
Under review as a conference paper at ICLR 2024

FOUNDATION REINFORCEMENT LEARNING: TOWARDS
EMBODIED GENERALIST AGENTS WITH FOUNDATION
PRIOR ASSISTANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, people have shown that large-scale pre-training from diverse internet-
scale data is the key to building a generalist model, as witnessed in the natural lan-
guage processing (NLP) area. To build an embodied generalist agent, we, as well
as many other researchers, hypothesize that such foundation prior is also an indis-
pensable component. However, it is unclear what is the proper concrete form we
should represent those embodied foundation priors and how those priors should
be used in the downstream task. In this paper, we focus on the concrete form
in which to represent embodied foundation priors and propose an intuitive and
effective set of the priors that consist of foundation policy, foundation value, and
foundation success reward. The proposed priors are based on the goal-conditioned
Markov decision process formulation of the task. To verify the effectiveness of the
proposed priors, we instantiate an actor-critic method with the assistance of the
priors, called Foundation Actor-Critic (FAC). We name our framework as Foun-
dation Reinforcement Learning (FRL), since our framework completely relies
on embodied foundation priors to explore, learn and reinforce. The benefits of our
framework are threefold. (1) Sample efficient learning. With the foundation prior,
FAC learns significantly faster than traditional RL. Our evaluation on the Meta-
World has proved that FAC can achieve 100% success rates for 7/8 tasks under less
than 200k frames, which outperforms the baseline method with careful manual-
designed rewards under 1M frames. (2) Robust to noisy priors. Our method toler-
ates the unavoidable noise in embodied foundation models. We have shown that
FAC works well even under heavy noise or quantization errors. (3) Minimal hu-
man intervention: FAC completely learns from the foundation priors, without the
need of human-specified dense reward, or providing teleoperated demonstrations.
Thus, FAC can be easily scaled up. We believe our FRL framework could enable
the future robot to autonomously explore and learn without human intervention
in the physical world. In summary, our proposed FRL framework is a novel and
powerful learning paradigm, towards achieving an embodied generalist agent.

1 INTRODUCTION

Recently, the fields of Natural Language Processing (NLP) (Vaswani et al., 2017; Devlin et al., 2018;
Brown et al., 2020; OpenAI, 2023) and Computer Vision (CV) (Dosovitskiy et al., 2020; Radford
et al., 2021; Ramesh et al., 2022; Kirillov et al., 2023) have witnessed significant progress, primarily
attributable to the ability to consume extensive datasets in Deep Learning (DL). Specifically, GPT
models (Brown et al., 2020; OpenAI, 2023) are built upon a large pre-trained corpus consisting of
billions of texts from the Internet, while Segment Anything (Kirillov et al., 2023) employs massive
amounts of hand-labeled segmentation data. These large-scale models have demonstrated superior
capabilities, including strong precision and generalization, by leveraging prior knowledge of com-
mon sense from substantial data (Liu et al., 2021; Sutton, 2019).

To build an embodied generalist agent, we, as well as many other researchers, believe that com-
monsense prior acquired from large-scale datasets is also the key. Recently, researchers have made
steady progress towards this goal. A long-horizon robotic task can be solved by first decomposing
the task into a sequence of primitive tasks, and then executing each primitive routine. Large language
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Figure 1: An example of how a child solves tasks under the three embodied prior knowledge. The
proposed Foundation Reinforcement Learning framework follows the same learning paradigm.

models have been shown to be highly successful on the task decomposition side (Ahn et al., 2022;
Liang et al., 2023; Driess et al., 2023), while the progress on the primitive skill side is still limited,
which is the focus of this paper. Many recent approaches collect large amounts of human demonstra-
tions and then use imitation learning to fine-tune the large-scale pre-trained vision language models
(VLMs) (Reed et al., 2022; Brohan et al., 2022; 2023). However, these approaches do not generalize
well outside the demonstration domain, and it is hard to further scale them up due to the expense of
collecting demonstrations. We argue that pre-training&fine-tuning, the current wisdom of utilizing
priors in LLM or VLM, might not be appropriate for embodied agents. This is because the LLMs
and VLMs usually have the same output space between pre-training and fine-tuning, while in em-
bodied applications, the action output has never been observed during pre-training. This makes it
hard to generalize with the limited amount of expert demonstrations.

