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Abstract

With the advent of generative Al as common-
place to daily-life within the past couple of
years, there is a strong need for extensive re-
search as we apply this technology to educa-
tional contexts. This study supports that body
of research as we explore two driving questions:
(1) Can we use LLMs to create synthetic
student-like question-answer datasets? and
(2) Can we train an LLM to embody an
instructor in answering real student ques-
tions? In this paper, we explore both of these
questions, grounded by prior works and ap-
proaches. Ultimately, our findings suggest that
synthetic QA data can be generated, but still
requires significant improvement to aptly rep-
resent the range of questions asked by real stu-
dents. Additionally, while LLMs can be trained
to give reasonable answers, the generated re-
sponses often struggle with alignment to in-
structional intent and semantic accuracy, requir-
ing further fine-tuning and advanced evaluation
frameworks.

1 Introduction

The release of ChatGPT in November 2022 brought
with it a new wave of Al and the potential of its
applications in all aspects of modern life. It show-
cased to the public the power of LLMs, and their
potential to reduce human workloads. Based on
its extensive and ever growing training data, Chat-
GPT and other generative Al models can write pa-
pers, read and understand code, source information
across the internet to answer niche questions, and
so much more. Companies tend to hold a shared
view of Al as a way to optimize their workforce,
opening greater potential for cost savings. In the
realm of software development, coders can use
LLMs to optimize code, debug, write pseudocode
and boilerplate functions, etc., potentially stream-
lining and simplifying the development process.
Depending on the context, these uses are im-
mensely powerful and time-saving, but with un-

known effects and unregulated usage also carry
strong potential for negative ramifications. The
integration of this technology into educational con-
texts is naturally a lot more careful and cautious.
Instead of accepting Al in full force, education also
has to consider problems with students cheating
and Al hallucinating as potential threats to learn-
ing. Unfortunately, given the opportunity, many
students will have the tendency to offload portions
of their work to generative models, causing them
to miss out on critical learning. Enforcing learning
in a world where this technology is readily, openly
available is a difficult question, and one that has
inspired innumerable research projects in the past
couple of years. Instructors are seeking how to
safely integrate generative technologies into their
curriculum while also GPT-proofing assignments,
bringing exams back to being written in-person,
and taking a number of other measures to ensure
student learning. Ultimately, we see gen-Al as
an inevitability; we must turn our focus to improv-
ing/structuring interactions such that it can enhance
the learning process.

As we will touch on in our related works, the
accessibility of 1-1 teaching (ie. instructors and
course staff) is a weakness of conventional teach-
ing environments. As students aren’t able to ask
questions of their teachers, they turn to question-
answering technologies as an alternative. Unfortu-
nately, Al is often not trained to fully understand
the context/assignment students are asking about
and often yields incorrect or incomplete responses.
To some end, this can actually also result in stu-
dents garnering incorrect understandings based on
their interactions with hallucinative/un-informed
Al systems. The accessibility issue is an ongo-
ing one, even prior to the advent of generative Al,
and brings up an important question: can we fine-
tune/train generative Al systems to act like instruc-
tors when they aren’t available? Specifically, can
we train them to understand the requirements of



specific assignments/projects such that they can
provide useful feedback without also giving away
answers to students? Finally, to what extent is prior
data (rather than synthetic data) necessary to train
such a system to sensibly answer real student ques-
tions?

Answering these questions is complex. In
this paper, we explore how well modern general-
purpose fine-tuned LLMs can generate synthetic
QA data; how well can they generate the kinds of
questions we expect from students with regard to a
project specification? Next, we compare the use of
this synthetic data with real student QA to train a
model to answer student questions how instructors
would. To contextualize the importance of the syn-
thetic data, we acknowledge that new courses have
non-existent prior student data, and even existing
courses may have gaps in datasets. So, we will
examine both the process of generating synthetic
QA data and using that data to inform a model in
answering student questions.

2 Related Works

There are a number of related, but fundamentally
different works that inspired our pursuit of this
project. To contextualize these works, we note
that the progress of LLMs in the past five years
has been especially significant. Integrating these
technologies into educational contexts holds much
promise, but also has to be done carefully. Edu-
cational research has been around for a long time;
a hallmark of this space comes from Bloom’s 2
Sigma Challenge, published in 1984 (BLOOM,
1984).
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Figure 1: Curves comparing scores for students in varied
learning environments.

Figure 1, pulled from this study, highlights the
differences between conventional (1-30) teaching

environments, personalized (1-1) tutoring settings,
and enhanced (1-30) “mastery learning” settings.
As expected, average student performance is the
highest in 1-1 tutoring settings; while such teach-
ing settings are most desirable, they are also highly
impractical and expensive. Mastery learning serves
as a generalization for settings in which students re-
ceive a sense of personalized learning, often aided
by technology (ie. cognitive tutors) in an otherwise
conventional (1-30) teaching setting. There are a
number of technologies that have been developed
in support of mastery learning, and in our paper
we discuss those related to answering student ques-
tions through formal course forums (ie. Piazza).

