 16 mesh configuration with 256 total workers, and (2) a larger 1.2B parameter
model trained on an 8× 8 mesh with 64 workers. In both scenarios, we maintained 37.5% malicious
workers per stage (6:10 malicious-to-honest ratio for the 16× 16 mesh and 3:5 for the 8× 8 mesh),
with 25% of attackers active during each attack round. Results in Tab. 3 (see Tab. 13 for extended
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Table 3: Activation attack detection performance for large-scale Llama-3 training on C4 dataset.

SETUP ATTACK
SENTINEL (OURS)

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ DET. SPEED ↓ VAL. LOSS ↓

0.
6B

W
/

1
6
×

1
6

M
E

SH

Random Value 100.0 100.0 100.0 7.96 3.900
Delay (100-steps) 85.7 100.0 92.3 14.39 3.945
Bias Addition 100.0 25.6 40.8 65.15 3.981
Invisible Noise (99%) 100.0 100.0 100.0 7.96 3.898

1.
2B

W
/

8
×

8
M

E
SH

Random Value 100.0 100.0 100.0 4.33 3.723
Delay (100-steps) 37.5 100.0 54.5 67.0 3.774
Bias Addition 0.0 0.0 0.0 N/A 3.738
Invisible Noise (99%) 100.0 100.0 100.0 4.33 3.727
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Figure 3: Ablation studies on the effect of various elements on the verification performance.

results) show that our verification mechanism effectively preserves training integrity across all attack
scenarios, with validation losses comparable to non-attacked baselines. These results were achieved
without extensive hyperparameter tuning compared to our 0.6B setting, though improvements are
needed to reduce false positives in activation delay attacks on the 1.2B model.
Ablation Studies. Next, we study how key factors affect our verification method in detecting
malicious workers. We evaluate using our strongest attacks, 99% invisible noise activation attacks
(Studies 1 & 2) and 100-step delayed gradient attacks (Study 3), with a consistent ratio of 3 malicious
to 5 honest workers per stage (37.5% malicious).

1. Initial Warm-up Period: Our method requires an initial warm-up phase to ensure that training
has reached a stable point. Fig. 3a shows that while early detection achieves high recall, precision
is initially low due to insufficiently robust thresholds because of training volatility. After roughly
1k steps, precision stabilizes as the verification method establishes reliable bounds.

2. Attacker Collusion: When malicious workers coordinate their attacks, detection becomes more
challenging. As shown in Fig. 3b, our verification method maintains effectiveness with up to 60%
collusion among malicious workers. Beyond this threshold, false positives increase significantly,
which could adversely impact precision.

3. Gradient Delay Impact: Fig. 3c demonstrates our method’s robustness to various delay lengths
in gradient attacks. Even with minimal delays, where malicious gradients closely resemble
current legitimate gradients, our verification method maintains high detection rates.

For more results on the impact of EMA, alternative architecture, datasets, etc. please see App. G.2.

Table 4: Verification performance against adaptive attacks.

MODE SENTINEL (OURS) NO VERIF.

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ VAL. LOSS ↓ VAL. LOSS ↓

ACTIVATION 100.0 100.0 100.0 3.835 7.776

GRADIENT 100.0 100.0 100.0 3.818 7.777

Adaptive Attacks. In this section, we
investigate an adaptive attack that knows
how SENTINEL is verifying its signals.
In particular, let us assume that the ma-
licious workers maintain an EMA of sig-
nals sent to subsequent layers, using the
same β as the verifier node. After collecting sufficient EMA samples, the attack sends drifted
activations/gradients biased toward a predetermined target direction, using stale momentum estimates
to create consistent bias while appearing statistically legitimate. The attacker constructs its attacks
according to x̂ = mt−δ + α · (tdrift −mt−δ) /||mt−δ||+ ϵ where mt−δ is the stale EMA momen-
tum, α is the drift rate, tdrift is the predetermined drift target, ϵ ∼ N (0, σ2) is Gaussian noise for
stealth, and δ =

⌈
log(0.1)
log(β)

⌉
is the delay factor.

We run this attack for activation and activation gradients for training a Llama-3-0.6B on C4 dataset.
For activation attack, the verifier/attacker uses β = 0.9, while for gradient attack, they use β = 0.8.
Running this attack using our settings from Tab. 1 (25% malicious workers at each stage), we get
the results in Tab. 4. As seen, the adaptive EMA attack can be destructive without verification,
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SENTINEL detects and mitigates it perfectly, validating our resilience against adaptive attacks that
have a knowledge of our defense. This is because the attacker’s EMA would only comprise part of
the total true EMA, and assuming an honest majority, this would not be sufficient to interrupt training.

5.1 EXTENDING SENTINEL TO SWARM PARALLELISM

Finally, we adapt SENTINEL to verify worker node signals in a realistic SWARM (Ryabinin et al.,
2023) experiment. SWARM parallelism provides a fault-tolerant distributed training ecosystem
powered by the Hivemind framework (Ryabinin & Gusev, 2020). It comprises of worker nodes
distributed across both DP and PP coordinates. At each stage, a pool of workers process batches
of data, with the coordination managed through trainer nodes that are responsible for stochastically
routing activations in the forward pass and activation gradients in the backward pass. From this
standpoint, SWARM parallelism is akin to a stochastic DP/PP mesh in comparison to the fixed setting
that we have considered so far. As discussed in Sec. 2.1, trainer nodes are in a natural position to be
extended as verifier nodes when augmented with SENTINEL.
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Mixed Attacks in SWARM
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Figure 4: Loss when training Llama-3-0.6B mod-
els using SWARM (Ryabinin et al., 2023) with 128
distributed workers on preemptible AWS instances.
Workers employ various activation/gradient ma-
nipulation attacks to disrupt training. While in
the absence of verification training gets disrupted,
SENTINEL can successfully protect training from
divergence.

For this experiment, we train our Llama-3-0.6B
model across a distributed SWARM configuration
with 128 workers (8 × 16 mesh). We employ 32
trainer nodes with verification capability to train
our model on FineWeb-EDU, a curated subset of
FineWeb. Since trainers do not have P2P communica-
tion, each maintain independent EMAs with a single
synchronization point at the end of the warm-up.

We evaluate robustness against a mixture of random
attacks by designating 37.5% of workers at each stage
(except the first and last two) as malicious, maintain-
ing a 3:5 malicious-to-honest ratio with 15% col-
lusion where attackers activate simultaneously. As
shown in Fig. 4, the presence of malicious work-
ers significantly disrupts training convergence in the
absence of verification. However, SENTINEL success-
fully maintains the integrity of the training, enabling
the training to continue without interruption. This result in a production-grade environment demon-
strates the practical applicability of our approach for securing real-world decentralized training
ecosystems. For implementation details and full results of SENTINEL in SWARM, see App. H.

6 CONCLUSION

In this paper, we investigated security vulnerabilities in decentralized, pipeline parallel networks,
showing how malicious workers can corrupt activations and activation gradients exchanged between
pipeline stages. To guide future research, we introduced a suite of training-interruption attacks as
benchmarks for evaluating decentralized training security. Our key contribution is SENTINEL, a
lightweight momentum-based verification mechanism that utilizes trusted verifier nodes to maintain
EMAs of transmitted signals (activations and activation gradients) as statistical reference points. We
further developed an IQR-based adaptive thresholding strategy to automatically calibrate detection
sensitivity. We complement our approach by theoretical analysis and real-world integration for
decentralized training using SWARM. Through extensive experiments with models up to 1.2B
parameters distributed across hundreds of workers, we demonstrated its effectiveness in maintaining
training integrity with consistently high F1 scores (> 85%) across various attack scenarios.

Limitations: While our verification method effectively detects the attack types presented, it may not
generalize to all possible adversarial strategies. Future work should explore better adaptive detection
mechanisms that require less manual tuning, possibly neural networks for anomaly detection (Pang
et al., 2021). Additionally, our approach addresses inter-stage attacks specific to pipeline parallelism,
but decentralized training remains vulnerable to other threats including backdoor attacks (Li et al.,
2024), membership inference (Shokri et al., 2017), and all-reduce gradient poisoning attacks (Gor-
bunov et al., 2022) each presenting distinct challenges for truly open collaborative training.
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REPRODUCIBILITY STATEMENT

We provide a detailed, step-by-step pseudo-code of our methodology in Algs. 1 to 5 and 7. Ad-
ditionally, we give a detailed overview of the hyper-parameters used in our empirical evaluations
in App. G.1. We are planning to release the code upon acceptance of the paper.

REFERENCES

Thalaiyasingam Ajanthan, Sameera Ramasinghe, Yan Zuo, Gil Avraham, and Alexander Long. Nes-
terov method for asynchronous pipeline parallel optimization. In Proceedings of the International
Conference on Machine Learning (ICML), 2025.

Arasu Arun, Adam St. Arnaud, Alexey Titov, Brian Wilcox, Viktor Kolobaric, Marc Brinkmann,
Oguzhan Ersoy, Ben Fielding, and Joseph Bonneau. Verde: Verification via refereed delegation for
machine learning programs. CoRR, abs/2502.19405, 2025.

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
distributed learning. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), pp. 8632–8642, 2019.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya
Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang, Erhang Li,
Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, Alex X. Liu, Bo Liu, Wen
Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao
Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli
Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang,
Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin Xie,
Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, Liyue Zhang, Mingchuan
Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan
Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. DeepSeek LLM: scaling open-source language
models with longtermism. CoRR, abs/2401.02954, 2024. doi: 10.48550/ARXIV.2401.02954. URL
https://doi.org/10.48550/arXiv.2401.02954.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
In Proceedings of the International Conference on Machine Learning (ICML), 2012.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), pp. 119–129, 2017.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,

10

https://doi.org/10.48550/arXiv.2401.02954


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing reasoning
capability in llms via reinforcement learning. CoRR, abs/2501.12948, 2025.

Arthur Douillard, Qixuang Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. CoRR, abs/2311.08105, 2023.

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Gar-
rett, Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, Alexandre Ramé, Arthur Szlam,
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Eduard Gorbunov, Samuel Horváth, Peter Richtárik, and Gauthier Gidel. Variance reduction is an
antidote to byzantines: Better rates, weaker assumptions and communication compression as a
cherry on the top. In Proceedings of the International Conference on Learning Representations
(ICLR), 2023.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via resampling. CoRR, abs/2006.09365, 2020.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. CoRR, abs/2203.15556, 2022.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: Efficient training of
giant neural networks using pipeline parallelism. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), pp. 103–112, 2019.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
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Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
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APPENDIX
The appendix is organized as follows:

• In App. A, we present answers to several common questions, hoping to clarify misconceptions
that might arise when interpreting our work and its limitations.

• App. B provides a holistic view of vulnerabilities related to decentralized training that are beyond
the scope of the current work.

• We provide an extended version of the related work to SENTINEL in App. C that was omitted
from the main paper due to space limitations.

• We present our methodology details in Apps. D and E.
• App. F contains our theoretical analysis of SENTINEL, including convergence analysis under

relaxed assumptions and conditions under which random worker assignment could result in an
honest majority at each stage.

• In App. G.2, we provide detailed experimental results and additional ablations.
• Finally, in App. H, we present a step-by-step integration of SENTINEL with SWARM paral-

lelism (Ryabinin et al., 2023). We provide extensive investigation into seamless integration with
trainer nodes that coordinate training in SWARM, followed by real-world experiments training
LLMs over 128 untrusted worker nodes employing malicious attacks.

A FREQUENTLY ASKED QUESTIONS (FAQS)

Q0: What are the fundamental differences between data parallel (DP) and pipeline parallel (PP)
settings that make existing Byzantine tolerant literature inapplicable to this work? We provide
a clear comparison between DP and PP settings, highlighting why existing Byzantine tolerant
literature does not apply to our work:

Table 5: Data Parallel vs. Pipeline Parallel Comparison

Aspect Data Parallel (Prior Work) Pipeline Parallel (Our Work)

Model Distribution Full model replica per worker Model split across workers (layers/stages)
Data Distribution Different batches per worker Same batch flows through pipeline
Communication Pattern Parameter gradients aggregated Activations/gradients passed sequentially
Byzantine Threat Corrupted parameter gradients Corrupted inter-stage activations/gradients
Detection Target Malicious gradient contributions Malicious activation/gradient transmissions
Aggregation Method Robust gradient aggregation Sequential verification at each stage
Literature Focus Robust aggregators No non-trivial prior verification exists

Thus, the key distinctions are:

• Prior Byzantine tolerant literature: Secures the DP axis by developing robust aggregation
methods for parameter gradients from multiple model replicas

• Our work: Secures the orthogonal PP axis by verifying activations and activation gradients
transmitted between sequential pipeline stages using SENTINEL.

Hence, existing Byzantine tolerant works do NOT apply to the PP axis because:

1. No aggregation possible: In PP, activations from different workers cannot be aggregated (they
represent different layers processing different data batch).

2. Sequential dependency: Each stage depends on the previous stage’s output, making robust
aggregation impossible.

3. Different threat model: Malicious workers corrupt intermediate representations rather than
final parameter updates.

4. Verification vs. Aggregation: Our verifiers monitor communication channels rather than
aggregate multiple contributions.

This fundamental difference explains why our threat model and verification approach are necessarily
different from “typical Byzantine tolerant” literature.
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Q1: Why would a model owner deliver part of their model to an untrusted entity to train?
The computational resources required for training LLMs are becoming increasingly unsustainable.
As reported by Brown et al. (2020), training a single GPT-3 175B model requires up to 3.6K Petaflop-
days, incurring a total cost of $4M in AWS pricing. In the absence of big corporations delivering open
source models, decentralized training provides an alternative solution for training such models in a
democratized environment where models can be trained openly and participants are reimbursed based
on their contributions. As discussed in (Yuan et al., 2022), consumer device GPUs are becoming
increasingly available worldwide, many of which are underutilized. “If we could make use of these
devices in a decentralized open-volunteering paradigm for foundation model training, this would be a
revolutionary alternative to the expensive solutions offered by data centers.”

Q2: Is assuming 25-37.5% malicious workers realistic? Why would anyone trust such a system?
We understand the intuitive concern about our 25-37.5% malicious worker percentages. However, note
that these assumptions are standard practice in the Byzantine fault tolerance literature, as evidenced
by recent work in this area outlined in Tab. 6. Importantly, our work serves as a preventative security
mechanism. The goal is to deter malicious behavior by demonstrating robust detection capabilities,
not to operate under the assumption that such high percentages will necessarily occur in practice.
As Fig. 3b demonstrates, when malicious nodes are at lower levels, our performance approaches
nearly 100% detection accuracy. The worst-case analysis ensures system reliability even under
extreme adversarial conditions.

