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Abstract
Many fields of AI require models that can handle
both probabilistic sequential dependencies and
logical rules. For example, autonomous vehi-
cles must obey traffic rules in uncertain environ-
ments. Deep Markov models excel in manag-
ing sequential probabilistic dependencies but fall
short in incorporating logical constraints. Con-
versely, neurosymbolic AI (NeSy) integrates deep
learning with logical rules into end-to-end dif-
ferentiable models, yet struggles to scale in se-
quential settings. To address these limitations, we
introduce neurosymbolic Markov models (NeSy-
MM), which merge deep probabilistic Markov
models with logic. We propose a scalable strat-
egy for inference and learning in NeSy-MM com-
bining Bayesian statistics, automated reasoning
and gradient estimation. Our experimental results
demonstrate that this framework not only scales
up neurosymbolic inference, but also that incor-
porating logical knowledge into Markov models
improves their performance.

1. Introduction
Markov models are the theoretical foundation for many
successful applications of artificial intelligence. For ex-
ample, Markov processes are at the core of reinforcement
learning (Sutton & Barto, 2018) and other temporal tasks,
such as speech recognition (Juang & Rabiner, 1991), me-
teorological predictions (Khiatani & Ghose, 2017), music
generation (Austin et al., 2021), sports analytics (Van Roy
et al., 2023) and many more (Mor et al., 2020). They are so
popular mainly because they naturally factorise a sequential
problem into step-wise probability distributions. Such a
decomposition leads to better predictions in terms of bias
and variance compared to models that do not incorporate
the sequential nature of the problem (Bishop, 2006).
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Neurosymbolic AI (NeSy) has also enjoyed a tremendous
increase in attention. Its general goal is to combine the
generalisation potential of symbolic, i.e. logical, reasoning
with the representational learning prowess of neural net-
works. Such a combination already exists in many different
flavours, using either fuzzy logic (Badreddine et al., 2022)
or probabilistic logic (Manhaeve et al., 2021; Yang et al.,
2020; Huang et al., 2021; De Smet et al., 2023). The latter
case is of special interest, as the probabilistic NeSy systems
provide a solid semantics to handle uncertainty, but also
to tackle generative tasks. Unfortunately, however, they
cannot exploit the sequential decomposition inherent in tem-
poral reasoning tasks, thereby limiting their applicability in
complex sequential problems.

To overcome these limitations, we introduce neurosymbolic
Markov models (NeSy-MMs), the first integration of sequen-
tial probabilistic deep models with NeSy. In particular, our
contribution is a new differentiable neurosymbolic particle
filter that combines Rao-Blackwellised (Liu et al., 2019)
inference and state-of-the-art discrete gradient estimation
with continuous relaxations (Petersen et al., 2021).

2. Preliminaries
2.1. Markov Models

Hidden Markov models (HMMs) are sequential probabilis-
tic models for discrete-time Markov processes (Baum &
Petrie, 1966). Given sequences of states X = (Xt)t∈N and
observations Z = (Zt)t∈N, an HMM factorises the joint
probability distribution p(X,Z) as,

p(X0)p(Z0 | X0)
∏
t∈N

p(Xt+1 | Xt)p(Zt+1 | Xt+1), (1)

where Xt is a fully latent state (Figure 1a). If Xt has a
known factorisation in the form of a Bayesian network
(BN) (Pearl, 1988), then the process and its observations en-
code a Markovian dynamic Bayesian network (DBN) (Dean
& Kanazawa, 1989). Note that Xt and Zt are random vec-
tors that can have both discrete and continuous components.
In all that follows, a specific assignment of a random vari-
able or vector will be written in lowercase. For example,
xt = (xt,1, . . . , xt,D) is an assignment of the random vec-
tor Xt = (Xt,1, . . . , Xt,D) of dimension D.
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Figure 1: Probabilistic graphical model representations of
the different systems considered in this work. Blue repre-
sents the states, green the observations.