In our paper, we turn to Question-Answer gen-
erative systems. While round-the-clock instructor
QA is the most desirable scenario, this is again far
too expensive to be practical. Instead, we aim to
observe to what extent generative language mod-
els can support course instructors in correctly an-
swering student questions. While some courses
are likely to have extensive prior data (from past
semesters), we further seek to answer the question
if synthetic data, QA generated by an LLM based
on extracting data from an assignment specifica-
tion, would provide sufficient training for such a
model?

Prior work has explored QA generation in a num-
ber of ways. First Basu et al. aims to reduce work-
load for instructors by generating multiple choice
questions from text inputs. Next, Riza et al. looks
at generating reading comprehension based short-
answer questions via KNN techniques. Finally, Vi-
rani et al. looks at how QA generation systems can
be designed to support generation of a variety of
question types. Ultimately, our work differentiates
itself in two ways. First, we narrow the problem
scope to the context of Computer Science education
as we will seek to analyze synthesis of questions
from coding project specifications; can we train an
LLM to generate a range of sensible questions for
a CS assignment based on its specification? Sec-
ondly, we want to look at using generated QA as
synthetic training data for a final student-question
answering LLM; can synthetic QA train a system to
answer real student questions with high accuracy?
Ultimately, the prior work we have touched on so
far highlights how our project fits into the broader
space of QA generation for educational purposes.

Another interestingly related work is the
CodeAid system produced by Kazemitabaar et al.
which offers as a custom “coding assistant” as a



direct alternative to larger-purpose LLMs (ie. chat-
GPT) that helps students learn to code with strictly
no-code responses. Their approach focuses more
on few-shot learning in prompt engineering for
OpenAl API calls rather than training/fine-tuning
an LLM, and focuses more on the usefulness of
an LLM answering coding-specific questions (ie.
fixing, writing, and understanding code). In con-
trast, our project aims to build two models working
in tandem: one that can generate synthetic stu-
dent QA data, and another that can answer hyper-
specific project/assignment-based questions. While
this work provides a vastly different approach, it
does address a problem similar to the broader one
(around-the-clock support for student questions)
we are exploring in this paper.

Next, we will turn to some of the research that
informed our technical approach to this project.
Majority of the works we’ve mentioned utilize a
T5 model as a baseline encoder-decoder tool; we do
the same in building our LMs (Raffel et al., 2023).
SQUAD (Stanford Question Answering Dataset) is
a very popular QA dataset used across works in
the space, and consists of a combination of answer-
able and unanswerable questions (Rajpurkar et al.,
2018). For example, one of the T5 models we use
to generate our synthetic QA data has been fine-
tuned extensively on SQUAD (Manakul et al., 2023).
The other model we use fine-tunes on SQUAD as
well as CoQA and MSMARCO, two other large general-
purpose QA datasets (Reddy et al., 2019; Bajaj
et al., 2018). The SQuAD dataset is sourced from
Wikipedia articles, CoQA has a focus on conversa-
tional QA, and MSMARCO is sourced from questions
asked on Bing, such that the data from each of
these datasets is expectedly quite different from
the types of questions CS students may be asking
about project specifications. In an ideal world, we
would be able to use a model that has been fine-
tuned on coding-related questions. Regardless the
SQuAD (and other large dataset) fine-tuning aids
the baseline TS models in generating more sensible
synthetic QA.

A significant problem in the realm of genera-
tive Al is model hallucination. Specifically in the
QA space, large LLMs have been trained on a lot
of information, and have the tendency to carry an-
swers beyond the scope of the question being asked.
Simultaneously, fine-tuning a model to concepts
within a limited domain is a challenging, resource-
intensive process. Retrieval Augmented Genera-
tion (RAG) is a popular technique for combating

these issues by basing model responses in a set
knowledge base (Meyur et al., 2024; Barron et al.,
2024). In our final question answering model we at-
tempt a model configuration that emphasizes RAG
techniques, utilizing a combination of synthetic
and existing CS QA data to ground the model.

For evaluation, we utilized a combination of met-
rics to capture different aspects of quality in natu-
ral language generation. BERTScore (Zhang et al.,
2020) assesses semantic similarity using contextual
embeddings from pre-trained transformers, offer-
ing a nuanced understanding beyond token-level
overlap. BLEU (Post, 2018), a standard metric for
machine translation, measures n-gram overlap to
evaluate lexical precision, while METEOR (Baner-
jee and Lavie, 2005) accounts for linguistic vari-
ations such as stemming and synonymy, aligning
more closely with human judgment. ROUGE-L
(Lin, 2004) evaluates the longest common sub-
sequence between generated and reference texts,
emphasizing fluency and recall. Together, these
metrics provide a comprehensive evaluation frame-
work, balancing semantic, lexical, and structural
quality.

3 Implementation

As we have introduced, our project seeks to answer
two key research questions:

1. Can synthetically made datasets effectively
train LLMs?

2. Can an LLM be trained to answer real student
questions like an instructor?

In order to answer these questions, we devised a re-
search project that uses two LLMs. The first LLM
takes in a project or assignment specification and
outputs a set of corresponding question and answer
pairs. The second LLM utilizes the synthetic data
(question-answer pairs) generated by the first LLM
as training data to ultimately take real student ques-
tions as input and output instructor-like responses.
Throughout our report, we will divide analysis into
two, corresponding to each of these two LLMs.