In this paper, we ask two fundamental questions: What is the proper concrete form we should
represent the embodied foundation prior? How should those priors be used in the downstream
task? We do not train any new foundation models, but we emphasize that our proposed framework
is agnostic to any foundation prior models. We believe such meta-level questions we study above
are quite significant for the following reasons. Currently, there is a large amount of research on
building foundation models for embodied AI, as mentioned in related works. However, they are
very different regarding the form of foundation models and are not even comparable. For example,
R3M(Nair et al., 2022c) learns the visual backbone, and SayCan(Ahn et al., 2022) learns the task
decomposer, while RT chooses VLM finetuning in an end-to-end way. They are studying to train
the embodied foundation models from distinct perspectives, and the questions they try to answer are
different. Instead, our work focuses on the concrete form in which to represent embodied foundation
priors, rather than the actual RL algorithms that take advantage of the foundation priors. This is
because there is no widely agreed embodied foundation model form that is widely accessible. We
believe defining the form of the embodied foundation model is the first priority, which is the main
contribution of this work. For example, in the BERT(Devlin et al., 2018) era, most researchers
believed that BERT was the universal model, but GPT(Brown et al., 2020; OpenAI, 2023) proposed
to build large language models in an autoregressive way, which is another form to represent the
language foundation prior knowledge. Similarly, what our paper discusses is exactly the form of
the foundation priors in embodied AI. Specifically, starting from the goal-conditioned MDP task
formulation, we propose three essential prior knowledge for embodied AI: the policy, value, as well
as success-reward prior. With the analogy of how humans solve tasks based on their commonsense
(illustrated in Fig. 1), the proposed priors approximate the rough approach to completing it (policy
prior), and during the execution phase, the priors can judge how good is the current state (value
prior). The priors can also adjudicate the completion status of the task (success-reward prior). On
top of these priors, we propose a novel framework named Foundation Reinforcement Learning
(FRL) that runs RL with the assistance of the potentially noisy prior knowledge. To demonstrate its
efficacy, we design an Actor-Critic algorithm based on the priors extracted or distilled from existing
foundation models, which is called Foundational Actor-Critic (FAC).

Our FRL framework enjoys three major benefits. (1) Sample efficient learning. Our method ex-
plores with prior knowledge. Compared to the uninformed exploration in vanilla RL, our FAC
method learns with significantly fewer samples. (2) Robust to noisy priors. The embodied pri-
ors can be noisy, since they are pre-trained from other embodiment data. Our FAC method works
robustly even under heavily noised policy priors. (3) Minimal human intervention: FAC com-
pletely learns from the foundation priors, without the need of human-specified rewards or providing
tele-operated demonstrations. This starkly contrasts some previous work that heavily relies on large-
scale demonstrations (Reed et al., 2022; Brohan et al., 2022; 2023). And we do not limit the way to
acquiring corresponding foundation priors. Thus, FAC can potentially be scaled up more easily.

We apply the FAC to robotics tasks in simulation, and empirical results have shown the strong
performance of FAC. In summary, our contributions are as follows:
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• We propose the Foundation Reinforcement Learning (FRL) framework. The framework
systematically introduces three priors that are essential to embodied agents. Our framework
also suggests how to utilize those priors with RL, which is proven to be highly effective.

• We propose the Foundational Actor-Critic (FAC) algorithm, a concrete algorithm under the
FRL framework that utilizes the policy, value, and success-reward prior knowledge. FAC
is sample efficient; it can learn with noisy priors; it requires minimal human effort to run.

• Empirical results show that FAC can achieve 100% success rates in 7/8 tasks under 200k
frames without manual-designed rewards, which proves the high sample efficiency. The
ablation experiments verify the significance of the embodied foundation prior and the ro-
bustness of our proposed method w.r.t. the quality of the foundation prior.

