
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FedSLS: Exploring Federated Aggregation in Saliency Latent
Space

Anonymous Authors
Abstract
Federated Learning (FL) is an emerging direction in distributed ma-
chine learning that enables jointly training a global model without
sharing the data with server. However, data heterogeneity biases
the parameter aggregation at the server, leading to slower con-
vergence and poorer accuracy of the global model. To cope with
this, most of the existing works involve enforcing regularization
in local optimization or improving the model aggregation scheme
at the server. Though effective, they lack a deep understanding of
cross-client features. In this paper, we propose a saliency latent
space feature aggregation method (FedSLS) across federated clients.
By Guided BackPropagation (GBP), we transform deep models into
powerful and flexible visual fidelity encoders, applicable to general
state inputs across different image domains, and achieve powerful
aggregation in the form of saliency latent features. Notably, since
GBP is label-insensitive, it is sufficient to capture saliency features
only once on each client. Experimental results demonstrate that
FedSLS leads to significant improvements over the state-of-the-arts
in terms of accuracies, especially in highly heterogeneous settings.
For example, on CIFAR-10 dataset, FedSLS achieves 63.43% accuracy
within the strongly heterogeneous environment 𝛼 = 0.05, which is
6% to 23% higher than the other baselines.

CCS Concepts
• Computing methodologies → Artificial intelligence; Dis-
tributed artificial intelligence; Cooperation and coordination.

Keywords
Latent Space, Federated Learning, Guided BackPropagation

1 Introduction
Federated Learning (FL) as a distributed machine learning para-
digm, has garnered widespread exploration within computer vision
[9, 21, 22, 29, 44], medical analysis [6, 17], and data security [39].
However, an inherent challenge facing FL is data heterogeneity.
Specifically, different clients collect data based on diverse prefer-
ences, exhibiting independently and identically distribution and
imbalance. While each participant optimizing towards a local em-
pirical risk minimum, which is inconsistent with the global model.
Accordingly, the averaged global model inevitably suffers from
slow convergence speed and poor performance. Popular efforts
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Figure 1: Improvement of our proposed approach FedSLS
over FedAvg [30] and FedAU [42] under going from the less
heterogeneous distribution to the strongly heterogeneous
distribution. All methods are experimented on CIFAR-10 and
CINIC-10, respectively.

dedicated to addressing the data heterogeneity include data sharing
[7, 8, 14, 49], client drift mitigation [1, 18, 22, 24] and aggregation
scheme [12, 26, 40, 41, 46].

Among them, aggregation scheme is a fruitful avenue of explo-
rations. Typical works either design novel strategies to enhance the
aggregation phase [41, 48], or adaptively adjust aggregation using
learned local information as a prior [3, 42, 47]. Then some researches
can apply other rules to update the global model, such as momen-
tum rules and retraining classifier by virtual feature [12, 28, 35, 38].
However, new aggregation strategies usually bring new pitfalls,
such as FedKNN needs to record historical gradients, which in-
creases the risk of privacy leakage and memory burden. In the
meantime, they do not take fairness into account, that leading
to poor generalization performance of the global model on some
clients. In contrast, efforts adaptively adjusting aggregation usually
take fairness into account so minimizing client discrimination. In
this paper, we focus on adaptive aggregation adjustment to dig
deeper into the latent contribution of each client to the aggregation
stage, aiming to effectively cope with data heterogeneity.

We propose a saliency feature aggregation method FedSLS across
multi-client, exploring optimal aggregation weights in saliency
latent space. Leveraging Guided BackPropagation (GBP) [37], we
transform deep models into powerful and flexible visual fidelity
encoders, providing a lower-dimensional representational space
which is perceptually equivalent to the data space called saliency
latent space. In this space, feature achieves a near-optimal balance
between reducing complexity and preserving detail, resulting in
greatly improved saliency. As a result, FedSLS unfolds a consistent
characterization of the data across multiple clients and uses saliency

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Architecture illustration of Guided Encoder(·) with an image 𝑖 ∈ 𝐷𝑘 on client 𝑘 . Before saliency embedding, we
pre-train or fine-tune initialed model 𝜃0

𝑘
with local data 𝐷𝑘 first, making the parameters adapt to the task. Subsequently,

saliency embedding yields all shallow-to-deep saliency latent variables
∑
𝐺𝑖,𝑙,𝑘 through trained model 𝜃 ′

𝑘
. Finally, we assign

larger weights to the shallow saliency latent variables and smaller weights to the deeper saliency latent variables to obtain the
saliency weights 𝑅𝑘 on client 𝑘 by means of the feature encoder. See more in Algorithm 1.

features with high visual fidelity for high-performance aggregation
optimization. Our contributions can be summarized as follows:
• We pioneeringly transform deep models into high visual
fidelity encoders with GBP. It finds the optimal balance be-
tween reducing complexity and preserving detail in the low-
dimensional latent space, which greatly improves feature
saliency of the latent variables.
• We propose FedSLS, a saliency federated learning method
to enable high-performance aggregation leveraging saliency
latent space feature. To the best of our knowledge, our al-
gorithm is the first work to explore cross-client consistency
representations in latent space.
• Our extensive experiments demonstrate that FedSLS not
only outperforms existing state-of-the-art federated learning
methods but also shows remarkable performance in highly
heterogeneous environments.
• We conduct multiple evaluations of the original images,
saliency latent variables, and vanilla latent variables1 across
different similarity metrics, demonstrating that our method
broadly enhances visual fidelity.