31 LLM#1
Curating the first LLM had three core steps:

1. Generate Question Contexts
2. Generate Question/Answer (QA) Pairs

3. Evaluate the Question/Answer (QA) Pairs
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3.1.1 Input Data

We selected the University of Michigan EECS 280
Project 3 spec as our input for this LLM due to
our access to real student Piazza question-answer
data. Additionally, our familiarity with the project
enabled a level of manual analysis of the quality of
generated questions and answers.

3.1.2 Generate Question Contexts

Upon first examination of the EECS 280 P3 (Eu-
chre) specification, we had to consider how best
to consolidate the combination of code snippets,
images, tables, and raw textual paragraphs into a
format that would be readable by a model. While
the visual aspects of a specification are certainly
important and insightful, we opted to extract just
the text from the project assignments. Future work
might attempt to better integrate different informa-
tion formats into model inputs.

After paring specifications down to just the text,
we moved on to consideration of how much infor-
mation to give the model at a time. A question
context is a snippet of a larger project specification
or assignment. The pre-existing models we use in
this project require contexts as input to generate
QA pairs. Further, context sizes are limited; we
cannot pass an entire specification into a model and
ask it to generate questions (this is too large), nor
would we want to if we could (questions would
likely be too generic). Instead, we have to feed the
model chunks at a time and ask it to generate QA
pairs for each context.

Our initial approach to this problem was splitting
an assignment by sentences and/or paragraphs. In-
tuitively, this would be a natural way to break apart
text, and would ensure that each context passed to
the model was as sensible as possible. Unfortu-
nately, this approach introduced several complexi-
ties. Sometimes ideas are split between sentences
and/or paragraphs wherein creating a good context
for good, fully-informed questions would require
including multiple sentences in a single context.
However, the presence of long sentences, sentence
groupings or paragraphs introduces the issue of
how they should be split when they are too long.
Should sentences be split in half? Should splits be
included with the previous or next context? Should
long sentences be moved to their own context al-
together? Unfortunately, it doesn’t feel as though
there is a singular correct answer to this question;
the answer is context dependent and we would have
to opt for a solution that is good enough for the

general case. Again, future work might seek to
use a more sophisticated approach for context cre-
ation; deeming which sentences should be grouped
together, and which could be separated, whilst con-
sidering the size limitations of a context.

Instead, we opted for a slightly different ap-
proach: splitting our specification with a sliding
window algorithm. We converted our specifica-
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Figure 2: Visualization of sliding window algorithm
concept.

tion into an array of words and used a fixed window
and fixed sliding interval. Starting from the begin-
ning of the assignment, we insert the first <win-
dow_size> words into a single context. Then, the
window shifts by the sliding interval to generate
a new context, and so on through the remainder
of the document. Figure 2 below gives a visual
representation of this algorithm. The downfall of
this approach is the lack of intentionality in en-
suring particular words/sentences/paragraphs stay
together. But, the upsides are that we don’t have
to try to decide which window/context a given set
of words is included with, as all text gets included
in multiple contexts. This also provides us with a
fixed/set context size, and addresses all the ambi-
guities/complexities we discussed in a sentence/-
paragraph splitting approach.

3.1.3 Generate Question/Answer (QA) Pairs

For generating our QA pairs, we tested two models
identified in prior works:

* potsawee/t5-large-generation-squad-
QuestionAnswer

e iarfmoose/t5-base-question-generator

The first model we tested was potsawee/t5-
large-generation-squad-QuestionAnswer.
The input and output format for this model is
included below. Note: <sep> serves as a separator
token.

Input: context
Output: question <sep> answer
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We did most of our parameter fine-tuning on this
model; we discuss our results more extensively
in the Evaluation section of the report, but we
used this model to identify the best combination of
hyper-parameters which we then carried on when
evaluating the second model.

The second model evaluated was the
iarfmoose/t5-base-question-generator.
Again, the input and output format for this model
is described below.

Input: <answer> answer <context> con-
text
Output: questions

The difference in input and output formats
between these two models is quite significant.
Namely, the first model only requires a context
and actually produces a QA pair while the second
model requires a context and answer and aims to
produce a corresponding question. For the second
model, its documentation specifies that for short
answer questions the context could also be passed
as the answer. Since we limit our input for this
model to just the project specification (and don’t
have answers readily available, nor would we ex-
pect this of new courses), we opt for this approach.
As we will discuss later, we hypothesize that the
quality of this second model performed worse than
the first partly because of this limitations; our con-
texts weren’t exactly answers (they just contained
answers), meaning the model sought to curate ques-
tions based on strangely formatted “answers”. For
both models, we generated multiple questions per
context. This was a parameter that we varied to
find the best results.

