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Abstract001

With the advent of generative AI as common-002
place to daily-life within the past couple of003
years, there is a strong need for extensive re-004
search as we apply this technology to educa-005
tional contexts. This study supports that body006
of research as we explore two driving questions:007
(1) Can we use LLMs to create synthetic008
student-like question-answer datasets? and009
(2) Can we train an LLM to embody an010
instructor in answering real student ques-011
tions? In this paper, we explore both of these012
questions, grounded by prior works and ap-013
proaches. Ultimately, our findings suggest that014
synthetic QA data can be generated, but still015
requires significant improvement to aptly rep-016
resent the range of questions asked by real stu-017
dents. Additionally, while LLMs can be trained018
to give reasonable answers, the generated re-019
sponses often struggle with alignment to in-020
structional intent and semantic accuracy, requir-021
ing further fine-tuning and advanced evaluation022
frameworks.023

1 Introduction024

The release of ChatGPT in November 2022 brought025

with it a new wave of AI and the potential of its026

applications in all aspects of modern life. It show-027

cased to the public the power of LLMs, and their028

potential to reduce human workloads. Based on029

its extensive and ever growing training data, Chat-030

GPT and other generative AI models can write pa-031

pers, read and understand code, source information032

across the internet to answer niche questions, and033

so much more. Companies tend to hold a shared034

view of AI as a way to optimize their workforce,035

opening greater potential for cost savings. In the036

realm of software development, coders can use037

LLMs to optimize code, debug, write pseudocode038

and boilerplate functions, etc., potentially stream-039

lining and simplifying the development process.040

Depending on the context, these uses are im-041

mensely powerful and time-saving, but with un-042

known effects and unregulated usage also carry 043

strong potential for negative ramifications. The 044

integration of this technology into educational con- 045

texts is naturally a lot more careful and cautious. 046

Instead of accepting AI in full force, education also 047

has to consider problems with students cheating 048

and AI hallucinating as potential threats to learn- 049

ing. Unfortunately, given the opportunity, many 050

students will have the tendency to offload portions 051

of their work to generative models, causing them 052

to miss out on critical learning. Enforcing learning 053

in a world where this technology is readily, openly 054

available is a difficult question, and one that has 055

inspired innumerable research projects in the past 056

couple of years. Instructors are seeking how to 057

safely integrate generative technologies into their 058

curriculum while also GPT-proofing assignments, 059

bringing exams back to being written in-person, 060

and taking a number of other measures to ensure 061

student learning. Ultimately, we see gen-AI as 062

an inevitability; we must turn our focus to improv- 063

ing/structuring interactions such that it can enhance 064

the learning process. 065

As we will touch on in our related works, the 066

accessibility of 1-1 teaching (ie. instructors and 067

course staff) is a weakness of conventional teach- 068

ing environments. As students aren’t able to ask 069

questions of their teachers, they turn to question- 070

answering technologies as an alternative. Unfortu- 071

nately, AI is often not trained to fully understand 072

the context/assignment students are asking about 073

and often yields incorrect or incomplete responses. 074

To some end, this can actually also result in stu- 075

dents garnering incorrect understandings based on 076

their interactions with hallucinative/un-informed 077

AI systems. The accessibility issue is an ongo- 078

ing one, even prior to the advent of generative AI, 079

and brings up an important question: can we fine- 080

tune/train generative AI systems to act like instruc- 081

tors when they aren’t available? Specifically, can 082

we train them to understand the requirements of 083
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specific assignments/projects such that they can084

provide useful feedback without also giving away085

answers to students? Finally, to what extent is prior086

data (rather than synthetic data) necessary to train087

such a system to sensibly answer real student ques-088

tions?089

Answering these questions is complex. In090

this paper, we explore how well modern general-091

purpose fine-tuned LLMs can generate synthetic092

QA data; how well can they generate the kinds of093

questions we expect from students with regard to a094

project specification? Next, we compare the use of095

this synthetic data with real student QA to train a096

model to answer student questions how instructors097

would. To contextualize the importance of the syn-098

thetic data, we acknowledge that new courses have099

non-existent prior student data, and even existing100

courses may have gaps in datasets. So, we will101

examine both the process of generating synthetic102

QA data and using that data to inform a model in103

answering student questions.104

2 Related Works105

There are a number of related, but fundamentally106

different works that inspired our pursuit of this107

project. To contextualize these works, we note108

that the progress of LLMs in the past five years109

has been especially significant. Integrating these110

technologies into educational contexts holds much111

promise, but also has to be done carefully. Edu-112

cational research has been around for a long time;113

a hallmark of this space comes from Bloom’s 2114

Sigma Challenge, published in 1984 (BLOOM,115

1984).

Figure 1: Curves comparing scores for students in varied
learning environments.

