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Abstract001

The collaborative paradigm of large and small002
language models (LMs) effectively balances003
performance and cost, yet its pivotal challenge004
lies in precisely pinpointing the moment of005
invocation when hallucinations arise in small006
LMs. Previous optimization efforts primarily007
focused on post-processing techniques, which008
were separate from the reasoning process of009
LMs, resulting in high computational costs and010
limited effectiveness. In this paper, we pro-011
pose a practical invocation evaluation metric012
called AttenHScore, which calculates the ac-013
cumulation and propagation of hallucinations014
during the generation process of small LMs,015
continuously amplifying potential reasoning er-016
rors. By dynamically adjusting the detection017
threshold, we achieve more accurate real-time018
invocation of large LMs. Additionally, consid-019
ering the limited reasoning capacity of small020
LMs, we leverage uncertainty-aware knowl-021
edge reorganization to assist them better cap-022
ture critical information from different text023
chunks. Extensive experiments reveal that our024
AttenHScore outperforms most baseline in en-025
hancing real-time hallucination detection ca-026
pabilities across multiple QA datasets, espe-027
cially when addressing complex queries. More-028
over, our strategies eliminate the need for ad-029
ditional model training and display flexibility030
in adapting to various transformer-based LMs.031
Our code is available at https://anonymous.032
4open.science/r/AttenHScore.033

1 Introduction034

With the profound study of the scaling law (Ka-035

plan et al., 2020) and the density law (Xiao et al.,036

2024), the development and application of lan-037

guage models (LMs) have exhibited a diversified038

pattern. In this context, the remarkable perfor-039

mance of large language models (LLMs) such as040

GPT-4o in reasoning tasks has attracted significant041

attention (Hosseini et al., 2023). However, due042

to their complex structures and massive parameter 043

scales, these LLMs consume considerable computa- 044

tional resources during training and inference. Con- 045

sequently, many of these LLMs are only available 046

through paid API services, undoubtedly increasing 047

their monetary cost. Meanwhile, small language 048

models (SLMs), with their lightweight architec- 049

tures and efficient inference capabilities (Zhang 050

et al., 2024), demonstrate significant advantages in 051

specific scenarios, such as real-time responses on 052

edge devices (Khiabani et al., 2025) and rapid pro- 053

cessing of simple tasks (Li et al., 2024). Neverthe- 054

less, when faced with higher-level tasks requiring 055

complex semantic understanding, the capabilities 056

of SLMs appear to be inferior compared to those 057

of LLMs (Wang et al., 2024). 058

To balance performance and cost while enhanc- 059

ing overall efficiency, a new paradigm of collabo- 060

ration between large and small LMs has emerged 061

from the perspectives of cost-effectiveness and re- 062

source optimization. This paradigm aims to fully 063

leverage the advantages of LLMs in handling com- 064

plex tasks while exploiting the efficiency of SLMs 065

in simple problem scenarios, thus achieving op- 066

timal resource allocation and efficient task pro- 067

cessing. As illustrated in Figure 1, we conduct 068

retrieval-based question answering (QA) experi- 069

ments utilizing two LMs, one large and one small, 070

across five datasets from Longbench (Bai et al., 071

2023), to evaluate the performance of both LMs in 072

scenarios without retrieval, and with top-5, top-10, 073

top-15 retrieval results. LLM exhibits overall supe- 074

rior performance, but the gap between it and SLM 075

is remarkably narrow on certain datasets. Under 076

these circumstances, researchers have mainly pro- 077

posed two strategies: routing and cascading. The 078

core mechanism of the former lies in accurately 079

directing user queries to a specific model based 080

on criteria provided by specially trained models 081

(Aggarwal et al., 2023; Ding et al., 2024b). Com- 082

paratively, the latter exhibits a more flexible and 083
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Figure 1: Performance of large and small LMs on different QA datasets in the RAG scenario. Including 1:
2WikiMultihopQA, 2: MultiFieldQA-en, 3: Qasper, 4: MultiFieldQA-zh and 5: HotpotQA.