2 Related Work
Federated learning [16, 23, 30] is a fast-growing research field and
remains many open problems to solve. In this work, we focus on
addressing the non-IID quagmire [11, 49]. Relevant works have
pursued the following three directions.

2.1 Client Drift Mitigation
FedAvg [30] has been the de facto optimization method in the fed-
erated setting. However, when it is applied to the heterogeneous
setting, one key issue arises: when the global model is optimized
with different local objectives with local optimums far away from
each other, the average of the resultant client updates (the server
update) would move away from the true global optimum [18]. The
cause of this inconsistency is called ‘client drift’. To alleviate it,

1The vanilla latent variables are obtained by conventional works, such as Variational
AutoEncoders (VAE) [19].

FedAvg is compelled to use a small learning rate which may dam-
age convergence, or reduce the number of local iterations which
induces significant communication cost [25]. There have been a
number of works trying to mitigate ‘client drift’ of FedAvg from
various perspectives. FedProx [24] proposes to add a proximal term
to the local objective which regularizes the euclidean distance be-
tween the local model and the global model. MOON [22] adopts the
contrastive loss to maximize the agreement of the representation
learned by the local model and that by the global model. SCAF-
FOLD [25] performs ‘client-variance reduction’ and corrects the
drift in the local updates by introducing control variates. FedDyn
[15] dynamically changes the local objectives at each communi-
cation round to ensure that the local optimum is asymptotically
consistent with the stationary points of the global objective. FedIR
[13] applies importance weight to the local objective, which alle-
viates the imbalance caused by non-identical class distributions
among clients.

2.2 Data Sharing
The key motivation behind data sharing is that a client cannot
acquire samples from other clients during local training, thus the
learned local model under-represents certain patterns or samples
from the absent classes. The common practices are to share a public
dataset [49], synthesized data [8, 14] or a condensed version of the
training samples [7] to supplement training on the clients or on the
server. This line of works may violate the privacy rule of federated
learning since they all consider sharing raw input data of the model,
either real data or artificial data.

2.3 Aggregation Scheme
A fruitful avenue of explorations involves improvements at the
model aggregation stage. These works are motivated by obtaining
a federated model that generalizes well across clients. Many of
them differ from the weighted aggregation parameters to obtain a
global model. FedAvgM [12] applies the momentum rule to update
the global model, which can improve robustness to heterogeneous
distributed data, and FedNova [41] eliminates inconsistencies by
normalizing local updates before averaging them. Subsequently,
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some researches can apply other rules to update the global model.
CCVR [28] and CReFF [35] illustrate that the heterogeneity of the
classifier is the main reason for the performance degradation of
models trained on non-IID data. In addition, some studies have sug-
gested that adaptive aggregation adjustment can also improve the
performance of the global model. FedAU [42] estimates the optimal
aggregation weights based on historical aggregation information
while taking into account the level of clients participation.

3 Method
3.1 Preliminaries
In federated learning, an optimization problem we need to solve is:

arg min
𝜃 ∈R𝑛

[ℓ (𝜃 ) ≜ 1
𝑚

𝑚∑︁
𝑘=1

𝐿𝑘 (𝜃 )], (1)

where 𝐿𝑘 (𝜃 ) ≜ E(𝑥,𝑦)∼Pk [ℓ (𝜃, (𝑥,𝑦))] is the empirical loss of client
𝑘 , Pk is the data distribution for client 𝑘 across K clients.

A popular approach to solve Eq. 1 in federated settings is Fe-
dAvg [30]. At each round, a subset of clients is selected (typically
randomly) and the server broadcasts its model to each client. In
parallel, the clients run SGD on their own loss function ℓ𝑘 and then
send their updated models to the server.

Algorithm 1 Guided Encoder in FedSLS
1: Input: client 𝑘 ; training dataset 𝐷𝑘 ; initial parameter 𝜃𝑘 .
2: Output: saliency weight 𝑅𝑘 .
3: for each client 𝑘 ∈ 𝐾 do
4: for image 𝑖 ∈ 𝐷𝑘 do
5: # forward propagation
6: 𝑌 = P (𝜃 ; 𝑥).
7: # back propagation
8: for convolutional layer 𝑙 = 1 to 𝐿 do
9: # saliency embedding

10: 𝐺𝑖,𝑙,𝑘 =
𝜕𝐹𝑖,𝑙,𝑘
𝜕𝑌
·max (0, 𝐹𝑖,𝑙,𝑘 ).