3.1.4 Evaluate the Question/Answer (QA)
Pairs

The final step for LLM #1 is to evaluate the quality

of the QA pairs generated by each model. We uti-

lized a combination of quantitative and qualitative

methods to do so:

¢ Quantitative:

iarfmoose/bert-base-cased-ga-evaluator

numerical scoring
¢ Qualitative: manual evaluation

The first method we applied was an
evaluator LLM provided by HuggingFace:
iarfmoose/bert-base-cased-ga-evaluator.
The evaluator accepts QA pairs and outputs

their corresponding “scores” wherein higher
scores are indicative of “better” QA pairs. A
known/acknowledged limitation of this model
is that it only evaluates QA pairs based on “if
they are semantically related,” and not on the
validity/correctness of the information nor the
relevance of the question. Because of the sheer
volume of questions generated we used the
evaluator to set a threshold score of questions
that “passed” and those that “failed”; questions
below a set score threshold were deemed “failed.”
Moreover, we hoped that sorting questions by
score would provide some semblance of a ranking
of the “best” and “worst” questions generated so
manual evaluation would be slightly easier.

While we could utilize the evaluator for high-
level semantic assessments of the generated QA
pairs, we determined that manual inspection was
the best way to assess their quality. For this, we
randomly inspected questions from both passed/-
failed datasets (for each model configuration) to
validate accuracy and analyze the quality of gener-
ated QAs. This process allowed us to determine our
optimal set of hyper-parameters as well as which
model produced stronger QA pairs. We needed our
evaluators to have a strong understanding of the
project specification used as input for this evalu-
ation to be effective. Two of our group members
are veteran EECS 280 GSIs which we felt to be apt
experience in comparing the questions generated
by these models to those they would field in their
instruction while helping students in OH and on
Piazza for this project.

3.2 LLM#2

In this task, we explored approaches to develop
a question-answering system tailored for a course
with limited (or non-existent) historical Piazza data.
The system aims to take a question as input and
generate an answer in the style of course instructors.
To achieve this, we harness the question-answering
capabilities of large language models (LLMs) and
experiment with various prompting techniques to
address two key research questions:

1. Is synthetic data generated by our first LLM
sufficiently reliable as a reference for building
a generative QA system?

2. What challenges arise in building a system
that can fully replicate a course instructor’s
question response style?
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3.2.1 Experimental Setup

Our experiments are run on a server from
Chameleon Cloud’s TACC cluster, running Ubuntu
22.04, equipped with 2 AMD EPYC 7763 64-Core
CPUs, 252 GB RAM, and a single NVIDIA A100
40GB GPU. The experiments were ran on torch
2.5.1, transformers 4.46.0.

3.2.2 Models

To evaluate different approaches fairly and consis-
tently, while keeping the computing budget afford-
able, we use the google/gemma-2-2b-it variant
of Gemma (Team et al., 2024b), a lightweight, state-
of-the-art open model that can be viewed as the
open source version of the Google Gemini (Team
et al., 2024a). For generation of the question em-
beddings, we use the al1-MinilLM-L6-v2 model.

3.2.3 Datasets

We collected 4468 question-and-answer pairs on
EECS280’s Piazza Forum. Each pair contains

1. Question Subject: A student-written title for
the question.

2. Question Body: The content of the student
question submitted.

3. Instructor Answer: An official instructor re-
sponse to the question asked.

4. (Optional) Student Follow-ups: Back-and-
forth discourse in response to the instructor
answer, if present.

The question subject and body are concatenated to
form what we consider the “final question,” while
the instructor answer and follow-ups are concate-
nated to form what we consider the “ground truth
answer.” These real student questions and instruc-
tor answer pairs form our validation data. In ad-
dition, we use synthetic data generated during the
optimal run of LLM #1 as QA pairs for training.

3.24 Methodology

To address the challenges of building a course-
specific question-answering system with limited
historical Piazza data, we employed two comple-
mentary methodologies:

e Zero-shot Question Answering

* Few-shot In-context Learning (RAG) Ques-
tion Answering

Both approaches leverage the inherent capabilities
of large language models (LLMs) to generate and
refine responses tailored to the course’s style and
requirements.

Zero-Shot

In this approach, we directly input course-
specific questions into an LLM without providing
additional contextual examples. The synthetic
data generated by our first LLM, and any other
collected QA data are not used. The purpose
of a zero-shot approach is to test the inherent
knowledge of the LLM; how well can it naturally
generate relevant, contextually appropriate answers
to student questions based solely on its pre-trained
abilities? We analyze an LLMs raw capacity
to respond like real instructors without any
supplemental or context-specific training. Because
collecting existing data is not always possible, and
generating synthetic data can be expensive, we
want to observe the quality of responses when
not informed by data. Finally, the results of this
approach serve as a sort of baseline for how much
and in what ways other techniques we apply
improve generated responses.

Few-Shot In-Context

With this approach, we supply the LLM with a
small number of QA pairs that are representative
of the types of questions it should expect to receive
and the corresponding types of answers we want
it to generate. We do this prior to “asking” our
LLM any question, and select the examples as a
combination of synthetic data (collected from LLM
#1) and validation data (from EECS 280 Piazza).
The aim of this approach is to evaluate how much
our model can be improved by providing it with
examples. Is it better able to answer questions with
an instructional tone, in the style of course instruc-
tors? Do examples enhance the factual relevance
of responses?