phased processing mode. According to this strat-084

egy, user queries are first sent to SLMs for initial085

processing. Then, based on the output results of086

these models, the system determines whether fur-087

ther in-depth reasoning by LLMs is necessary (Yue088

et al., 2023; Ramírez et al., 2024).089

Based on the aforementioned research, we find090

that routing strategies require the introduction of091

auxiliary models for decision-making during im-092

plementation, which contradicts the initial goal of093

simplicity and efficiency. More importantly, these094

auxiliary models not only require specialized train-095

ing but also often rely on specific datasets (Šakota096

et al., 2024; Ding et al., 2024b), potentially lim-097

iting their versatility across different tasks. In098

view of this, we have chosen to adopt a cascad-099

ing strategy, where the main technical challenge100

lies in accurately determining when hallucinations101

occur in SLMs. Currently, research on halluci-102

nation detection in LMs primarily focuses on the103

post-reasoning phase (Manakul et al., 2023; Zhang104

et al., 2023; Li et al., 2023). However, such meth-105

ods exhibit significant limitations when integrated106

into the practical LLMs applications. The primary107

issue is that these post-processing methods often108

incur high computational costs and notable delays.109

For instance, cutting-edge detection methods typ-110

ically utilize LLMs such as ChatGPT, OPT, etc.111

(Zhang et al., 2023), making the cost of halluci-112

nation detection comparable to or even more ex-113

pensive than LLMs reasoning tasks. What’s more,114

post-processing methods are independent of the115

reasoning process (Shi et al., 2022; Wang et al.,116

2022), thus they cannot delve into the origins and117

evolution of hallucinations within each LMs.118

Seeking to surmount the outlined restrictions,119

we shift the focus of optimizing LMs invocations120

towards understanding their existing available sig-121

nals, rather than training and running more auxil- 122

iary models. This paper proposes a practical invo- 123

cation evaluation metric, AttenHScore, designed 124

to calculate the accumulation and propagation of 125

hallucinations during the generation process of 126

SLMs. By continuously amplifying potential error 127

points, this metric enables more skillfully identify 128

deviations between generated content and facts, 129

thereby improving the detection accuracy of hal- 130

lucinations. Furthermore, from the perspective of 131

retrieval-augmented generation (RAG), we guide 132

SLMs to evaluate the uncertainty between queries 133

and different text chunks, optimizing the informa- 134

tion arrangement by moving more relevant content 135

from the retrieval to the front of the prompt, thereby 136

further assisting SLMs in capturing key informa- 137

tion and enhancing their accuracy in QA tasks. 138

The main contributions of this work are as fol- 139

lows: 140

• We propose a method for optimizing LMs in- 141

vocation based on the uncertainty of generated 142

text. The core technology lies in the thorough 143

consideration of accumulation and propaga- 144

tion effects of hallucinations, thereby achiev- 145

ing unsupervised, real-time and plug-and-play 146

invocation optimization. 147

• In the realm of retrieval-based QA, we fully 148

utilize the chain-of-thought reasoning capa- 149

bility of generative LMs and guide text re- 150

ranking through an uncertainty evaluation 151

mechanism to precisely optimize information 152

arrangement. 153

• To validate the effectiveness of our method, 154

we test it on four QA datasets utilizing three 155

different LLMs and conduct an in-depth anal- 156

ysis of the proposed method through multi- 157

dimensional experiments. 158
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2 Related Works159

Collaboration of SLMs and LLMs The joint160

application of LLMs and SLMs has recently161

emerged as a technological approach, achieving162

breakthroughs in multiple research areas (Ma et al.,163

2023; Ding et al., 2024a; Min et al., 2024). In the164

studies by Sakota et al. (2024) and Lu et al. (2023),165

they proposed training an auxiliary model to esti-166

mate the success rate of invoking LLMs. Chen et167

al. (2023) introduced a cascade strategy, utilizing168

an auxiliary model to predict the accuracy of out-169

puts from SLMs. Additionally, Yue et al. (2023)170

suggested repeatedly invoking SLMs to perform171

inference tasks, while research by Ramírez et al.172

(2023) indicated that the margin of a knowledge-173

distilled model has the potential to enhance the effi-174

ciency of calls made to LLMs. Later, Ramírez et al.175

(2024) proposed the Margin Sampling approach,176

which identifies hallucinations by computing the177

margin between the most likely first and second to-178

kens. However, the above method is more suitable179

for short answer generation tasks, while the direct180

judgment of long answer generation is still a gap181

and more challenging.182

Hallucination Detection The concept of hal-183

lucination, which originally emerged from the184

fields of pathology and psychology (Macpherson,185

2013), has been subsequently adopted and applied186

in the domain of Natural Language Processing187

(Maynez et al., 2020). The occurrence of hallu-188

cinations is widespread in deep learning models189

utilized for a range of text generation tasks (Dziri190

et al., 2022; Su et al., 2022). It is defined as the191

generation of content that lacks practical signifi-192

cance or deviates from the provided source mate-193

rial (Ji et al., 2023). With the widespread adoption194

of LLMs in various applications, the issue of hal-195

lucinations arising from these LMs has garnered196

significant attention from researchers (Shen et al.,197

2023; Becker et al., 2024). In this context, Min et198

al. (2023) introduced the FactScore method, which199

leverages knowledge sources to verify the accuracy200

of each atomic fact in the generated text. Further-201

more, Manakul et al. (2023) presented SelfCheck-202

GPT in their study, a black-box technique for hal-203

lucination detection. Despite those advancements,204

their methods still possess certain limitations. They205

either rely on external knowledge bases or require206

the analysis of multiple responses sampled from207

LMs, which undoubtedly increases resource con-208

sumption and reduces efficiency.209

3 Optimizing the Adaptive Invocation 210

Interface for LLMs 211

3.1 Problem Definition 212

In this paper, we focus on predicting the mapping 213

relationship between elements in the input space 214

X and their corresponding labels in the output 215

space Y . Here, (x1, ..., xq) ∼ X represents the 216

response generated by SLMs upon a user query, 217

while (0, 1) ∼ Y denotes the decision flag indicat- 218

ing whether to invoke LLMs. We transform the 219

system into the predictor f : X → Y . For each 220

incoming X , we determine whether to call LLMs 221

based on the hallucination detection strategy. The 222

entire procedure is outlined in Algorithm 1. 223

3.2 Real-time Hallucination Detection 224

Based on the aforementioned in-depth analysis, 225

we ascertain that current methods relying on post- 226

processing or uncertainty measures are inadequate 227

for detecting hallucinations in collaborative large 228

and small LMs systems. Given this limitation, we 229

address the issue from the perspective of sequence 230

generation in SLMs. Observing the accumulation 231

and propagation of hallucinations during the token- 232

by-token generation process, we propose the At- 233

tenHScore evaluation metric to quantify these char- 234

acteristic, thereby providing valuable guidance for 235

hallucination detection. As illustrated in Figure 2, 236

we define this metric as follows: 237

H =
K∑
i=1

aiIi = −
K∑
i=1

ai log pmax(xi) (1) 238

where pmax(xi) represents the maximum probabil- 239

ity of generating token xi at position i, Ii denotes 240

the degree of uncertainty for that token, and ai sig- 241

nifies the accumulation and propagation weight of 242

hallucination designed for each Ii, which is specifi- 243

cally calculated as: 244

ai = pmax(xi)Atten(xi) (2) 245

Specifically, Atten(xi) is used in attention-based 246

models to measure the degree of attention the LM 247

pays to each token, reflecting which tokens are 248

more important and relevant for answering in the 249

current processing step. By multiplying pmax(xi) 250

and the attention score, we obtain a weight that 251

comprehensively reflects the degree of attention 252

and confidence of the token during model process- 253

ing. Therefore, the above two steps of accumula- 254

tion and multiplication together highlight the hal- 255
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Figure 2: Overview of our hallucination detection and
collaborative framework.