Table 6: Malicious Worker Percentages in Byzantine Fault Tolerance Literature

Reference Venue Malicious Nodes (%)

Mhamdi et al. (2018) ICML 2018 47.37
Gorbunov et al. (2022) ICML 2022 43.75
Blanchard et al. (2017) NeurIPS 2017 33.00
Karimireddy et al. (2021) ICML 2021 30.55
Malinovsky et al. (2024) NeurIPS 2024 25.00
Gorbunov et al. (2023) ICLR 2023 20.00
Karimireddy et al. (2022) ICLR 2022 20.00
Rammal et al. (2024) AISTATS 2024 18.75

Q3: How practical is the integration of verifier nodes in distributed frameworks? In real-world
systems deploying our algorithm (such as SWARM), trainer nodes are responsible for transmitting
activations/activation gradients between layers. We propose modifying these existing trainer nodes to
perform verification, essentially obtaining this security functionality “for free” since they already have
access to all signals passing between layers. Crucially, trainer nodes represent a centrally controlled
role in distributed systems as they are managed by the network coordinator rather than volunteers,
making it economically practical to maintain control over them. Since their primary responsibility
is coordinating signal transmission, these are lightweight CPU-based nodes with minimal cost. For
example, consider training a 4B parameter LLM where each layer/stage requires roughly 18GB
of GPU VRAM. On AWS, each worker would require a g5.2xlarge EC2 instance with 24GB
VRAM at approximately $1.212 per hour. In contrast, trainer nodes can be bundled with 8 nodes
per c5a.8xlarge instance (32vCPUs, 4vCPU per trainer) at $1.232 per hour (i.e., $0.154 per
trainer node per hour). This represents a significant cost reduction compared to worker instances, and
since trainers are centrally controlled, it is both economically and operationally feasible for network
coordinators to bear these costs while maintaining security and reliability. If trainer roles must be
delegated to volunteers, proper authentication mechanisms would be required to prevent malicious
behavior, which we leave to future work. For a more in-depth discussion on implementing SENTINEL
in SWARM, please see App. H.

Q4: Why do you assume a “warm-up” period with only honest workers? Does this contradict the
spirit of distributed training? In distributed environments, it is common practice to start training
in a controlled environment until training reaches a stabilized point before allowing public workers to
join. This approach is important not only for our verification method, but also ensures that training
is stable before public participation begins. This is NOT against the spirit of distributed training:
consider a 40-layer LLM intended for decentralized training. Initially, we deploy a single replica
across 40 nodes under our control, but training throughput is limited. After the initial warm-up phase,
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we replicate the pipeline across 7 additional replicas, bringing our total DP workers to 320, where
only 12.5% are controlled by the model owner and 87.5% are public workers. Note that maintaining
at least one trusted worker at each stage is crucial not only for initial warm-up but also due to system
reliability as the volunteer nodes (280 of them in our example) might drop mid-run. We need at least
one reliable pipeline to ensure training continuity when volunteers drop.

Q5: Does the N -to-1 communication to verifiers create a bandwidth bottleneck? There is no
bandwidth bottleneck. In model parallel implementations such as SWARM, coordination between
stages occurs through trainer nodes that send and receive activations/gradients. Since each trainer
node already observes all signals passing from one stage to another, we leverage it as our trusted
verifier node. As we discuss in detail in App. H, SWARM utilizes multiple trainer nodes to streamline
the data through the stages one-by-one. Thus, each trainer can run their own verification using
SENTINEL simultaneously to other trainers sending signals to the workers. For technical details on
trainer node operations, see the Hivemind (Ryabinin & Gusev, 2020) library.

Q6: How does the verification mechanism handle false positives? The violation counter with a
forgiveness mechanism is a clever way to handle transient anomalies and avoid unfairly banning honest
workers. The training curves are given in Figs. 8 and 13 in App. G. As seen, the training/validation
curves show no visible impact on training dynamics from transiently replacing submitted signals
with EMA values. This makes intuitive sense: when only a few nodes undergo the EMA replacement
phase, the remaining workers in the DP setup continue to submit useful signals that guide training
effectively.

Q7: Why does the effectiveness of training-interruption attacks vary across different attack
versions and targets? When comparing activation-based attacks against gradient-based attacks,
two key factors explain the effectiveness differences:

• Magnitude differences: Activation values are orders of magnitude larger than activation gra-
dients. Therefore, methods that modify activations can achieve larger perturbation magnitudes
during attacks, resulting in more successful disruption.

• Propagation scope: Activation manipulation at layer 1 ≤ ℓ ≤ L affects the forward pass for
all subsequent layers ([ℓ + 1, ℓ + 2, . . . , L]) and the backward pass of all layers. In contrast,
gradient manipulation at layer ℓ only affects the gradients of preceding layers [1, 2, . . . , ℓ− 1].
Consequently, if an attacker is positioned in the middle of the network, manipulating activations
has broader impact on the entire training process.

Q8: How does your convergence rate compare to well-known lower bounds from Byzantine-
tolerant literature? Our convergence guarantee provides an accurate bound given our assumptions.
We note a key distinction in our setting: prior Byzantine-tolerant literature considers data parallel
training where malicious actors modify “parameter gradients”. Our work addresses the orthogonal
pipeline parallel axis where activations and gradients “between layers” are shared and require
verification. These two axes are complementary: securing both pipeline parallel and data parallel
axes is important in decentralized settings, and this work focuses on the former. Therefore, prior
guarantees from Byzantine-tolerant literature are not directly comparable.

Q9: How does your method compare to the prior work by Lu et al. (2024)? Lu et al. (2024) used
a naı̈ve approach of assigning one duplicate replica per worker for verification. For instance, with
320 worker nodes this requires splitting them into two groups: 160 workers performing computation
and 160 workers replicating their work for verification. While this approach achieves 100% F1-score
on all attacks, it operates at HALF the true distributed network throughput. Our solution does NOT
replicate volunteer node work, achieving twice the training speed. Conceptually, on OpenWebText
against mixed attacks we will have:
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Table 7: Comparison with prior work on OpenWebText mixed attacks

METHOD
METRICS

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ TPS ↑
DUPLICATE WORK (Lu et al., 2024) 100.0 100.0 100.0 6483
SENTINEL (OURS) 91.9 87.2 89.5 12966

B VULNERABILITIES OF DECENTRALIZED TRAINING USING DATA AND
PIPELINE PARALLELISM

In decentralized settings used for collaborative training, the verification of participant workers is
essential to maintain the integrity, security, and overall effectiveness of the training process (Lu
et al., 2024). Verification acts as a critical quality-control measure, ensuring that each participant
meaningfully contributes to the collective training effort. Without adequate verification mechanisms,
malicious actors can infiltrate the SWARM, potentially compromising its integrity. Such attackers
might disrupt the collaborative training, degrade its efficiency, or illegitimately benefit by accessing
the trained model without genuinely contributing.

Below, we categorize common malicious behaviors that could arise in decentralized collaborative
training scenarios. These categories are not mutually exclusive, as attackers may employ several
tactics simultaneously. Nevertheless, this classification provides a structured overview of the key
threats:

• Training Disruption (Denial-of-Service or DoS): Attackers intentionally impede or halt the
training process. This can occur through dropping essential updates, introducing malicious data
designed to break communication protocols, or overwhelming the system with excessive or
irrelevant submissions.

• Free-Riding or Minimal Effort Contributions: Participants contribute minimal computational
effort or data yet aim to reap the benefits of the collective process, such as accessing the final
model, receiving rewards, or boosting their reputation (Zhu et al., 2025). Common tactics include
submitting trivial updates or strategically remaining inactive until training nears completion.

• Model Poisoning and Backdoor Attacks: Malicious actors provide adversarial updates designed
to introduce subtle vulnerabilities or targeted misbehaviors in the resulting model (Li et al., 2024).
Typically concealed under normal operational conditions, these backdoors or compromised
models trigger malicious outcomes only under specific, pre-defined scenarios.

• Privacy Violations (Data Extraction or Inference Attacks): Attackers exploit gradients,
activations, or other shared information during training to infer sensitive or private information
from other participants’ datasets, thereby breaching confidentiality and compromising user
privacy (Shokri et al., 2017).

• Reputation or Credit Manipulation: Participants deliberately falsify or exaggerate their
contributions (for instance, by generating seemingly high-quality updates) to unjustly obtain
greater rewards, enhanced reputation, or tokens. This form of manipulation undermines the
fairness of the system and distorts trust among honest contributors.

In this paper, our primary focus is mitigating threats associated with training disruption. Ensuring the
identification and exclusion of malicious participants who submit harmful or disruptive updates is
critical. Failure to address these threats effectively would prevent the swarm from achieving model
convergence and producing a reliable, functional final model.

C EXTENDED RELATED WORK

Secure distributed training has gained significant attention with the proliferation of decentralized
machine learning systems. Our work builds upon several research threads while addressing unique
challenges posed by pipeline parallelism in LLM training.

Decentralized Training Frameworks. Decentralized training has emerged as a promising approach
for democratizing AI capabilities. Ryabinin and Gusev (Ryabinin & Gusev, 2020) introduced the
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Hivemind framework, enabling mixture-of-experts models to be trained in a decentralized fashion.
Building on this foundation, (Ryabinin et al., 2021) proposed Moshpit SGD, a communication-
efficient algorithm for training on heterogeneous and unreliable devices. In parallel, (Yuan et al.,
2022) introduced Tasklets, a system for decentralized training in heterogeneous environments that
adapts to varying network conditions and compute capabilities. SWARM parallelism (Ryabinin
et al., 2023) further enhanced this approach by combining pipeline and data parallelism to enable
training of models significantly larger than those possible with previous decentralized methods.
While these frameworks prioritize fault tolerance against non-malicious failures, they generally lack
protection against adversarial participants which is a critical vulnerability in open decentralized
training environments.

Byzantine-Resilient Distributed Training. Byzantine fault tolerance in distributed learning has
been extensively studied in the context of federated learning (McMahan et al., 2017) and data-parallel
training (Li et al., 2020). (Blanchard et al., 2017) introduced Krum, the first Byzantine-tolerant
aggregation rule for distributed SGD that could withstand arbitrary gradient manipulations from com-
promised workers. This was followed by more sophisticated approaches including Bulyan (Mhamdi
et al., 2018), median-based aggregation (Baruch et al., 2019), and clipping-based methods (He et al.,
2020; Malinovsky et al., 2024).

A fundamentally different approach called CENTEREDCLIP was proposed by (Karimireddy et al.,
2021), who leveraged historical gradient information to detect anomalous updates – conceptually
similar to our momentum-based verification but applied specifically to gradient aggregation. Recent
work by Rammal et al. (Rammal et al., 2024) demonstrated that communication compression could
be effectively combined with Byzantine-robust learning, achieving improved convergence rates while
maintaining security guarantees.

While these methods provide strong theoretical guarantees, they primarily target scenarios where
workers compute complete gradients independently, making them ill-suited for pipeline parallel
configurations like SWARM where intermediate activations are communicated between stages.
Furthermore, these approaches often involve comparing gradients across workers, which would
necessitate parameter replication across stages, contradicting pipeline parallel’s objective of enabling
training of models too large to fit on a single device.

Security in Pipeline Parallel Architectures. Security considerations specific to pipeline parallel
training have received limited attention compared to other distributed paradigms. (Lu et al., 2024)
recently presented a position paper exploring robustness challenges in pipeline parallelism-based
decentralized training, highlighting activation-based attacks as a critical concern. Their work, however,
focused primarily on identifying vulnerabilities rather than proposing comprehensive verification
solutions. The redundancy-based approach proposed by (Lu et al., 2024) and (Rajput et al., 2019)
could, in principle, be adapted to decentralized pipeline parallel settings. However, these approaches
would introduce significant computational overhead (due to duplicating computations across workers)
which would greatly diminish the scalability benefits of decentralized training.

D DISTANCE MEASURES FOR BAG OF METRICS

In our approach, we employ several statistical distance measures Ω(·, ·) to quantify deviations between
worker-submitted signals and the reference momentum. These metrics capture different aspects of
distributional shifts that may indicate malicious behavior:

• Mean Absolute Difference (L1): This measures the average absolute deviation between signals:

ΩL1
(h

(s,r)
t ,m

(s)
t−1(h)) = E[∥h(s,r)

t −m
(s)
t−1(h)∥1], (4)

where E[·] denotes the expectation over all features.
• Normalized Euclidean Distance (L2): This computes the squared difference between whitened

representations:
ΩL2

(h
(s,r)
t ,m

(s)
t−1(h)) = E[∥h̄(s,r)

t − m̄
(s)
t−1(h)∥2], (5)

where x̄ denotes the whitened (z-scored) version of x.
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• Sign Flip Ratio (SFR): This quantifies the fraction of coordinates with opposing signs, bounded
in [0, 1]:

ΩSFR(h
(s,r)
t ,m

(s)
t−1(h)) = E[1(sign(h(s,r)

t ) ̸= sign(m(s)
t−1(h)))]. (6)

• Sliced Wasserstein Distance (SW): This approximates the Wasserstein distance through random
projections:

ΩSW (h
(s,r)
t ,m

(s)
t−1(h)) = Eu∼Sd−1 [W1((h

(s,r)
t )#u, (m

(s)
t−1(h))#u)] (7)

where W1 is the 1-Wasserstein distance, and (·)#θ denotes the projection onto the random unit
vector u from the unit sphere Sd−1.

The same metrics are used to measure the deviations between submitted gradients g(s,r)
t and their

momentum m
(s)
t−1(g). For an ablation study on the impact of each metric on the final performance,

please refer to App. G.3. Neural network-based distance measures could also be a promising candidate
but left for future work.

E DETAILS OF MOMENTUM-BASED VERIFICATION

E.1 MOMENTUM-BASED VERIFICATION ALGORITHMS

In this section, we present our detailed algorithm for worker verification in decentralized training.
Alg. 1 outlines our end-to-end verification mechanism for this setting. We present the algorithm
chronologically as training progresses. The verifier nodes perform all verification operations, while
worker nodes are solely responsible for computing activations during the forward pass and their
respective gradients during the backward pass. Algorithms 2 and 3 detail the verification procedures
for both forward and backward passes, respectively. Alg. 4 presents our approach for mitigating
cascading effects as described in Section 3.1. Finally, Alg. 5 specifies our adaptive IQR threshold
setting methodology for each metric in our approach.

E.2 ON HANDLING THE CASCADING EFFECT

Pipeline parallelism exhibits distinct architectural characteristics compared to traditional federated
learning (McMahan et al., 2017) approaches. One key challenge is what we term the “cascading
effect” which occurs exclusively in pipeline parallelism. During forward propagation, a single node
submitting malicious activations can contaminate all subsequent activations, potentially causing
downstream verifier nodes to incorrectly flag benign nodes as malicious (see Fig. 5a). This phe-
nomenon occurs similarly during backward propagation as depicted in Fig. 6b. The cascading effect
could significantly increase false positive detection rates, making it critical to address this challenge.

To mitigate this issue, our approach (described in Sec. 3.1) implements inter-node communication
protocols. Specifically, verifier nodes maintain a “tainted” list tracking upstream nodes identified
as potentially malicious which they communicate with subsequent verifiers to prevent them from
updating their EMAs and falsely flagging nodes affected by an attacker downstream. During backward
propagation, all nodes sharing the same data parallel rank as the compromised node receive gradient
momentum instead of actual gradients. Throughout this verification process, worker nodes continue
processing data at a consistent pace, ensuring no node detects unusual behavioral patterns in the
network.