2.2. Probabilistic Neurosymbolic AI

Probabilistic NeSy methods originate from the field of
statistical relational AI (StarAI) that integrates statisti-
cal AI with logic (De Raedt et al., 2016; Marra et al.,
2024). This integration leads to systems capable of per-
forming inference and learning with uncertainty over sym-
bolic, i.e. logical, knowledge. For example, the log-
ical relations player_at(player1, location1) and
monster_at(monster1, location1) can be used to
apply the rule hit(P,M) :- player_at(P,L), mon-
ster_at(M,L) and deduce that player1 is hit by mon-
ster1 because they are in the same location. Moreover,
this knowledge is often uncertain in practice, resulting in
uncertainty on whether the deduced logical relations hold.
For example, consider the case of a sneaky monster. If
we are unsure whether monster_at(monster1, loca-
tion1) is true or not, we will also be uncertain whether the
player is hit or not. Notice that uncertain logical relations
can be modelled as binary random variables, which justifies
the integration with statistics.

While StarAI assumes knowledge to be neatly represented
as a symbolic state S, such an assumption does not always
hold. Images, sound waves or natural language are usually
represented as subsymbolic data, i.e. tensors, that are not di-
rectly usable by relational AI. Therefore, probabilistic NeSy
methods use neural predicates φ to map subsymbolic data
to a probability distribution over symbolic representations
that can be used by StarAI. Figure 1b depicts a probabilistic
graphical model (PGM) (Koller & Friedman, 2009) repre-
sentation of a NeSy system. More formally, given a boolean
variable Y from S with domain {y,¬y} and a set of rules
R on the symbols in S, inference in NeSy computes the
probability that the query Y is true via weighted model

player(Im, P) ~ normal(noisy_player(Im)).
monster(Im, M) ~ normal(noisy_monster(Im)).
clumsy ~ bernoulli(0.75).

hits(M, P) :-
distance(M, P, D), D < 2, not clumsy.

game_over(Im) :-
player(Im, P), monster(Im, M), hits(M, P).

query(game_over(image.png)).

Figure 2: DeepSeaProbLog encoding of Example 2.1.

integration (WMI) (Morettin et al., 2021)

pφ(Y=y | N=n) =

∫
1s|=Ry pφ(S=s | N=n) ds, (2)

=

∫
s|=Ry

pφ(S=s | N=n) ds, (3)

where the distribution of S is parametrised by a neural net-
work φ from the subsymbolic state N.

A prominent way of representing neurosymbolic models is
via probabilistic logic programming (PLP) (De Raedt et al.,
2007). A running example will illustrate the main concepts,
while a more technical exposition is given in Appendix A.
Example 2.1. Figure 2 describes a simple game. The first
two rows introduce deep random variables representing
the normally distributed locations of the player P and the
monster M. These variables are parametrised by the neural
predicates noisy_player and noisy_monster, respec-
tively. Both networks map the tensor representation of the
image Im into the respective symbols P and M. The third
row introduces a binary random variable C indicating that
the monster will be clumsy with a 75% chance. Next, two
rules determine when a monster can hit (H) a player and
when the image depicts a lost game (G). The final line asks
for the probability that image.png represents a lost game.

3. Neurosymbolic Markov Models
A neurosymbolic Markov model (NeSy-MM) combines the
sequential and partially observable nature of HMMs and
DBNs (Figure 1a) with neurally parametrised relational
probability distributions (Figure 1b). That is, we con-
sider Markov processes X = (Xt)t∈N with observations
Z = (Zt)t∈N where the state Xt is now a neurosymbolic
state Xt = (Nt,St). Figure 1c depicts the graphical model
of this novel integration. NeSy-MMs represent joint proba-
bility distributions pφ(N,S,Z) that factorise as,

pφ(S0 | N0)p(N0)p(Z0 | S0)∏
t∈N

pφ(St+1 | St,Nt+1)p(Nt+1)p(Zt+1 | St+1). (4)

Despite the similarity with Eq. 1, NeSy-MMs are complex
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models that enable the definition of a wide variety of distri-
butions, taking into account three main aspects of interest.

Symbolic knowledge. Having a NeSy state means we
perform inference in a symbolic state space where relational
logic rules R govern the relationship between symbols,
both within a single time slice and in the transition between
states. This symbolic space allows us to incorporate human
knowledge into our reasoning process, giving guarantees on
how the sequential process evolves. For example, we can
guarantee safety properties throughout the entire sequence
(see Example 3.1).