lucinations of LMs during generation more effec-256

tively.257

If the generated text is long, we preset a value K,258

calculate an AttenHScore value for every K tokens,259

and take the maximum as the object to compare260

with the threshold to determine whether to invoke261

the LLM:262

SRHDI = max {H1, H2, ...,Hn} (3)263

In addition, we conduct a comprehensive design264

for the computation of Atten(xi). Initially, we in-265

tegrate the softmax function with the mask function266

to generate the attention weight matrix M :267

M = softmax
(

mask
(
QR⊤
√
dk

))
(4)268

where Q represents the query matrix, R stands for269

the key matrix, and dk denotes the dimensionality270

of a key vector. Following this, for a given token xi,271

we determine its corresponding maximum attention272

value by searching through all elements Mj,i where273

j > i. Lastly, to further enhance the influence274

of attention scores in the overall evaluation, we275

employ an exponential function to amplify them:276

Atten(xi) = exp

(
max
j>i

Mj,i

)
(5)277

Through this approach, we ensure that the atten- 278

tion mechanism plays a more prominent role in 279

the evaluation. It is worth noting that in Eq. (5), 280

we choose max to calculate attention scores, rather 281

than basing on a specific layer or taking an average. 282

This is because we believe that doing so may be 283

affected by special cases and reduce the perception 284

of key content, thereby affecting our final detection 285

performance. This is experimentally confirmed in 286

Section 4.6. 287

3.3 Dynamic Threshold 288

Setting a threshold for decision criteria is a com- 289

mon requirement across all strategies, and we intro- 290

duce a dynamic threshold mechanism. Specifically, 291

we first utilize the results of the first five queries to 292

calculate an initial threshold. During this process, 293

we do not evaluate whether these five queries trig- 294

ger the LLM, but only obtain output results from 295

the SLM. Subsequently, at each new query, we 296

incorporate the hallucination score of the current 297

query into the historical records and recalculate the 298

average hallucination score of all processed queries, 299

using this as the updated threshold. 300

3.4 Re-ranking Strategy based on Uncertainty 301

Evaluation 302

In long text processing scenarios, SLMs often face 303

challenges in extracting effective information, lead- 304

ing to inefficient utilization of key information. Ad- 305

ditionally, these SLMs exhibit a significant position 306

bias phenomenon in long texts, where they tend to 307

focus more on the beginning of the prompt and 308

easily overlook information in the middle (Jiang 309

et al., 2023). Therefore, we introduce auxiliary 310

mechanisms for SLMs to enhance their informa- 311

tion utilization capabilities. 312

Given a query, we are able to retrieve multiple 313

associated text chunks. For each text chunk, we 314

guide SLMs to perform reverse thinking, which 315

involves generating the corresponding query based 316

on the text content. Afterwards, we quantify the 317

uncertainty of this generation process using the 318

following method: 319

G = −
∑
xi∈X

Atten(xi) log p(xi) (6) 320

where X represents the token set of the known 321

query. This approach takes full advantage of the 322

powerful reasoning capabilities and deep under- 323

standing of structural nuances inherent in current 324

LMs. Experimental results presented in Section 4.5 325
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suggest that this method possesses generalization326

capabilities, enabling it to more accurately filter out327

noisy or incomplete information when compared328

to prevailing benchmark models.329

By integrating the various strategies we pro-330

posed, real-time hallucination detection and re-331

ranking are achieved within a large and small LMs332

collaboration system without the need for addi-333

tional model training. This process is unsupervised,334

namely, our methods do not require manual super-335

vision or labeled data for training. More mean-336

ingfully, our methods are universally applicable to337

all transformer-based LMs, truly embodying the338

plug-and-play principle and showcasing flexibility.339

Algorithm 1 Adaptive Invocation for LLMs in QA

Input: SLM generator Ms, LLM interface Ml,
User query Qi, Initial threshold θ

Output: Decision y ∈ {0, 1} for LLM invocation,
Response R

1: while new user query Qi arrives do
2: Ms(Qi) generate candidate tokens X =

{x1, ..., xq} → logits, attentions
3: if i ≤ 5 then
4: y ← 0, R(Qi)← X
5: else
6: Calculate Atten(xi)
7: Gradually calculate H1, H2, ...,Hn