The cascading effect manifests in both propagation directions, as malicious behavior can target either
activation or gradient signals. We address this bidirectional vulnerability with two corresponding
mitigation strategies:

1. When activations are compromised, all affected nodes receive gradient momentum (see Fig. 5);

2. When malicious behavior occurs during backward propagation, all downstream nodes switch to
activation gradient (see Fig. 6).
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Algorithm 1 Momentum-based Verification for SWARM Parallelism

Require: Parameters βh, βg ∈ (0, 1), violation threshold c, forgiveness period Tforgiveness, set of
metricsM

1: Initialize m
(s)
0 (h) = 0, m(s)

0 (g) = 0, v(s)r = 0, Bs = ∅,H(s)
l = ∅, G(s)l = ∅ for all s, r

2: Initialize T = ∅ // Initialize global tainted set

3: // Warm-up phase to establish baseline statistics
4: for t = 1 to Twarmup do
5: for s ∈ {1, 2, . . . , p} do
6: Collect h(s,r)

t and g
(s,r)
t from all workers r ∈ {1, . . . , d}

7: Compute Γ
(s,r)
t = Ω(h

(s,r)
t ,m

(s)
t−1(h)) ∀r, add toH(s)

l

8: Compute Γ
(s,r)
t = Ω(g

(s,r)
t ,m

(s)
t−1(g)) ∀r, add to G(s)l

9: Update momentum m
(s)
t (h) and m

(s)
t (g) using Eq. (1)

10: end for
11: end for

12: // Main training phase with verification
13: for t = Twarmup + 1 to Ttotal do
14: Tt = ∅ // Initialize tainted set for current iteration

15: // Step 1: Forward Pass and Activation Verification
16: for s ∈ {1, . . . , p} do
17: T (s)

t ← ACTIVATIONVERIFICATION(s, t,m
(s)
t−1(h),H

(s)
l , Bs, v

(s)
r ,M, c, Tforgiveness, Tt)

18: Tt ← Tt ∪ T (s)
t // Accumulate tainted workers

19: Rclean = {r : (t, s, r) /∈ Tt}
20: m

(s)
t (h) = βhm

(s)
t−1(h) + (1− βh)

1
|Rclean|

∑
r∈Rclean

h
(s,r)
t

21: end for

22: for s ∈ {p, p− 1, . . . , 1} do
23: // Step 2: Backward Pass and Gradient Verification
24: T (s)

t ← GRADIENTVERIFICATION(s, t,m
(s)
t−1(g),G

(s)
l , Bs, v

(s)
r ,M, c, Tforgiveness, Tt)

25: Tt ← Tt ∪ T (s)
t // Accumulate tainted workers

26: // Step 3: Gradient Replacement for Tainted Workers
27: g

(s)
t ← GRADIENTREPLACEMENT(s, t,m

(s)
t−1(g), g

(s)
t , Tt)

28: Rclean = {r : (t, s, r) /∈ Tt}
29: m

(s)
t (g) = βgm

(s)
t−1(g) + (1− βg)

1
|Rclean|

∑
r∈Rclean

g
(s,r)
t

30: end for
31: T ← T ∪ Tt // Accumulate tainted entries across iterations
32: end for
33: return T // Return the complete set of tainted worker-stage-iteration tuples
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Algorithm 2 ACTIVATIONVERIFICATION

Require: s, t,m
(s)
t−1(h),H

(s)
l , Bs, v

(s)
r ,M, c, Tforgiveness, Tt

1: T (s)
t = ∅ // Initialize tainted set for current stage

2: TruncateH(s)
l ← H(s)

l [−l : end]

3: Collect h(s,r)
t from all r ∈ {1, . . . , d} \Bs

4: for r ∈ {1, . . . , d} \Bs not in Tt do

5: Compute metrics: Γ(s,r,i)
t = Ωi(h

(s,r)
t ,m

(s)
t−1(h)) for i ∈M

6: if ∃i ∈M : |Γ(s,r,i)
t − q

(s,i)
2 | ≥ k

(s,i)
tukey(q

(s,i)
3 − q

(s,i)
1 ) then

7: v
(s)
r ← v

(s)
r + 1 // Increment violation counter

8: T (s)
t ← T (s)

t ∪ {(t, s, r)} // Mark as tainted in current stage

9: if v(s)r ≥ c or Γ(s,r,i)
t ≫ k

(s,i)
tukey(q

(s,i)
3 − q

(s,i)
1 ) then

10: Bs ← Bs ∪ {r} // Ban worker

11: Notify stages s′ > s to flag affected mini-batches

12: end if

13: else

14: Add Γ
(s,r,i)
t toH(s,i)

l ∀i ∈M
15: v

(s)
r ← max(0, v

(s)
r − 1) if Tforgiveness consecutive clean steps

16: end if

17: end for

18: Update IQR statistics and adjust k(s,i)tukey ∀i ∈M using Alg. 5

19: if |T (s)
t | > 0.5 · (d− |Bs|) then

20: T (s)
t ← ∅ // Clear if more than 50% flagged (natural shift, see App. E.3)

21: end if

22: return T (s)
t // Return tainted workers for this stage
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Algorithm 3 GRADIENTVERIFICATION

Require: s, t,m
(s)
t−1(g),G

(s)
l , Bs, v

(s)
r ,M, c, Tforgiveness, Tt

1: T (s)
t = ∅ // Initialize tainted set for current stage

2: Truncate G(s)l ← G(s)l [−l : end]

3: Tainteddownstream = {r : (t, s′, r) ∈ Tt for some s′ > s} // Workers tainted in downstream stages

4: for r ∈ {1, . . . , d} \Bs do

5: if r ∈ Tainteddownstream then

6: T (s)
t ← T (s)

t ∪ {(t, s, r)} // Mark as tainted by downstream

7: else

8: Collect g(s,r)
t from worker r

9: Compute metrics: Γ(s,r,i)
t = Ωi(g

(s,r)
t ,m

(s)
t−1(g)) for i ∈M

10: if ∃i ∈M : |Γ(s,r,i)
t − q

(s,i)
2 | ≥ k

(s,i)
tukey(q

(s,i)
3 − q

(s,i)
1 ) then

11: v
(s)
r ← v

(s)
r + 1 // Increment violation counter

12: T (s)
t ← T (s)

t ∪ {(t, s, r)} // Mark as tainted

13: if v(s)r ≥ c or Γ(s,r,i)
t ≫ k

(s,i)
tukey(q

(s,i)
3 − q

(s,i)
1 ) then

14: Bs ← Bs ∪ {r} // Ban worker

15: Notify stages s′ < s to flag affected mini-batches

16: end if

17: else

18: Add Γ
(s,r,i)
t to G(s,i)l ∀i ∈M

19: v
(s)
r ← max(0, v

(s)
r − 1) if Tforgiveness consecutive clean steps

20: end if

21: end if

22: end for

23: Update IQR statistics and adjust k(s,i)tukey ∀i ∈M using Alg. 5

24: if |T (s)
t | > 0.5 · (d− |Bs|) then

25: T (s)
t ← ∅ // Clear if more than 50% flagged (natural shift, see App. E.3)

26: end if

27: return T (s)
t // Return tainted workers for this stage

Algorithm 4 GRADIENTREPLACEMENT

Require: s, t,m
(s)
t−1(g), g

(s)
t , Tt

1: for r ∈ {1, . . . , d} do
2: if (t, s, r) ∈ Tt then
3: g

(s,r)
t ←m

(s)
t−1(g) // Replace gradient with momentum

4: end if
5: end for
6: return g

(s)
t // Return updated gradients
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Algorithm 5 Adaptive IQR Threshold Adjustment

Require: History window H(s,i)
l (or G(s,i)l for gradients) for stage s and metric i ∈ M, initial

multiplier k0, target false positive rate α, growth factor γg > 1, shrink factor γs < 1, maximum
iterations Nmax, minimum distance multipliers Λ

1: // Calculate initial statistics
2: q1, q2, q3 ← 25th, 50th, 75th percentiles ofH(s,i)

l

3: IQR← max(q3 − q1, ϵ) // Ensure non-zero IQR with small ϵ
4: k ← k0 // Initialize with previous multiplier value
5: τlower ← q2 − k · IQR
6: τupper ← q2 + k · IQR
7: FP-rate← fraction ofH(s,i)

l outside [τlower, τupper]

8: // Widen thresholds if false positive rate too high
9: iter← 0

10: while FP-rate > α and iter < Nmax do
11: k ← k · γg // Grow multiplier
12: τlower ← q2 − k · IQR
13: τupper ← q2 + k · IQR
14: FP-rate← fraction ofH(s,i)

k outside [τlower, τupper]

15: iter← iter + 1

16: end while

17: // Narrow thresholds if false positive rate too low
18: iter← 0

19: while FP-rate≪ α and iter < Nmax do
20: k ← k · γs // Shrink multiplier
21: τlower ← q2 − k · IQR
22: τupper ← q2 + k · IQR
23: FP-rate← fraction ofH(s,i)

l outside [τlower, τupper]

24: iter← iter + 1

25: end while

26: // Enforce minimum distance from median based on metric type (optional)
27: λ← Λ[i] // Get multiplier for current metric
28: dmin ← |q2| · λ // Minimum threshold distance
29: τlower ← min(τlower, q2 − dmin)

30: τupper ← max(τupper, q2 + dmin)

31: return τlower, τupper, k
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While an alternative approach could involve sending zero vectors as gradients, this would effectively
stall training in the affected pipe.2 We leave exploration of appropriate gradient signals for the tainted
segment to future work.

E.3 ON NATURAL DISTRIBUTION SHIFT

Beyond malicious attacks, legitimate distribution shifts can occur naturally during training due to
evolving data characteristics or model dynamics (Tian et al., 2023; Zhang et al., 2024). In such cases,
multiple worker nodes at the same pipeline stage may simultaneously exhibit statistical deviations
that would normally trigger malicious detection, despite all nodes behaving honestly.

To distinguish between natural distribution shifts and coordinated attacks, we implement a consensus-
based approach at the verifier level. When more than 50% of nodes at a given pipeline stage are
flagged as potentially malicious, the verifier attributes this to a natural distribution shift rather
than malicious behavior. This threshold leverages the honest majority assumption: coordinated
attacks involving more than half the nodes would violate our security model, making such scenarios
indistinguishable from legitimate system-wide changes.

Upon detecting a natural distribution shift, the system responds as follows:

1. Training continues normally without malicious mitigation protocols.
2. The cascading effect mechanism described in App. E.2 is not activated.
3. Nodes update their EMA statistics to adapt to the new data distribution.

This consensus mechanism ensures that legitimate distributional changes do not trigger unnecessary
verification overhead or training disruptions. However, refining this approach for asynchronous
training environments (Ajanthan et al., 2025), where nodes may experience distribution shifts at
different times, remains an important direction for future work.

2We will demonstrate that in our SWARM implementation in App. H, this choice does not have an impact on
convergence as SWARM utilizes a stochastic routing.
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(b) Backward propagation.

Figure 5: Verification protocol for handling compromised workers during distributed training. During forward
propagation, a worker at stage s+1 is detected as potentially compromised (shown in yellow). The verifier nodes
continue forwarding activations to subsequent stages without alerting downstream workers to avoid disrupting
the pipeline. During backward propagation, instead of propagating gradients computed by the compromised
worker, verifier nodes substitute gradient momentum values to maintain training stability. Communication flows
through verifier nodes between consecutive pipeline stages, though direct worker-to-worker arrows are shown
for visual clarity.
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(b) Backward propagation.

Figure 6: Verification protocol for handling compromised workers during gradient propagation. During
backward propagation, a worker at stage s+ 2 is detected as potentially compromised (shown in yellow). To
prevent propagation of tainted gradients, verifier nodes substitute gradient momentum values for all workers in
preceding stages (s+ 1, s, etc.) instead of forwarding the corrupted gradients. This ensures training stability
while maintaining the pipeline flow without alerting downstream workers to the compromise.
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F THEORETICAL GUARANTEES AND THEIR PROOFS

F.1 CONVERGENCE ANALYSIS

In this section, we present our full convergence analysis. Note that the bounds that we derive are in
no means the tightest possible bounds. Instead, our aim is to establish a mathematical connection
between our momentum-based verification and training dynamics.

F.1.1 MALICIOUS DETECTION BOUNDS

Our first goal is to establish bounds on the maximum perturbation a malicious worker can introduce
without being detected. We begin by analyzing how momentum smoothing affects the global deviation
in activation vectors.3

Lemma 2 (Momentum Smoothing Bounds the Global Deviation). Let the activation vector
momentum at stage s and iteration t be updated by

m
(s)
t = βh m

(s)
t−1 + (1− βh)

(1
d

d∑
r=1

h
(s,r)
t

)
, 0 ≤ β < 1, (8)

where d represents the number of worker replicas at each stage. Assume:

1. A fraction γs <
1
2 of the workers are malicious, with Bs ⊂ {1, 2, . . . , d} denoting the

subset of malicious workers.

2. A malicious worker adds a vector perturbation δ
(s,r)
t satisfying

∥δ(s,r)t ∥ ≤ ε. (9)
Then the deviation in the momentum caused by the malicious perturbations obeys

∥∆m
(s)
t ∥ ≤ γs ε , (10)

where ∆m
(s)
t is the difference between the momentum computed with the malicious perturbations

and the momentum computed using only the unperturbed (honest) activations.

Proof. Let Hs = {1, 2, . . . , d} \ Bs denote the set of honest workers at stage s. Since at most a
fraction γs of workers are malicious:

|Bs| = γsd, |Hs| = (1− γs)d. (11)

We can express each worker’s activation vector as

h
(s,r)
t = h

(s,r)
t,nom + e

(s,r)
t , where e

(s,r)
t =

{
δ
(s,r)
t , r ∈ Bs,

0, r ∈ Hs.
(12)

The nominal (unperturbed) average activation can be written as:

h̄
(s)
t =

1

d

d∑
r=1

h
(s,r)
t,nom. (13)

For the observed (perturbed) average, we have:

ĥ
(s)
t =

1

d

d∑
r=1

(
h
(s,r)
t,nom + e

(s,r)
t

)
= h̄

(s)
t +

1

d

∑
r∈Bs

δ
(s,r)
t .

(14)

3Even though we present our theory for the activation manipulation, our results are easily extendable to the
gradient manipulation as well.
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For the momentum terms, we can write:

m
(s)
t,obs = βhm

(s)
t−1,obs + (1− βh)ĥ

(s)
t ,

m
(s)
t,nom = βhm

(s)
t−1,nom + (1− βh)h̄

(s)
t .

(15)

The deviation in the momentum at iteration t is:

∆m
(s)
t = m

(s)
t,obs −m

(s)
t,nom

= βh(m
(s)
t−1,obs −m

(s)
t−1,nom) + (1− βh)

(
ĥ
(s)
t − h̄

(s)
t

)
= βh∆m

(s)
t−1 + (1− βh)

1

d

∑
r∈Bs

δ
(s,r)
t .