116
Figure 1, pulled from this study, highlights the117

differences between conventional (1-30) teaching118

environments, personalized (1-1) tutoring settings, 119

and enhanced (1-30) “mastery learning” settings. 120

As expected, average student performance is the 121

highest in 1-1 tutoring settings; while such teach- 122

ing settings are most desirable, they are also highly 123

impractical and expensive. Mastery learning serves 124

as a generalization for settings in which students re- 125

ceive a sense of personalized learning, often aided 126

by technology (ie. cognitive tutors) in an otherwise 127

conventional (1-30) teaching setting. There are a 128

number of technologies that have been developed 129

in support of mastery learning, and in our paper 130

we discuss those related to answering student ques- 131

tions through formal course forums (ie. Piazza). 132

In our paper, we turn to Question-Answer gen- 133

erative systems. While round-the-clock instructor 134

QA is the most desirable scenario, this is again far 135

too expensive to be practical. Instead, we aim to 136

observe to what extent generative language mod- 137

els can support course instructors in correctly an- 138

swering student questions. While some courses 139

are likely to have extensive prior data (from past 140

semesters), we further seek to answer the question 141

if synthetic data, QA generated by an LLM based 142

on extracting data from an assignment specifica- 143

tion, would provide sufficient training for such a 144

model? 145

Prior work has explored QA generation in a num- 146

ber of ways. First Basu et al. aims to reduce work- 147

load for instructors by generating multiple choice 148

questions from text inputs. Next, Riza et al. looks 149

at generating reading comprehension based short- 150

answer questions via KNN techniques. Finally, Vi- 151

rani et al. looks at how QA generation systems can 152

be designed to support generation of a variety of 153

question types. Ultimately, our work differentiates 154

itself in two ways. First, we narrow the problem 155

scope to the context of Computer Science education 156

as we will seek to analyze synthesis of questions 157

from coding project specifications; can we train an 158

LLM to generate a range of sensible questions for 159

a CS assignment based on its specification? Sec- 160

ondly, we want to look at using generated QA as 161

synthetic training data for a final student-question 162

answering LLM; can synthetic QA train a system to 163

answer real student questions with high accuracy? 164

Ultimately, the prior work we have touched on so 165

far highlights how our project fits into the broader 166

space of QA generation for educational purposes. 167

Another interestingly related work is the 168

CodeAid system produced by Kazemitabaar et al. 169

which offers as a custom “coding assistant” as a 170
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direct alternative to larger-purpose LLMs (ie. chat-171

GPT) that helps students learn to code with strictly172

no-code responses. Their approach focuses more173

on few-shot learning in prompt engineering for174

OpenAI API calls rather than training/fine-tuning175

an LLM, and focuses more on the usefulness of176

an LLM answering coding-specific questions (ie.177

fixing, writing, and understanding code). In con-178

trast, our project aims to build two models working179

in tandem: one that can generate synthetic stu-180

dent QA data, and another that can answer hyper-181

specific project/assignment-based questions. While182

this work provides a vastly different approach, it183

does address a problem similar to the broader one184

(around-the-clock support for student questions)185

we are exploring in this paper.186

Next, we will turn to some of the research that187

informed our technical approach to this project.188

Majority of the works we’ve mentioned utilize a189

T5 model as a baseline encoder-decoder tool; we do190

the same in building our LMs (Raffel et al., 2023).191

SQuAD (Stanford Question Answering Dataset) is192

a very popular QA dataset used across works in193

the space, and consists of a combination of answer-194

able and unanswerable questions (Rajpurkar et al.,195

2018). For example, one of the T5 models we use196

to generate our synthetic QA data has been fine-197

tuned extensively on SQuAD (Manakul et al., 2023).198

The other model we use fine-tunes on SQuAD as199

well as CoQA and MSMARCO, two other large general-200

purpose QA datasets (Reddy et al., 2019; Bajaj201

et al., 2018). The SQuAD dataset is sourced from202

Wikipedia articles, CoQA has a focus on conversa-203

tional QA, and MSMARCO is sourced from questions204

asked on Bing, such that the data from each of205

these datasets is expectedly quite different from206

the types of questions CS students may be asking207

about project specifications. In an ideal world, we208

would be able to use a model that has been fine-209

tuned on coding-related questions. Regardless the210

SQuAD (and other large dataset) fine-tuning aids211

the baseline T5 models in generating more sensible212

synthetic QA.213

A significant problem in the realm of genera-214

tive AI is model hallucination. Specifically in the215

QA space, large LLMs have been trained on a lot216

of information, and have the tendency to carry an-217

swers beyond the scope of the question being asked.218

Simultaneously, fine-tuning a model to concepts219

within a limited domain is a challenging, resource-220

intensive process. Retrieval Augmented Genera-221

tion (RAG) is a popular technique for combating222

these issues by basing model responses in a set 223

knowledge base (Meyur et al., 2024; Barron et al., 224

2024). In our final question answering model we at- 225

tempt a model configuration that emphasizes RAG 226

techniques, utilizing a combination of synthetic 227

and existing CS QA data to ground the model. 228

For evaluation, we utilized a combination of met- 229

rics to capture different aspects of quality in natu- 230

ral language generation. BERTScore (Zhang et al., 231

2020) assesses semantic similarity using contextual 232

embeddings from pre-trained transformers, offer- 233

ing a nuanced understanding beyond token-level 234

overlap. BLEU (Post, 2018), a standard metric for 235

machine translation, measures n-gram overlap to 236

evaluate lexical precision, while METEOR (Baner- 237

jee and Lavie, 2005) accounts for linguistic vari- 238

ations such as stemming and synonymy, aligning 239

more closely with human judgment. ROUGE-L 240

(Lin, 2004) evaluates the longest common sub- 241

sequence between generated and reference texts, 242

emphasizing fluency and recall. Together, these 243

metrics provide a comprehensive evaluation frame- 244

work, balancing semantic, lexical, and structural 245

quality. 246

3 Implementation 247

As we have introduced, our project seeks to answer 248

two key research questions: 249

1. Can synthetically made datasets effectively 250

train LLMs? 251

2. Can an LLM be trained to answer real student 252

questions like an instructor? 253

In order to answer these questions, we devised a re- 254

search project that uses two LLMs. The first LLM 255

takes in a project or assignment specification and 256

outputs a set of corresponding question and answer 257

pairs. The second LLM utilizes the synthetic data 258

(question-answer pairs) generated by the first LLM 259

as training data to ultimately take real student ques- 260

tions as input and output instructor-like responses. 261

Throughout our report, we will divide analysis into 262

two, corresponding to each of these two LLMs. 263

3.1 LLM #1 264

Curating the first LLM had three core steps: 265

1. Generate Question Contexts 266

2. Generate Question/Answer (QA) Pairs 267

3. Evaluate the Question/Answer (QA) Pairs 268

3

https://rajpurkar.github.io/SQuAD-explorer/
https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer
https://huggingface.co/iarfmoose/t5-base-question-generator
https://stanfordnlp.github.io/coqa/
https://microsoft.github.io/msmarco/