11: # average in channel dimension

12: 𝐺𝑖,𝑙,𝑘 = 1
𝐶

∑𝐶
𝑐=1𝐺

(𝑐 )
𝑖,𝑙,𝑘

.
13: # 𝐿2 paradigm computation

14: 𝑁𝑖,𝑙,𝑘 =

√︃∑ ∥𝐺𝑖,𝑙,𝑘 ∥2.
15: end for
16: 𝑅𝑖,𝑘 =

∑𝑁
𝑙=1𝑤𝑙 · 𝑁𝑖,𝑙,𝑘 .

17: end for
18: # client 𝑘 saliency weight computation
19: 𝑅𝑘 =

∑
𝑖∈𝐷𝑘 𝑅𝑖,𝑘 .

20: end for

The server then updates its model to be the average of these
client models. Suppose that at the 𝑟 -th round, the server has model
𝜃 and samples a client set 𝑆𝑘 . Here we use a standard gradient
descent form to update parameters:

𝜃 ← 𝜃 − 𝜂Δ, (2)

where Δ is the aggregated clients’ gradients and 𝜂 is the learning
rate of the server, which is typically 1.0. FedAvg uses weighted

average aggregation to compute Δ. Then we can write weighted
average aggregation as:

Δ =
∑︁
𝑘∈𝑆𝑘
(w𝑘 · Δ𝑘 ), (3)

where Δ𝑘 = 𝜃 − 𝜃𝑘 is the accumulated gradients within a training
round of client 𝑘 , and w𝑘 = |𝐷𝑘 |/

∑
𝑘∈𝑆𝑘 |𝐷𝑘 | is the aggregated

weight of client 𝑘 across the activated clients 𝑆𝑘 . 𝐷𝑘 , 𝜃𝑘 are the
training dataset and trained parameters on client 𝑘 , respectively.

3.2 Departure to Saliency Latent Space
Our core perspective lies in transforming deepmodels to high visual
fidelity encoders which embedding the data into saliency latent
space. We define an encoder Ê (·) that embeds all images on the
client into the latent space and quantifies the value of these latent
variables containing saliency feature information as 𝑅𝑘 . In this
paper, we have redefined the aggregatedweightw𝑘 as𝑅𝑘/

∑
𝑘∈𝑆𝑘 𝑅𝑘 .

Thus, our main challenge is to design an appropriate coder Ê (·)
that can maximize the features extracted from the data.

Conventional unsupervised feature embedding methods seek
to encapsulate the semantic or structural information of data. For-
mally, given an image 𝑥 ∈ R𝐻×𝑊 ×3, the encoder E transmutes 𝑥
into a latent vector 𝑧 = E(𝑥) by compressing the spatial dimensions
by a factor 𝑓 = 𝐻/ℎ = 𝑊 /𝑤 , thus 𝑧 ∈ Rℎ×𝑤×𝑐 , where typically
𝑓 = 2𝑚 for some𝑚 ∈ N. As a rule of thumb,𝑚 is 1, 2 and 3. How-
ever, such methods are criticized for lossy compression while they
manage to preserve significant semantic content in the compressed
latent space 𝑧 ∈ Rℎ×𝑤×𝑐 , the original spatial details of images are
compromised. They incline towards an overarching semantic rep-
resentation at the expense of local nuances, thereby not serving
as an optimal method for feature extraction. Furthermore, the en-
coder E(·) fails to discern and discard irrelevant and noisy features
which are not conducive to learning, resulting in both essential
and superfluous information being coalesced into the latent rep-
resentation 𝑧 = E(𝑥), thus hindering the processing of features in
lower-dimensional spaces.

Drawing inspiration from [37] on striving for simplicity, we pro-
pose the utilization of GBP to transform deep models into encoders
capable of preserving high visual fidelity. Saliency feature maps
generated during the GBP can granularity concentrate on local
object information. Moreover, saliency latent variables, formulated
within a supervised paradigm, can reflect the model’s inner fea-
tures, significantly curtailing the emphasis on non-essential and
redundant details.

In order to verify our idea, we designed a series of experiments.
The first one is to directly compare the amount of feature infor-
mation exhibited by saliency latent variables and vanilla latent
variables by calculating the similarity with the original images.
We then utilize vanilla latent variables instead of saliency latent
variables in the FedSLS framework to guide federated aggregation.
We call this algorithm FedSL and compare its experimental results
with FedSLS to illustrate the validity of our argument. Further elab-
oration is provided in Section 4. Our empirical findings affirm the
superior semantic and structural content of saliency latent variables,
an approach we term Saliency Embedding, with the resulting
embedding domain referred to as the Saliency Latent Space.
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3.3 FL with Saliency Latent Space
3.3.1 Saliency Embedding. Assume a pre-trained or fine-tuned
CNN has a set of 𝐿 convolutional layers. For the image 𝑖 on the
client 𝑘 , the output of convolutional layer 𝑙 in GBP is denoted by
F𝑖,𝑙,𝑘 ∈ R𝐶𝑙 ,𝐻𝑙 ,𝑊𝑙 , where𝐶𝑙 is the number of channels. The purpose
of GBP is to compute the saliency latent variables of each image
on each convolutional layer. Specifically, for the output F𝑖,𝑙,𝑘 of
convolutional layer 𝑙 , we calculate the feature maps as saliency
latent variables G𝑖,𝑙,𝑘 in the following way:

𝐺𝑖,𝑙,𝑘 =
𝜕𝐹𝑖,𝑙,𝑘

𝜕𝑌
·max(0, 𝐹𝑖,𝑙,𝑘 ), (4)

where 𝑌 is the model output (e.g., the target category score in a
classification task). Then, we average the channel dimensions𝐶𝑙 of
saliency latent variables 𝐺𝑖,𝑙,𝑘 :

𝐺𝑖,𝑙,𝑘 =
1
𝐶

𝐶∑︁
𝑐=1

𝐺
(𝑐 )
𝑖,𝑙,𝑘

. (5)

3.3.2 Adaptive Aggregation Adjustment. For the saliency latent
variable 𝐺𝑖,𝑙,𝑘 of image 𝑖 at convolutional layer 𝑙 , we denote the
saliency of its features by the 𝐿2 paradigm:

𝑁𝑖,𝑙,𝑘 =

√︃∑︁
∥𝐺𝑖,𝑙,𝑘 ∥2 . (6)

We consider the feature maps from shallow to deep outputs to be
valuable. Therefore, for each layer 𝑙 , we assign a decaying weight
𝑤𝑙 that weights the feature map paradigms of the different layers:

𝑤𝑙 = 𝜏
𝑙−1, (7)

where 𝜏 is a hyper-parameter that defines the importance of going
from shallow to deep, which we usually set to 0.5 as a rule of thumb.
Then, the circling paradigms of all layers are summed to obtain
saliency weight 𝑅𝑘 of client 𝑘 , indicating the significance of the
client 𝑘 in the aggregation:

𝑅𝑘 =

𝐿∑︁
𝑙=1

𝑤𝑙

𝐷∑︁
𝑖=1

𝑁𝑖,𝑙,𝑘 . (8)

Based on the above insight, we describe the procedure of cal-
culating the aggregation weights 𝑅𝑘 , called saliency weight , as
shown in Algorithm 1. 𝑃 maps the input 𝑥 of image 𝑖 to the output
𝑌 , and𝑤𝑙 is defined in Eq. 7. The whole process of Algorithm 1 is
defined as Guided Encoder(·) in Algorithm 2, for each client 𝑘 ,
whose output is the saliency weight 𝑅𝑘 .

In the first round of aggregation, the model parameters are
weighted and aggregated according to the saliency weight 𝑅𝑘 of
client 𝑘 . By displaying the amount of information about its saliency
latent variables in Euclidean space, 𝑅𝑘 is able to provide a simple
and intuitive generalization of the scale of image data features on a
client. Thus, we understand saliency weight 𝑅𝑘 as a quantitatively
representative coefficient of learnable features on client 𝑘 . Then we
can write the 𝑟 -th round weighted aggregation as:

Δr =
𝐾∑︁
𝑘=1

𝑅𝑘Δ
r
𝑘∑𝐾

𝑘=1 𝑅𝑘
, (9)

the 𝑟 -th round global model can be calculated as follows:

𝜃 r = 𝜃 r-1 − 𝜂Δr . (10)

Algorithm 2 FedSLS: Exploring federated aggregation in saliency
latent space
1: Input: training dataset 𝐷𝑘 ; initial parameter 𝜃0; global com-

munication rounds 𝑅; set of selected clients 𝑆𝑘 ; global and local
learning rate 𝜂𝑔, 𝜂𝑙 ; attenuation coefficient 𝜏 .

2: Output: global parameter 𝜃𝑔 .
3: Initialization: Initialize Δ0 = 0 and 𝜃0 as the global parameter

at the server, then broadcasts to all clients.
4: for each client 𝑘 in parallel do
5: # pre-train or fine-tune for task adaptation
6: for each epoch do
7: 𝜃 ′ ←− Update 𝜃0 on 𝐷𝑘 .
8: end for
9: # weights computation
10: 𝑅𝑘 = Guided Encoder(𝜃 ′, 𝜏, 𝐷𝑘 ).
11: end for
12: # training of federated
13: for 𝑟 = 0, 1, . . . , 𝑅 − 1 do
14: Sample subset 𝑆𝑘 ⊆ [𝐾] of clients.
15: work on clients:
16: for each client 𝑘 ∈ 𝑆𝑘 in parallel do
17: client 𝑘 initialize the local parameter as 𝜃𝑟

𝑘
.

18: 𝜃𝑟+1
𝑘
←− Client Update(𝜃𝑟

𝑘
, 𝑥, 𝜂𝑙 ).