2 RELATED WORK

Foundation Models for Policy Learning The ability to leverage generalized knowledge from large
and varied datasets has been proved in the fields of CV and NLP. In embodied AI, researchers at-
tempt to learn universal policies based on large language models (LLMs) or vision-language models
(VLMs). Some researchers train large transformers by tokenizing inputs and inferring actions by
imitation learning (Brohan et al., 2022; 2023; Reed et al., 2022; Yu et al., 2023), or offline Rein-
forcement Learning (Chebotar et al., 2023). Some researchers utilize the LLMs as reasoning tools
and do low-level control based on language descriptions (Di Palo et al.; Huang et al., 2022; Ahn
et al., 2022; Driess et al., 2023; Wu et al., 2023; Singh et al., 2023; Shridhar et al., 2022). The above
works utilize human teleoperation to collect data for policy learning. However, it is hard to scale up
human teleoperation to collect large-scale data. The model UniPi (Du et al., 2023) predicts videos
for tasks based on VLMs and generates actions via a trained inverse model from the videos. But
UniPi is of poor robustness empirically due to the lack of interactions with the environments.

Foundation Models for Representation Learning Apart from learning policies directly from the
foundation models, some researchers attempt to extract universal representations for downstream
tasks. Some works focus on pre-trained visual representations that initialize the perception encoder
or extract latent states of image inputs (Karamcheti et al., 2023; Shah & Kumar, 2021; Majumdar
et al., 2023; Nair et al., 2022c). Some researchers incorporate the pre-trained LLMs or VLMs for
linguistic instruction encoding (Shridhar et al., 2023; Nair et al., 2022b; Jiang et al., 2022). Some
have investigated how to apply the LLMs or VLMs for universal reward or value representation in
RL. Fan et al. (2022); Nair et al. (2022a); Mahmoudieh et al. (2022) build language-conditioned
reward foundation models to generate task reward signals, and Ma et al. (2022) is the first to train a
universal goal-conditioned value function on large-scale unlabeled videos. However, no policy prior
knowledge is provided for down-steam policy learning in these methods, and we find it significant
of the policy prior knowledge for down-steam tasks in some experiments. In contrast, our proposed
framework FRL leverages policy, value, and success-reward prior knowledge, which covers the basic
commonsense of solving sequential tasks.

3 BACKGROUND

3.1 ACTOR-CRITIC ALGORITHMS

Since various Actor-Critic algorithms demonstrate great performance on diverse tasks (Haarnoja
et al., 2018; Lillicrap et al., 2015), we build our method on top of Actor-Critic algorithms to demon-
strate the Foundation Reinforcement Learning framework, which is named Foundation Actor-Critic.
Specifically, we choose a variant of deterministic Actor-Critic algorithms DrQ-v2 as the baseline,
which is a SoTA model-free method for visual RL. It learns Q-value functions with clipped double
Q-learning (Fujimoto et al., 2018) and deterministic policies by the Deterministic Policy Gradient
(DPG) (Silver et al., 2014), which maximizes Jϕ(D) = Est∼D[Qθ(st, πϕ(st)]. Here D is the dataset
of the training replay, and θ, ϕ are the learnable parameters. The training objectives of DrQ-v2 are
as follows (Yarats et al., 2021):

Lactor(ϕ) = −Est∼D

[
min
k=1,2

Qθk(st, at)

]
, k ∈ {1, 2};

Lcritic(θ) = Est∼D
[
(Qθk(st, at)− y)2

]
, k ∈ {1, 2};

(1)
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where st is the latent state representation, at is the action sampled from actor πϕ, and y is the n-step
TD target value. More details can be referred to Yarats et al. (2021).

3.2 REWARD SHAPING IN MDP

In this work, we apply the value prior knowledge in Actor-Critic algorithms in the format of the
reward shaping. Reward shaping guides the RL process of an agent by supplying additional rewards
for the MDP (Dorigo & Colombetti, 1998; Mataric, 1994; Randløv & Alstrøm, 1998). In practice,
it is considered a promising method to speed up the learning process for complex problems. Ng
et al. (1999) introduce a formal framework for designing shaping rewards. Specifically, we define
the MDP G = (S,A,P,R), where A denotes the action space, and P = Pr{st+1|st, at} denotes
the transition probabilities. Rather than handling the MDP G, the agent learns policies on some
transformed MDP G′ = (S,A,P,R′), R′ = R + F , where F is the shaping reward function.
When there exists a state-only function Φ : S → R1 such that F (s, a, s′) = γΦ(s′) − Φ(s) (γ is
the discounting factor), the F is called a potential-based shaping function. Ng et al. (1999) prove
that the potential-based shaping function F has optimal policy consistency under some conditions
(Theorem 1 in the App. A.4).