3.2.5 Evaluation

In order to evaluate the results of this LLM, that re-
quires comparing responses against a ground truth
(actual instructor responses), to assess accuracy,
relevance, and stylistic alignment. More broadly,
we want to examine:

* Are generated answers semantically correct?

* Do generated answers align with expected in-
structor responses?



While semantic correctness is a relatively obvious
need, recall that instructor answers have their
own stylistic/conceptual/structural tendencies as
a means of best enabling learning for students.
For example, we would expect instructors not
to readily give away answers, but rather lead
students towards a better way to think about and/or
approach problems. They may list steps or hints
that help the student explore and discover the
answer on their own. For these reasons (as with
LLM #1) we apply a combination of quantitative
evaluation through automated text-similarity based
metrics, and qualitative evaluation through manual
human inspection. Here, we discuss the three
automated metrics we utilized as well as how we
went about manual evaluation.

Quantitative Metric #1: BLEU and ROUGE

These metrics measure the overlap between the
generated answers and the ground truth at the word
and phrase levels, providing insights into lexical
and structural similarities.

Quantitative Metric #2: BERTScore

This metric evaluates semantic similarity by
computing embeddings of the generated and
reference answers, offering a deeper understanding
of how well the generated responses capture the
meaning and intent of the instructor’s answers.

Quantitative Metric #3: Meteor

Meteor extends traditional n-gram-based
evaluation metrics by incorporating more advanced
linguistic matching techniques. It calculates
similarity between generated and reference
texts by considering synonyms, stemming, and
paraphrasing, thus providing a more nuanced
assessment of translation and text generation
quality beyond exact word matching.

Qualitative Metric: Human Evaluation

We employ a comprehensive human review pro-
cess to assess the quality of generated responses.
We evaluate a subset of answers across three critical
dimensions:

* Style and tone matching instructional ap-
proach

* Factual accuracy aligned with course content

* Clarity in addressing specific questions

When significant deviations are identified, we
conduct a systematic error analysis to uncover
potential issues such as question misinterpretation,
training data limitations, or response overgeneral-
ization.

By combining these evaluation methods, we aim
to gain a holistic understanding of LLM #2’s perfor-
mance, identify its strengths and limitations, and
inform future improvements to better align with
course instructor expectations.

3.3 Implementation of the In-Context
Learning Approach

To enable our LLM to better answer student ques-
tions, we feed it sample QA pairs. The intuitions
here are that (1) real student questions pulled from
Piazza may show underlying patterns over time,
and (2) the existing answers can act as "role mod-
els" from whom LLMs can learn about the appropri-
ate tone and explicitness. The specific implemen-
tation is shown in Figure 3, on the following page.
We first apply the al1-MinilM-L6-v2 to generate
embeddings for the questions. It maps sentences
to a 384 dimensional dense vector space and can
be used for tasks like clustering or semantic search.
When answering new questions, the embedding
of the new question will be used to search in the
embedding space for which questions are similar
to this one. We fetch the top-k similar question
answer pairs and use them to construct the final
prompt to the system. Finally, the system generates
the answer for the new question.

4 Evaluation

41 LLM#1

For our first LLM, we ran a total of 13
different configurations (via altering hyper-
parameters and models). The first 12 configu-
rations were all performed with our first model
(potsawee/t5-1large-generation-squad-

QuestionAnswer) and the final configuration was
performed using the optimal hyper parameters
identified for the first model on our second one
(iarfmoose/t5-base-question-generator). In
the following section, we will discuss the options
we considered and decisions we made in selecting
values for each hyper parameter, supported by QA
examples. The approach we took in testing hyper
parameters was first setting each of them to a sensi-
ble default value. We then progress through the list,
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modifying one at a time, determining the optimal
value for that parameter and then holding it at that
value for the remainder of our configurations. First,
here’s a list of of the parameters we varied:

* Window Step Size

* Context Window Size

e Number of Questions per Context
* Score Threshold

* Model

4.1.1 Window Step Size

The window step size refers to how much our con-
text window was shifted forward in the input text
between each iteration (context generated). The
essence of this parameter is balancing a step size
that is too small wherein QA generated across dif-
ferent contexts are overly redundant, against one
that is too large wherein information does not get
properly represented by any of the contexts it is
included in.

For the larger window step sizes (5, 10), it felt
like questions either (a) didn’t have enough con-
text and/or (b) were missing relevant context such
that both passed and failed questions weren’t super
sensible. We noticed several questions that were
actually just sentences, sometimes pulled from the
specification. For a window step size of 1, we
saw noticeably better performance; questions made
more sense, but were slightly more redundant. The
contrast between some of the top-scored QA pairs
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Figure 3: Workflow of In-Context Learning Approach for Question Answering
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for a larger vs. smaller window step size was quite
apparent.

The top scoring QA pair and score for a window
size of 10 was:

Question: “Why might your code be eas-
ier to test and debug?”

Answer: “May make for easier testing
and debugging”

Score: 3.76

The top scoring QA pair and score for a window
size of 1 was:

Question: “What does a user enter in
order to discard a card?”