19: Δ𝑟
𝑘
= 𝜃𝑟+1

𝑘
− 𝜃𝑟

𝑘
.

20: sends Δ𝑟
𝑘
and 𝑅𝑘 to server.

21: end for
22: work on server:
23: # aggregation with saliency weight

24: Δr =
∑𝐾
𝑘=1

𝑅𝑘Δ
r
𝑘∑𝐾

𝑘=1 𝑅𝑘
.

25: # update global parameters and broadcast
26: 𝜃 r+1 = 𝜃 r − 𝜂𝑙Δr.
27: broadcast 𝜃 r+1 to clients sampled in next round.
28: end for

3.4 Tractability of Optimization
One critical point in the procedures discussed above falls in the com-
putation of saliency weights 𝑅𝑘 in Algorithm 1. Yet, updating 𝑅𝑘
dynamically before each aggregation round may impose consider-
able computational andmemory demands. This process necessitates
accessing saliency latent variables 𝐺𝑙,𝑘 from each convolutional
layer during BackPropagation, which, despite being executed once,
requires substantial memory to store 𝐺𝑙,𝑘 ∈ R𝑁,𝐶,𝐻,𝑊 .

For instance, using 1,000 images of CIFAR-10, the first layer’s
saliency latent variables

∑1000
𝑖=1 𝐺𝑖,1,𝑘 demand approximately 11.76MB

of memory, summing up to about 89.38MB for all layers. Extending
this to CIFAR-10’s full 50,000 image training dataset necessitates
around 4,469MB across the federated system. Given the additional
memory required for the model, optimizer, etc., the total memory
usage escalates. This process will require 37 GFLOPs, so the com-
putational effort associated with dynamic updates is not negligible.
Updating the weights every round can impose a high computational
and memory burden on the client and may bring stragglers [34] in
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Figure 3: The original images, saliency latent variables and three kinds of vanilla latent variables.

federated learning system. In a real federated learning system, the
data held by each client is often unbalanced. Therefore, during a
communication round, the clients with less data have to wait for
those with more data to update. This phenomenon will be exacer-
bated if the algorithm is updated dynamically, which can be very
harmful to the performance of federated learning.

Fortunately, [2, 45] indicates that saliency feature maps do not
differ significantly across classes, and the generative effect of the
saliency feature maps is adjusted to the task. Therefore, we begin
with a few preliminary training rounds on local data, fixing 𝑅𝑘 prior
to the first aggregation and maintaining it constant thereafter:

𝑅𝑘 = S
(
𝐷𝑘 , 𝜃

0
𝑘

)
. (11)

In Section 4, our experiments comparing dynamic and static
weighting strategies show comparable accuracy in most scenarios,
with static weights performing slightly better in certain cases. This
finding underscores the efficacy of our method, where saliency
weight computation, streamlined to occur once, mitigates the over-
heads while aligning with task-specific adjustments.

To further reduce memory pressure, we average the channel
dimensions of 𝐺𝑙,𝑘 before saving the saliency latent variables. This
significantly reduces the stored data:

𝐺𝑙,𝑘 =
1
𝐶

𝐶∑︁
𝑐=1

𝐺
(𝑐 )
𝑙,𝑘
, (12)

where the saliency latent variables 𝐺𝑙,𝑘 of the deeper level outputs
of model may contain lots of channels, each representing a differ-
ent feature. Averaging provides a comprehensive and informative
saliency latent variable, reducing fluctuations due to randomness
and local maxima. This will make the salient regions more stable
and clear. See Algorithm 2 for details of FedSLS.

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets. Following previous studies [22, 30], we compare
the performance of FL algorithms on CIFAR-10/100 [20], CINIC-
10 [4] and TinyImageNet datasets with 100 clients. The CIFAR-10
dataset consists of 50𝐾 training images and 10𝐾 testing images. All
the images are with 32 × 32 resolution belonging to 10 categories.
In the CIFAR-100 dataset, there are 100 categories of images with
the same format as CIFAR-10. CINIC-10 extends CIFAR-10 with the
addition of down-sampled ImageNet [5] images, consisting of 90𝐾
training images and 90𝐾 testing images. TinyImageNet includes 200
categories of 100𝐾 training images and 10𝐾 testing images, whose
resolutions are 64 × 64. We use ResNet18 for CIFAR-10, CIFAR-100
and CINIC-10. For TinyImageNet, we adopt ResNet50 [10].

4.1.2 Evaluation Measures. We use the Top-1 Accuracy to evaluate
the performance of methods:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁 )/(𝑃 + 𝑁 ),

where 𝑃 , 𝑁 , 𝑇𝑃 and 𝑇𝑁 are Positives, Negatives, True Positives
and True Negatives, respectively.