3.1.1 Input Data269

We selected the University of Michigan EECS 280270

Project 3 spec as our input for this LLM due to271

our access to real student Piazza question-answer272

data. Additionally, our familiarity with the project273

enabled a level of manual analysis of the quality of274

generated questions and answers.275

3.1.2 Generate Question Contexts276

Upon first examination of the EECS 280 P3 (Eu-277

chre) specification, we had to consider how best278

to consolidate the combination of code snippets,279

images, tables, and raw textual paragraphs into a280

format that would be readable by a model. While281

the visual aspects of a specification are certainly282

important and insightful, we opted to extract just283

the text from the project assignments. Future work284

might attempt to better integrate different informa-285

tion formats into model inputs.286

After paring specifications down to just the text,287

we moved on to consideration of how much infor-288

mation to give the model at a time. A question289

context is a snippet of a larger project specification290

or assignment. The pre-existing models we use in291

this project require contexts as input to generate292

QA pairs. Further, context sizes are limited; we293

cannot pass an entire specification into a model and294

ask it to generate questions (this is too large), nor295

would we want to if we could (questions would296

likely be too generic). Instead, we have to feed the297

model chunks at a time and ask it to generate QA298

pairs for each context.299

Our initial approach to this problem was splitting300

an assignment by sentences and/or paragraphs. In-301

tuitively, this would be a natural way to break apart302

text, and would ensure that each context passed to303

the model was as sensible as possible. Unfortu-304

nately, this approach introduced several complexi-305

ties. Sometimes ideas are split between sentences306

and/or paragraphs wherein creating a good context307

for good, fully-informed questions would require308

including multiple sentences in a single context.309

However, the presence of long sentences, sentence310

groupings or paragraphs introduces the issue of311

how they should be split when they are too long.312

Should sentences be split in half? Should splits be313

included with the previous or next context? Should314

long sentences be moved to their own context al-315

together? Unfortunately, it doesn’t feel as though316

there is a singular correct answer to this question;317

the answer is context dependent and we would have318

to opt for a solution that is good enough for the319

general case. Again, future work might seek to 320

use a more sophisticated approach for context cre- 321

ation; deeming which sentences should be grouped 322

together, and which could be separated, whilst con- 323

sidering the size limitations of a context. 324

Instead, we opted for a slightly different ap- 325

proach: splitting our specification with a sliding 326

window algorithm. We converted our specifica-

Figure 2: Visualization of sliding window algorithm
concept.

327
tion into an array of words and used a fixed window 328

and fixed sliding interval. Starting from the begin- 329

ning of the assignment, we insert the first <win- 330

dow_size> words into a single context. Then, the 331

window shifts by the sliding interval to generate 332

a new context, and so on through the remainder 333

of the document. Figure 2 below gives a visual 334

representation of this algorithm. The downfall of 335

this approach is the lack of intentionality in en- 336

suring particular words/sentences/paragraphs stay 337

together. But, the upsides are that we don’t have 338

to try to decide which window/context a given set 339

of words is included with, as all text gets included 340

in multiple contexts. This also provides us with a 341

fixed/set context size, and addresses all the ambi- 342

guities/complexities we discussed in a sentence/- 343

paragraph splitting approach. 344

3.1.3 Generate Question/Answer (QA) Pairs 345

For generating our QA pairs, we tested two models 346

identified in prior works: 347

• potsawee/t5-large-generation-squad- 348

QuestionAnswer 349

• iarfmoose/t5-base-question-generator 350

The first model we tested was potsawee/t5- 351

large-generation-squad-QuestionAnswer. 352

The input and output format for this model is 353

included below. Note: <sep> serves as a separator 354

token. 355

Input: context 356

Output: question <sep> answer 357
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We did most of our parameter fine-tuning on this358