Hybrid domains. Discrete binary random variables can
model logical relations under uncertainty. However, we
are interested in systems capable of modelling continuous
aspects of reality, e.g. for robotics or raw data processing,
as well as continuous latent random variables required to
model the prior p(N) necessary for generative tasks.

Neural parametrisation. We can parametrise our proba-
bilistic logic theory on given sequential subsymbolic knowl-
edge with neural predicates φ, allowing us to answer dis-
criminative queries pφ(Y=y | N=n,Z = z) via∫

s|=Ry

pφ(s0 | n0, z0)
∏
t∈N

pφ(st+1 | st,nt+1, zt+1) ds.

(5)

Alternatively, if we assume a generative perspective, i.e. the
φg edges in Figure 1c, we can define the neural parametri-
sation of our model in terms of a variational auto-encoders
(VAE) (Kingma & Welling, 2013). This perspective leads to
a new factorisation that allows us to tackle generative tasks,
where we sample n ∼ pφ(Y=y,N | Z = z), which is:∫

s|=Ry

pφ(s0,N0 | z0)
∏
t∈N

pφ(st+1,Nt+1 | st, zt+1) ds

(6)

While some attempts have been made to cover part of these
aspects (see Section 4), we are the first to cover all of them
and provide a uniform strategy for inference and learning.

Example 3.1. Figure 3 shows a new version of the game
from Example 2.1. The player can now move in the environ-
ment with a Markovian transition function player_move
based on the player’s previous location and the static mon-
ster’s position. The observation rule safe guarantees the
player’s safety at every time step within the horizon 0:T.
Finally, we can query game_lost(image.png)t for any
t ∈ {0, . . .,T}. Notice that this NeSy-MM depends only
on the first image at time t=0 and that the projection in the
future is done via the logical transition rules.

4. Desiderata of NeSy-MM Inference
Inference in a NeSy-MM reduces to dealing with either the
discriminative distribution pφ(S | Z,N) or the generative
distribution pφ(S,N | Z). These distributions are at the ba-
sis of more specific probabilistic tasks, like expectation com-
putation or maximum likelihood optimisation. NeSy-MMs
are related to both neurosymbolic AI and sequential prob-
abilistic models, yet inference methods from these fields
can not handle the probability distribution of a NeSy-MM.
To be compatible with a NeSy-MM, a suitable inference
method has to satisfy three desiderata. (D.I) It has to be able
to deal with both discrete and continuous random variables.
Optionally, it should exploit the symbolic nature of a binary
logic variable. (D.II) It has to exploit the sequential nature
of a NeSy-MM. In particular, this property includes the sup-
port of transition probabilities pφ(St+1 | St,Nt+1) that are
logical, neural or purely probabilistic in nature. (D.III) It
has to support differentiation, either exact or approximate,
in order to allow for the optimisation of any neural compo-
nents of the NeSy-MM. This property is especially crucial
for the neurosymbolic applications of NeSy-MMs.

Both neurosymbolic AI and existing probabilistic tech-
niques are insufficient for NeSy-MM inference. On the
neurosymbolic side, scalability remains the biggest problem.
Purely exact techniques (Manhaeve et al., 2021; Yang et al.,
2020) do not scale to non-trivial time horizons, while ap-
proximate techniques (Huang et al., 2021; van Krieken et al.,
2024) are still limited and do not support continuous vari-
ables. A hybrid approach exist for discrete and continuous
domains (De Smet et al., 2023), but only in the static setting.
On the side of probabilistic models, non-parametric tech-
niques can infer any generic hidden Markov model (Koller
& Friedman, 2009) and have been applied to the statistical
relational setting (Nitti et al., 2016). However, their integra-
tion with the neural paradigm is often paired with strong
distributional assumptions (Krishnan et al., 2017). In partic-
ular, gradient-based optimisation is often difficult (Ścibior
et al., 2021; Corenflos et al., 2021; Younis & Sudderth,
2023).

5. Inference and Learning
To bridge the gap between NeSy and sequential probabilistic
models, we propose a new, differentiable inference tech-
nique that combines non-parametric Bayesian inference
with exact NeSy inference.