8: SRHDI ← max {H1, H2, ...,Hn}
9: if SRHDI < θ then

10: y ← 0, R(Qi)← X
11: else
12: y ← 1, R(Qi)←Ml(Qi)
13: end if
14: Upadte θ ←

∑N
k=1 SRHDI(Xk)

n
15: end if
16: end while

4 Experiment340

4.1 Datasets and Metrics341

We adopt four highly recognized QA datasets342

for evaluation, including two open-book conver-343

sational datasets: CoQA (Reddy et al., 2019) and344

SQuAD (Rajpurkar, 2016), and two closed-book345

QA datasets: TriviaQA (Joshi et al., 2017) and Nat-346

ural Questions (NQ) (Kwiatkowski et al., 2019).347

CoQA is sourced from seven different domains,348

with each dialogue involving two crowd work-349

ers engaging in a question-and-answer exchange350

around a passage (Reddy et al., 2019). SQuAD is351

renowned for its large scale and high quality, with 352

its origins in Wikipedia articles (Rajpurkar, 2016). 353

TriviaQA is a reading comprehension dataset that 354

comprises question-answer-evidence triplets (Joshi 355

et al., 2017). NQ contains authentic queries posed 356

by users to Google Search, along with answers 357

sourced from Wikipedia (Kwiatkowski et al., 2019). 358

On the other hand, the actual answers in the CoQA 359

and SQuAD datasets are often longer, whereas an- 360

swers in the TriviaQA and NQ datasets tend to be 361

in the form of single or few-word responses. For 362

evaluation metrics, we follow the prior work of Ren 363

et al. (2022) and Chen et al. (2024) by utilizing 364

the area under the receiver operator characteristic 365

curve (AUROC) and accuracy (ACC). Specifically, 366

AUCs denotes the AUROC score with sentence 367

similarity serving as the measure of correctness, 368

while AUCr represents the AUROC score with the 369

Rouge-L score as the correctness measure, and 370

ACCr follows similarly. 371

4.2 Baselines 372

We undertake a comparative analysis of our pro- 373

posed approach with the prevalent uncertainty- 374

based techniques, namely Length-normalized En- 375

tropy (LN-Entropy) (Malinin and Gales, 2020), the 376

consistency-based metric Lexical Similarity (Lin 377

et al., 2022) as well as EigenScore (Chen et al., 378

2024), which utilizes the eigenvalues of the re- 379

sponse covariance matrix to quantify semantic con- 380

sistency or diversity in the dense embedding space. 381

All three aforementioned methods require SLMs to 382

generate multiple answers to the same question. In 383

addition, we introduce three comparison methods 384

that only require SLMs to generate an answer once. 385

Perplexity evaluates the rationality of text genera- 386

tion by calculating the predictive probability dis- 387

tribution of SLMs (Ren et al., 2022). AVG-Range 388

assesses credibility by measuring the average differ- 389

ence between the highest and lowest probabilities 390

in the probability distribution of each token output 391

by SLMs (Ramírez et al., 2024). Energy score (Liu 392

et al., 2020), a popular out-of-distribution detection 393

method, is tested for its applicability in hallucina- 394

tion detection. Our methodology also adheres to 395

the paradigm of single-pass model generation. 396

4.3 Implementation Setting 397

In experiments aimed at detecting hallucinations 398

for collaboration, we primarily employ three LMs 399

with the following hyperparameter settings: tem- 400

perature at 0.5, top-p at 0.99, top-k at 5, and the 401

5



Dataset CoQA SQuAD TriviaQA NQ
Method AUCs AUCr ACCr AUCs AUCr ACCr AUCs AUCr ACCr AUCs AUCr ACCr

Llama3-8B-Instruct

Perplexity 0.5783 0.5509 0.5251 0.4745 0.4645 0.4782 0.8431 0.8342 0.7525 0.7700 0.7694 0.6742

Energy 0.4212 0.3797 0.4025 0.4297 0.4129 0.4497 0.7204 0.6920 0.6547 0.6551 0.6440 0.6111

AVG-Range 0.5344 0.5033 0.5068 0.4609 0.4516 0.4821 0.8277 0.8229 0.7473 0.7492 0.7555 0.7172

LN-Entropy 0.6732 0.6668 0.6280 0.6113 0.6134 0.6179 0.8189 0.8177 0.7518 0.7490 0.7553 0.6640

LexicalSimilarity 0.7602 0.7614 0.7041 0.6365 0.6341 0.5562 0.7838 0.7746 0.7412 0.7354 0.7321 0.7172
EigenScore 0.7910 0.8014 0.7328 0.7359 0.7417 0.6741 0.7941 0.7783 0.7410 0.7599 0.7587 0.6801

AttenHScore (Ours) 0.8330 0.8706 0.8097 0.8715 0.9024 0.8176 0.8334 0.8388 0.7513 0.7650 0.7871 0.7072

Vicuna1.5-7B

Perplexity 0.4701 0.3292 0.3492 0.5143 0.2610 0.3109 0.8184 0.8108 0.7366 0.6794 0.6794 0.6427

Energy 0.3817 0.2139 0.2307 0.4273 0.1648 0.1791 0.7316 0.7147 0.6632 0.5767 0.5613 0.4947

AVG-Range 0.4624 0.3128 0.4154 0.5164 0.2645 0.3591 0.7859 0.7820 0.7165 0.6395 0.6344 0.6615

LN-Entropy 0.5221 0.4274 0.3739 0.5672 0.4331 0.5383 0.7962 0.7974 0.7339 0.6792 0.6895 0.6593

LexicalSimilarity 0.5876 0.5518 0.4894 0.5656 0.4650 0.5530 0.7870 0.7833 0.7385 0.7279 0.7441 0.7443

EigenScore 0.6500 0.6648 0.5165 0.6441 0.6315 0.5309 0.7979 0.7880 0.7402 0.7557 0.7748 0.6825

AttenHScore (Ours) 0.7503 0.8481 0.7840 0.7193 0.8085 0.7212 0.8178 0.8338 0.7467 0.7524 0.7949 0.6958

Llama2-13B-Chat-HF

Perplexity 0.5423 0.5272 0.5108 0.4830 0.4638 0.4504 0.8111 0.8142 0.7422 0.6944 0.6942 0.6463

Energy 0.4380 0.3993 0.4596 0.4102 0.3890 0.4167 0.6976 0.6888 0.6545 0.6229 0.6133 0.5507