model; we discuss our results more extensively359

in the Evaluation section of the report, but we360

used this model to identify the best combination of361

hyper-parameters which we then carried on when362

evaluating the second model.363

The second model evaluated was the364

iarfmoose/t5-base-question-generator.365

Again, the input and output format for this model366

is described below.367

Input: <answer> answer <context> con-368

text369

Output: questions370

The difference in input and output formats371

between these two models is quite significant.372

Namely, the first model only requires a context373

and actually produces a QA pair while the second374

model requires a context and answer and aims to375

produce a corresponding question. For the second376

model, its documentation specifies that for short377

answer questions the context could also be passed378

as the answer. Since we limit our input for this379

model to just the project specification (and don’t380

have answers readily available, nor would we ex-381

pect this of new courses), we opt for this approach.382

As we will discuss later, we hypothesize that the383

quality of this second model performed worse than384

the first partly because of this limitations; our con-385

texts weren’t exactly answers (they just contained386

answers), meaning the model sought to curate ques-387

tions based on strangely formatted “answers”. For388

both models, we generated multiple questions per389

context. This was a parameter that we varied to390

find the best results.391

3.1.4 Evaluate the Question/Answer (QA)392

Pairs393

The final step for LLM #1 is to evaluate the quality394

of the QA pairs generated by each model. We uti-395

lized a combination of quantitative and qualitative396

methods to do so:397

• Quantitative:398

iarfmoose/bert-base-cased-qa-evaluator399

numerical scoring400

• Qualitative: manual evaluation401

The first method we applied was an402

evaluator LLM provided by HuggingFace:403

iarfmoose/bert-base-cased-qa-evaluator.404

The evaluator accepts QA pairs and outputs405

their corresponding “scores” wherein higher 406

scores are indicative of “better” QA pairs. A 407

known/acknowledged limitation of this model 408

is that it only evaluates QA pairs based on “if 409

they are semantically related,” and not on the 410

validity/correctness of the information nor the 411

relevance of the question. Because of the sheer 412

volume of questions generated we used the 413

evaluator to set a threshold score of questions 414

that “passed” and those that “failed”; questions 415

below a set score threshold were deemed “failed.” 416

Moreover, we hoped that sorting questions by 417

score would provide some semblance of a ranking 418

of the “best” and “worst” questions generated so 419

manual evaluation would be slightly easier. 420

While we could utilize the evaluator for high- 421

level semantic assessments of the generated QA 422

pairs, we determined that manual inspection was 423

the best way to assess their quality. For this, we 424

randomly inspected questions from both passed/- 425

failed datasets (for each model configuration) to 426

validate accuracy and analyze the quality of gener- 427

ated QAs. This process allowed us to determine our 428

optimal set of hyper-parameters as well as which 429

model produced stronger QA pairs. We needed our 430

evaluators to have a strong understanding of the 431

project specification used as input for this evalu- 432

ation to be effective. Two of our group members 433

are veteran EECS 280 GSIs which we felt to be apt 434

experience in comparing the questions generated 435

by these models to those they would field in their 436

instruction while helping students in OH and on 437

Piazza for this project. 438

3.2 LLM #2 439

In this task, we explored approaches to develop 440

a question-answering system tailored for a course 441

with limited (or non-existent) historical Piazza data. 442

The system aims to take a question as input and 443

generate an answer in the style of course instructors. 444

To achieve this, we harness the question-answering 445

capabilities of large language models (LLMs) and 446

experiment with various prompting techniques to 447

address two key research questions: 448

1. Is synthetic data generated by our first LLM 449

sufficiently reliable as a reference for building 450

a generative QA system? 451

2. What challenges arise in building a system 452

that can fully replicate a course instructor’s 453

question response style? 454
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3.2.1 Experimental Setup455

Our experiments are run on a server from456

Chameleon Cloud’s TACC cluster, running Ubuntu457

22.04, equipped with 2 AMD EPYC 7763 64-Core458

CPUs, 252 GB RAM, and a single NVIDIA A100459

40GB GPU. The experiments were ran on torch460

2.5.1, transformers 4.46.0.461

3.2.2 Models462

To evaluate different approaches fairly and consis-463

tently, while keeping the computing budget afford-464

able, we use the google/gemma-2-2b-it variant465

of Gemma (Team et al., 2024b), a lightweight, state-466

of-the-art open model that can be viewed as the467

open source version of the Google Gemini (Team468

et al., 2024a). For generation of the question em-469

beddings, we use the all-MiniLM-L6-v2 model.470

3.2.3 Datasets471

We collected 4468 question-and-answer pairs on472

EECS280’s Piazza Forum. Each pair contains473

1. Question Subject: A student-written title for474

the question.475

2. Question Body: The content of the student476

question submitted.477

3. Instructor Answer: An official instructor re-478

sponse to the question asked.479

4. (Optional) Student Follow-ups: Back-and-480

forth discourse in response to the instructor481

answer, if present.482

The question subject and body are concatenated to483

form what we consider the “final question,” while484

the instructor answer and follow-ups are concate-485

nated to form what we consider the “ground truth486

answer.” These real student questions and instruc-487

tor answer pairs form our validation data. In ad-488

dition, we use synthetic data generated during the489

optimal run of LLM #1 as QA pairs for training.490

3.2.4 Methodology491

To address the challenges of building a course-492

specific question-answering system with limited493

historical Piazza data, we employed two comple-494

mentary methodologies:495

• Zero-shot Question Answering496

• Few-shot In-context Learning (RAG) Ques-497

tion Answering498

Both approaches leverage the inherent capabilities 499

of large language models (LLMs) to generate and 500

refine responses tailored to the course’s style and 501

requirements. 502

503

Zero-Shot 504

In this approach, we directly input course- 505

specific questions into an LLM without providing 506

additional contextual examples. The synthetic 507

data generated by our first LLM, and any other 508

collected QA data are not used. The purpose 509

of a zero-shot approach is to test the inherent 510

knowledge of the LLM; how well can it naturally 511

generate relevant, contextually appropriate answers 512

to student questions based solely on its pre-trained 513

abilities? We analyze an LLMs raw capacity 514

to respond like real instructors without any 515

supplemental or context-specific training. Because 516

collecting existing data is not always possible, and 517

generating synthetic data can be expensive, we 518

want to observe the quality of responses when 519

not informed by data. Finally, the results of this 520

approach serve as a sort of baseline for how much 521

and in what ways other techniques we apply 522

improve generated responses. 523

524

Few-Shot In-Context 525

With this approach, we supply the LLM with a 526

small number of QA pairs that are representative 527

of the types of questions it should expect to receive 528

and the corresponding types of answers we want 529

it to generate. We do this prior to “asking” our 530

LLM any question, and select the examples as a 531

combination of synthetic data (collected from LLM 532

#1) and validation data (from EECS 280 Piazza). 533

The aim of this approach is to evaluate how much 534

our model can be improved by providing it with 535

examples. Is it better able to answer questions with 536

an instructional tone, in the style of course instruc- 537

tors? Do examples enhance the factual relevance 538

of responses? 539

3.2.5 Evaluation 540

In order to evaluate the results of this LLM, that re- 541

quires comparing responses against a ground truth 542

(actual instructor responses), to assess accuracy, 543

relevance, and stylistic alignment. More broadly, 544

we want to examine: 545

• Are generated answers semantically correct? 546

• Do generated answers align with expected in- 547

structor responses? 548
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While semantic correctness is a relatively obvious549