The theorem indicates that potential-based function F exhibits no particular preference for any pol-
icy other than the optimal policy π∗

G when switching from G to G′. Moreover, under the guidance of
shaping rewards for the agents, a significant reduction in learning time can be achieved. In practical
settings, the real-valued function Φ can be determined based on domain knowledge.

4 METHOD

In this section, we investigate what kinds of prior knowledge are significant for training embodied
generalist agents and how to leverage the prior knowledge to the given down-steam tasks.

4.1 FOUNDATION PRIOR KNOWLEDGE IN EMBODIED AI

For embodied intelligent agents, the process of handling different tasks in environments can be
formulated as goal-conditioned MDP (GCMDP) G: G = (S,A,P,R|T , T ). S ∈ Rm denotes
the state. T is the task identifier. R|T denotes the rewards conditioned on tasks, which is a 0-1
success signal reward. Here, we take an example of how children solve daily manipulation tasks
with commonsense prior knowledge and propose the priors in GCMDP correspondingly, as shown
in Fig. 1. As a 3-year-old child, Alice has never opened a door, and today, she is encouraged to open
a door. Alice receives the task instruction, and she begins to make attempts. Here, the language
instruction is the description of the goal in the GCMDP. As a child, she has witnessed how her
parents opened the door, and she has some commonsense about the task.

First, she has noticed some rough behaviors of reaching the door and turning the doorknob to open it
from her parents. So she can follow their behavior and make attempts. In MDP, the commonsense of
the rough behavior can be formulated as a goal-conditioned policy function, Mπ(s|T ) : S×T → A,
which provides the rough action in the given task. We define such commonsense as the policy prior
knowledge, guiding the agents with noisy actions to explore more efficiently.

She recognizes that states nearer the door are more likely to lead to success. If she encounters unfa-
vorable states, she understands the necessity to adjust back to a more disarable one. In MDP, such
commonsense can be formulated as a goal-conditioned value function MV(s|T ) : S × T → R1,
which provides the value estimations of states concerning the given task. We define such common-
sense as the value prior knowledge, measuring the values of states from the foundation models.

After several attempts, Alice observes the door is open and reinforces the behavior from her suc-
cessful attempt, enabling her to consistently solve the task. Humans naturally recognize success and
adjust their actions accordingly. In MDP, such commonsense can be formulated as the 0-1 success-
reward function MR(s|T ) : S × T → {0, 1}, which equals 1 only if the task succeeds. This
approach allows Alice to make trials and succeed in new tasks under the same learning pattern.

Drawing inspiration from the example, we believe the three prior knowledge are fundamental for
versatile embodied agents. Consequently, following the learning paradigm, we formulate a novel
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framework Foundation Reinforcement Learning (FRL) to solve the GCMDP, which does RL un-
der noisy prior knowledge from foundation models. For convenience, we note such prior knowledge
acquired from foundation models as the embodied foundation prior, i.e. the embodied foundation
prior = {policy prior, value prior, success-reward prior}. The embodiment can be facilitated by the
above three embodied prior knowledge to solve the MDP. Notably, for humans, determining whether
a task has been completed is precise and straightforward, but judging how good the current state is
and where to take action can be vague and noisy. Thus, we assume the success-reward prior knowl-
edge is relatively precise and sound, but the value and policy prior knowledge can be much more
noisy. And we also make ablations to investigate how the performance of FAC can be affected by
the quality of the priors in Sec. 5.3.

To sum up, compared to the setting of vanilla RL, all the signals for the Foundation RL come from
the foundation models. The vanilla RL relies on uninformative trial and error explorations as well
as carefully and manually designed reward functions to learn the desired behaviors. It is not only of
poor sample efficiency but also requires lots of human reward engineering. Instead, in Foundation
RL, MV and MR give the value and reward estimations of states, and Mπ provides behavioral
guidance with rough prior actions for the agent. This way, it can solve tasks much more efficiently,
and learn with minimal human intervention.