Answer: “The user will then enter the
number corresponding to the card they
want to discard”

Score: 3.79

While the questions produced by all configura-
tions had some weaknesses, the one utilizing a win-
dow size of 1 was remarkably better. This was con-
sistent throughout the QA pairs for these configura-
tions. Not only were questions more grammatically
correct, they also made more sense, had better cov-
erage of information contained in the assignment,
and were more similar to the types of questions
we would expect from real students. From these
observations, we moved forward with a window
step size of 1 for the remaining configurations.

4.1.2 Context Window Size

The context window size refers to how much text
(how large a context) we opted to send to the gen-



erative QA model. This parameter aids in the pro-
cesses of determining the optimal way to send con-
texts to our model within a sliding window ap-
proach. Specifically, it balances a context win-
dow that is too small wherein contexts cannot hold
enough information to construct sensible questions
despite a small window step size, against a win-
dow that is too large wherein the model fails to
understand contexts in a modular way.

For smaller context windows (40, 50, 60), the
QA pairs produced were not noticeably different
in any meaningful way. A context window size
of 70 produced some really good questions, but
definitely still produced questions that don’t make
sense and are slightly repetitive. For the largest
window size (100), there wasn’t a huge qualitative
difference in the questions generated (compared to
70). It seems that at a certain point, expanding the
window size doesn’t improve question quality but
limits the diversity of questions asked.

While we observed that expanding the window
size did have a positive effect on the quality of QA
pairs produced by the model, varying this param-
eter also demonstrated the limitations of having a
model that cannot hold onto the knowledge con-
veyed in neighboring contexts. Regardless, we saw
that smaller context window sizes limited the sen-
sibility of questions generated while context win-
dows that are too large cause the model to be too
unfocused. For these reasons, we moved forward
with a context window size of 70 in the remaining
configurations.

4.1.3 Number of Questions per Context

The models we used allows for multiple QA pairs
to be generated for each context sent to the model,
so this variable specifies that value. This parameter
balances generating too few QA pairs per context
where the model fails to generate questions cover-
ing the entire context space, against too many QA
pairs per context where questions become overly re-
dundant. We tested generating 1, 2, and 4 questions
per context. There was already some redundancy
in questions in prior configurations, and the 4 QA
pair generation configuration aligned with this ob-
servation as it failed to produce questions that were
noticeably unique. At the same time, we did notice
some of the QA pairs generated by the 2-question
configuration were meaningfully unique. For ex-
ample, here’s a student-like question we didn’t see
in the 1-question configuration:

Question: “Does a Simple Player con-

sider whether their opponent is the
dealer?”

Answer: “Do not consider whether they
are the dealer and could gain an addi-
tional trump by picking up the upcard”
Score: 3.73

Again, the QA generated here is by no means se-
mantically perfect. But, it does capture meaningful
content from the project specification. We moved
forward generating 2 questions per context in the
remaining configurations.

4.1.4 Score Threshold

As we mentioned in our Methods section for LLM
#1, we utilized a QA evaluator to numerically score
each of the questions we generated (for semantic
correctness), and sorted them in descending order.
Thus far, we have separated passed/failed questions
with a threshold of 1.5. In this step, we examined
questions with scores surrounding this threshold,
specifically values of 1.5, 2, 2.5, and 3. Ultimately,
we observed several questions with scores in the
high 2s that were still relevant, but felt that a lower
threshold than that was likely to include more bad
questions than good ones. Here’s an example:

Question: “What two players are in the
game?”

Answer: “A simple Al player and a
human-controlled player that reads in-
structions from standard input cin”
Score: 2.72

Ultimately, we moved forward with a score thresh-
old of 2.5 in the remaining configurations.

4.1.5 Model

The model refers to whether QA pairs were gener-
ated with potsawee/t5-large-generation-squad-
QuestionAnswer or iarfmoose/t5-base-
question-generator. So far, all examples we
have observed were generated from the first model.
In running our second model, questions were sig-
nificantly less semantically correct, didn’t take the
form of actual questions, and were long/rambly.
Here’s one such example:

Question: “<pad> True ID: a vector is
added to a card and no member variable
can be used to type it. When using a
const function, sort result in your swap
function showing a weird error.</s>"

Answer: “in Card.hpp. Use the STL to
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sort a vector<Card> hand: Pitfall: Us-
ing sort on a member variable in a const
member function leads to a confusing
error, no matching function for call to
’swap’. Instead, call sort when adding a”
Score: 3.81

Despite somehow having a higher evaluation score
than many of the questions produced by our first
model, because of the significantly lower quality of
the questions produced by this model, we carried
forward with the results of our first model.

4.1.6 Summary

Ultimately, the combination of quantitative and
qualitative metrics used to evaluate the QA pairs
generated by our tested model in this section led us
to the following final parameters:

* Window Step Size = 1

Context Window Size = 70

Number of Questions per Context = 2
Score Threshold = 2.5

Model = potsawee/t5-1arge-generation-
squad-QuestionAnswer

This run resulted in a decent combination of sen-
sible, student-like project questions and some at-
tempted questions which still held room for im-
provement. Regardless, this was the best synthetic
QA data we were able to produce, and what we
carried forward as partial training data for LLM
#2.