need, recall that instructor answers have their550

own stylistic/conceptual/structural tendencies as551

a means of best enabling learning for students.552

For example, we would expect instructors not553

to readily give away answers, but rather lead554

students towards a better way to think about and/or555

approach problems. They may list steps or hints556

that help the student explore and discover the557

answer on their own. For these reasons (as with558

LLM #1) we apply a combination of quantitative559

evaluation through automated text-similarity based560

metrics, and qualitative evaluation through manual561

human inspection. Here, we discuss the three562

automated metrics we utilized as well as how we563

went about manual evaluation.564

565

Quantitative Metric #1: BLEU and ROUGE566

These metrics measure the overlap between the567

generated answers and the ground truth at the word568

and phrase levels, providing insights into lexical569

and structural similarities.570

571

Quantitative Metric #2: BERTScore572

This metric evaluates semantic similarity by573

computing embeddings of the generated and574

reference answers, offering a deeper understanding575

of how well the generated responses capture the576

meaning and intent of the instructor’s answers.577

578

Quantitative Metric #3: Meteor579

Meteor extends traditional n-gram-based580

evaluation metrics by incorporating more advanced581

linguistic matching techniques. It calculates582

similarity between generated and reference583

texts by considering synonyms, stemming, and584

paraphrasing, thus providing a more nuanced585

assessment of translation and text generation586

quality beyond exact word matching.587

588

Qualitative Metric: Human Evaluation589

We employ a comprehensive human review pro-590

cess to assess the quality of generated responses.591

We evaluate a subset of answers across three critical592

dimensions:593

• Style and tone matching instructional ap-594

proach595

• Factual accuracy aligned with course content596

• Clarity in addressing specific questions597

When significant deviations are identified, we 598

conduct a systematic error analysis to uncover 599

potential issues such as question misinterpretation, 600

training data limitations, or response overgeneral- 601

ization. 602

603

By combining these evaluation methods, we aim 604

to gain a holistic understanding of LLM #2’s perfor- 605

mance, identify its strengths and limitations, and 606

inform future improvements to better align with 607

course instructor expectations. 608

3.3 Implementation of the In-Context 609

Learning Approach 610

To enable our LLM to better answer student ques- 611

tions, we feed it sample QA pairs. The intuitions 612

here are that (1) real student questions pulled from 613

Piazza may show underlying patterns over time, 614

and (2) the existing answers can act as "role mod- 615

els" from whom LLMs can learn about the appropri- 616

ate tone and explicitness. The specific implemen- 617

tation is shown in Figure 3, on the following page. 618

We first apply the all-MiniLM-L6-v2 to generate 619

embeddings for the questions. It maps sentences 620

to a 384 dimensional dense vector space and can 621

be used for tasks like clustering or semantic search. 622

When answering new questions, the embedding 623

of the new question will be used to search in the 624

embedding space for which questions are similar 625

to this one. We fetch the top-k similar question 626

answer pairs and use them to construct the final 627

prompt to the system. Finally, the system generates 628

the answer for the new question. 629

4 Evaluation 630

4.1 LLM #1 631

For our first LLM, we ran a total of 13 632

different configurations (via altering hyper- 633

parameters and models). The first 12 configu- 634

rations were all performed with our first model 635

(potsawee/t5-large-generation-squad- 636

QuestionAnswer) and the final configuration was 637

performed using the optimal hyper parameters 638

identified for the first model on our second one 639

(iarfmoose/t5-base-question-generator). In 640

the following section, we will discuss the options 641

we considered and decisions we made in selecting 642

values for each hyper parameter, supported by QA 643

examples. The approach we took in testing hyper 644

parameters was first setting each of them to a sensi- 645

ble default value. We then progress through the list, 646

7

https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer
https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer
https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer
https://huggingface.co/iarfmoose/t5-base-question-generator