4.2 FOUDATION ACTOR-CRITIC

Under the proposed Foundation RL framework, we instantiate an actor-critic algorithm to take
advantage of the prior knowledge, which is named Foundation Actor-Critic (FAC). In this work,
we systematically demonstrate how to inject the policy, value, and success-reward embodied prior
knowledge into Actor-Critic algorithms, but do not limit how to acquire and leverage them, indicat-
ing that other approaches may be possible. The policy prior informs how to act at each step, while
the value prior can correct the policy when it enters bad states. The success-reward prior tells the
agent whether the task is successful to reinforce the successful experiences.

Formulated as 0-1 Success-reward MDP Generally, as we mention above, we consider the given
task as an MDP with 0-1 success-rewards from foundation model MR. Thus, we name the MDP to
solve as G1, where RG1|T = MR(s|T ) ∈ {0, 1}. However, the MDP problem is in sequence, and it
is difficult to optimize the policy based on the 0-1 sparse reward signal due to the large search space
of the MDP. We utilize the policy and value prior knowledge to learn G1 better and more efficiently.

Guided by Policy Regularization To encourage the embodiment to explore the environments with
the guidance of policy prior knowledge, we regularize the actor πϕ by the policy prior from Mπ(s|T )
during training. Such regularization can help the actor explore the environment. Without loss of
generality, we assume that the policy foundation prior follows Gaussian distributions. We add a
regularization term to the actor: Lreg(ϕ) = KL(πϕ,N (Mπ(st|T ), σ̂2)), where σ̂ is the standard
deviation hyper-parameter of the policy prior. Such regularization item is simple to implement but
effective, which is widely used in other algorithms (Haldar et al., 2023; Lancaster et al., 2023).
Note that there might be some bias caused by the policy prior; however, the bias can be bounded
theoretically, as shown in Appendix (Theorem 2).

Guided by Reward-shaping from Value Prior The noisy foundation policy prior might mislead
the agent to undesired states. We propose to guide the policy by the value model MV(s|T ) to
avoid unnecessary exploration of unpromising states. Since there is a value function in the Actor-
Critic algorithm, a natural approach is initializing with MV(s|T ) and fine-tuning the value functions.
However, we empirically find that it performs poorly due to the catastrophic forgetting issues.

To better employ the value foundation prior, we propose to utilize the reward-shaping technique
(Ng et al., 1999). Specifically, we introduce the potential-based shaping function F (s, s′|T ) =
γMV(s

′|T ) − MV(s|T ). Intuitively, since MV roughly estimates the value of each state, F can
measure the increase of value towards reaching the next state s′ from the current state s. The shaping
reward will be positive if the new state s′ is better than the state s.

Foundation Actor-Critic In summary, we propose to deal with a new MDP G2, where RG2|T =
αMR+F, α > 0. Here, the α emphasizes the success feedback, which equals 100 in this work. The
optimal policy of G2 is the same as that of G1 because F is a potential-based function. In this paper,
we build our model upon the DrQ-v2 (Yarats et al., 2021) with image inputs, where the objectives
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are listed in Eq. (1). We inject the value, success-reward, and policy foundation prior to the baseline
method to solve G2. We name the proposed foundation RL method as Foudation Actor-Critic
(FAC). The objective of critics in FAC remains the same as Eq.(1), and the objective of the actor in
FAC is regularized, listed in Eq. (2).

Lactor(ϕ) = −Est∼D

[
min
k=1,2

Qθk(st, at)

]
+ βKL(πϕ,N (Mπ(st|T ), σ̂2))

rt = αMR(st|T ) + γMV(st+1|T )−MV(st|T )

(2)

, where β is the tradeoff between the policy gradient guidance and the policy regularization guidance,
which is set to 1. FAC learns from the foundation success prior, with foundation value shaping. Thus,
we don’t need to manually design a reward function.

4.3 ACQUIRING FOUNDATION PRIOR IN FAC

In this work, we aim to study what kind of prior is important for the embodied generalist agent
and how to use those priors. Building the large-scale foundation priors is out of our paper’s scope.
However, we think it is an exciting future research direction. To validate our proposed framework,
we utilize several existing works as proxy embodied foundation models.