42 LLM#2

Our evaluations of LLM #2 serve as answers to the
key questions guiding this project:

1. Can synthetic data serve as credible samples
for effective curation of question answer bots?

2. Is the RAG-based in-context learning ap-
proach effective for answering previously un-
seen questions?

Finally, based on our findings with regards to each
of these questions, we identify what challenges
there are to building a good question-answering
system to replicate 1-1 instructor-student tutoring.

4.2.1 Main Results

The evaluations/comparisons made in the following
sections are an analysis of the data presented in
Table 1.
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BLEU ROUGE-L BERTScore Meteor
zero-shot 0 0.013 0.792 0.002
rag 0.009 0.133 0.801 0.167
rag simulation  0.013 0.128 0.775 0.148

Table 1: Evaluation Results of LLM #2. zero-shot: our
baseline, no additional context given to the model, rag:
our in-context learning approach that uses the synthetic
data as the reference, rag simulation: our in-context
learning apporach that uses the validation data capped
up to the date of the current question as the reference.

Synthetic Data as Credible Samples

The experimental results suggest that synthetic
data generated by LLLM #1 can serve as credible
samples for question-answering tasks. Specifically,
the ‘RAG’ approach, which uses synthetic data as
a reference for in-context learning, achieves sub-
stantial improvements over the ‘zero-shot‘ baseline
(which has no training). For instance, the ROUGE-
L score improves from 0.013 to 0.133, and the
Meteor score increases significantly from 0.002 to
0.167. These improvements indicate that the syn-
thetic data provide valuable contextual information
that aids the model in generating more sensible,
accurate answers. Interestingly, the ‘rag simula-
tion’ approach, which uses validation data (real
Piazza QA) capped to the question date as the refer-
ence, performs slightly worse than ‘rag’ (synthetic
data) in terms of ROUGE-L (0.128 vs. 0.133) and
Meteor (0.148 vs. 0.167). This outcome high-
lights that synthetic data might better align with
the model’s pre-training distribution compared to
real-world validation data, making it easier for the
model to generalize. However, the marginal gap
also suggests that real-world validation data still
plays a vital role as it also still improves on the
zero-shot context.

Effectiveness of RAG-Based In-Context Learn-
ing

The results strongly support the effectiveness
of the RAG-based in-context learning approach
for answering previously unseen questions. When
compared to the ‘zero-shot’ baseline, ‘rag’ demon-
strates significant improvements across all evalua-
tion metrics except for BLEU. Notably, the Meteor
score sees an 83.5% increase from 0.002 to 0.167,
and the ROUGE-L score improves by an order
of magnitude. These gains emphasize the ability
of RAG to leverage context effectively, thereby
bridging the gap between training data and unseen
questions. It is worth noting that the BERTScore
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metric for ‘rag’ (0.801) shows only a marginal im-
provement over the baseline (0.792). This obser-
vation suggests that while RAG aids in structuring
answers more coherently, the semantic similarity
to the ground truth is still limited. This limitation
could arise from inconsistencies in synthetic or
reference data or the inherent complexity of the
domain-specific questions.

4.3 Challenges in Building a
Question-Answering System

Despite the positive results, the study reveals sev-
eral challenges in building an effective question-
answering system:

First, all approaches yield relatively low BLEU
scores, with the highest being 0.013 for ‘rag simu-
lation’. This indicates that lexical overlap between
generated and reference answers remains a signifi-
cant bottleneck. Such low scores highlight the diffi-
culty in achieving exact word-level matches, espe-
cially in domain-specific and highly nuanced ques-
tions. Simultaneously, we acknowledge that lexical
similarity and exact overlaps in words/phrases are
not necessarily the most important metrics when
analyzing answer quality.

Second, the improvement in BERTScore across
approaches is modest, with the highest being 0.801
for ‘rag’. This suggests that while the generated
answers improve in structure, their semantic align-
ment with the ground truth is still limited. A deeper
analysis of the quality of both the synthetic and real
validation data is required to address this issue.

Third, the dependence on synthetic data qual-
ity is evident. The superior performance of ‘rag’
over ‘rag simulation’ indicates that the synthetic
data generated by LLM #1 might better align with
the pre-training distribution of the model, thereby
enabling more effective generalization. This obser-
vation underscores the importance of high-quality
and diverse synthetic data for training robust sys-
tems.

Lastly, the experiments highlight the limita-
tions of in-context learning for complex question-
answering tasks. While RAG significantly outper-
forms the baseline, the absolute metric values re-
main low, suggesting that additional techniques,
such as fine-tuning or enhanced retrieval mecha-
nisms, might be necessary to further improve per-
formance to a deployable level.

4.3.1 Challenges: Evaluation Fairness and
Style Alignment
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*Actual Instructor Answerx*:

If you follow step 1 in @6, instructors
will be able to see your unigname
even

if you post anonymously (i.e., if you
post anonymously other students won'
t

see your unigname). If you want to
understand what you missed on the
private

test cases, I recommend going to
Proffice hours. You can attend any
Proffice

hours even if you don't attend that
Professor's lectures.