AVG-Range 0.5243 0.5075 0.5569 0.4651 0.4451 0.4612 0.7936 0.8002 0.7276 0.6570 0.6562 0.6620

LN-Entropy 0.6005 0.6018 0.5867 0.5938 0.5904 0.5778 0.7729 0.7855 0.7208 0.6849 0.6931 0.6169

LexicalSimilarity 0.7155 0.7331 0.6593 0.6536 0.6667 0.6623 0.7439 0.7466 0.7303 0.7286 0.7373 0.6928

EigenScore 0.7509 0.7809 0.7120 0.7364 0.7585 0.6670 0.7512 0.7502 0.7265 0.7477 0.7645 0.6717

AttenHScore (Ours) 0.8369 0.8982 0.8320 0.8544 0.9032 0.8322 0.8036 0.8221 0.7442 0.7423 0.7785 0.6978

Table 1: Main experimental results are presented in four QA datasets. The best result is in bold, and the second best
result is underlined.

number of generations set to 10. When assessing402

the correctness of generated answers, we adopt two403

commonly used methods: Rouge-L (Lin, 2004) and404

semantic similarity (Reimers, 2019). The former405

employs the threshold of 0.5, while the latter uti-406

lizes the nli-roberta-large model with the threshold407

set to 0.9. Moreover, in conducting collaborative408

experiments between small and large LMs, we se-409

lect Vicuna-7B-v1.5 as the SLM and incorporated410

nine distinct LLM interfaces to participate in the411

experiments. We incorporate RAG techniques, us-412

ing bge-large-en-v1.5 as the retriever and setting413

the number of retrieved text chunks to 10. Detailed414

experimental setup information can be found in415

Appendix A.3.416

4.4 Main Results417

In this section, we first conduct a comprehensive418

evaluation of the key component for detecting hallu-419

cinations in SLMs within the collaborative system420

of large-small LM on the hallucination benchmark421

(Chen et al., 2024). Subsequently, we integrate At- 422

tenHScore into the entire system and evaluate its ac- 423

curacy in determining interface calls by comparing 424

various real-time hallucination detection methods. 425

4.4.1 Overall Results of the Hallucination 426

Detection Component 427

To comprehensively validate the effectiveness of 428

our proposed AttenHScore, we conduct experi- 429

ments exploiting three LMs and four widely-used 430

QA datasets. In designing the experiments, we 431

not only consider the diversity of baseline meth- 432

ods but also emphasize the comprehensiveness of 433

evaluation metrics to ensure the objectivity and ac- 434

curacy of assessment results. The experimental 435

results, as presented in Table 1, demonstrate that 436

our AttenHScore achieves significant performance 437

improvements on both CoQA and SQuAD datasets. 438

Specifically, our method outperforms other base- 439

line methods across various evaluation metrics and 440

exhibits stable improvements across different LMs. 441
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Methods ERNIE-3.5 Qwen-Plus Qwen-Turbo Deepseek-v3 Qwen-72B Qwen1.5-72B Qwen2-57B R1-LLama-70B R1-Qwen-32B

Initial Score with Only Vicuna-7B-v1.5: 13.25; Score After Our Re-ranking Process: 16.62.

With Large-Small Language Model Collaboration

Perplexity 17.82 17.01 20.31 17.27 18.76 19.14 18.02 17.51 17.69

Random 21.05 18.9 22.61 19.53 20.89 22.16 20.28 20.72 20.28

AVG_Range 22.33 20.87 23.49 20.39 21.93 22.59 21.62 21.65 21.34

AttenHScore 24.91 23.27 26.23 22.82 24.95 25.71 23.69 23.76 24.03

For Reference: Scores Obtained by Exclusively Utilizing Interfaces of Various Large Language Models.

LLMs 25.12 22.25 27.71 22.0 26.05 27.45 23.9 23.65 23.5

Table 2: We report the metric F1 score of QA performance under three scenarios: SLM only, large-small LM
collaboration, and LLM only.

On TriviaQA and NQ datasets, we observe that the442

methods based on perplexity and AVG-Range ex-443

hibit larger variations in performance compared to444

their performance on CoQA and SQuAD. This is445

related to the fact that answers in the TriviaQA and446

NQ datasets are generally simpler and shorter. Our447

proposed method exhibits superior performance448

when handling complex questions. With respect to449

simpler questions, its performance is comparable450

to that of state-of-the-art methods.451

4.4.2 Collaborative Performance of LLMs452

and SLMs in QA453

By integrating our proposed model hallucination454

discrimination method and re-ranking strategy into455

the large-small LMs collaboration system, we con-456

duct further experiments on the MultiFieldQA-zh457

from the Longbench benchmark (Bai et al., 2023),458

with the specific setup detailed in Appendix A.3.459

The results in Table 2 show that simply reordering460

the retrieved content before inputting it into SLMs461

achieves significant performance improvement of462

3.37. This indicates that SLMs encounter infor-463

mation overload issues when processing lengthy464

contexts, and optimizing the semantic relevance465

of the input sequence can effectively alleviate the466

limitations of their attention mechanisms.467

Under the condition of limiting the total number468

of LLMs calls to 40%, we compare the impact of469

four real-time detection and calling methods on per-470

formance improvement and find that AttenHScore471

method performs more prominently in terms of en-472

hancing performance. It is worth noting that in the473

four columns, we find the performance of model474

collaboration to be slightly better than using the475

LLM alone. This finding is consistent with the476

observation results presented in Figure 1. It also477

indicates that when dealing with certain RAG prob-478

lems, the performance of SLMs is comparable to479

Figure 3: Performance comparison between the re-
ranking method based on uncertainty evaluation and
commonly used re-ranking models. Among them, the
one starting with G represents our approach, and the
rest of the models are all from huggingface.