(16)

Assuming ∆m
(s)
0 = 0, we can solve this recurrence relation:

∆m
(s)
t = (1− βh)

t∑
j=1

βt−j
h

1

d

∑
r∈Bs

δ
(s,r)
j . (17)

Taking the norm and applying the triangle inequality, we have:

∥∆m
(s)
t ∥ ≤ (1− βh)

t∑
j=1

βt−j
h

1

d

∑
r∈Bs

∥δ(s,r)j ∥

≤ (1− βh)

t∑
j=1

βt−j
h

|Bs|
d

ε

= (1− βh)γsε

t∑
j=1

βt−j
h

= (1− βh)γsε
1− βt

h

1− βh

≤ (1− βh)γsε
1

1− βh

= γsε.

(18)

which establishes the stated bound. For the case where we consider only the most recent iteration’s
effect (equivalent to initializing m

(s)
t−1,obs = m

(s)
t−1,nom), we have:

∥∆m
(s)
t ∥ =

∥∥∥∥∥(1− β)
1

d

∑
r∈Bs

δ
(s,r)
t

∥∥∥∥∥
≤ (1− β)

|Bs|
d

ε

= (1− β)γsε.

(19)

Lemma 2 establishes a key property of momentum-based smoothing: it naturally attenuates the impact
of malicious perturbations. This attenuation is proportional to the fraction of malicious workers γs,
demonstrating that smaller malicious coalitions have less impact on the global state. This result is
critical for understanding how effectively the system can contain malicious influence.

Building on this foundation, we now analyze how these bounded perturbations affect our detection
statistics:
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Lemma 3 (Test Statistic Deviation). For a metric function Ω, assume that the detector computes

Γ
(s,r)
t =

∥∥Ω(h(s,r)
t ,m

(s)
t−1

)
− Ω

(s)
ref

∥∥ (20)

where Ω
(s)
ref is a reference statistic computed by the trusted trainer nodes (e.g., our median based

reference statistic).
Assume for every worker replica r ∈ {1, 2, . . . , d}:

• Activation perturbation: ∥δ(s,r)t ∥ ≤ ε.
• Momentum update: m(s)

t = βhm
(s)
t−1 + (1− βh)

1
d

∑d
r=1 h

(s,r)
t with at most a fraction γs

malicious workers (from Lemma 2)

∥∆m
(s)
t ∥ ≤ γsε. (21)

• Lipschitz continuity of Ω: For any inputs x, y and perturbations δx, δy:∥∥Ω(x+ δx,y + δy)− Ω(x,y)
∥∥ ≤ LΩ (∥δx∥+ ∥δy∥) , (22)

where LΩ is the Lipschitz constant of Ω.

Define the (possibly known) baseline gap as:

δbase = Ω
(
h
(s,r)
t,honest,m

(s)
t−1,honest

)
. (23)

Then, the test statistic satisfies:

Γ
(s,r)
t ≤ δbaseavg + LΩε+ LΩγsε (24)

Proof. For an activation vector with malicious perturbation δ
(s,r)
t , using the Lipschitz property of Ω,

we have: ∥∥Ω(h(s,r)
t ,m

(s)
t−1)− Ω(h

(s,r)
t,honest,m

(s)
t−1)

∥∥ ≤ LΩ∥δ(s,r)t ∥
≤ LΩε.

(25)

From Lemma 2, we know that the momentum vector deviation is bounded by ∥∆m
(s)
t−1∥ ≤ γsε.

Thus, applying the Lipschitz property again:∥∥Ω(h(s,r)
t,honest,m

(s)
t−1)− Ω(h

(s,r)
t,honest,m

(s)
t−1,honest)

∥∥ ≤ LΩ∥∆m
(s)
t−1∥

≤ LΩγsε.
(26)

We can now decompose the test statistic using the triangle inequality:

Γ
(s,r)
t =

∥∥Ω(h(s,r)
t ,m

(s)
t−1)− Ω

(s)
ref

∥∥
=
∥∥Ω(h(s,r)

t ,m
(s)
t−1)− Ω(h

(s,r)
t,honest,m

(s)
t−1)

+ Ω(h
(s,r)
t,honest,m

(s)
t−1)− Ω(h

(s,r)
t,honest,m

(s)
t−1,honest)

+ Ω(h
(s,r)
t,honest,m

(s)
t−1,honest)− Ω

(s)
ref

∥∥
≤
∥∥Ω(h(s,r)

t ,m
(s)
t−1)− Ω(h

(s,r)
t,honest,m

(s)
t−1)

∥∥
+
∥∥Ω(h(s,r)

t,honest,m
(s)
t−1)− Ω(h

(s,r)
t,honest,m

(s)
t−1,honest)

∥∥
+
∥∥Ω(h(s,r)

t,honest,m
(s)
t−1,honest)− Ω

(s)
ref

∥∥
≤ LΩε+ LΩγsε+ δbase

(27)

If the detector compensates for (or ignores) the baseline gap δbase and raises an alarm when Γ(s,r)
t > τ ,

the additional deviation attributable only to malicious perturbations is:
Γpert ≤ LΩε+ LΩγsε = LΩ(1 + γs)ε, (28)
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so a malicious worker can remain undetected provided:

LΩ(1 + γs)ε ≤ τ, =⇒ ε ≤ τ

LΩ(1 + γs)
(29)

which completes the proof.

Lemma 3 provides a crucial bound on the test statistic deviation under malicious perturbations. The
bound depends on two key factors: (1) the Lipschitz constant LΩ of the test function and (2) the
fraction of malicious workers γs. The practical implication is that a malicious worker can remain
undetected only if its perturbation magnitude satisfies:

ε ≤ τ

LΩ(1 + γs)
(30)

This establishes a direct relationship between the detection threshold τ and the maximum undetectable
perturbation magnitude. This equation demonstrates how tuning τ affects the security-performance
tradeoff: with lower thresholds we can provide stronger security guarantees at the potential cost of
increased false positives. This highlights the importance of setting an appropriate threshold for the
test statistic.

F.1.2 GRADIENT PERTURBATION ANALYSIS

Now that we have established bounds on undetectable activation perturbations, we analyze how these
perturbations propagate through the network to affect parameter gradients. This analysis is critical
for understanding the impact on training dynamics.

Lemma 4 (Per–stage Lipschitz constants). Assume replica r of stage s implements a map

h(s,r) = fs
(
h(s−1,r);θ(s)

)
whose Jacobians satisfy

∥∂θfs∥ ≤ L
(s)
θ , ∥∂hfs∥ ≤ L

(s)
f .

Then, the parameter gradient of stage s obeys

∥∇agg
θ(s)L(θ)∥ ≤ L

(s)
θ

1

d

d∑
r=1

∥g(s,r)∥,

where g(s+1,r) is the gradient with respect to the activation h(s,r).

Proof. The loss L(θ) depends on θ(s) only through the composition of stage maps:

h(s,r) = fs(h
(s−1,r);θ(s))

h(s+1,r) = fs+1(h
(s,r);θ(s+1))

...

h(p,r) = fp(h
(p−1,r);θ(p))

(31)

followed by a readout Lhead(h
(p,r)).

Applying the chain rule yields
∇θ(s,r)L(θ) = ∂θfs

(
∂hfs+1

)
· · ·
(
∂hfp

)
∇h(p,r)Lhead. (32)

Here, each ∂θfs is evaluated at (h(s−1,r),θ(s)) and each ∂hfj at (h(j−1,r),θ(j)). Define

g(s+1,r) :=
(
∂hfs+1

)
· · ·
(
∂hfp

)
∇h(p,r)Lhead, (33)

so that g(s+1,r) is precisely the activation gradient that enters replica r of stage s during
back-propagation. The all-reduce operation aggregates all gradients from the d replicas of stage s
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before applying them, i.e.,

∇agg
θ(s)L(θ) =

1

d

d∑
r=1

∇θ(s,r)L(θ) (34)

Taking Euclidean norms, applying the triangle inequality, and using sub-multiplicativity of the
operator norm yields

∥∇agg
θ(s)L(θ)∥ ≤

1

d

d∑
r=1

∥∇θ(s,r)L(θ)∥

≤ 1

d

d∑
r=1

∥∂θfs∥ ∥g(s+1,r)∥

≤ L
(s)
θ

1

d

d∑
r=1

∥g(s+1,r)∥.

(35)

Note that the step in Eq. (34) follow the fact that the Lipschitz constant assumptions are uniform over
the data distribution.

Lemma 4 characterizes how strongly the parameter gradients at each stage depend on activation
perturbations. The Lipschitz constants L(s)

θ and L
(s)
f quantify this relationship, providing a foundation

for understanding gradient sensitivity. These stage-specific Lipschitz constants are important because
they reveal which stages of the model are most vulnerable to malicious manipulation. Stages with
larger constants amplify perturbations more strongly, making them prime targets for attackers and
priority areas for enhanced monitoring.

Building on these Lipschitz properties, we now quantify exactly how activation perturbations translate
to gradient perturbations:

Lemma 5 (Sensitivity of Parameter Gradient to Activation Perturbation). Let an expected honest
replica in stage s be activation h(s,r). Assume that a malicious worker replaces it by h(s,r) + δ.
If the activation perturbations are small such that changing the input activation by δ perturbs
g(s+1,r) through the local Jacobian only, then the change in the aggregated stage s parameter
gradient satisfies

∥∆∇agg
θ(s)L(θ)∥ := ∥∇agg

θ(s)L
(
θ | h(s,r) + δ

)
−∇agg

θ(s)L
(
θ | h(s,r)

)
∥ ≤ Gs

d
∥δ∥,

where Gs := L
(s)
θ

(∏
j≥s+1 L

(j)
f

)
. More generally, if a set Bs of |Bs| = γs ·d malicious replicas

each injects a perturbation of norm at most ∥δ∥, then

∥∆∇agg
θ(s)∥ ≤ γs ·Gs · ε. (36)

Proof. Let us first consider a single replica r at stage s. For this replica, using Lemma 4 we can
write:

∇θ(s,r)L(θ) = ∂θfs g
(s+1,r), s.t. g(s+1,r) =

( p∏
j=s+1

∂hfj

)
∇h(p,r)Lhead.

Thus, assuming a linearization of the change in gradient signal under small input perturbation, we
can write:

δg(s+1,r) =
( p∏
j=s+1

∂hfj

)
δ.

Hence, for replica r we can write the sensitivity of the parameter gradient as:

∆∇θ(s,r)L(θ) = (∂θfs) δg
(s+1,r) = ∂θfs

( p∏
j=s+1

∂hfj

)
δ.
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Using sub-multiplicativity and the Lipschitz bounds, we have

∥∆∇θ(s)L(θ)∥ ≤ ∥∂θfs∥
( p∏
j=s+1

∥∂hfj∥
)
∥δ∥

≤ L
(s)
θ

( ∏
j≥s+1

L
(j)
f

)
∥δ∥

= Gs∥δ∥

(37)

Since the stage update uses the aggregate gradients, we can write

∆∇agg
θ(s)L(θ) =

1

d
∆∇θ(s,r)L(θ).

Hence, ∥∆∇agg
θ(s)L(θ)∥ ≤ Gs

d ∥δ∥. If |Bs| replicas are corrupted, we would have

∥∆∇agg
θ(s)L(θ)∥ ≤

1

d

∑
r∈Bs

∥∆∇θ(s,r)L(θ)∥

≤ |Bs|
d
·Gs · ∥δ∥

= γs ·Gs · ∥δ∥,

(38)

and the proof is complete.

Lemma 5 provides the crucial link between activation perturbations and their impact on parameter
gradients. The amplification factor Gs represents how perturbations at stage s propagate through the
network during backpropagation. This factor depends on both the local parameter gradient sensitivity
(L(s)

θ ) and the product of activation gradient sensitivities in subsequent stages (
∏

j≥s+1 L
(j)
f ). This

result has important implications for robustness against malicious workers in pipeline-parallel training:

1. Earlier stages (lower s) typically have larger amplification factors because perturbations
must propagate through more subsequent stages.

2. Stages with larger parameter counts or complex activation patterns may have higher individ-
ual Lipschitz constants.

3. The fractional impact of malicious workers is reduced by the averaging effect of the all-
reduce operation, as captured by the γs factor.

Combined with our detection bounds, we can now establish the maximum parameter gradient
perturbation that can be induced by undetected malicious workers:

∥∆∇agg
θ(s)L(θ)∥ ≤ γs ·Gs ·

τ

LΩ(1 + γs)
:= ζ (39)

This bound directly links detection thresholds to gradient perturbations, which will be essential for
our convergence analysis.

F.1.3 CONVERGENCE UNDER PERTURBED GRADIENTS

Having established bounds on gradient perturbations, we now analyze how these perturbations affect
the convergence properties of momentum-SGD. We consider general non-convex loss functions, but
our results can be easily extended to the strongly convex case.

Theorem 2 (Convergence of Momentum SGD under Smoothness for Convex and Non-convex
Cases with Perturbation and Noise). Consider the balanced momentum update:

vt+1 = βvt + (1− β)gt,

θt+1 = θt − ηvt+1
(40)

where gt = ∇L(θt)+ζt+ξt, with a Lyapunov function Ψt = L(θt)+c∥vt∥2 for some constant
c > 0.
Assume:
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1. L is L-smooth but potentially non-convex
2. L is bounded below by L∗

3. β ∈ [0, 1) is the momentum parameter
4. η > 0 is the learning rate
5. ζt is a deterministic perturbation with maximum perturbation norm ∥ζt∥ ≤ ζ, and ξt

is zero-mean noise with E[∥ξt∥2] ≤ σ2

For any positive constants ε1, ε2, ε3 conditioned on the past Ft, we have:

E[Ψt+1|Ft] ≤ Ψt − α∥∇L(θt)∥2 + C1∥vt∥2 + C2∥ζt∥2 +Dσ2 (41)
Where the constants are given by:

α = η(1− β)

(
1− ε2 −

β

4ε1(1− β)
− 2

η

(
η2L

2
+ c

)(
1− β +

β

4ε1

))
C1 =

(
ηβε1 +

(
η2L

2
+ c

)
β (β + 2(1− β)(ε1 + ε3))− c

)
C2 =

(
η(1− β)

4ε2
+ 2

(
η2L

2
+ c

)
(1− β)

(
1− β − β

4ε3

))
D =

(
η2L

2
+ c

)
(1− β)2.

(42)

If we choose appropriate values for ε1, ε2, ε3 such that α > 0 and C1 < 0, and assume v0 = 0,
then the algorithm converges in expectation to a neighborhood of a stationary point:

1

T

T−1∑
t=0

E[∥∇L(θt)∥2] ≤
L0 − L∗

αT
+

C2ζ
2 +Dσ2

α
, (43)

where L0 := L(θ0) is our loss value at initialization.

Proof. We begin by analyzing one-step progress with the Lyapunov potential function
Ψt = L(θt) + c∥vt∥2 inspired by (Liu et al., 2020; Mai & Johansson, 2020).

Evolution of the Loss Term. By the L-smoothness of L, we have:

L(θt+1) ≤ L(θt) + ⟨∇L(θt),θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2

= L(θt)− η⟨∇L(θt),vt+1⟩+
η2L

2
∥vt+1∥2

(44)

Now, expanding Ψt+1 −Ψt =
[
L(θt+1)− L(θt)

]
+ c

[
∥vt+1∥2 − ∥vt∥2

]
, we have:

Ψt+1 −Ψt =
[
L(θt+1)− L(θt)

]
+ c

[
∥vt+1∥2 − ∥vt∥2

]
= −η⟨∇L(θt),vt+1⟩+

η2L

2
∥vt+1∥2 + c∥vt+1∥2 − c∥vt∥2

= −η⟨∇L(θt),vt+1⟩+
(
η2L

2
+ c

)
∥vt+1∥2 − c∥vt∥2.