Value Foundation Prior For the value foundation model MV(st|T ), we propose to utilize VIP
(Ma et al., 2022), which trains a universal value function via pre-training on internet-scale datasets.
For each task, it requires a goal image and measures the distance between the current state and the
goal state visually. In the experiments, we load the pre-trained value foundation model and apply it
directly to value inference without in-domain fine-tuning.

Policy Foundation Prior For the policy foundation model Mπ(st|T ), we propose to follow the
work UniPi, which infers actions based on a language conditioned video prediction model and a
universal inverse dynamics model. UniPi (Du et al., 2023) generates video trajectory for the task T
conditioned on the start frame and task. Then, actions can be extracted from the generated video
with a universal inverse dynamics model. However, video generation is computationally expen-
sive. To improve the computational efficiency, we propose to distill a policy prior model Mπ(st|T )
from the video generation model and the inverse dynamics model. Specifically, we generate video
datasets from the video generation model and label the corresponding actions from the video dataset
by the inverse model. Then, we train a policy model Mπ(st|T ) from the datasets by supervised
learning, which takes the current state as input. The original UniPi performs heavy in-domain fine-
tuning. Instead, we use a few data for in-domain fine-tuning, which is more practical for real-world
applications. More details are attached in the App. A.3.

Reward Foundation Prior There are few foundation models to distinguish the success behavior
in embodied AI. Therefore, we use the ground truth 0-1 success signal from the environments.
Additionally, we also build a success-reward model MR(st|T ) to provide the success signals, which
indicates no signals come from the environment. Specifically, we distill a success-reward model
from 50k ground-truth replay data for the 8 tasks in total. We conduct ablation studies towards the
quality of the reward model in App. A.1.

5 EXPERIMENTS

In this section, we provide extensive evaluations of Foundation Actor-Critic on robotics manipula-
tion tasks. We attempt to investigate the effects of the foundation prior knowledge in policy learning,
especially the sample efficiency and robustness aspects. Specifically, our experiments are designed
to answer the following questions: (a) How sample efficient is our proposed Foundation Actor-Critic
algorithm; (b) How significant are the three foundation prior knowledge respectively; (c) How is the
quality of the foundation model affect the performance of FAC.

5.1 SETUP

Building Policy Foundation Models in FAC As mentioned in Sec. 4.3, we distill a policy foun-
dation model Mπ through a language condition video prediction model and an inverse dynamics
model ρ(st, st+1). As for the video prediction model, we choose the open-source vision language
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Figure 2: Success rate curves for the 8 tasks in Meta-World. Our FAC can achieve 100% success
rates for all tasks under the limited performance of the policy prior model. In FAC, 7/8 tasks can be
solved at 100% rate less than 200k frames, which significantly outperforms the baselines DrQ-v2
and R3M with manual-designed rewards.

model, Seer (Gu et al., 2023). The model Seer predicts a video conditioned on one image and a
language instruction with latent diffusion models, pre-trained on Something Something V2 (Goyal
et al., 2017) and BridgeData (Ebert et al., 2021) datasets. Ideally, the model can be plugged in with-
out in-domain fine-tuning. However, we find the current open-source video prediction models fail to
generate reasonable videos in the simulator. Consequently, we fine-tune the Seer with 10 example
videos from each task. Compared to UniPi that fine-tunes with 200k videos, the videos generated
by our model are more noisy. Our model reflects the noisy nature of the future policy foundation
model. In terms of the inverse dynamics model ρ(st, st+1), we save the replay buffer of the base-
line DrQ-v2, containing 1M frames of each task, and train ρ(st, st+1) based on the replay buffers.
Finally, to distill the policy foundation model Mπ , we generate 100 videos for each task from the
fine-tuned Seer model (1k videos for the harder task bin-picking), label pseudo actions among the
videos by the inverse dynamics model ρ(st, st+1), and train Mπ(st|T ) on the action-labeled videos
by supervised learning. More details are attached in the App. A.3.