or even better than that of LLMs. 480

4.5 Comparison and Reflection on Re-ranking 481

In long text scenarios, SLMs struggle with informa- 482

tion extraction and show a position bias, thus we 483

introduce auxiliary mechanisms to enhance their 484

capabilities. As shown in Figure 3, after retrieving 485

the top-15 text chunks, we evaluate the relevance of 486

the rearranged top-10 content. By comparing our 487

proposed re-ranking method based on uncertainty 488

G with four existing re-ranking models, experi- 489

mental results clearly demonstrate the excellent 490

performance of our approach on the MRR@10, 491

Hits@2, and Hits@4 metrics, indicating that our 492

uncertainty can fully utilize the reasoning capa- 493

bilities of LMs to more accurately identify texts 494

relevant to the question. On the Hits@10 metric, 495

our method slightly outperforms the most advanced 496

re-ranking model, which is due to the incomplete 497

retrieval results of top 15. In addition, we find that 498

there is little difference in performance between 499
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using max, avg, and last-token to calculate atten-500

tion scores, with max performing slightly better.501

Meanwhile, stronger LMs assisting uncertainty can502

further improve the performance of rearrangement.503

4.6 Ablation studies504

The calculation methods of attention scores exhibit505

diversity, and we specifically test three methods506

listed in Table 3. Experimental results reveal that507

the performance achieved using the max method508

surpasses that of the last-token and avg methods509

in both types of LMs. This superiority is primar-510

ily attributed to the fact that the max method is511

more effective in capturing the most prominent and512

critical information within the text sequence. In513

contrast, the last-token method tends to overly fo-514

cus on the tail information of the sequence while515

neglecting other important elements, and the avg516

method tends to dilute the significance of key infor-517

mation due to averaging processing. This finding518

aligns with our proposed approach of detecting519

from the perspective of hallucination accumulation520

and transmission.521

Dataset CoQA SQuAD
Attention AUCs ACCr AUCr AUCs ACCr AUCr

Llama3-8B-Instruct

last-token 0.8226 0.8564 0.7948 0.8580 0.8864 0.8050

avg 0.8308 0.8673 0.8065 0.8678 0.8980 0.8176

max 0.8330 0.8706 0.8097 0.8715 0.9024 0.8176

Vicuna1.5-7B

last-token 0.7473 0.8412 0.7675 0.7176 0.8014 0.7279
avg 0.7491 0.8454 0.7792 0.7190 0.8059 0.7181

max 0.7503 0.8481 0.7840 0.7193 0.8085 0.7212

Table 3: Analysis of differences in three attention score
calculation methods under different models.

4.7 Hyper-parameter Sensitivity Analysis522

Utilizing the Llama3-8B-Instruct model, we exe-523

cute comprehensive ablation experiments on the524

SQuAD dataset. The experimental results, shown525

in Table 4, clearly demonstrate that different thresh-526

olds for correctness metrics have a significant im-527

pact on the final performance of hallucination detec-528

tion. More importantly, our proposed AttenHScore529

exhibits superior performance compared to other530

baseline methods across various threshold settings.531

On the other hand, we also carry out experiments532

on the decoding sampling hyperparameters of LMs,533

with specific results presented in Figures 4 and534

5. Experimental data reveals that our approach535

AUCs SentenceSimilarity Rouge-L
Method 0.7 0.8 0.9 0.3 0.5 0.7

Llama3-8B-Instruct

Perplexity 0.5178 0.4898 0.4745 0.5528 0.5078 0.4937

Energy 0.4702 0.4423 0.4297 0.4885 0.4462 0.4333

AVG-Range 0.5016 0.4749 0.4609 0.5369 0.4957 0.4819

LN-Entropy 0.6185 0.6087 0.6113 0.6490 0.6288 0.6231

LexicalSimilarity 0.6549 0.6442 0.6365 0.6821 0.6640 0.6507

EigenScore 0.7303 0.7327 0.7359 0.7433 0.7397 0.7381

AttenHScore 0.8207 0.8498 0.8715 0.8373 0.8618 0.8733

Table 4: Impact of correctness thresholds on hallucina-
tion detection performance.

shows remarkable robustness across a wide range 536

of parameter configurations. 537

Furthermore, considering the variability in the 538

length of answers generated by SLMs, we intro- 539

duce a preset token count K during the calculation 540

of hallucinatio, as specifically illustrated in Fig- 541

ures 6 and 7. Our approach involves calculating an 542

AttenHScore value for every K tokens, and then se- 543

lecting the maximum AttenHScore computed from 544

the entire answer generated by SLMs as the basis 545

for evaluation. Through observation, we find that 546

system performance reaches an optimum when K 547

is set between 10 and 20. Further details of the 548

experimental design and analysis are provided in 549

Appendix A.4. 550

5 Conclusion 551

Amidst the drive for efficiency and resource op- 552

timization, this study delves into the challenges 553

of hallucination detection and prompt re-ranking 554

within the collaboration of large and small LMs. 555

We introduce a novel invocation discriminant met- 556

ric, AttenHScore, which quantifies the accumula- 557

tion and propagation of hallucinations in SLMs 558

generations, enabling more precise detection of 559

potential reasoning errors. Additionally, within a 560

retrieval-based QA context, we steer SLMs to as- 561

sess the uncertainty of queries relative to various 562

text chunks, thereby achieving superior re-ranking 563

and enhanced accuracy. Extensive experiments 564

across four datasets reveal that our proposed real- 565

time, plug-and-play detection methodology and 566

re-ranking strategy strike an effective balance be- 567

tween cost and performance, eliminating the need 568

for domain-specific knowledge or model training. 569

We anticipate that our insights will inspire fur- 570

ther researches into hallucination detection and re- 571

ranking, ultimately promoting the development of 572

collaboration between large and small LMs. 573
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Limitations574