(45)

Substitute vt+1 = βvt + (1− β)gt (Polyak, 1964), then we have:

Ψt+1 −Ψt ≤ −η⟨∇L(θt),vt+1⟩+
(
η2L

2
+ c

)
∥vt+1∥2 − c∥vt∥2

= −η⟨∇L(θt), βvt + (1− β)gt⟩+
(
η2L

2
+ c

)
∥βvt + (1− β)gt∥2 − c∥vt∥2

= −ηβ⟨∇L(θt),vt⟩ − η(1− β)⟨∇L(θt), gt⟩

+

(
η2L

2
+ c

)(
β2∥vt∥2 + (1− β)2∥gt∥2 + 2β(1− β)⟨vt, gt⟩

)
− c∥vt∥2

(46)
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Next, we bound individual terms.

Bounding −ηβ⟨∇L(θt),vt⟩. Using Young’s inequality with parameter ε1 > 0, we write:

−ηβ⟨vt,∇L(θt)⟩ ≤ ηβε1∥vt∥2 +
ηβ

4ε1
∥∇L(θt)∥2. (47)

Bounding −η(1− β)⟨∇L(θt), gt⟩. Since gt = ∇L(θt) + ζt + ξt, we can write:

−η(1− β)⟨∇L(θt), gt⟩ = −η(1− β)⟨∇L(θt),∇L(θt) + ζt + ξt⟩
≤ −η(1− β)∥∇L(θt)∥2 − η(1− β)⟨∇L(θt), ζt⟩
− η(1− β)⟨∇L(θt), ξt⟩

≤ −η(1− β)∥∇L(θt)∥2 + η(1− β)ε2∥∇L(θt)∥2 +
η(1− β)

4ε2
∥ζt∥2

− η(1− β)⟨∇L(θt), ξt⟩
(48)

Bounding ∥gt∥2. For this term, we write:

∥gt∥2 = ∥∇L(θt) + ζt + ξt∥2

= ∥∇L(θt) + ζt∥2 + ∥ξt∥2 + 2⟨∇L(θt) + ζt, ξt⟩
≤ 2∥∇L(θt)∥2 + 2∥ζt∥2 + ∥ξt∥2 + 2⟨∇L(θt) + ζt, ξt⟩,

(49)

Bounding ⟨vt, gt⟩. Expanding gt = ∇L(θt) + ζt + ξt, we have:

⟨vt, gt⟩ = ⟨vt,∇L(θt) + ζt + ξt⟩
= ⟨vt,∇L(θt)⟩+ ⟨vt, ζt⟩+ ⟨vt, ξt⟩

≤ ε1∥vt∥2 +
1

4ε1
∥∇L(θt)∥2 + ε3∥vt∥2 +

1

4ε3
∥ζt∥2 + ⟨vt, ξt⟩

(50)

Combining Terms. Taking conditional expectation from Eq. (46) and substituting the previous
bounds, we have

E[Ψt+1|Ft]−Ψt ≤ ηβε1∥vt∥2 +
ηβ

4ε1
∥∇L(θt)∥2

− η(1− β)∥∇L(θt)∥2 + η(1− β)ε2∥∇L(θt)∥2 +
η(1− β)

4ε2
∥ζt∥2

+

(
η2L

2
+ c

)(
β2∥vt∥2 + 2(1− β)2∥∇L(θt)∥2 + 2(1− β)2∥ζt∥2 + (1− β)2σ2

)
2

(
η2L

2
+ c

)
β(1− β)

(
(ε1 + ε3)∥vt∥2 +

1

4ε1
∥∇L(θt)∥2 +

1

4ε3
∥ζt∥2

)
− c∥vt∥2

(51)
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Collecting Terms and Setting Bounds. After substituting all bounds and collecting terms, we
have:
E[Ψt+1|Ft]−Ψt ≤

− η(1− β)

(
1− ε2 −

ηβ

4ε1η(1− β)
− 2

η

(
η2L

2
+ c

)(
1− β +

β

4ε1

))
∥∇L(θt)∥2

+

(
ηβε1 +

(
η2L

2
+ c

)
β (β + 2(1− β)(ε1 + ε3))− c

)
∥vt∥2

+

(
η(1− β)

4ε2
+ 2

(
η2L

2
+ c

)
(1− β)

(
1− β − β

4ε3

))
∥ζt∥2

+

(
η2L

2
+ c

)
(1− β)2σ2

(52)

Define the following constants:

α = η(1− β)

(
1− ε2 −

β

4ε1(1− β)
− 2

η

(
η2L

2
+ c

)(
1− β +

β

4ε1

))
C1 =

(
ηβε1 +

(
η2L

2
+ c

)
β (β + 2(1− β)(ε1 + ε3))− c

)
C2 =

(
η(1− β)

4ε2
+ 2

(
η2L

2
+ c

)
(1− β)

(
1− β − β

4ε3

))
D =

(
η2L

2
+ c

)
(1− β)2

(53)

Establishing Convergence. For convergence, we can set the variables such that α > 0 and C1 < 0.
The one-step progress in expectation becomes:

E[Ψt+1|Ft] ≤ Ψt − α∥∇L(θt)∥2 + C1∥vt∥2 + C2∥ζt∥2 +Dσ2 (54)

When C1 < 0, the term with ∥vt∥2 helps convergence. Taking the full expectation and summing
from t = 0 to T − 1:

T−1∑
t=0

E[α∥∇L(θt)∥2] ≤ E[Ψ0]− E[ΨT ] +

T−1∑
t=0

(C2∥ζt∥2 +Dσ2])

≤ E[Ψ0]− L∗ + T (C2ζ
2 +Dσ2)

(55)

Where we used L∗ ≤ L(θt) and dropped the negative term with C1 < 0. Substituting
Ψ0 = L0 + c∥v0∥2 = L0 and dividing by αT we have:

1

T

T−1∑
t=0

E[∥∇L(θt)∥2] ≤
L0 − L∗

αT
+

C2ζ
2 +Dσ2

α
. (56)

Thus, the average squared gradient norm converges to a neighborhood determined by the perturbation
magnitude ζ2 and noise variance σ2. This result shows that momentum SGD with perturbation and
noise converges to a neighborhood of a stationary point in the non-convex smooth case.

Theorem 2 provides convergence guarantees for momentum-SGD in the non-convex setting, which
is particularly relevant for deep learning applications like LLMs. Instead of convergence to a
neighborhood of the optimum, we provide guarantees on the average gradient norm, a standard
measure for non-convex optimization. The bound depends directly on the perturbation magnitude,
establishing that even in non-convex settings, controlling malicious perturbations through effective
detection mechanisms is crucial for ensuring convergence to stationary points.
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F.1.4 UNIFIED ANALYSIS: DETECTION-CONVERGENCE RELATIONSHIP

We now unify our results to establish a comprehensive relationship between detection thresholds and
convergence guarantees. This unified perspective provides us with clear guidance on the security-
performance tradeoff.

Theorem 3 (Convergence Guarantees for Distributed Training with Malicious Workers). Let
a distributed training system with p stages, each having d worker replicas, where a fraction
γs <

1
2 of workers at stage s are malicious. Using the momentum-based verification with a test

statistic detector with threshold τ , let us assume we will use balanced momentum SGD with
parameter β ∈ [0, 1) and learning rate η > 0 for optimization.
Assume:

1. The test statistic function Ω is Lipschitz continuous with constant LΩ,
2. Each stage s implements a map h(s,r) = fs(h

(s−1,r);θ(s)) with Jacobian bounds
∥∂θfs∥ ≤ L

(s)
θ and ∥∂hfs∥ ≤ L

(s)
f ,

3. The loss function L is L-smooth and bounded below by L∗,
4. The stochastic gradient includes zero-mean noise with variance bounded by σ2.

Then the following results hold:

• Detection Evasion Bound. For a malicious worker to remain undetected by the test statistic
detector:

ε ≤ τ

LΩ(1 + γs)
. (57)

• Parameter Gradient Perturbation. The maximum parameter gradient perturbation that
can be induced by undetected malicous workers at stage s is:

∥∆∇agg
θ(s)∥ ≤ γs ·Gs ·

τ

LΩ(1 + γs)
(58)

where Gs = L
(s)
θ

(∏
j≥s+1 L

(j)
f

)
represents the amplification factor for perturbations.

• Convergence Bounds. Under the maximum undetected perturbation and assuming
ζ := γs ·Gs · τ

LΩ(1+γs)
, for non-convex loss we have:

1

T

T−1∑
t=0

E[∥∇L(θt)∥2] ≤
L0 − L∗

αT
+

C2ζ
2 +Dσ2

α
(59)

where constants are as defined in Theorem 2.

Proof. We prove the theorem by connecting the results from Lemmas 2 and 5 and Theorem 2.

F.1.5 RECOVERING WELL-KNOWN LOWER-BOUNDS FOR SGD CONVERGENCE FROM
THEOREM 3

To evaluate our convergence theorem’s validity, we examine whether it generalizes to common
non-convex optimization bounds. Consider vanilla SGD without malicious perturbations: setting
β = 0 (relaxing momentum SGD to SGD), ζ = 0 (no malicious perturbation), and substituting into
our coefficients from Eq. (42) with c→ 0+:

α ≈ O(η)
D ≈ O(η2L),

(60)

where η is our learning rate (see Eq. (40)).
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Substituting these coefficients into our convergence theorem, we have:

1

T

T−1∑
t=0

E[∥∇L(θt)∥2] ≤
L0 − L∗

αT
+

C2ζ
2 +Dσ2

α
(61)

(a)

≤ L0 − L∗

αT
+

Dσ2

α
(62)

(b)

≤ O
(
L0 − L∗

ηT
+ ηLσ2

)
(63)

where (a) assumes no perturbation, and (b) uses the derived constants.

This matches the classical SGD bound from Koloskova et al. (2024):

“SGD, Ex. 3.1 Since σ2 ≤ τσ2
SGD (see Table 2), and using that τ = Θ(1/Lγ) the convergence

rate in Theorem 5.1 converts to

1

T

T∑
t=0

E∥∇f(xt)∥2 ≤ O
(
F0

γT
+ Lγσ2

SGD

)
,

with γ ≤ 1
8
√
3L

[and where F0 = f(x0)− f∗]. This recovers classical convergence rate of SGD
for non-convex functions (up to constants).”

This bound exactly matches what we derive from our convergence theorem.

F.1.6 THEORY IMPLICATIONS

Our unified analysis reveals several important implications for designing malicious-tolerant SWARM
verification:

• Security-Convergence Tradeoff: The detection threshold τ directly impacts the convergence
guarantees through its effect on the maximum undetected perturbation. Lower thresholds provide
stronger security guarantees but may increase false positives and potentially slow convergence
due to unnecessary worker exclusion.

• Byzantine Fraction Impact: As shown in Eq. (58), the maximum parameter deviation is
proportional to γs

1+γs
, where γs represents the fraction of malicious workers at stage s. This

monotonically increasing function implies that larger malicious fractions allow more severe
parameter deviations, highlighting the importance of maintaining an honest majority.

• Detector Sensitivity: A detector Ω with larger Lipschitz constant LΩ reduces the parameter
gradient deviation. In practical terms, employing a more sensitive detection function constrains
the potential impact of malicious workers by allowing them less room for undetected perturbation.

• Stage Vulnerability: Stages with higher values of the amplification factor Gs are more vulner-
able to malicious perturbations. In typical neural network architectures, this often means that
earlier layers (which affect all subsequent computation) have greater vulnerability. This suggests
that security resources should be prioritized to monitor these critical stages more closely.

• Momentum as Robustness against Malicious Behavior: Higher momentum values β naturally
reduce the impact of per-iteration perturbations by placing more weight on the historical gradient
estimates. This provides an inherent form of robustness that complements explicit detection
mechanisms. The optimal momentum value therefore depends not only on optimization dynamics
but also on security considerations.

• Adaptive Detection Thresholds: Our analysis suggests that detection thresholds could be
optimally set differently for each stage based on their amplification factors Gs. Stages with
higher amplification factors should use stricter thresholds to maintain consistent convergence
guarantees across the model. We leave this for future work.

F.2 PROOF OF HONEST MAJORITY GUARANTEE

This section provides the complete proof of Lemma 1 from Sec. 3.2.
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Lemma 1 (Honest Majority Guarantee). Consider our distributed training system with p pipeline
stages, each replicated across d worker nodes. Let b be the total number of malicious workers,
and ϵ ∈ (0, 1) be a small positive constant. If workers are assigned to each stage randomly and

b ≤ dp

2
− p

√
d

2
ln
(p
ϵ

)
, (64)

then with probability at least 1− ϵ every pipeline stage has strictly fewer than d/2 malicious
workers.

Proof. Let Bs denote the set of malicious worker nodes at stage s. We model the assignment of
malicious nodes as follows: each worker node has probability q = b/n = b/(dp) of being malicious,
independently of other nodes.

For any stage s, when stages are randomly assigned to workers, the number of malicious nodes |Bs|
follows a binomial distribution with parameters d and q:

|Bs| ∼ Binomial(d, q), E[|Bs|] = qd. (65)

Our goal is to ensure that, with high probability, every stage s has |Bs| < d/2. Using Hoeffding’s
inequality (Hoeffding, 1994) for sums of independent Bernoulli random variables, we have

Pr [|Bs| − E[|Bs|] ≥ t] ≤ exp

(
−2t2

d

)
. (66)

Setting t = d/2− qd = d(1/2− q), we obtain

Pr [|Bs| ≥ d/2] ≤ exp

(
−2d

(
1

2
− q

)2
)
. (67)

Applying the union bound across all p stages, the probability that at least one stage has a majority of
malicious workers is bounded by

Pr [∃s : |Bs| ≥ d/2] ≤ p · exp

(
−2d

(
1

2
− q

)2
)
. (68)

For this probability to be at most ϵ, we require

p · exp

(
−2d

(
1

2
− q

)2
)
≤ ϵ. (69)

Taking the natural logarithm of both sides and solving for q, we get

1

2
− q ≥

√
ln(p/ϵ)

2d
. (70)

Substituting q = b/n = b/(dp) and solving for b, we obtain the maximum allowable number of
malicious nodes:

bmax =

(
1

2
−
√

ln(p/ϵ)

2d

)
dp =

dp

2
− p

√
d

2
ln
(p
ϵ

)
. (71)

Therefore, if the total number of malicious nodes b is at most bmax, then with probability at least 1− ϵ,
all pipeline stages will have strictly fewer than d/2 malicious worker nodes.

This theoretical result demonstrates that as our system scales with more replicas per stage, it becomes
increasingly robust against adversarial workers, approaching the theoretical limit of tolerating up to
half of all workers being malicious.
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G EXTENDED EXPERIMENTAL RESULTS

This section provides comprehensive experimental details supporting our main findings. We first
describe the experimental setup and hyper-parameters, followed by an extended version of our results.