5.1. Differentiable NeSy-MM Particle Filtering

Traditional particle filters are not differentiable because they
perform resampling (Appendix B). To solve this differentia-
bility problem, we propose a novel solution that takes ad-
vantage of the neurosymbolic nature of a NeSy-MM. While
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player(Im, P)0 ~ normal(noisy_player(Im)).
player(Im, P)t ~ normal(Next) :-

player(Im, P)t - 1, monster(Im, M),
player_move(P, M, Next).

monster(Im, M) ~ normal(noisy_monster(Im)).
clumsy ~ bernoulli(0.75).

hits(M, P)t :-
distance(M, P, D)t, D < 2, not clumsy.

game_overt(Im) :-
player(Im, P)t, monster(Im, M),
hits(M, P)t.

safet(Im, P) :-
player(Im, P)t, monster(Im, M),
distance(M, P, D)t, D > 2.

observe(safe0:T, true).
query(game_over(image1)T).
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Figure 3: On the left, a logic programming description of the game Example 3.1 in the discrete-continuous probabilistic
NeSy language DeepSeaProbLog. On the right, the corresponding graphical model. We use plate notation to indicate a
Markov transition. A rolled-out version is available in the appendix in Figure 8.

existing methods focus on repairing the differentiability of
resampling (Ścibior et al., 2021; Younis & Sudderth, 2023),
we circumvent this problem by using a Rao-Blackwellised
particle filter (RBPF) (Murphy & Russell, 2001). A RBPF
avoids the need for resampling caused by the separation of
the observations Zt from the transitions. Instead, it recur-
sively computes pφ(Xt+1 | Z0:t+1) as

∫
pφ(Xt+1 | xt,Zt+1)pφ(xt | Z0:t) dxt, (7)

by immediately transitioning a set of recursive samples to
the next time step using the exact transition probabilities
pφ(Xt+1 | xt,Zt+1). In the case Xt is purely discrete,
computing these probabilities can leverage the advances in
exact inference from both neurosymbolic AI (Kisa et al.,
2014; Tsamoura et al., 2021) and probabilistic AI (Darwiche,
2020; Holtzen et al., 2020).

By removing resampling and having access to the exact
transition probabilities, we can exploit an up-until-now un-
explored synergy with gradient estimation. State-of-the-art
discrete gradient estimation algorithms use samples and the
gradients of the probability of those samples to approximate
the gradients of finite distributions. In other words, they
need the exact probabilities of these distributions to function.
Hence, gradient estimation can be used to restore the differ-
entiability of the particle filter by removing resampling and
having access to the exact transition probabilities. In our im-
plementation, we opted for the state-of-the-art performance
of RLOO (Kool et al., 2019) for gradient estimation.

5.2. NeSy inference via Markov block factorization

Unfortunately, computing pφ(Xt+1 | xt,Zt+1) exactly
when Xt also contains continuous variables is generally
only possible under strict assumptions such as Gaussian
densities. We mitigate this problem by factorising the NeSy-
MM further through the novel notion of Markov blocks to
separate the finite from the infinite.

Definition 5.1 (Markov Block). Given a conditional proba-
bility distribution p(X | Z), two random variables X1, X2

in X belong to the same Markov block if and only if they be-
come dependent when conditioning on Z, i.e. X1 ̸⊥⊥X2 | Z.

Proposition 5.2 (Markov Block Factorisation). Every con-
ditional probability distribution p(X | Z) can be factorised
in terms of its Markov blocks.

Proof. Markov blocks correctly factorise a distribution
p(X | Z) if and only if they define a partition on X. More-
over, every equivalence relation on a set induces a partition
on that set. Therefore, it is sufficient to prove that belong-
ing to the same Markov block is an equivalence relation
on X. Reflexivity and symmetry are trivially satisfied, so
let us prove transitivity. Assume X1 and X2 belong to the
same Markov block B1, and also that X2 and X3 are in
the same block B2. By definition, we know that there exist
variables Z1 and Z2 in Z such that X1 ̸⊥⊥ X2 | Z1 and
X2 ̸⊥⊥ X3 | Z2, i.e. Z1 depends on X1 and X2 while Z2

depends on X2 and X3. If Z1 and Z2 are the same variable,
then B1 and B2 must be the same block. Otherwise, sup-
pose that the blocks B1 and B2 are different, i.e. B1 ̸= B2,
then it must hold that X1 ̸⊥⊥ X2 | Z but X2 ⊥⊥ X3 | Z, or
the symmetric case. However, this case is not possible since
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both Z1 and Z2 belong to Z and we had that X2 ̸⊥⊥ X3 | Z2.
As B1 and B2 are the same blocks, transitivity follows.