4.1.3 Baselines and Implementation. We compare ours against
several state-of-the-art federated methods focusing on aggrega-
tion scheme: FedAvg (AISTATS’17 [30]), FedProx (MLSys’20 [24]),
MOON (CVPR’21 [22]), FedDecorr (ICLR’23 [36]), FedAU (ICLR’24
[42]). Referring to Section 3.2, we also designed the ablation exper-
iment FedLS. In FedLS, the process is the same as in Algorithm 2
except for the feature embedding part. In reference to the method in
[31], we replace the saliency latent variables of the FedSLSwith the
perceptually compressed latent variables obtained by 2×, 4× and
8× down-sampling. To reduce the memory cost, we also average
these latent variables in the channel dimension. All other steps
and processes are consistent with Algorithm 2. For all experiments,
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Figure 4: Data heterogeneity among workers is visualized on CIFAR-10 and CIFAR-100, where the x-axis represents clients id,
the y-axis represents the class labels on the training set, and the size of scattered points represents the number of training
samples with available labels for that worker.

including all baselines, FedSLS and FedSL, we load the pre-trained
weights provided by PyTorch when initializing the model.

Following recent studies [22, 27, 32], all our experiments are
performed on a centralized network with 100 workers. And we fix
synchronization interval 𝐼 = 10, and the update will be a random
selection of 10 clients out of a total of 100. For non-IID dataset
partitioning over clients, we use Dirichlet-𝛼 (abbreviated as Dir(𝛼))
sampling as [13], where the coefficient 𝛼 measures the heterogene-
ity. In the experiments, we select the Dirichlet coefficient 𝛼 from
{0.05, 0.1, 0.5} for all datasets. A visualization of the data partitions
for the CIFAR-10 at varying 𝛼 values can be found in Figure 4. and
the SGD optimizer with the learning rate 𝑙𝑟 = 0.01. We set the
communication round 𝑇 = 2, 000 for CIFAR-10, CIFAR-100 and
CINIC-10 datasets, 𝑇 = 1, 000 for TinyImagenet datasets. The total
number of epochs is 20,000 for CIFAR-10, CIFAR-100 and CINIC-10;
10,000 for TinyImagenet. The mean and standard deviation values
for the average accuracy over the last 200 epochs were calculated
from 10 experiments using 5 different random seeds and can be
found in Table 1.

4.2 Performance Analysis
We display the results in Table 1. We observe that for all of the
heterogeneous settings on all datasets, the highest accuracies are
achieved by FedSLS. In particular, in the strongly heterogeneous
settings where 𝛼 ∈ {0.05, 0.1}, FedSLS yields significant improve-
ments of 2% to 20% over baselines on all datasets. The higher data
heterogeneity, the more superior performance for FedSLS. On the
other hand, for the less heterogeneous setting of 𝛼 = 0.5, the im-
pact of data heterogeneity is less significant, leading to smaller
improvements from FedSLS. Such decrease in improvements is a

general trend and is also observed on other baselines. Our experi-
ments in TinyImagenet were loaded with the ResNet50 pre-trained
weights provided by PyTorch. Therefore, the difference between
the experimental results in the three heterogeneous scenarios is not
significant. Surprisingly, the accuracy of FedSLS still manages to be
about 2% higher than baselines, which speaks volumes about the
great contribution of FedSLS in dealing with data heterogeneity.

4.3 Ablation Study
This section focuses on the differences between saliency embedding
and conventional embedding methods. We evaluated the visual
fidelity of two types of embedding methods. Then, we designed
experiments to replace the saliency latent variables with vanilla
latent variables to guide the aggregation of federated learning.

4.3.1 Experimental Setup. Our method is closely related to the im-
age, so we designed to compare vanilla latent variables and saliency
latent variables with the original images. Specifically, we evaluate
the ability of vanilla latent variables and saliency latent variables
to extract features using three metrics: SSIM, Euclidean distance
and cosine similarity. Considering generalization, we conduct ex-
periments on a total of 10,000 images drawn from three publicly
available classification datasets. We randomly draw 2,500 images of
CIFAR-10 and CIFAR-100, respectively, and 5,000 images of Tiny-
Imagenet. We performed a uniform pre-processing of the extracted
images, normalized on the scale. We performed size, brightness and
contrast normalization on the extracted images with a uniform size
of 64 × 64. For the vanilla latent variables, we refer to the work of
[31] for feature embedding using the down-sampling and define
the parameters f as 2, 4 and 8. For the saliency latent variables,
we choose to use the ResNet18 for GBP. Unlike the performance
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Table 1: Performance comparison between FedSLS with baselines on CIFAR-10, CIFAR-100, CINIC-10, and TinyImagenet
datasets. All algorithms were executed three trials with five different seeds, and the mean and standard derivation are reported.