G.1 DETAILED EXPERIMENTAL SETTINGS

Experimental Infrastructure. To simulate a heterogeneous distributed environment, we developed
our experiments using the TorchTitan (Liang et al., 2025) framework built on PyTorch (Paszke
et al., 2019).4 Our setup employed pipeline parallelism where each transformer layer corresponds
to a pipeline stage, with data parallel replicas serving as workers within each stage. We con-
ducted experiments across three scales using 1-3 compute nodes, each equipped with 8 NVIDIA
A100-SXM4-40GB GPUs, resulting in configurations with 64, 128, and 256 total workers. Ablation
studies were performed using 8 NVIDIA A100-SXM4-80GB GPUs.

Model and Training Configuration. We evaluated decoder-only Llama-3 (Dubey et al., 2024)
models with varying architectural configurations. Complete training hyper-parameters are provided
in Tab. 8. Additionally, we also evaluate the performance of our approach on NanoGPT (Karpathy,
2022) as a representative GPT2 (Radford et al., 2019) architecture. Unless stated otherwise, we train
all model configurations for 5000 steps.

Verification Settings. SENTINEL deploys dedicated verifier nodes that intercept inter-stage com-
munications and monitor both forward activations and backward activation gradients for anomalous
behavior. We permanently ban workers after c = 5 violations. Moreover, we implement an adaptive
IQR thresholding mechanism to detect outliers, with parameters detailed in Tab. 9. These detection
thresholds were calibrated empirically through preliminary experiments on each configuration, though
additional hyper-parameter tuning may yield further improvements.

As pointed out in the paper, we assume that the first layer and final two layers of each model are
operated by honest nodes. This assumption is cruicial for two reasons:

1. these layers control the primary data and gradient flow during forward and backward propagation,
making them essential for training stability, and

2. they represent key attack surfaces for adversaries seeking to compromise model integrity through
data poisoning/backdoor attacks (Li et al., 2024) (via the input layer) or label manipulation (Big-
gio et al., 2012; Fung et al., 2020) (via the output layers).

Without this honest-node assumption, malicious actors could easily circumvent intermediate verifica-
tion by corrupting inputs or outputs directly.

Datasets. We conduct experiments on three large-scale text corpora: CommonCrawl (C4) (Raffel
et al., 2020), FineWeb (FW) (Penedo et al., 2024), and OpenWebText (OW) (Gokaslan et al., 2019),
all obtained through Hugging Face Datasets Streaming API (Lhoest et al., 2021). To enable model
evaluation, we construct a held-out validation set comprising 100k samples that remains separate
from training data throughout the process. During validation phases, we sample batches of 160
samples per data-parallel worker from this validation set for evaluation.

4We integrate the NanoGPT following the implementation of Karpathy (2022) into TorchTitan.
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Table 8: Model architectures and training configuration.

MODEL CONFIGURATION NANOGPT-0.25B LLAMA-3-0.6B LLAMA-3-1.2B
MODEL ARCHITECTURE

Parameters 278,364,672 574,391,296 1,224,247,296
Hidden Dimensions 768 1024 2048
Number of Layers (Stages) 12 16 8
Attention Heads 12 32 32
Key-Value Heads – 8 8
FFN Dimension Multiplier – – 1.3
Multiple Of – – 1024
RoPE Theta – 500000 500000

DISTRIBUTED SETUP

Data Parallel Dimension 8 8 (16 for 16×16 mesh) 8
Pipeline Parallel Dimension 12 16 8
Total Workers 96 128 (256 for 16×16 mesh) 64

OPTIMIZER

Type AdamW AdamW AdamW
Learning Rate 6e-4 6e-4 6e-4
Epsilon 1e-8 1e-8 1e-8

LEARNING RATE SCHEDULER

Warmup Steps 100 100 100
Decay Ratio 0.8 0.8 0.8
Decay Type Linear Linear Linear
Minimum LR 0.0 0.0 0.0

TRAINING

Worker Batch Size 8 12 10
Global Batch Size 64 96 (192 for 16×16 mesh) 80
Sequence Length 1024 1024 1024
Gradient Clipping 1.0 1.0 1.0
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G.2 DETAILED EXPERIMENTAL RESULTS

Activation vs. Gradient Attack Analysis in Pipeline Parallelism. Building on the subset of
attacks presented in Sec. 5, we now provide comprehensive verification results across all activation
and gradient attacks from Sec. 2 to fully characterize their behavior. Tab. 10 presents complete results
on the C4 dataset, while Tabs. 11 and 12 demonstrate performance on FineWeb and OpenWebText
datasets, respectively.

Our comprehensive evaluation reveals several important insights. First, activation manipulation
poses an equally significant threat as gradient manipulation in distributed, pipeline parallel-based
training, confirming that both attack vectors require careful consideration in Byzantine-tolerant
systems. Second, when attacks evade detection, their deviation from baseline vanilla training remains
negligible, directly supporting our theoretical analysis presented in Theorem 1. This consistency
holds across all three datasets, demonstrating the robustness and versatility of our approach across
diverse training scenarios.

Particularly noteworthy are attacks detected with a detection speed of 1.0, indicating that despite our
forgiveness strategy introduced in Sec. 3.1, these attacks produce sufficiently substantial deviations
to warrant immediate exclusion of the malicious worker. The training and validation loss curves
in Figs. 7 to 10 further illustrate how our EMA verification approach effectively controls malicious
behavior, maintaining performance close to vanilla baselines throughout training. These results
collectively validate the effectiveness and generalizability of our proposed verification framework.

Table 10: Attack detection performance for Llama-3-0.6B on C4 dataset. Metrics shown include precision,
recall, F1 score (all as percentages), average detection speed (in iterations), and validation loss.

MODE ATTACK
SENTINEL (OURS) NO VERIF.

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ DET. SPEED ↓ VAL. LOSS ↓ VAL. LOSS ↓
- None (Vanilla) 100.0 100.0 100.0 N/A 3.819 3.821

A
C

T
IV

A
T

IO
N

M
A

N
IP

U
L

A
T

IO
N

Constant (Zeros) 100.0 100.0 100.0 6.5 3.809 11.761
Constant (Ones) 100.0 100.0 100.0 6.33 3.817 7.778
Random Value 100.0 100.0 100.0 6.48 3.827 7.778
Scaling (α = −1) 100.0 100.0 100.0 6.38 3.824 4.109
Random Sign (1%) 100.0 100.0 100.0 6.33 3.825 4.670
Random Sign (10%) 100.0 100.0 100.0 6.52 3.822 4.619
Random Sign (30%) 88.9 100.0 94.1 70.91 3.841 4.567
Delay (100-steps) 88.9 100.0 94.1 13.21 3.841 7.675
Bias Addition 84.6 91.7 88.0 14.57 3.830 3.892
Invisible Noise (90%) 100.0 100.0 100.0 6.48 3.836 7.675
Invisible Noise (95%) 100.0 100.0 100.0 6.52 3.823 7.677
Invisible Noise (99%) 100.0 100.0 100.0 6.48 3.826 7.682

G
R

A
D
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N
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M

A
N

IP
U

L
A

T
IO

N

Constant (Zeros) 100.0 100.0 100.0 6.42 3.829 3.942
Constant (Ones) 88.9 100.0 94.1 1.0 3.816 10.630
Random Value 100.0 100.0 100.0 1.0 3.818 9.595
Scaling (α = −1) 0.0 0.0 0.0 N/A 3.893 3.893
Random Sign (1%) 0.0 0.0 0.0 N/A 3.990 3.982
Random Sign (10%) 0.0 0.0 0.0 N/A 3.982 3.994
Random Sign (30%) 0.0 0.0 0.0 N/A 3.944 3.933
Delay (100-steps) 100.0 100.0 100.0 7.33 3.826 10.157
Bias Addition 100.0 100.0 100.0 1.0 3.828 10.813
Invisible Noise (90%) 100.0 75.0 85.7 101.89 3.968 4.218
Invisible Noise (95%) 100.0 79.2 88.4 229.68 3.954 4.174
Invisible Noise (99%) 100.0 79.2 88.4 211.0 3.943 4.176
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Table 11: Attack detection performance for Llama-3-0.6B on FineWeb dataset. Metrics shown include precision,
recall, F1 score (all as percentages), average detection speed (in iterations), and validation loss.

MODE ATTACK
SENTINEL (OURS) NO VERIF.

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ DET. SPEED ↓ VAL. LOSS ↓ VAL. LOSS ↓
- None (Vanilla) 100.0 100.0 100.0 N/A 3.818 3.840

A
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A
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A
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IO
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Constant (Zeros) 100.0 100.0 100.0 6.43 3.819 11.761
Constant (Ones) 100.0 100.0 100.0 6.61 3.814 7.793
Random Value 96.0 100.0 98.0 6.46 3.831 7.793
Scaling (α = −1) 100.0 100.0 100.0 6.29 3.827 4.121
Random Sign (1%) 100.0 100.0 100.0 6.42 3.825 4.693
Random Sign (10%) 51.1 100.0 67.6 3.58 3.829 4.716
Random Sign (30%) 92.3 100.0 96.0 7.5 3.826 4.564
Delay (100-steps) 85.7 100.0 92.3 14.83 3.832 7.692
Bias Addition 86.4 79.2 82.6 10.68 3.828 3.898
Invisible Noise (90%) 100.0 100.0 100.0 6.38 3.824 7.709
Invisible Noise (95%) 100.0 100.0 100.0 6.29 3.824 7.713
Invisible Noise (99%) 100.0 100.0 100.0 6.33 3.829 7.712

G
R

A
D

IE
N

T
M

A
N

IP
U

L
A

T
IO

N

Constant (Zeros) 100.0 100.0 100.0 6.33 3.815 3.949
Constant (Ones) 92.3 100.0 96.0 1.14 3.824 10.726
Random Value 100.0 100.0 100.0 1.38 3.831 9.359
Scaling (α = −1) 0.0 0.0 0.0 N/A 3.888 3.901
Random Sign (1%) 0.0 0.0 0.0 N/A 3.989 3.999
Random Sign (10%) 0.0 0.0 0.0 N/A 3.990 4.004
Random Sign (30%) 0.0 0.0 0.0 N/A 3.941 3.966
Delay (100-steps) 100.0 100.0 100.0 7.29 3.817 10.017
Bias Addition 100.0 100.0 100.0 1.14 3.828 10.573
Invisible Noise (90%) 100.0 75.0 85.7 52.94 3.954 4.212
Invisible Noise (95%) 100.0 75.0 85.7 140.89 3.959 4.217
Invisible Noise (99%) 100.0 75.0 85.7 209.56 3.949 4.197

Table 12: Attack detection performance for Llama-3-0.6B on OpenWebText dataset. Metrics shown include
precision, recall, F1 score (all as percentages), average detection speed (in iterations), and validation loss.

MODE ATTACK
SENTINEL (OURS) NO VERIF.

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ DET. SPEED ↓ VAL. LOSS ↓ VAL. LOSS ↓
- None (Vanilla) 100.0 100.0 100.0 N/A 3.773 3.778
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Constant (Zeros) 100.0 100.0 100.0 6.33 3.773 11.761
Constant (Ones) 100.0 100.0 100.0 6.29 3.779 7.820
Random Value 100.0 100.0 100.0 6.29 3.777 7.821
Scaling (α = −1) 100.0 100.0 100.0 6.29 3.776 4.016
Random Sign (1%) 100.0 100.0 100.0 6.21 3.774 4.614
Random Sign (10%) 100.0 100.0 100.0 6.29 3.779 4.578
Random Sign (30%) 96.0 100.0 98.0 25.62 3.779 4.524
Delay (100-steps) 88.9 100.0 94.1 10.74 3.790 7.701
Bias Addition 91.7 91.7 91.7 14.0 3.782 3.843
Invisible Noise (90%) 100.0 100.0 100.0 6.25 3.777 7.677
Invisible Noise (95%) 100.0 100.0 100.0 6.5 3.783 7.674
Invisible Noise (99%) 100.0 100.0 100.0 6.29 3.780 7.678
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Constant (Zeros) 100.0 100.0 100.0 5.7 3.775 3.908
Constant (Ones) 100.0 100.0 100.0 1.0 3.774 10.722
Random Value 100.0 100.0 100.0 1.0 3.780 9.611
Scaling (α = −1) 0.0 0.0 0.0 N/A 3.847 3.860
Random Sign (1%) 12.1 16.7 14.0 1516.33 3.990 3.957
Random Sign (10%) 5.3 4.2 4.7 2646.0 3.967 3.952
Random Sign (30%) 0.0 0.0 0.0 N/A 3.901 3.906
Delay (100-steps) 100.0 100.0 100.0 7.09 3.771 11.508
Bias Addition 100.0 100.0 100.0 1.0 3.777 10.947
Invisible Noise (90%) 100.0 87.5 93.3 92.95 3.877 4.178
Invisible Noise (95%) 100.0 91.7 95.7 136.42 3.828 4.098
Invisible Noise (99%) 100.0 87.5 93.3 64.42 3.858 4.123
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(b) FineWeb Dataset
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(c) OpenWebText Dataset

Figure 7: Training loss comparing our verification mechanism against baseline vanilla training under activation
manipulation attacks. We evaluate on Llama-3-0.6B using three datasets (C4, FineWeb, and OpenWebText).
Dotted vertical lines indicate attack initiation points where 6 randomly selected nodes begin submitting adversar-
ial activations in coordinated Byzantine attacks. Our verification approach maintains stable convergence while
the baseline suffers significant degradation under attack.
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(b) FineWeb Dataset
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(c) OpenWebText Dataset

Figure 8: Validation loss comparing our verification mechanism against baseline vanilla training under activation
manipulation attacks. We evaluate Llama-3-0.6B across three datasets (C4, FineWeb, and OpenWebText). The
dotted red line marks the transition from warm-up to the attack phase, where Byzantine nodes begin submitting
adversarial activations. Our verification approach maintains stable validation performance while without it, the
baseline shows significant degradation post-attack.
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(b) FineWeb Dataset
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(c) OpenWebText Dataset

Figure 9: Training loss comparing our verification mechanism against baseline vanilla training under gradient
manipulation attacks. We evaluate on Llama-3-0.6B using three datasets (C4, FineWeb, and OpenWebText).
Dotted vertical lines indicate attack initiation points where 6 randomly selected nodes begin submitting adversar-
ial gradients in coordinated Byzantine attacks. Our verification approach maintains stable convergence while the
baseline suffers significant degradation under attack.
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(a) C4 Dataset
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(b) FineWeb Dataset
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(c) OpenWebText Dataset

Figure 10: Validation loss comparing our verification mechanism against baseline vanilla training under gradient
manipulation attacks. We evaluate Llama-3-0.6B across three datasets (C4, FineWeb, and OpenWebText). The
dotted red line marks the transition from warm-up to the attack phase, where Byzantine nodes begin submitting
adversarial gradients. Our verification approach maintains stable validation performance while without it, the
baseline shows significant degradation post-attack.
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(a) Normalized L2 distance evolution of gradients at layer 4 under gra-
dient delay attack. Worker 0 initiates attack at iteration 4411 and is
immediately flagged.