Applying the Markov block factorisation to the conditional
probability distribution pφ(Xt+1 | xt,Zt+1) with Markov
blocks {Xi

t+1}Bi=1 yields

pφ(Xt+1 | xt,Zt+1) =

B∏
i=1

pφ(X
i
t+1 | xt,Zt+1). (8)

If we split every Markov block Xi
t into a finite part Fi

t and
infinite part Iit, this factorisation can be further refined into

B∏
i=1

pφ(F
i
t+1 | Iit+1xt,Zt+1)pφ(I

i
t+1 | xt,Zt+1). (9)

By first obtaining samples for the infinite random variables
Iit in every ith Markov block using a traditional particle
filter, we are again left with a purely finite probability dis-
tribution pφ(F

i
t+1 | Iit+1xt,Zt+1) that we compute exactly.

The result is a novel Rao-Blackwellised particle filter for
NeSy-MMs (NeSy-PF) that handles hybrid domains and
exploits the inner conditional dependency structure of the
NeSy states Xt.

To wrap up this section, we answer the remaining ques-
tion of differentiability for infinite random variables. As
our NeSy-PF reduces to a generic particle filter for infinite
random variables, we can exploit the many proven and tai-
lored gradient estimation algorithms (Ścibior et al., 2021;
Corenflos et al., 2021; Younis & Sudderth, 2023). In our
case, we followed the work of Ścibior et al. (2021) as it pro-
vides strong baseline performance. In summary, we recover
gradient-based optimisation of infinite, finite and binary
logical variables by joining local exact inference with spe-
cialised gradient estimation.

6. Experiments
We test the capabilities of NeSy-MMs on a generative set-
ting inspired by the Mario dataset of Misino et al. (2022),
extended using MiniHack (Samvelyan et al., 2021), a flex-
ible framework to define environments of the open-ended
game NetHack (Küttler et al., 2020).

6.1. Experimental Setting

This dataset consists of trajectories, each containing a se-
quence of images of length T representing an agent moving
T steps in a grid world of size N×N , surrounded by walls.
The starting position of the agent is randomly initialised,
while the goal position is always at the bottom right of the
grid. The actions the agent can take are uniformly sam-
pled among the four cardinal directions, i.e. up, down, left,
right (Figure 4). The input of the model is then a set of

trajectories, like the one in Figure 4. However, we generate
two datasets for grid size N = 5 and N = 10, both of
them with trajectories of length 10. The task for this dataset,
following the setup of Misino et al. (2022), is to learn to
generate images of the environment that follow a list of
given actions and satisfy the rules of NetHack. More details
for reproducibility are available in Appendix C.

We use VAEL (Misino et al., 2022) as a neurosymbolic
baseline and two other fully neural baselines: a variational
transformer architecture (VT); and a NeSy-MM without
logical rules and with neural networks as transition function
(Deep-MM).

We consider two metrics for the evaluation. First, the re-
construction loss (R) is measured by the mean absolute
difference in pixel values, which is first averaged over the
images, then separately averaged over all images of the se-
quence. Second, the reconstruction accuracy, which uses a
pre-trained classifier for the location of the agent and mea-
sures how much the reconstructed trajectory aligns with the
ground truth. This is important to understand if the agent is
moving according to the actual rules of the game.

6.2. Results

Results are reported in Table 1 and Table 2. We discuss the
main findings by highlighting the advantages of NeSy-MMs.

Better in-distribution generalisation. The advantage of
integrating knowledge about the environment in the gen-
eration process is clear. The neural baselines are able to
get a lower reconstruction loss, but that does not translate
into good reconstruction accuracy. In our case, accuracy is
guaranteed by the logical rules that govern the movements
of the agent. The advantage is even clearer in the 10×10
grid, where the neural baselines fail to produce accurate
behaviour because of the larger state space. Notice that we
compressed the images from 16 to 8 pixels per grid cell for
the 10×10 grids because of hardware memory limits.