Prompt Construction

LLM

Similar Question 
Retrieval

Question

Similar 
Question 3

Similar 
Question 2

Similar
Question 1 Answer

Answer

Answer

…

Historical Samples

Instruction

Example #1

Example #3

Example #2

New Question

Vector Databases

Answer

Figure 3: Workflow of In-Context Learning Approach for Question Answering

modifying one at a time, determining the optimal647

value for that parameter and then holding it at that648

value for the remainder of our configurations. First,649

here’s a list of of the parameters we varied:650

• Window Step Size651

• Context Window Size652

• Number of Questions per Context653

• Score Threshold654

• Model655

4.1.1 Window Step Size656

The window step size refers to how much our con-657

text window was shifted forward in the input text658

between each iteration (context generated). The659

essence of this parameter is balancing a step size660

that is too small wherein QA generated across dif-661

ferent contexts are overly redundant, against one662

that is too large wherein information does not get663

properly represented by any of the contexts it is664

included in.665

For the larger window step sizes (5, 10), it felt666

like questions either (a) didn’t have enough con-667

text and/or (b) were missing relevant context such668

that both passed and failed questions weren’t super669

sensible. We noticed several questions that were670

actually just sentences, sometimes pulled from the671

specification. For a window step size of 1, we672

saw noticeably better performance; questions made673

more sense, but were slightly more redundant. The674

contrast between some of the top-scored QA pairs675

for a larger vs. smaller window step size was quite 676

apparent. 677

The top scoring QA pair and score for a window 678

size of 10 was: 679

Question: “Why might your code be eas- 680

ier to test and debug?” 681

Answer: “May make for easier testing 682

and debugging” 683

Score: 3.76 684

The top scoring QA pair and score for a window 685

size of 1 was: 686

Question: “What does a user enter in 687

order to discard a card?” 688

Answer: “The user will then enter the 689

number corresponding to the card they 690

want to discard” 691

Score: 3.79 692

While the questions produced by all configura- 693

tions had some weaknesses, the one utilizing a win- 694

dow size of 1 was remarkably better. This was con- 695

sistent throughout the QA pairs for these configura- 696

tions. Not only were questions more grammatically 697

correct, they also made more sense, had better cov- 698

erage of information contained in the assignment, 699

and were more similar to the types of questions 700

we would expect from real students. From these 701

observations, we moved forward with a window 702

step size of 1 for the remaining configurations. 703

4.1.2 Context Window Size 704

The context window size refers to how much text 705

(how large a context) we opted to send to the gen- 706
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erative QA model. This parameter aids in the pro-707

cesses of determining the optimal way to send con-708

texts to our model within a sliding window ap-709

proach. Specifically, it balances a context win-710

dow that is too small wherein contexts cannot hold711

enough information to construct sensible questions712

despite a small window step size, against a win-713

dow that is too large wherein the model fails to714

understand contexts in a modular way.715

For smaller context windows (40, 50, 60), the716

QA pairs produced were not noticeably different717

in any meaningful way. A context window size718

of 70 produced some really good questions, but719

definitely still produced questions that don’t make720

sense and are slightly repetitive. For the largest721

window size (100), there wasn’t a huge qualitative722

difference in the questions generated (compared to723

70). It seems that at a certain point, expanding the724

window size doesn’t improve question quality but725

limits the diversity of questions asked.726

While we observed that expanding the window727

size did have a positive effect on the quality of QA728

pairs produced by the model, varying this param-729

eter also demonstrated the limitations of having a730

model that cannot hold onto the knowledge con-731

veyed in neighboring contexts. Regardless, we saw732

that smaller context window sizes limited the sen-733

sibility of questions generated while context win-734

dows that are too large cause the model to be too735

unfocused. For these reasons, we moved forward736

with a context window size of 70 in the remaining737

configurations.738

4.1.3 Number of Questions per Context739

The models we used allows for multiple QA pairs740

to be generated for each context sent to the model,741

so this variable specifies that value. This parameter742

balances generating too few QA pairs per context743

where the model fails to generate questions cover-744

ing the entire context space, against too many QA745

pairs per context where questions become overly re-746

dundant. We tested generating 1, 2, and 4 questions747

per context. There was already some redundancy748

in questions in prior configurations, and the 4 QA749

pair generation configuration aligned with this ob-750

servation as it failed to produce questions that were751

noticeably unique. At the same time, we did notice752

some of the QA pairs generated by the 2-question753

configuration were meaningfully unique. For ex-754

ample, here’s a student-like question we didn’t see755

in the 1-question configuration:756

Question: “Does a Simple Player con-757

sider whether their opponent is the 758

dealer?” 759

Answer: “Do not consider whether they 760

are the dealer and could gain an addi- 761

tional trump by picking up the upcard” 762

Score: 3.73 763

Again, the QA generated here is by no means se- 764

mantically perfect. But, it does capture meaningful 765

content from the project specification. We moved 766

forward generating 2 questions per context in the 767

remaining configurations. 768

4.1.4 Score Threshold 769

As we mentioned in our Methods section for LLM 770

#1, we utilized a QA evaluator to numerically score 771

each of the questions we generated (for semantic 772

correctness), and sorted them in descending order. 773

Thus far, we have separated passed/failed questions 774

with a threshold of 1.5. In this step, we examined 775

questions with scores surrounding this threshold, 776

specifically values of 1.5, 2, 2.5, and 3. Ultimately, 777

we observed several questions with scores in the 778

high 2s that were still relevant, but felt that a lower 779

threshold than that was likely to include more bad 780

questions than good ones. Here’s an example: 781

Question: “What two players are in the 782

game?” 783

Answer: “A simple AI player and a 784

human-controlled player that reads in- 785

structions from standard input cin” 786

Score: 2.72 787

Ultimately, we moved forward with a score thresh- 788

old of 2.5 in the remaining configurations. 789

4.1.5 Model 790

The model refers to whether QA pairs were gener- 791

ated with potsawee/t5-large-generation-squad- 792

QuestionAnswer or iarfmoose/t5-base- 793

question-generator. So far, all examples we 794

have observed were generated from the first model. 795

In running our second model, questions were sig- 796

nificantly less semantically correct, didn’t take the 797

form of actual questions, and were long/rambly. 798

Here’s one such example: 799

Question: “<pad> True ID: a vector is 800

added to a card and no member variable 801

can be used to type it. When using a 802

const function, sort result in your swap 803

function showing a weird error.</s>” 804

Answer: “in Card.hpp. Use the STL to 805
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sort a vector<Card> hand: Pitfall: Us-806