(b) Sliced Wasserstein distance evolution of activations at layer 13 under
random sign attack (1%). Workers 7 and 3 initiate attacks at iterations
1600 and 4411, respectively, and are immediately flagged.

Figure 11: Evolution of adaptive deviation bounds and worker statistics. The proposed thresholding mechanism
adapts to natural distribution shifts while detecting Byzantine behavior.

Evolution of Adaptive Deviation Bounds. Our approach employs an adaptive IQR-based thresh-
olding mechanism, outline in Alg. 5, that dynamically adjusts acceptable deviation bounds for each
monitored metric. To demonstrate the effectiveness of this approach, we present the evolution of
these adaptive thresholds alongside the corresponding deviations recorded for each worker across two
representative layers of our Llama-3-0.6B model. Fig. 11a shows results under gradient delay attacks,
while Fig. 11b illustrates behavior during activation random sign attacks. The results demonstrate
that our adaptive bounds effectively encapsulate the normal operational behavior of honest workers
during benign training phases. Critically, when a malicious worker initiates an attack, the adaptive
bounds enable verifier nodes to immediately detect and flag the anomalous behavior, providing robust
protection against adversarial interference in the distributed training process.

Large-scale Experimental Results. In Sec. 5, we discussed scaling our experiments to two
additional settings: (1) a 16×16 mesh topology with 256 workers, and (2) a 1.2B parameter model on
an 8× 8 mesh with 64 workers. Here we present the complete results for both configurations across
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all attack types and malicious ratios tested. Tab. 13 shows detailed performance metrics including
validation loss, precision, recall, and F1-score for each experimental condition. Our comprehensive
results corroborate the main findings regarding the effectiveness of our proposed verification approach
in detecting malicious actors that attempt to disrupt distributed training.

Table 13: Attack detection performance for large-scale Llama-3 training on C4 dataset. Metrics shown include
precision, recall, F1 score (all as percentages), average detection speed (in iterations), and validation loss. For all
experiments, we assume a 37.5% Byzantine workers per stage (thus, for 16 × 16 mesh we have 6 malicious
vs. 10 honest workers per stage, while for 8× 8 mesh their ratio is 3:5.)

SETUP MODE ATTACK
SENTINEL (OURS)

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ DET. SPEED ↓ VAL. LOSS ↓

0.
6B

O
N
1
6
×

1
6

M
E

SH

A
C

T
IV

A
T

IO
N Random Value 100.0 100.0 100.0 7.96 3.900

Delay (100-steps) 85.7 100.0 92.3 14.39 3.945
Bias Addition 100.0 25.6 40.8 65.15 3.981
Invisible Noise (99%) 100.0 100.0 100.0 7.96 3.898

G
R

A
D

IE
N

T Random Value 100.0 100.0 100.0 124.08 3.895
Delay (100-steps) 100.0 100.0 100.0 9.05 3.890
Bias Addition 100.0 100.0 100.0 1.69 3.894
Invisible Noise (99%) 98.7 93.6 96.0 14.27 3.915

1.
2B

O
N
8
×

8
M

E
SH

- None (Vanilla) 100.0 100.0 100.0 N/A 3.723

A
C

T
IV

A
T

IO
N Random Value 100.0 100.0 100.0 4.33 3.723

Delay (100-steps) 37.5 100.0 54.5 67.0 3.774
Bias Addition 0.0 0.0 0.0 N/A 3.738
Invisible Noise (99%) 100.0 100.0 100.0 4.33 3.727

G
R

A
D

IE
N

T Random Value 100.0 100.0 100.0 1.0 3.726
Delay (100-steps) 100.0 100.0 100.0 1.0 3.722
Bias Addition 0.0 0.0 0.0 N/A 3.805
Invisible Noise (99%) 100.0 100.0 100.0 9.2 3.725

Longer Training & Alternative Architecture. Two natural questions arise from our approach:
whether our verification method remains stable under longer training regimes, and whether it general-
izes to alternative transformer architectures beyond our initial experiments. To address these concerns,
we conduct extended evaluations on two different models: NanoGPT-0.25B and Llama-3-0.6B,
training each for 30,000 iterations. This training duration corresponds to approximately 2B tokens
for NanoGPT-0.25B (7× the parameter count) and 3B tokens for Llama-3-0.6B (5× the parameter
count), following established scaling laws in LLM training (Hoffmann et al., 2022).

We evaluate our method’s robustness by simulating a challenging adversarial environment where
50% of nodes are malicious at each transformer stage. At each attack round, one randomly selected
malicious node performs a randomly chosen attack from Tab. 10 under a “no collusion” assump-
tion. Tab. 14 summarizes our detection performance across this extended training period for both
architectures.

Our results demonstrate consistent stability across both model architectures and all three datasets,
achieving high F1-scores (> 81%) for attack detection. Importantly, we observe that the median
detection speed across all successfully detected attack types is 5.0 iterations, which aligns precisely
with our acceptable number of violations threshold. This indicates that we can detect the majority of
attacks with significant training impact within our predefined tolerance window. Even when some
attacks remain undetected, they exhibit negligible impact on training convergence, as illustrated
in Figs. 12 and 13. The validation loss under our verification method closely tracks the vanilla
baseline throughout the entire training duration for both models, corroborating our theoretical
analysis from Theorem 1 and demonstrating the method’s architectural flexibility and long-term
stability.
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Table 14: Detection performance for training NanoGPT-0.25B and Llama-3-0.6B against mixed attacks for 30k
iterations.

MODEL DATASET
SENTINEL (OURS) VANILLA

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ MED. SPEED ↓ AVG. SPEED ↓ VAL. LOSS ↓ VAL. LOSS ↓

N
A

N
O

G
P

T-
0.

25
B

C4 91.2 86.1 88.6 5.0 44.07 3.747 3.650

FW 91.2 86.1 88.6 5.0 62.13 3.752 3.731

OW 73.3 91.7 81.5 5.0 320.43 3.571 3.531

L
L

A
M

A
-3

-0
.6

B C4 76.0 86.4 80.9 5.0 263.51 3.357 3.347

FW 88.6 88.6 88.6 5.0 108.73 3.465 3.459

OW 78.0 88.6 83.0 5.0 44.06 3.316 3.313
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(b) FineWeb Dataset
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(c) OpenWebText Dataset

Figure 12: Training and validation loss evolution for NanoGPT-0.25B model on C4, FineWeb, and OpenWebText
datasets over 30k iterations. The mixed attack scenario assumes 50% Byzantine nodes at each pipeline stage,
with one randomly selected node performing a randomly chosen attack at a randomly sampled iteration. Each
node has chooses a different mode (activation vs. gradient) and manipulation method (as outlined in Sec. 2.1).
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(b) FineWeb Dataset
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(c) OpenWebText Dataset

Figure 13: Training and validation loss evolution for Llama-3-0.6B model on C4, FineWeb, and OpenWebText
datasets over 30k iterations. The mixed attack scenario assumes 50% Byzantine nodes at each pipeline stage,
with one randomly selected node performing a randomly chosen attack at a randomly sampled iteration. Each
node has chooses a different mode (activation vs. gradient) and manipulation method (as outlined in Sec. 2.1).
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G.3 ADDITIONAL ABLATION STUDIES

In this section, we present additional ablation studies on the impact of various components used in
SENTINEL.

Impact of EMA in Verification. To demonstrate how the temporal training dynamics captured
within the EMA affects the detection of malicious workers, we compare our approach against a
naı̈ve version that simply compares submitted signals with the average. For this experiment, we start
training a Llama-3-0.6B model while malicous workers employ activation delay attacks. To cancel
out the EMA, we set β = 0 which essentially means that we would compare against the instantaneous
activation average. Our results are show in Tab. 15. As seen, comparison with the instantaneous mean
is not enough to protect against malicious workers. This corroborates the importance of temporal
patterns in detecting pipeline parallel attacks.

Table 15: Ablation study on the impact of EMA in SENTINEL.

REFERENCE POINT
METRICS

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ VAL. LOSS ↓
AVERAGE (β = 0) 23.08 100.0 37.5 6.248
SENTINEL (OURS) 100.0 100.0 100.0 3.826

Impact of Distance Metrics. The sensitivity of different attacks to various distance metrics varies
between activation and activation gradient attacks, which is why we require multiple distance metrics.
As discussed in App. D, other optimal distance metric choices could provide a unified solution (e.g.,
neural network classifiers), which we defer to future work. Here, to evaluate the impact of various
distance metrics, we conducted an ablation study using the mixed attack setting from Tab. 2 for
training a Llama-3-0.6B on the C4 dataset, employing only one distance metric at a time for detection
against mixture attacks. Our results are shown in Tab. 16. As seen, combining all metrics yields
optimal performance against the mixture of all activation and activation gradient attacks.

Table 16: Ablation study on distance metrics against mixed attacks.

DISTANCE METRIC
METRICS

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ VAL. LOSS ↓
SFR 42.9 83.3 56.6 8.882
SWD 40.0 94.4 56.2 6.332
NORMALIZED L2 75.0 75.0 75.0 10.274
ABSOLUTE DEVIATION L1 71.1 88.9 79.0 3.883

ALL (SENTINEL) 83.7 92.3 87.8 3.831

Impact of Random Seeds. Due to limited computational resources and substantial experimental
costs, we have not reported error bars throughout the paper. To demonstrate the statistical integrity
of our approach, we computed error bars for two of the most challenging activation attacks: delay
(100-steps) and invisible noise (99%). We randomly selected 5 seeds and repeated the experiments
from Tab. 1, randomizing both network initialization and malicious worker selection. The results
provided in Tab. 17 indicate the statistical significance of our findings.

Table 17: Statistical significance analysis with error bars for the performance of SENTINEL against activation
delay and invisible noise attack.

ATTACK
METRICS

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ VAL. LOSS ↓
DELAY (100-steps) 99.2 ± 1.6 100.0 ± 0.0 99.6 ± 0.8 3.843 ± 0.008
INVISIBLE NOISE (99%) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 3.832 ± 0.004
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H SENTINEL IN THE WILD: VERIFICATION FOR DECENTRALIZED LLM
TRAINING USING SWARM PARALLELISM

In this section, we detail the adaptation of SENTINEL to SWARM parallelism (Ryabinin et al.,
2023) and showcase its capabilities for decentralized training of LLMs. We first provide a high-
level overview of SWARM’s operational dynamics. Then, we demonstrate the compatibility of our
verification mechanism with communication-efficient compression techniques employed in distributed
SWARM training. We describe how SENTINEL integrates with SWARM’s existing infrastructure by
leveraging its trainer node architecture. Additionally, we analyze the critical role of verification in
the presence of SWARM’s stochastic wiring mechanism, which introduces additional failure modes
beyond traditional PP. Finally, we present comprehensive experimental settings and detailed results
from our SWARM experiments.

H.1 SWARM PARALLELISM OVERVIEW

As briefly discussed in Sec. 5.1, SWARM parallelism can be viewed as a stochastic DP/PP training
approach. At a high level, each worker gets assigned a random layer/stage of the model to process (PP-
axis) while other workers process different micro-batches for the same stage (DP-axis). Unlike tradi-
tional fixed meshes used in distributed training frameworks such as torch.distributed (Paszke
et al., 2019; Li et al., 2020), SWARM parallelism operates as pools of workers available at each stage
that process data for subsequent stages.

Coordination of training in such a stochastic environment is handled by so-called trainer nodes. Each
trainer node is responsible for processing a single micro-batch of data end-to-end. In particular, each
trainer node receives a disjoint micro-batch of data and sends it to a worker at stage 0. Once the
worker processes the data, the trainer receives the result and forwards it to the next stage. The trainer
continues this process until the micro-batch has passed through all layers in the forward pass. Then,
the trainer begins the backward pass by traversing the stages in reverse order. With this architecture,
workers do not need to save the intermediate activations for backward since the trainer maintains all
necessary information and can send it to different workers during the backward pass. The workers
then accumulate parameter gradients locally and update their parameters after an all-reduce operation
with all existing workers of the same stage.

Trainer nodes use a Distributed Hash Table (DHT) to route their micro-batches. Since devices at
each stage process data at different speeds, trainers maintain worker load and throughput information
in the DHT so that all other trainers know when to send signals and which worker at each stage
processes data most efficiently. This mechanism is at the heart of the stochastic wiring that occurs
within SWARM and distinguishes it from fixed mesh DP/PP approaches (Ryabinin et al., 2023). As
demonstrated, a SWARM system can accommodate many trainer nodes since each processes a single
micro-batch, and typically multiple devices at each stage are capable of processing data batches. For
a visual representation of SWARM, please refer to Fig. 14a. A pseudo-code of how the trainer nodes
work in SWARM is also provided in Alg. 6.

H.2 SUBSPACE COMPRESSION

Regular SWARM parallelism enables decentralized training, but suffers from slow speeds due to
bandwidth requirements (Ryabinin et al., 2023). To relax this requirement and enable faster training,
recent work by Ramasinghe et al. (2025) has shown that training with speeds as low as 60 Mbps is
plausible using lossless compression. In particular, Ramasinghe et al. (2025) observes that most pre-
trained transformers already exhibit low-rank properties in their feedforward and attention projection
layers. They utilize this observation to construct a lossless compression mechanism using a shared
subspace that enables faster transfer of activations and gradients passed between layers in PP.

In simple terms, given a signal h(s) = fs(h
(s−1)) that has been processed by a worker at stage s,

instead of communicating h(s) ∈ Rb×n×d, they compress it using a subspace compression matrix
Uk that projects it to a k-dimensional subspace where k ≪ d (Ramasinghe et al., 2025):

h
(s)
compressed = (h(s) − PE−Tfixed[t1:n, :])Uk. (72)
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Figure 14: (a) SWARM (Ryabinin et al., 2023) parallelism utilizes pipeline and data parallelism to train neural
networks. Compared to traditional DP/PP methods, SWARM utilizes trainer nodes to stochastically route
micro-batches of input data through the model layers. Trainer nodes leverage a Distributed Hash Table (DHT) to
communicate worker load/throughput to enable a better device utilization within the SWARM. (b) Subspace
compression (Ramasinghe et al., 2025) complements SWARM by adding lossless compression at the boundary of
worker devices for faster communication of activations and activation gradients from/to trainer nodes. SENTINEL
can be adapted to both settings and enable worker verification. It sits naturally within the trainer nodes that are
already coordinating signal transmission among workers.

Here, PE denotes the positional embeddings and Tfixed[t1:n, :]) are the fixed token embeddings. At
layer s+ 1, the receiver decompresses this using (Ramasinghe et al., 2025):

h
(s)
recovered = h

(s)
compressedU

T
k + PE +Tfixed[t1:n, :] = hs (73)

This compression scheme, tailored for training transformer-based LLMs, can enable training across
four geographical regions with bandwidth as low as 60 Mbps. Therefore, we will incorporate it as
part of our realistic SWARM integration. For an overview of SWARM with subspace compression,
please refer to Fig. 14b.

H.2.1 SENTINEL COMPATIBILITY WITH SUBSPACE COMPRESSION

To demonstrate the compatibility of our proposed method with subspace compression, we integrate
this compression algorithm into our fixed mesh TorchTitan implementation. We assume that
malicious workers would manipulate the compressed signals since these are what is being sent to
subsequent workers.