Methods
CIFAR-10 CIFAR-100 CINIC-10 TinyImagenet

𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05

FedAvg (AISTATS’17) 70.77±0.1 58.04±1.0 40.99±2.0 50.48±0.5 48.1±0.5 46.92±0.5 59.62±1.5 40.04±1.0 32.48±1.0 59.78±0.5 57.66±0.5 56.19±0.5
FedProx (MLSys’20) 73.64±2.7 61.22±0.3 41.64±1.5 50.17±1.3 48.73±0.4 46.41±0.3 59.81±0.9 40.64±2.7 33.97±1.2 60.20±0.1 59.66±0.4 57.16±0.3
MOON (CVPR’21) 77.02±0.8 62.79±1.7 55.64±2.4 50.63±1.4 48.62±0.2 45.48±0.3 62.91±1.3 41.86±1.1 40.54±1.3 61.31±0.90 60.75±0.6 59.21±0.4
FedDecorr (ICLR’23) 75.79±0.4 65.89±2.5 57.18±2.1 51.88±1.2 48.19±0.6 46.12±0.1 61.49±2.0 39.23±1.4 38.06±0.9 60.86±0.27 60.01±0.5 58.29±0.18
FedAU (ICLR’24) 74.91±0.6 60.04±1.8 49.24±3.8 51.49±1.5 46.5±1.5 47.08±1.5 59.96±1.0 38.96±1.0 33.04±1.0 61.09±0.4 59.81±0.4 57.43±0.6

FedSLS 82.67±0.2 70.51±3.6 63.43±3.6 52.44±1.5 49.6±0.5 47.79±1.5 65.43±2.5 44.79±2.6 43.22±2.6 62.73±0.5 61.47±0.5 59.49±0.5

FedSL
𝑓 = 2 79.86±0.3 64.97±0.5 38.59±0.7 51.64±0.3 49.4±0.3 46.25±0.3 69.48±0.2 40.15±1.4 30.87±2.5 61.68±0.2 59.33±0.3 57.34±0.8
𝑓 = 4 81.65±0.3 48.91±0.8 38.44±0.4 52.19±0.5 48.52±0.5 42.98±0.5 69.54±0.8 42.27±1.4 31.35±1.9 61.65±0.2 59.28±0.6 58.00±0.3
𝑓 = 8 82.31±0.2 56.98±0.4 50.65±0.4 51.28±0.2 48.94±0.3 45.13±0.4 64.96±0.2 42.52±1.6 37.84±1.1 61.37±0.2 59.06±0.3 56.85±0.4

comparison experiment mentioned above, we only take the out-
put image of the first layer of BackPropagation in this experiment.
We save both vanilla latent variables and saliency latent variables
locally and read them when needed. When generating these im-
ages, we average over the channel dimensions as before, so we
save all grey-scale maps. In order that the later evaluation metrics
are not affected, we similarly normalize all images in terms of size,
brightness and contrast. The Figure 5 shows all results, and Figure
3 shows different kinds of latent variables.

4.3.2 SSIM. Structural similarity index (SSIM) [43] is a metric used
to measure the similarity between two images, taking into account
luminance, contrast and structural information, and provides an
excellent reflection of human perception of image quality. If the
images obtained through saliency embedding are most similar to
the original images, it suggests that we are proficient at perceiving
and extracting features to a certain extent.

The SSIM results of the four methods with the original images
are presented on the far left of Figure 5. It is evident that the median
and mean of the saliency latent variables are the highest among the
four. This suggests that the saliency latent variables can retain more
information from the original images in the image representation.
The median latent variables for 8× down-sampling are the lowest,
while those for 2× down-sampling are significantly higher than
the other two. This also indicates that as the degree of image com-
pression increases, the more feature information is lost from the
image and hence the similarity with the original image decreases.
It is also observed that the data distribution to which the saliency
latent variables belongs is narrower, indicating that the quality of
the images obtained by the GBP method is relatively consistent and
less fluctuating. While the other box plots show wider interquartile
spacing, especially 8× down-sampling, indicating that the image
quality fluctuates more. And the outliers (small black circles) mainly
appear at lower SSIM scores, especially more pronounced at higher
compression ratios 𝑓 .

4.3.3 Euclidean Distance. The Euclidean distance is one of the
most straightforward measures of distance. We find the Euclidean
distance between the original image and the latent variable to

represent its similarity. The two methods are inherently similar and
we use this to corroborate each other and eliminate chance.

The results of their comparison we show on the far right of
Figure 5, where we can see that the situation is similar to the results
of SSIM. The median and the mean of the significance plot are
the smallest, indicating that the Euclidean distance between the
significance plot and the original image is the smallest. There are a
large number of outliers on the box plots of all the methods, but the
distribution of outliers in the significance plot is much narrower,
which indicates that the variability of the significance plot with
respect to the original image is relatively smaller among the four
methods, and the stability of this method is better. Compared to
the 2× and 4× down-sampling, the 8× down-sampling has fewer
outliers, but the median and mean are relatively higher. This could
mean that as the encoder strength increases (larger down-sampling
factor), the overall variability of the images increases, although it
can provide more consistent results in some cases. It can be inferred
that the saliency latent variables extract more subtle features with
less variability.