ing sort on a member variable in a const807

member function leads to a confusing808

error, no matching function for call to809

’swap’. Instead, call sort when adding a”810

Score: 3.81811

Despite somehow having a higher evaluation score812

than many of the questions produced by our first813

model, because of the significantly lower quality of814

the questions produced by this model, we carried815

forward with the results of our first model.816

4.1.6 Summary817

Ultimately, the combination of quantitative and818

qualitative metrics used to evaluate the QA pairs819

generated by our tested model in this section led us820

to the following final parameters:821

• Window Step Size = 1822

• Context Window Size = 70823

• Number of Questions per Context = 2824

• Score Threshold = 2.5825

• Model = potsawee/t5-large-generation-826

squad-QuestionAnswer827

This run resulted in a decent combination of sen-828

sible, student-like project questions and some at-829

tempted questions which still held room for im-830

provement. Regardless, this was the best synthetic831

QA data we were able to produce, and what we832

carried forward as partial training data for LLM833

#2.834

4.2 LLM #2835

Our evaluations of LLM #2 serve as answers to the836

key questions guiding this project:837

1. Can synthetic data serve as credible samples838

for effective curation of question answer bots?839

2. Is the RAG-based in-context learning ap-840

proach effective for answering previously un-841

seen questions?842

Finally, based on our findings with regards to each843

of these questions, we identify what challenges844

there are to building a good question-answering845

system to replicate 1-1 instructor-student tutoring.846

4.2.1 Main Results847

The evaluations/comparisons made in the following848

sections are an analysis of the data presented in849

Table 1.850

BLEU ROUGE-L BERTScore Meteor

zero-shot 0 0.013 0.792 0.002
rag 0.009 0.133 0.801 0.167
rag simulation 0.013 0.128 0.775 0.148

Table 1: Evaluation Results of LLM #2. zero-shot: our
baseline, no additional context given to the model, rag:
our in-context learning approach that uses the synthetic
data as the reference, rag simulation: our in-context
learning apporach that uses the validation data capped
up to the date of the current question as the reference.

Synthetic Data as Credible Samples 851

The experimental results suggest that synthetic 852

data generated by LLM #1 can serve as credible 853

samples for question-answering tasks. Specifically, 854

the ‘RAG’ approach, which uses synthetic data as 855

a reference for in-context learning, achieves sub- 856

stantial improvements over the ‘zero-shot‘ baseline 857

(which has no training). For instance, the ROUGE- 858

L score improves from 0.013 to 0.133, and the 859

Meteor score increases significantly from 0.002 to 860

0.167. These improvements indicate that the syn- 861

thetic data provide valuable contextual information 862

that aids the model in generating more sensible, 863

accurate answers. Interestingly, the ‘rag simula- 864

tion’ approach, which uses validation data (real 865

Piazza QA) capped to the question date as the refer- 866

ence, performs slightly worse than ‘rag’ (synthetic 867

data) in terms of ROUGE-L (0.128 vs. 0.133) and 868

Meteor (0.148 vs. 0.167). This outcome high- 869

lights that synthetic data might better align with 870

the model’s pre-training distribution compared to 871

real-world validation data, making it easier for the 872

model to generalize. However, the marginal gap 873

also suggests that real-world validation data still 874

plays a vital role as it also still improves on the 875

zero-shot context. 876

Effectiveness of RAG-Based In-Context Learn- 877

ing 878

The results strongly support the effectiveness 879

of the RAG-based in-context learning approach 880

for answering previously unseen questions. When 881

compared to the ‘zero-shot’ baseline, ‘rag’ demon- 882

strates significant improvements across all evalua- 883

tion metrics except for BLEU. Notably, the Meteor 884

score sees an 83.5% increase from 0.002 to 0.167, 885

and the ROUGE-L score improves by an order 886

of magnitude. These gains emphasize the ability 887

of RAG to leverage context effectively, thereby 888

bridging the gap between training data and unseen 889

questions. It is worth noting that the BERTScore 890
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metric for ‘rag’ (0.801) shows only a marginal im-891

provement over the baseline (0.792). This obser-892

vation suggests that while RAG aids in structuring893

answers more coherently, the semantic similarity894

to the ground truth is still limited. This limitation895

could arise from inconsistencies in synthetic or896

reference data or the inherent complexity of the897

domain-specific questions.898

4.3 Challenges in Building a899

Question-Answering System900

Despite the positive results, the study reveals sev-901

eral challenges in building an effective question-902

answering system:903

First, all approaches yield relatively low BLEU904

scores, with the highest being 0.013 for ‘rag simu-905

lation’. This indicates that lexical overlap between906

generated and reference answers remains a signifi-907

cant bottleneck. Such low scores highlight the diffi-908

culty in achieving exact word-level matches, espe-909

cially in domain-specific and highly nuanced ques-910

tions. Simultaneously, we acknowledge that lexical911

similarity and exact overlaps in words/phrases are912

not necessarily the most important metrics when913

analyzing answer quality.914

Second, the improvement in BERTScore across915

approaches is modest, with the highest being 0.801916

for ‘rag’. This suggests that while the generated917

answers improve in structure, their semantic align-918

ment with the ground truth is still limited. A deeper919

analysis of the quality of both the synthetic and real920

validation data is required to address this issue.921

Third, the dependence on synthetic data qual-922

ity is evident. The superior performance of ‘rag’923

over ‘rag simulation’ indicates that the synthetic924

data generated by LLM #1 might better align with925

the pre-training distribution of the model, thereby926

enabling more effective generalization. This obser-927

vation underscores the importance of high-quality928

and diverse synthetic data for training robust sys-929

tems.930

Lastly, the experiments highlight the limita-931

tions of in-context learning for complex question-932

answering tasks. While RAG significantly outper-933

forms the baseline, the absolute metric values re-934

main low, suggesting that additional techniques,935

such as fine-tuning or enhanced retrieval mecha-936

nisms, might be necessary to further improve per-937

formance to a deployable level.938

4.3.1 Challenges: Evaluation Fairness and939

Style Alignment940

*Actual Instructor Answer *:
If you follow step 1 in @6, instructors

will be able to see your uniqname
even

if you post anonymously (i.e., if you
post anonymously other students won '
t

see your uniqname). If you want to
understand what you missed on the
private

test cases , I recommend going to
Proffice hours. You can attend any
Proffice

hours even if you don 't attend that
Professor 's lectures.