Scaling NeSy to non-trivial time horizons. Neurosym-
bolic methods are known for their scalability issues. When
sequential settings are considered, the situation is even more
dramatic. VAEL fails to process a sequence of length 10 on
an even smaller grid of size 3×3, with 6h timeout. On the
contrary, we manage to perform inference and generative
learning that do not deteriorate over time, even compared to
the neural baselines.

Generation is logically consistent, interpretable and in-
tervenable. One of the biggest advantages of neurosym-
bolic generation is its ability to induce interpretable and
intervenable logical consistency into subsymbolic genera-
tion. As an example, consider the generation in Figure 5
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Figure 4: MiniHack dataset example trajectory of length 5 in a 5×5 grid, with the corresponding labels.

Table 1: Results for the MiniHack dataset on a 5×5 grid.

Method R (↓) Rec. Acc. (↑)
VT 4.98± 0.17 49.38± 4.80

Deep-MM 6.85± 0.29 38.00± 3.42
NeSy-MM 8.64± 1.07 66.43± 1.23

Table 2: Results for the MiniHack dataset on a 10×10 grid.

Method R (↓) Rec. Acc. (↑)
VT 2.55± 0.04 4.53± 1.11

Deep-MM 3.81± 0.58 7.74± 2.68
NeSy-MM 4.15± 0.41 69.52± 1.72

where the generative model was asked to generate a trajec-
tory for the agent starting in the middle and following a
given sequence of actions while adhering to the movement
rules of the game. Because the symbolic rules of the game
are an inherent part of the generative model, NeSy-MMs
have no problem generating such trajectories. Other meth-
ods lack the necessary semantics or symbolic knowledge to
fully guarantee this sort of logical consistency. Moreover,
NeSy-MMs are flexible in the sense of allowing for differ-
ent constraints to hold at test time, allowing for zero-shot
adherence to new queries (Figure 6).

7. Conclusion
We introduced neurosymbolic Markov models (NeSy-MM),
together with a novel scalable and differentiable particle fil-
tering technique, for inference and learning. The promising
preliminary results show that the integration of symbolic
knowledge into neural Markov models leads to significant
improvements in generative tasks, and provides guarantees
that neural models alone cannot achieve. Future work will
focus on testing NeSy-MMs in various environments, such
as those with probabilistic transition functions and continu-
ous state variables, as well as exploring different tasks like
classification and transition learning.
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Ścibior, A., Masrani, V., and Wood, F. Differentiable par-
ticle filtering without modifying the forward pass. In
International Conference on Probabilistic Programming
(PROBPROG), 2021.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tsamoura, E., Carral, D., Malizia, E., and Urbani, J. Materi-
alizing knowledge bases via trigger graphs. Proceedings
of the VLDB Endowment, 14(6):943–956, 2021.

van Krieken, E., Thanapalasingam, T., Tomczak, J.,
Van Harmelen, F., and Ten Teije, A. A-nesi: A scal-
able approximate method for probabilistic neurosymbolic
inference. Advances in Neural Information Processing
Systems, 36, 2024.

Van Roy, M., Robberechts, P., Yang, W.-C., De Raedt, L.,
and Davis, J. A markov framework for learning and
reasoning about strategies in professional soccer. Journal
of Artificial Intelligence Research, 77:517–562, 2023.

Yang, Z., Ishay, A., and Lee, J. Neurasp: Embracing neural
networks into answer set programming. In IJCAI, 2020.