Environments and Baselines We conduct experiments of FAC on 8 tasks from simulated robotics
environments Meta-World (Yu et al., 2020), which are commonly used because they test different
manipulation skills (Haldar et al., 2023). We average the success rates over 20 evaluation episodes
across 3 runs with different seeds. To verify the effectiveness and significance of the three foundation
priors, we compare our methods to the following baselines: (1) Vanilla DrQ-v2 (Yarats et al., 2021),
with manually designed rewards from the suite; (2) R3M (Nair et al., 2022c), VIP (Ma et al., 2022).
We combine DrQ-v2 with the R3M visual representation or VIP visual representation. Same as
the vanilla DrQ-v2, this baseline also learns from manually designed rewards; (3) UniPi (Du et al.,
2023), which infers actions by the inverse dynamics model ρ(st, st+1) and an expert video generated
from the language conditioned video prediction model Seer, fine-tuned under 10 example videos for
each task following our setups; (4) The distilled policy foundation model Mπ(st|T ).

5.2 PERFORMANCE ANALYSIS

We compare the performance of our method with the above baselines on 8 tasks in Meta-World
with 1M frames. Our proposed FAC achieves 100% success rates for all the tasks. 7/8 of them
require less than 200k frames. For the hard task bin-picking, FAC requires less than 400k frames.
However, the baseline methods can not achieve 100% success rates on most tasks. As illustrated
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Figure 3: Ablation of the three embodied prior knowledge. The success-reward prior is the most
significant. The policy prior is necessary for hard tasks, and the value prior makes the learning
process more sample efficient.

in Fig. 2, the sample efficiency and the success rates of FAC are much superior compared to the
baseline methods. DrQ-v2 is able to complete some tasks but learns much slower compared to FAC.
R3M and VIP backbones inject the visual representation prior knowledge into the RL process, but
their performance are even worse than DrQ-v2. We hypothesize that it might be caused by the pre-
trained model having lost plasticity (D’Oro et al., 2022). Since the UniPi and the distilled foundation
prior baseline do not involve training, they are represented as two horizontal lines in Fig. 2. UniPi
outperforms the distilled prior in most environments, since the distilled prior is learned from UniPi.
However, UniPi is still far inferior compared to FAC.

5.3 ABLATION STUDY

In this section, we answer the following questions: (a) Are all the three proposed priors necessary?
What’s the importance of each? (b) How does FAC perform with better / worse foundation priors?

Figure 4: Both succeed. With policy
guidance, the agent uses the hammer to
nail. Without policy guidance, the agent
uses the gripper to nail.

Ablation of Each Embodied Foundation Prior To in-
vestigate the importance of each foundation prior, we re-
move each prior and compare it against the full method.
Figure 3 shows the three ablations: no policy prior
(i.e. no policy KL regularization), no value prior (i.e.
R|T = αMR(s|T )), no success reward (i.e. R|T =
γMV(st+1|T )−MV(st|T ) ).

We find that the reward prior is the most important, with-
out which the performance over all the tasks drops a lot.
The reason is that, without the 0-1 success reward signals,
the reward function is only a shaping reward, where any
policy is equivalent under this reward.

Without the policy prior, the agent fails on some hard
tasks, such as bin-picking and door-open. It also converges much more slowly on drawer-open
and window-close. We note that the task hammer converges faster without the policy prior, which is
counter-intuitive. This is because the agent w.o. policy prior succeeds through pushing the nail with
the robot arm rather than with the hammer, as illustrated in Fig. 4.

Without the value prior, the sample efficiency would drop, especially for the hard task bin-picking.
Under the noisy policy prior, the shaping rewards inferred from value prior can guide the policy to
reach states of higher values with larger probability. Generally, applying all the foundation priors for
most environments will be best. However, in some environments, either the policy prior or the value
prior is accurate enough for solving the tasks, resulting in a few performance drops when removing
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Figure 5: Ablation of the quality of the value and policy prior knowledge. We observe that (1) better
prior knowledge leads to better FAC performance; (2) FAC is robust to the quality of the foundation
priors. FAC works with 20% or even 50% noisy discretized policy prior.

the other prior, such as button-press-topdown and door-open. This depends on the quality of the
foundation prior conditioned on the tasks. Nevertheless, learning from the three embodied prior can
be better than that from only two of them in the 8 environments.