*Model Answer *:
It 's a good question , and it highlights

a common misconception. While you
can

certainly add getter functions to your `
player ` class in `euchre.cpp `, you

**shouldn 't**. Let 's break it down:

1. Visibility Within the Class
- Getter functions are intended to

allow clients or other parts of
your code

to safely access an object 's
private data.

- By defining a getter function
within your `player ` class , you
are

potentially making the hand data
accessible from anywhere.

Figure 4: Example Generated Answer and the Ground
Truth

One possible explanation for the extremely low 941

scores for all of our approaches might be related 942

to the fairness of our evaluation metrics and style 943

alignment. The primary challenge in evaluating 944

educational QA systems lies in ensuring fairness 945

and aligning evaluation metrics with the desired 946

style and intent of responses. Lexical-based met- 947

rics, such as BLEU and ROUGE, often penalize 948

responses that diverge in phrasing or structure from 949

the ground truth, even if the generated answers are 950

semantically relevant or meaningful. For example, 951

as shown in Figure 4, the model-generated answer 952

focuses on coding practices and getter functions, 953

which is tangential to the actual query about private 954

tests but may still provide valid insights. However, 955

such responses are unfairly penalized due to their 956

deviation from the expected response format. Fur- 957

thermore, educational contexts often require adher- 958

ence to an instructive and supportive tone, which 959

can lead to further mismatches if models produce 960

technical or overly casual responses. These chal- 961

11



lenges underscore the need for evaluation metrics962

that balance semantic correctness, relevance, and963

stylistic alignment to ensure fair and contextually964

appropriate assessments of model performance. Ul-965

timately, it is a very complex problem to determine966

how to form an evaluation metric that can fairly as-967

sess the quality of these kinds of question answers.968

To an extent, real instructor answers are highly sub-969

jective such that there is no ultimately “correct”970

(truth) answer to these kinds of questions. Even971

within real instruction, there is a lot of ambigu-972

ity in how to balance vagueness in responses with973

giving away answers to students, and this issue is974

only exacerbated when we try to assign answersxw975

numerical scores that assess their quality.976

5 Discussion of Results977

The results of this project demonstrate both the978

promise and the limitations of utilizing synthetic979

data and retrieval-augmented generation (RAG)-980

based in-context learning for educational QA sys-981

tems. Synthetic data generated by LLM #1 proved982

to be credible and effective for training purposes, as983

evidenced by significant improvements in metrics984

such as ROUGE-L and Meteor when compared to985

the zero-shot baseline. This highlights the poten-986

tial of synthetic QA data to fill gaps in historical987

datasets, particularly for new or evolving courses.988

However, the study also reveals the inherent chal-989

lenges in aligning generated answers with both the990

semantic and stylistic expectations of instructional991

responses. For instance, while RAG-based methods992

significantly improved contextual understanding993

and coherence, metrics like BLEU and BERTScore994

indicate limitations in achieving precise lexical and995

semantic alignment. This is further complicated by996

the evaluative metrics themselves, which often pe-997

nalize stylistic or structural deviations, even when998

the content of the generated answer is relevant and999

insightful. The discrepancy between the gener-1000

ated answers and the ground truth highlights the1001

need for alternative metrics that account for stylis-1002

tic alignment and the instructive tone essential in1003

educational contexts.1004

Additionally, while synthetic data demonstrated1005

a closer alignment with the pretraining distribution1006

of the models, real-world validation data offered1007

complementary benefits, emphasizing the impor-1008

tance of a hybrid approach. The reliance on high-1009

quality synthetic data underscores the necessity of1010

refining QA generation techniques, including im-1011

proved context creation and filtering strategies. 1012

Overall, while RAG-based in-context learning 1013

has shown considerable potential, the relatively low 1014

absolute metric values indicate that further refine- 1015

ments—such as domain-specific fine-tuning, en- 1016

hanced retrieval mechanisms, and the integration of 1017

diverse data sources—are required to build robust 1018

and reliable question-answering systems. These 1019

findings underscore the complexities of creating 1020

AI systems capable of emulating the nuanced re- 1021

sponses of human instructors while providing ac- 1022

tionable insights for future research. 1023

6 Conclusion 1024

This research project explores the potential of 1025

LLMs to improve computer science education. It 1026

shows that while using LLMs to generate prac- 1027

tice questions and offer student support is possible, 1028

there are still obstacles to overcome. Improving the 1029

quality of the synthetically generated data is crucial 1030

for creating a reliable system that can accurately 1031

answer student questions. This involves exploring 1032

better techniques for creating context and retaining 1033

knowledge from previous interactions. The evalu- 1034

ation of the question-answering LLM suggests fu- 1035

ture research in having more accurate benchmarks 1036

for complex question answering systems, and how 1037

LLMs can align with the actual instructors to give 1038

inspiring yet not explicit answers. These findings 1039

highlight both the promise and the complexities of 1040

integrating LLMs into educational settings. 1041

7 Division of Work 1042

Our team consists of four members. For the actual 1043

implementations of each LLM, we split into two 1044

subteams (one for each LLM). The team members 1045

with teaching experience for EECS 280 were se- 1046

lected to work on LLM #1 while the other team 1047

members worked on LLM #2. The team worked 1048

collaboratively on the project proposal, presenta- 1049

tion, and final paper to ensure all findings were 1050

well represented and to provide complete, insight- 1051

ful final results. 1052

8 Codebase URL 1053

https://github.com/stoneann/ 1054

AutoQATrainedLLM/tree/main 1055
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