*Model Answerx:

It's a good question, and it highlights
a common misconception. While you
can

certainly add getter functions to your
player™ class in ~euchre.cpp”, you

*xshouldn 't*x. Let's break it down:

1. Visibility Within the Class

- Getter functions are intended to
allow clients or other parts of
your code

to safely access an object's
private data.

- By defining a getter function
within your ~player™ class,
are

potentially making the hand data
accessible from anywhere.

you

Figure 4: Example Generated Answer and the Ground
Truth

One possible explanation for the extremely low
scores for all of our approaches might be related
to the fairness of our evaluation metrics and style
alignment. The primary challenge in evaluating
educational QA systems lies in ensuring fairness
and aligning evaluation metrics with the desired
style and intent of responses. Lexical-based met-
rics, such as BLEU and ROUGE, often penalize
responses that diverge in phrasing or structure from
the ground truth, even if the generated answers are
semantically relevant or meaningful. For example,
as shown in Figure 4, the model-generated answer
focuses on coding practices and getter functions,
which is tangential to the actual query about private
tests but may still provide valid insights. However,
such responses are unfairly penalized due to their
deviation from the expected response format. Fur-
thermore, educational contexts often require adher-
ence to an instructive and supportive tone, which
can lead to further mismatches if models produce
technical or overly casual responses. These chal-




lenges underscore the need for evaluation metrics
that balance semantic correctness, relevance, and
stylistic alignment to ensure fair and contextually
appropriate assessments of model performance. Ul-
timately, it is a very complex problem to determine
how to form an evaluation metric that can fairly as-
sess the quality of these kinds of question answers.
To an extent, real instructor answers are highly sub-
jective such that there is no ultimately “correct”
(truth) answer to these kinds of questions. Even
within real instruction, there is a lot of ambigu-
ity in how to balance vagueness in responses with
giving away answers to students, and this issue is
only exacerbated when we try to assign answersxw
numerical scores that assess their quality.

5 Discussion of Results

The results of this project demonstrate both the
promise and the limitations of utilizing synthetic
data and retrieval-augmented generation (RAG)-
based in-context learning for educational QA sys-
tems. Synthetic data generated by LLM #1 proved
to be credible and effective for training purposes, as
evidenced by significant improvements in metrics
such as ROUGE-L and Meteor when compared to
the zero-shot baseline. This highlights the poten-
tial of synthetic QA data to fill gaps in historical
datasets, particularly for new or evolving courses.

However, the study also reveals the inherent chal-
lenges in aligning generated answers with both the
semantic and stylistic expectations of instructional
responses. For instance, while RAG-based methods
significantly improved contextual understanding
and coherence, metrics like BLEU and BERTScore
indicate limitations in achieving precise lexical and
semantic alignment. This is further complicated by
the evaluative metrics themselves, which often pe-
nalize stylistic or structural deviations, even when
the content of the generated answer is relevant and
insightful. The discrepancy between the gener-
ated answers and the ground truth highlights the
need for alternative metrics that account for stylis-
tic alignment and the instructive tone essential in
educational contexts.

Additionally, while synthetic data demonstrated
a closer alignment with the pretraining distribution
of the models, real-world validation data offered
complementary benefits, emphasizing the impor-
tance of a hybrid approach. The reliance on high-
quality synthetic data underscores the necessity of
refining QA generation techniques, including im-
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proved context creation and filtering strategies.

Overall, while RAG-based in-context learning
has shown considerable potential, the relatively low
absolute metric values indicate that further refine-
ments—such as domain-specific fine-tuning, en-
hanced retrieval mechanisms, and the integration of
diverse data sources—are required to build robust
and reliable question-answering systems. These
findings underscore the complexities of creating
Al systems capable of emulating the nuanced re-
sponses of human instructors while providing ac-
tionable insights for future research.

6 Conclusion

This research project explores the potential of
LLMs to improve computer science education. It
shows that while using LLMs to generate prac-
tice questions and offer student support is possible,
there are still obstacles to overcome. Improving the
quality of the synthetically generated data is crucial
for creating a reliable system that can accurately
answer student questions. This involves exploring
better techniques for creating context and retaining
knowledge from previous interactions. The evalu-
ation of the question-answering LLM suggests fu-
ture research in having more accurate benchmarks
for complex question answering systems, and how
LLMSs can align with the actual instructors to give
inspiring yet not explicit answers. These findings
highlight both the promise and the complexities of
integrating LLMs into educational settings.

7 Division of Work

Our team consists of four members. For the actual
implementations of each LLM, we split into two
subteams (one for each LLM). The team members
with teaching experience for EECS 280 were se-
lected to work on LLM #1 while the other team
members worked on LLM #2. The team worked
collaboratively on the project proposal, presenta-
tion, and final paper to ensure all findings were
well represented and to provide complete, insight-
ful final results.

8 Codebase URL

https://github.com/stoneann/
AutoQATrainedLLM/tree/main
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