Younis, A. and Sudderth, E. B. Differentiable and sta-
ble long-range tracking of multiple posterior modes. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

8



Neurosymbolic Markov Models

A. Probabilistic Logic Programming
Logic programming has three main building blocks, being terms, atoms and rules. A term is the logic construct used
to place the values one would like to reason over in a logical formula, like a constant c or a variable V in the simplest
case. Additionally, a term can also be formed recursively by applying a functor f to a tuple of terms, i.e., something of
the form f(t1,...,tK). Next, atoms are relations that can be either true or false depending on their arguments and
the given background knowledge. They are written using a predicate symbol q/K of arity K filled in with terms, e.g.,
q(t1,...,tK). Atoms and terms are used in the definition of rules of the form h:- b1,...,bK , where h is an atom and
each bi is a literal, i.e. an atom or the negation of an atom. We call h the head of the rule while the conjunction b1,...,bK

is the body of the rules. If the body of the rule is logically true, then the rule expresses that the head of the rule is true as
well by logical consequence.

Example A.1 (Logic Program). The following logic program expresses the background knowledge necessary to find out
if someone is a grandparent of someone else. There is a shared knowledge base at the top in the form of two atoms that
express that george is the father of alice and that alice is the mother of william. The first two rules define the parent
relation as being either the mother or the father of someone. Finally, the last rule defines that X is a grandparent of Y if
there exists an intermediate person Z that is the parent of Y and whose parent is X.

father(george, alice). mother(alice, william).

parent(X, Y) :-
father(X, Y).

parent(X, Y) :-
mother(X, Y).

grandparent(X, Y) :-
parent(X, Z), parent(Z, Y).

While atoms are either true or false in traditional logic programming, they can be probabilistically true or false when going
to probabilistic logic programming. That is, an atom can now be annotated with the probability that it is true. For instance,
0.42 :: father(george, alice) expresses that one is only 42 percent sure that george is in fact the father of alice.

Modern implementations of probabilistic logic programming allow for the probabilities of atoms to be parameterised by
neural networks to achieve a neurosymbolic integration. Apart from being limited to parametrising atoms that represent
finite random variables that can only be true or false, these implementations have also been extended to the infinite
domain (De Smet et al., 2023). To facilitate the definition and inclusion of such atoms, two additional building blocks were
added. First, there is the neural distributional fact (NDF), an expression of the form x ~ distribution(n1,...,nK).
Here, x is a term representing a random variable distributed according to distribution filled in with the numeric terms
n1,...,nK . These numeric terms can be constant numerical values or the output of a neural network. Second, to use neural
distributional facts in a logical expression, which is always either true or false, probabilistic comparison formulae (PCF)
were also introduced. These are specific atoms that take the terms coming from a neural distributional fact as argument.

Example A.2 (DeepSeaProbLog program). In the following piece of code, we show how NDFs and PCFs work together to
write a probabilistic logic program that represents a simple model of the weather. Two finite variables first model whether it
is cloudy and what degree of humidity currently holds. The temperature NDF models a normal distribution with mean
15 and standard deviation 3. Because of the uncertain nature of these variables, the truth value of the atoms rain and
good_weather will also be uncertain. These atoms are defined under the NDFs; it is rainy when it is cloudy and humid,
and the weather is good when it does not rain and the temperature is high or if it does rain, but the temperature is low.

cloudy ~ bernoulli(0.7)
humid ~ categorical([0.3, 0.5, 0.2], [dry, moist, wet]).
temperature ~ normal(15, 3).

rain :-
cloudy, not (humid =:= dry).

9



Neurosymbolic Markov Models

Im

P

M

C

H

G

φp

φm

Figure 7: Probabilistic graphical model view of the DeepSeaProbLog encoding in Figure 2.

good_weather :-
not rain, temperature > 20.

good_weather :-
rain, temperature < 0.

Finally, let us provide some more details regarding the running example in the main body of the paper.

Example A.3. Figure 7 shows the probabilistic graphical model view of Example 2.1. Notice how the two rules H (player
hit by the monster) and G (game lost) are represented as binary random variables in the graphical model. The logical rules
among them and the other variables are implicitly defined by the topology of the model itself. Specifically, the rules are
encoded in the probabilistic conditional tables, that we omit for brevity. In mathematical terms, Equation (2) tells us that,
the probability that image.png represents a lost game is

p(game_over(image.png)) =
∫
(P,M,C)|=Hg

p(P | image.png)p(M | image.png)p(C) dPdMdC, (10)

with a small abuse of notation for the discrete variable C.