We acknowledge certain limitations, particularly575

in relying on the internal states of the LLM for576

hallucination detection. While this approach can577

identify hallucinations to some extent, there is still578

room for improvement in its accuracy. Future work579

will focus on deeper exploration of the LLMs’ in-580

ternal states to further enhance the precision and581

reliability of hallucination detection. Additionally,582

despite demonstrating good performance in com-583

plex query tasks, there may still be deficiencies584

in handling extremely complex tasks or those re-585

quiring deep semantic understanding. For instance,586

tasks involving multi-hop reasoning or strong do-587

main relevance may not be fully addressed by the588

current invocation strategy. The primary objective589

of this paper is to further enhance the performance590

of the current large-small LM collaboration system591

through more accurate hallucination detection tech-592

niques. We will next concentrate on overcoming593

the limitations of existing methods to achieve a594

more efficient and reliable collaboration system.595
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A Appendix 841

A.1 Hallucination Detection and Uncertainty 842

Evaluation 843

The concept of "hallucination" originally stems 844

from the research domains of pathology and psy- 845

chology, where it is defined as the perception of en- 846

tities or events that do not exist in reality (Macpher- 847

son and Platchias, 2013). In the field of natural 848

language processing (NLP), hallucination typically 849

manifests as the generation that appears nonsen- 850

sical or contradicts the original content (Maynez 851

et al., 2020). Broadly speaking, hallucinations aris- 852

ing in NLP tasks can be classified into two major 853

categories: intrinsic hallucination and extrinsic hal- 854

lucination (Li et al., 2022; Ji et al., 2023). The 855

former refers to the conflict between the output 856

content of LLMs and the original input informa- 857

tion, while the latter refers to the generated content 858

that cannot be verified by the original content. 859

As LLMs become increasingly adept at generat- 860

ing human-like text, distinguishing between accu- 861

rate and hallucinated content has become a critical 862

issue. Current research on hallucination detection 863

requires access to the model’s output content, latent 864

states, or distributional features, and uncertainty as- 865

sessment strategies based on the latter two have 866

become an important research direction. 867

Fadeeva et al. (2024) introduce token-level and 868

claim-conditioned uncertainty for fact-checking 869

and entity -level detection. Varshney et al. (2023) 870

detect hallucinations by identifying tokens with low 871

confidence, utilizing an active detection and mitiga- 872

tion pipeline. The analysis of Snyder et al. (2024) 873

involves examining softmax output probabilities, 874

attention mechanisms, and gradients to identify 875

early signs of hallucinations. The following ap- 876

proaches estimate uncertainty regarding meaning, 877

rather than surface form, by considering entropy 878

or semantic similarity over output distributions or 879

samples. Semantic entropy (Farquhar et al., 2024), 880

representing uncertainty at the meaning level, is in- 881

troduced to robustly detect confabulations. MARS 882

(Bakman et al., 2024), a method that weights tokens 883

based on semantic context in uncertainty scoring, 884

is employed. Nikitin et al. (2024) propose a se- 885

mantic similarity-based uncertainty quantification 886

method for LLMs, where kernel language entropy 887

is exploited to assess uncertainty via von Neumann 888

entropy over semantically-clustered model outputs. 889

This field acknowledges high-certainty hallucina- 890

tions and calibration as key unresolved challenges, 891
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pushing for a deeper introspective and semantics-892

based analysis. Our detection pipelines integrate893

probability features, content perception, and atten-894

tion mechanisms to form a comprehensive signal.895

A.2 Analysis of Real-Time Capability896

The calculation of AttenHScore is based on the897

attention weights and generation probabilities pro-898

duced by the model itself during the generation899

process. This information is naturally generated900

during inference and requires no additional com-901

putation. We simply leverage this readily available902

information for judgment, and the process is nearly903

instantaneous, thus the method introduces no addi-904

tional time delays. Furthermore, our method is sig-905

nificantly more efficient compared to approaches906

that necessitate model training or multiple genera-907

tions.908

We highlight the following advantages exhibited909

by our method: (1) Unsupervised: As an evalu-910

ation metric for invocation, AttenHScore can be911

directly calculated without relying on any detector912

training process, simplifying the evaluation work-913

flow. (2) Real-time: Compared to current post-914

processing methods, AttenHScore, as a real-time915

invocation detection metric, ensures the efficient916

evaluation process. (3) Plug-and-play: Designed as917

a lightweight algorithm, AttenHScore can be eas-918

ily integrated into any existing Transformer-based919

LMs.920

A.3 Detailed Experimental Setup for921

Reproducibility922

All language models utilized in this paper em-923

ploy the chat or instruct versions where multiple924

versions exist, and are loaded in full precision925

(Float32). The vector database is constructed using926

Milvus, where the embedding model for English927

texts is bge-large-en-v1.51, and bge-base-zh-v1.52928

for Chinese texts. To more effectively verify the929

effectiveness of the component designed for detect-930

ing small-model hallucinations in the collaborative931

system of large-small LMs, we utilize three SLMs932

of different types and sizes: Llama3-8B-Instruct3,933

Vicuna1.5-7B4, and Llama2-13B-Chat-HF5. The934

1https://huggingface.co/BAAI/bge-large-en-v1.
5

2https://huggingface.co/BAAI/bge-base-zh-v1.5
3https://huggingface.co/meta-llama/

Meta-Llama-3-8B-Instruct
4https://huggingface.co/lmsys/vicuna-7b-v1.5
5https://huggingface.co/meta-llama/