4.3.4 Cosine Similarity. The vanilla latent variables obtained by
down-sampling are themselves compressed and smaller compared
to the original image, and the two previous methods of comparison
require the alignment of features such as scale, brightness, contrast
and color to reduce the interference of external factors. For example,
the latent variables obtained by 8× down-sampling may be enlarged
in size by linear interpolation, and some information will be lost
in the process. Therefore we still need more objective methods to
prove our point.

Fortunately, the work of [33] points out that cosine similarity
can be utilized for feature evaluation. Cosine similarity, as high-
lighted by [33], serves as a robust metric for feature evaluation in
image processing and deep learning. It computes angular distances
between vectors, disregarding their magnitudes, thereby facilitating
the comparison of feature orientations in high-dimensional spaces
without necessitating pre-processing adjustments. Cosine similar-
ity’s efficacy stems from its ability to discern feature directionality,
where a proximity to 1 denotes high similarity.

So we design to input the original image and four latent variables
into ResNet50, and then use the output of the model to calculate
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Figure 5: Results of SSIM, Cosine similarity and Euclidean distance scores for vanilla latent variables and saliency latent
variables, where the vanilla latent variables are derived from 2×, 4× and 8× down-sampling. (a) Saliency latent variables have
the better SSIM scores, the higher medians and means, and narrower boxes and whiskers. (b) Performance of cosine similarity
scores clearly shows that the saliency latent variables have less variance and more similarity. (c) The saliency latent variables
has the smallest Euclidean distance from the original image, indicating a greater similarity to the original image.

the cosine similarity respectively. We have displayed the results in
the middle of Figure 5, where we can see that the median and mean
of the saliency latent variable are higher than the other three by a
narrow margin, but the box corresponding to the saliency latent
variable is narrower and the whiskers are shorter, which proves that
the variance of the cosine similarity scores is smaller, the scores are
more consistent, and the indicated features are more reliable than
the others’. In addition, the outliers of the saliency latent variable
are also more concentrated than those of the other three, and the
saliency latent variable representation is relatively more stable. So
we can conclude that the cosine similarity scores of the saliency
latent variables are integrally better. This is enough to show that
GBP effectively emphasizes the features that the model considers
most informative.

4.3.5 Comparisons in Federated Learning. To further prove our
point, we designed to replace the saliency latent variables with
vanilla latent variables in the framework of FedSLS. As with the
other baselines in Table 1, we conduct experiments on each of the
four datasets using vanilla latent variables obtained from the three
down-sampling multiplicities. Refer to Section 4.1 for additional
details on the setup of the experiments.

Again, the results are shown in Table 1. The results remain that
FedSLS is at state-of-the-art in each experimental setup. In the
less heterogeneous settings where 𝛼 = 0.5, FedSL results are only
one line worse than FedSLS, above many baselines. However, in
the strongly heterogeneity setting 𝛼 ∈ {0.05, 0.1}, the accuracy of
FedSL drops rapidly and performs very poorly. We believe this is
due to the fact that these vanilla latent variables do not extract the
features needed for learning very efficiently and also introduce re-
dundancy and irrelevant information interference. This is because
conventional feature embedding methods pay more attention to
overall features than local details during feature extraction, and
these features may be links between the subject instance and the
background and environment. These features with little learning
value influence the server’s weight assignment to individual clients.
Therefore, in strongly heterogeneous environments, referring to

the results in Figure 5 , the effect of some outliers on the clients
may be amplified as the weight value increases. However, FedSL
can still outperform most baselines in the less heterogeneous envi-
ronment 𝛼 = 0.5, which shows that our strategy of mining image
saliency features in latent space to adaptively adjusting aggregation
is effective.

4.3.6 Summary. Our findings indicates that saliency latent vari-
ables retainedmore original image information, evident from higher
median and mean SSIM values and narrower interquartile ranges,
suggesting consistent quality. Euclidean distance mirrored these re-
sults, with saliency latent variables showcasing minimal variability
and greater stability. Cosine similarity confirmed the superiority of
saliency latent variables, indicating that GBP effectively accentu-
ates model-deemed informative features. Lastly, within the FedSLS
framework, replacing saliency latent variables with vanilla latent
variables substantiated the inefficiency of conventional feature em-
bedding in heterogeneous environments, further demonstrating
the validity of the significance latent variable.

4.4 CONCLUSION
In this paper, we propose a saliency latent space feature aggregation
method (FedSLS) across federated clients. By Guided BackPropaga-
tion (GBP), we transform deep models into powerful and flexible
visual fidelity encoders, applicable to general state inputs across
different image domains, and achieve powerful aggregation in the
form of saliency latent features. To that effect, we experimentally
demonstrate the superiority of the Saliency Embedding over con-
ventional feature embedding methods. The extensive experimental
validation of FedSLS across various datasets establishes its supe-
riority, showcasing remarkable performance enhancements and
state-of-the-art results, particularly in environments characterized
by severe data heterogeneity. The findings underscore the potential
of FedSLS to substantially contribute to the optimization of aggre-
gation weights in federated learning, offering a robust solution
to the complexities introduced by non-IID and imbalanced data
heterogeneity distributions.
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