In particular, we use the first k dimensions of the transmitted signal h(s)
compressed ∈ Rb×n×k+1, as the

last dimension corresponds to the fixed token embeddings which may vary significantly between
different batches. Specifically, SENTINEL uses h

(s)
compressed[ : , : , : −1] for activation verification

using EMA (and similarly g
(s)
compressed[ : , : , : −1] for gradients). The rest of the algorithm remains

unchanged.

Using these assumptions, we train our 16-layer Llama-3-0.6B on the FineWeb-EDU dataset using the
settings given in Tab. 8. The only difference is that for these experiments we use a local batch-size
8 with 8 gradient accumulation steps to reach a target batch-size of 512 per optimizer step. For
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Algorithm 6 SWARM Trainer Node (Ryabinin et al., 2023)

class TrainerNode:
def __init__(self, dht, stage_uids):

self.dht = dht
self.stages = [RemoteExpert(uid, dht) for uid in stage_uids]

def forward(self, input_batch):
"""Process microbatch through all pipeline stages"""
hidden = input_batch
for stage in self.stages:

hidden = stage.process(hidden)
return hidden

class RemoteExpert:
def __init__(self, stage_uid, dht):

self.stage_uid = stage_uid
self.dht = dht

def process(self, data):
"""Route data to available worker at this stage"""
worker = self.dht.find_available_worker(self.stage_uid)
result = worker.forward(data)
return result

subspace compression, we use a compression factor of 25 for 96% compression. As demonstrated
by our results in Tab. 18, SENTINEL can easily be adapted to this setting and demonstrates efficient
detection capability against various kinds of attacks. We also plot the validation loss for all these
attacks in Fig. 15, demonstrating uninterrupted training in all cases.

Table 18: Attack detection performance across different attack modes for training Llama-3-0.6B with subspace
compression (Ramasinghe et al., 2025). Metrics shown include precision, recall, F1 score (all as percentages),
and validation loss at 5000 steps. In all scenarios, each stage has 3:5 malicious to honest ratio.

MODE ATTACK
DETECTION PERFORMANCE TRAINING

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑ VAL. LOSS ↓

A
C

T
IV

A
T

IO
N Constant (Zeros) 100.00 100.00 100.00 4.2490

Constant (Ones) 100.00 100.00 100.00 4.2486
Random Value 100.00 100.00 100.00 4.2999
Bias Addition (Constant) 100.00 75.00 85.71 4.2484
Bias Addition (Random) 0.00 0.00 0.00 4.3248
Delay (100-steps) 100.00 100.00 100.00 4.2677

G
R

A
D

IE
N

T

Constant (Zeros) 100.00 100.00 100.00 4.2470
Constant (Ones) 100.00 100.00 100.00 4.2639
Random Value 100.00 100.00 100.00 4.2726
Bias Addition (Constant) 80.00 100.00 88.89 4.2751
Bias Addition (Random) 100.00 100.00 100.00 4.2608
Delay (100-steps) 100.00 100.00 100.00 4.2567

MIXED MODE 96.97 88.89 92.75 4.2779

H.3 SENTINEL INTEGRATION WITH SWARM

Now that we have laid out the background on SWARM and how subspace compression acts as a
complementary factor that enables decentralized training under restricted bandwidths, let us detail how
SENTINEL can be integrated into this realistic, production-ready decentralized training ecosystem.

As discussed, trainer nodes are in a natural position to take on the verifier role. As mentioned in
App. A Q3, trainer nodes only perform CPU-based operations and are readily available at a fraction
of worker node costs. Thus, it is not far-fetched to operate such nodes for training coordination.
Additionally, data integrity heavily depends on the trustworthiness of trainer nodes, and if this role
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(b) Gradient Attacks

Figure 15: Validation loss evolution for training Llama-3-0.6B models that employ subspace compression (Ra-
masinghe et al., 2025) under various activation/gradient manipulation attacks. Despite the compression in the
activation/gradients, SENTINEL can successfully prevent divergence from vanilla training loss.

were delegated to untrusted parties, other major issues regarding backdoor and privacy attacks would
arise. Therefore, it is both economically feasible and logically crucial to have trusted trainer nodes.

To add SENTINEL verification to trainer nodes, we employ a mechanism for trainers to maintain an
EMA of the signals they distribute across different stages. In particular, each trainer stores the EMA
of all layer outputs since it operates on them end-to-end. Specifically, trainer i maintains:

{m(s)
t,i | 1 ≤ s ≤ p} (74)

where
m

(s)
t,i (h) = βhm

(s)
t−1,i(h) + (1− βh)h

(s,r)
t,i , (75)

is the momentum at step t and stage s. A similar set is also kept for gradient EMAs, but we omit it
for brevity. Using these EMA states, each trainer can run SENTINEL verification as signals are being
processed by the workers.

The challenging aspect of implementing SENTINEL in SWARM is communicating malicious behavior
among trainers. Since each trainer is responsible for maintaining a separate EMA and verifying
their randomly chosen workers independently, this might increase the malicious impact of bad actors.
To address this issue, we utilize the DHT for lightweight communication between trainers about
malicious workers. Instead of each trainer independently tracking violation counters or worker bans,
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Algorithm 7 SWARM Trainer Node with SENTINEL Verification

class SENTINELTrainerNode:
def __init__(self, dht, stage_uids):

self.dht = dht
self.stages = [RemoteExpert(uid, dht) for uid in stage_uids]
self.ema_detector = EMADetector()
self.banned_workers = set()

def forward(self, input_batch):
"""Process microbatch with Sentinel verification"""
hidden = input_batch
for i, stage in enumerate(self.stages):

# Process data at current stage
hidden = stage.process(hidden)

# Sentinel verification
is_suspicious = self.ema_detector.update_and_detect(i, hidden)

if is_suspicious:
worker_uid = stage.get_last_worker_uid()
self._report_violation(worker_uid)

return hidden

def _report_violation(self, worker_uid):
"""Report violation to DHT for global coordination"""
violations = self.dht.get(f"violations_{worker_uid}", default=0)
self.dht.store(f"violations_{worker_uid}", violations + 1)

if violations + 1 > MAX_VIOLATIONS:
self.dht.store(f"banned_{worker_uid}", True)
self.banned_workers.add(worker_uid)

they cooperate through the DHT to increment violation counters or ban workers collectively. In simple
terms, we track the number of violations for each worker through their unique identifiers (UIDs) in
the DHT, and if they surpass the allowed number of violations, the first trainer that observes this
bans them. Similarly, we periodically check whether workers are demonstrating good behavior after
transient violations and decrease their violation counts through our forgiveness strategy discussed in
SENTINEL. The only slight modification that makes SENTINEL work better in SWARM is replacing
tainted gradients with zero tensors, which we observed makes training more stable.

A pseudo-code of SENTINEL integration with SWARM is given in Alg. 7 (backward pass is omitted
for brevity).

H.3.1 IMPORTANCE OF VERIFICATION UNDER STOCHASTIC WIRING

An interesting observation that we made through implementing SENTINEL in SWARM is the im-
portance of highly calibrated detection thresholds in removing abundant false positives due to the
interplay between “cascading effect” in PP and “stochastic wiring” in SWARM. Specifically, if a
trainer fails to detect/flag a bad actor, it not only updates its own EMA with corrupted signals, but
other trainers would also be in danger since they would eventually use that malicious worker while
routing their micro-batches due to SWARM’s stochastic wiring. Thus, if a malicious worker goes
undetected, it can corrupt the EMA of all trainers and they could flag all honest workers in that stage
as malicious. In the fixed mesh (shown in Fig. 2), in the worst case we would wrongly flag all workers
from a single pipe due to the “cascading effect” that we discussed in App. E.2. In SWARM, however,
we are in danger of falsely accusing all workers of the same stage due to “stochastic wiring” which
when considered together with “cascading”, could mean a high false positive rate for the detection
algorithm. We defer further investigation into this interesting inter-play to future work.
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H.4 DETAILED EXPERIMENTAL RESULTS

To evaluate our SENTINEL integration with SWARM under realistic distributed training conditions
including subspace compression, we conduct comprehensive experiments that test both the detection
capabilities and the system’s robustness under various attack scenarios. Our experimental setup is
designed to validate the effectiveness of the proposed method under realistic conditions.

H.4.1 EXPERIMENTAL SETTINGS

Distributed Architecture. We use a Llama-3-0.6B model with 16 transformer layers, partitioned
into 16 PP stages for SWARM. Each stage employs 8 parallel workers to process micro-batches
concurrently, resulting in a total of 128 worker nodes. To simulate realistic distributed environments,
each worker is deployed on a separate AWS instance with no direct interconnection to other nodes.
We use heterogeneous instance types based on computational requirements: g5.2xlarge instances
with NVIDIA A10G GPUs for the embedding and first transformer layer, g5.4xlarge instances
with NVIDIA A10G GPUs for the final transformer layer and projection head, and g4dn.2xlarge
instances with NVIDIA T4 GPUs for all intermediate transformer layers.

The trainer infrastructure consists of 32 parallel trainers distributed across 4 c6a.8xlarge CPU
instances, with 8 trainers running simultaneously per instance. Each trainer processes a disjoint data
shard streamed from FineWeb-EDU (Penedo et al., 2024) via HuggingFace (Lhoest et al., 2021),
ensuring no data overlap during training. This configuration allows us to test the scalability of our
DHT-based violation reporting system under realistic deployment conditions.

Attack Scenarios. We evaluate SENTINEL’s detection performance under two distinct scenarios:

1. Gradient-Only Attacks: A heterogeneous mixture comprising constant attacks (zeros and ones),
bias addition, random value injection, and scaling attacks.

2. Combined Gradient and Activation Attacks: An expanded attack suite including a mixture
of gradient and activation attacks such as constant (zeros and ones), bias addition, random
value, scale, delay, and random sign attacks. This more sophisticated threat model evaluates
SENTINEL’s comprehensive detection capabilities across the entire forward and backward pass.

For both scenarios, we simulate a challenging environment with a 3:5 malicious-to-honest worker ratio
(37.5% malicious workers). In the gradient-only setting, we assume attackers operate independently
without coordination, initiating attacks at random intervals. For the combined attack scenario, we
model partial coordination where 15% of malicious workers launch synchronized attacks at random
intervals, simulating coordinated adversarial behavior while maintaining realistic assumptions about
attacker capabilities.

Training Configuration. We use micro-batches of size 4 per worker with a total target batch-size
of 512 per optimizer step. For subspace compression, we use a compression factor of 25. All other
hyper-parameters and training settings are the same as provided in Tab. 8. Given the costs associated
with running 128 SWARM workers, we chose to train for 2500 steps only. Nevertheless, we made
sure to squeeze all the attack start times within those steps.

H.4.2 RESULTS

In this section, we present our results. From Fig. 16, we can see that in the absence of a viable
verification mechanism while training across an untrusted distributed environment, training can easily
be disrupted. In Tab. 19 we also present SENTINEL’s detection performance where we achieve greater
than 80% F1-score. Note that lower recall in mixed activation/gradient attacks is due to some nodes
employing weak attacks that are not disruptive to training, hence they do not get flagged as malicious
but training continues without disruption. This is in line with our observation in Fig. 1 and our
intuition from Theorem 1 that weak attackers may survive detection but do not harm the training.
This can be seen in Fig. 16 that training continues without divergence in both cases. These results
prove the versatility of SENTINEL in real-world applications involving distributed training.

EMA Variance across Trainers. When employing SENTINEL in SWARM, we discussed how
each trainer accumulate their own version of EMAs. Thus, these signals can vary from one trainer
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Table 19: Detection performance of SENTINEL in a distributed SWARM with 128 workers. There are 37.5%
malicious workers that are submitting randomly chosen mixed gradient and activation attacks. Note that the low
recall is attributed to some nodes employing weak attacks that are not disruptive to training, hence they do not
get flagged as malicious but training continues without disruption. This is in line with our observation in Fig. 1
and intuition from Theorem 1 that weak attackers may survive detection but they are no harm to the training.

ATTACK MODE
METRICS

PR. (%) ↑ RE. (%) ↑ F1 (%) ↑
MIXED GRADIENT 100.0 75.0 85.7

MIXED ACTIVATION/GRADIENT 100.0 66.7 80.0
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(a) Mixed Gradient Attacks
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(b) Mixed Gradient/Activation Attacks

Figure 16: Loss when training Llama-3-0.6B models with subspace compression (Ramasinghe et al., 2025)
in a distributed SWARM (Ryabinin et al., 2023) of 128 workers. Workers employ various activation/gradient
manipulation attacks to disrupt training. While in the absence of verification training gets disrupted, SENTINEL
can successfully protect training from divergence by detecting and banning malicious workers.

to another. If this variance is large, it may cause verification disruption: a worker that appears
honest to one trainer could be flagged as malicious solely due to EMA variance between trainers. To
demonstrate that EMAs among trainers have minimum divergence, we plot the standard deviation of
the activation and activation gradient EMA among all our 32 trainers used for training in SWARM.
As seen in Fig. 17, both activation and activation gradient display a controlled amount of variance
across trainers which is a testament to the fact that EMAs in different trainers evolve similarly.

Test Statistic Evolution. Finally, we examine how SENTINEL is utilized by disjoint trainer nodes
in SWARM. To this end, we track the test statistics for a particular worker (worker number 7 at
layer 12) when it processes micro-batches from different trainers. We also track the lower and upper
thresholds determined using our adaptive IQR mechanism from Alg. 5. Fig. 18 shows the evolution
of these test statistics over time. From this figure, we conclude that despite no direct EMA or
threshold communication between trainer nodes, all 32 trainers exhibit similar evolutionary patterns.
This consistency is crucial because each trainer routes its micro-batches through different workers,
requiring their detection criteria to remain aligned. Without this alignment, the system could suffer
from false positives or false negatives that would disrupt training stability. The key benefit of using
EMA within SENTINEL is its ability to efficiently track historical patterns, enabling this coordinated
behavior across distributed trainers.

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
Steps

0.1

0.2

0.3

0.4

0.5

0.6

St
d 

ac
ro

ss
 Tr

ai
ne

rs
Activation EMA

0 500 1000 1500 2000 2500
Steps

3

4

5

6

St
d 

ac
ro

ss
 Tr

ai
ne

rs

1e 7
Gradient EMA

EMA Std Analysis (Averaged for All Layers)

Figure 17: Standard deviation of EMA signals (activation/gradient) between the 32 trainers used in training
our Llama-3-0.6B model. Since each trainer keeps the EMAs of all layers, here we report the average across
all layers. As seen, activation EMA variance decreases as training progresses while gradient EMA variance
increases among trainer. Despite this increase, note that the scale of gradient EMA variance is very close to zero
(10−7).
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Figure 18: Evolution of adaptive deviation bounds and worker statistics for a worker processing layer 12 in our
16 layer Llama-3-0.6B. Each color represents the test statistics recorded by a different trainer. The upper and
lower thresholds determined by our adaptive IQR mechanism are also shown as the top and bottom lines for each
trainer. Despite no direct EMA or threshold communication between the trainers, they usually have a similar
threshold. The worker starts their attack around step 2150 after which the trainers flag and ban the worker.
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