Llama-2-13b-chat-hf

sentence embeddings of model generation and the 935

ground truth answer are extracted by the nli-roberta- 936

large model6. 937

In Table 2, we employ nine different LLM 938

interfaces to conduct large-small LM collabora- 939

tive experiments with Vicuna1.5-7B. These in- 940

terfaces are as follows: ERNIE-3.57, Qwen- 941

Plus8, Qwen-Turbo8, Deepseek-v39, Qwen-72B10, 942

Qwen1.5-72B11, Qwen2-57B12, DeepSeek-R1- 943

Distill-Llama-70B13, and DeepSeek-R1-Distill- 944

Qwen-32B13. Our experimental setup involves 945

retrieving 10 relevant documents for each query 946

and having the SLM to generate responses accord- 947

ingly. Subsequently, different hallucination detec- 948

tion methods are utilized to monitor the generation 949

status of the SLM in real-time. If it is determined 950

that the SLM’s output contains hallucinations, the 951

corresponding LLM interface is invoked to answer 952

the question. Regarding text chunking operations, 953

we adopt the LLM-based chunking method (Zhao 954

et al., 2024). 955

A.4 Exploring Hyperparameter Settings for 956

Optimal Performance 957

Different hyperparameter settings may not only 958

serve as critical factors influencing model perfor- 959

mance, but also exert differential impacts on the 960

sensitivity of various detection methods. Conse- 961

quently, we conduct a systematic analysis of hyper- 962

parameters including temperature, top-k and K. 963

Experimental data reveals that various detection 964

methods exhibit relatively low sensitivity to the 965

top-k, whereas LN-Entropy, LexicalSimilarity, and 966

EigenScore demonstrate higher sensitivity to the 967

temperature. Extensive experiments in Figures 4 968

and 5 confirm that our approach shows remark- 969

able robustness across a wide range of parameter 970

configurations. 971

In the experimental section described in Figures 972

6 and 7, we conduct a detailed comparative anal- 973

ysis of the performance across different values of 974

K. The results indicate that the system achieves 975

optimal performance when K is set between 10 976

6https://huggingface.co/sentence-transformers/
nli-roberta-large

7https://console.bce.baidu.com/qianfan
8https://bailian.console.aliyun.com/
9https://platform.deepseek.com/

10https://huggingface.co/Qwen/Qwen-72B-Chat
11https://huggingface.co/Qwen/Qwen1.5-72B-Chat
12https://huggingface.co/Qwen/

Qwen2-57B-A14B-Instruct
13https://huggingface.co/deepseek-ai

12

https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/BAAI/bge-base-zh-v1.5
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/sentence-transformers/nli-roberta-large
https://huggingface.co/sentence-transformers/nli-roberta-large
https://console.bce.baidu.com/qianfan
https://bailian.console.aliyun.com/
https://platform.deepseek.com/
https://huggingface.co/Qwen/Qwen-72B-Chat
https://huggingface.co/Qwen/Qwen1.5-72B-Chat
https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct
https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct
https://huggingface.co/deepseek-ai


Figure 4: Performance sensitivity to temperature on
Dataset SQuAD.

Figure 5: Performance sensitivity to top-k on Dataset
SQuAD.

and 20 tokens.977

Figure 6: Performance sensitivity to K (Number of
tokens) on Dataset 2WikiMultihopQA.

A.5 Setting Method for Dynamic Threshold978

We adopt an adaptive strategy for threshold setting.979

Specifically, we first calculate the initial threshold980

using the average hallucination score of the first981

five queries. Subsequently, for each new query,982

we incorporate the current query’s hallucination983

score into the historical records and recalculate the984

average hallucination score of all processed queries,985

Figure 7: Performance sensitivity to K (Number of
tokens) on Dataset MultiFieldQA-zh.

using this as the updated threshold. 986

θ =

∑n
i=1 SRHDI(Xi)

n
987

In real-world production environments, systems 988

are typically reused multiple times. We utilize the 989

outputs from the first five queries to calculate the 990

initial threshold. As each query is processed, the 991

system records and dynamically computes the aver- 992

age hallucination score of previously generated an- 993

swers in real time, thereby continuously adjusting 994

the threshold. The update mechanism of dynamic 995

threshold is independent upon the dataset. 996

A.6 Further Exploration of Large-Small LM 997

Collaboration 998

We conduct a more in-depth analysis and visual- 999

ization of the experiments on the collaboration 1000

between large and small LLMs presented in Ta- 1001

ble 2. As shown in Figure 8, we accumulate the 1002

performance of SLMs, re-ranking, four real-time 1003

collaboration strategies, and LLMs, where each 1004

color represents the performance of a method un- 1005

der the corresponding LM interface. The scores 1006

of LLMs called separately and the collaboration 1007

system using AttenHScore as the hallucination de- 1008

tection component are relatively similar, indicating 1009

that our metric is more effective in identifying hal- 1010

lucinated information generated by SLMs. In Fig- 1011

ure 9, we also demonstrate the performance trends 1012

of different methods under some LLMs through 1013

line charts. It can be observed that the overall data 1014

displays an upward trend, and two charts even have 1015

higher points at AttenHScore than when using only 1016

the LLM, which more directly illustrates the supe- 1017

riority of our method. 1018

13



Figure 8: Comparative snalysis of AttenHScore and other methods in large-small LM collaboration system.

Figure 9: Performance variation trends of various large-small LM collaboration methods Under different LLM
interfaces. The approaches include: 1: SLMs, 2: Re-ranking, 3: Perplexity, 4: Random, 5: AVG_Range, 6:
AttenHScore and 7: LLMs.
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