B. Neurosymbolic Particle Filter
Let us focus on the global NeSy state variable X = (N,S) and how it evolves over time. The recursive equation of a particle
filter applied to a NeSy-MM (X,Z) computing the probability of a state Xt+1 at time step t+ 1 given observations Z0:t+1

from time steps 0 to t+ 1 is

pφ(Xt+1 | Z0:t+1) =
p(Zt+1 | Xt+1)

p(Zt+1 | Z0:t)

∫
pφ(Xt+1 | xt)pφ(xt | Z0:t) dxt. (11)

Practical implementations of these recursive equations task require three steps. First, a set of samples is drawn from the
current time t distribution, i.e., {x(n)

t }Nn=1 ∼ pφ(Xt | Z0:t). Then, this set is transitioned to the next time step via the
transition distribution pφ(Xt+1 | xt). Finally, each of these samples is reweighted according to the observation probabilities
pφ(Zt+1 | Xt+1). The resulting set of weighted samples is then approximately distributed according to pφ(Xt+1 | Z0:t+1).

Instead of keeping a set of samples {x(n)
t }Nn=1 weighted by their observations pφ(Z0:t+1 | x(n)

t ), practical particle filters
use resampling to avoid the sample set from collapsing to samples with very low probability. Concretely, they use the
observations probabilities as the weights of a finite random variable with N outcomes, one for each sample x(n)

t and take N
samples from the distribution of this variable to use as the recursive set of samples for the next filtering step. Unfortunately,
while the original set of weights could be differentiated and used to approximate gradients for every sample, the resampling
step is not differentiable, preventing the particle filter from being used in our setting.

C. Reproducibility
Architectures. The variational transformer architectures consist of a separate initial convolutional VAE architecture
coupled with a transformer decoder that autoregressively generated the next images in the sequence. This transformer has a
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Figure 8: Rolled-out graphical model of Figure 3, from Example 3.1. We leave out the query node G because the edges to
connect it would just cram the picture.

causal self-attention layer with 8 heads and 64 keys, followed by a cross attention layer with the same parameters. After
these layers, the decoder portion of the VAE is used to generate the images. The NeSy-MM model used multiple smaller
networks as it is naturally decomposed. Concretely, there is a small convolutional neural network that classifies the initial
location of the agent from the first image into either 5 or 10 classes, depending on the grid size. Additionally, a small
convolutional encoder network encodes the same initial image into a two-dimensional Gaussian distribution. The NeSy-MM
moves the location of the agent according to the rules of MiniHack for a given set of actions, resulting in an estimated
distribution for the agent at every subsequent time step. A final convolutional decoder, the same as used by the transformer
architecture, then generates an image from the encoding of the initial image together with the planned location of the agent
for every time step. The deep Markov model (Deep-MM) uses the exact same setup, only replacing the logical transitions by
small neural networks with two hidden layers of size 64 and 32. Train, test, and validation sets contain, respectively 5000,
1000, and 500 trajectories.

Setup and hyperparameters. We ran the experiments on an RTX 3080 Ti (12GB) GPU coupled with an Intel Xeon Gold
6230R CPU @ 2.10GHz and 256 GB of RAM. All experiments were repeated 5 times on this setup for our method and all
baselines. Results are reported using averages and standard errors. The hyperparameters, being the β value of the variational
optimisation criterion, the number of epochs to train and the learning rate, were obtained via a separate grid search using a
held-out validation set. The specific optimal value for the learning rate was 0.001 for most methods and grid sizes. The only
exceptions were the NeSy-MMs on grid size 5 and the variational transformers, where a learning rate of 0.0005 and 0.0001
proved optimal, respectively. Adam (Kingma & Ba, 2015) was used as the optimiser for all methods. The optimal values for
β varied more from method to method. The variational transformer performed best with β = 10 and β = 100 on grid size 5
and 10, respectively. For the deep Markov model, these values were 125 and 2, while NeSy-MMs performed best with 150
and 10 on the smaller and larger grid sizes. The number of epochs is again different per method. Transformers needed 100
epochs to reach good performance on both grid sizes, while the deep Markov models and NeSy-MMs optimised best for
25 epochs. Finally, the deep Markov models and NeSy-MMs also have a number of samples used for their particle filters,
which we set to 1000 and 100, respectively.
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