FAC with Various Quality of Value and Policy Foundation Prior Since the value foundation
prior is from VIP (Ma et al., 2022) without in-domain data fine-tuning, which can be noisy, we are
interested in how the noisy values perform compared to the ground truth values. We build oracle
value functions for each task from the pre-trained FAC models. We find that oracle values give a
further boost to some tasks (Figure 5), such as bin-picking-v2 and door-open-v2. This indicates that
better value foundation priors might further boost the performance.

We have shown that although the distilled policy prior itself has low success rates on most tasks (Fig.
2), FAC is able to achieve high success rates by utilizing the noisy policy prior. To further test the
robustness of our method, we define several noisier policy priors. Specifically, we discretize each
action dimension generated from the distilled policy model into only three values {−1, 0,+1}. This
makes the policy prior only contain rough directional information. We name this prior as discritized
policy. To generate even noisier prior, we replace the discretized actions with uniform noise at
20% and 50% probability. As shown in Figure 5, we find that the discretized policy prior performs
similarly to the original policy prior, except for door-open. Adding the extra uniform noise decreases
the performance further. However, we note that even using the discretized policy with 50% noise,
FAC can still reach 100% success rates in many environments. We also ablate the quality of the
success-reward foundation prior in App. A.1. In conclusion, the results indicate that FAC is robust
to the quality of the foundation prior. The better the prior is, the more sample-efficient FAC is.

6 DISCUSSION

In this paper, we introduce a novel framework, termed Foundation Reinforcement Learning, which
leverages policy, value, and success-reward prior knowledge for reinforcement learning tasks. Ad-
ditionally, we elucidate the application of the embodied foundation prior within actor-critic method-
ologies, hereby designated as Foundation Actor-Critic. We acknowledge there are some limitations
in this work. More comparisons can be made with other methodologies like VLM that have a noted
advantage in generating language-instructed policies. And to make the foundation prior not messy,
we finetune or distill foundation models with small amounts of data. Moreover, We acknowledge
that there are two dimen- sions for future exploration of this work. For one thing, it is imperative to
construct accurate and broadly applicable foundation priors, which is out of our scope. For another,
it is promising to introduce more abundant prior knowledge for the Foundation RL. For instance,
humans can predict the future states. Such prediction prior knowledge can be extracted from the
dynamic foundation models, which can be potentially effective for policy learning.
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7 REPRODUCIBILITY STATEMENT

The main implementations of our proposed method are in Sec. 4.2. The details of designing and
training foundation prior models are in Sec. 4.3 and App. A.3. In addition, the settings of the
experiments and hyper-parameters we choose are in App. A.3.
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A APPENDIX

A.1 MORE ABLATION RESULTS

FAC with Various Quality of Success-reward Foundation Prior In the previous experiments,
we assume that the success-reward signals come from the environment. It is necessary to conduct
experiments with success-reward foundation prior. Considering there are few universal success-
reward foundation models, we distill one proxy success-reward model with 50k data in total for all
8 tasks, which are labeled by the ground-truth success signals from replay buffers. The proxy model
takes images as input and is conditioned on the task embeddings (multi-task), which has 1.7% false
positive error and 9.9% false negative error on the evaluation datasets. Then, we run FAC with the
three priors without any signals from the environment during training.

The results are attached in Fig. 6 in App.A.1 (Page 14). We find that compared to receiving the
ground-truth success-reward signals, FAC under the 50k-images-distilled model has a limited per-
formance drop in the tasks generally. And it can achieve much superior performance than the FAC
w.o. reward. Consequently, the proposed FAC can work well under the noisy success-reward foun-
dation prior. It gives the potential that we can use foundation model in place of human-specified
reward for any new tasks.
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Figure 6: Ablation of the quality of the success-reward prior knowledge. The 50k-image-distilled
success-reward model has 1.7% false positive error and 9.9% false negative error. The FAC can
work well under the noisy success-reward foundation prior.

A.2 EXPERIMENTAL RESULTS WITH MORE BASELINES

Comparison to More Baselines with Success-reward Only Here, we also add some baselines
under the setting, where only the success-reward foundation prior is provided. We choose the recent
SOTA model-free RL algorithms on MetaWorld ALIX (Cetin et al., 2022) and TACO (Zheng et al.,
2023), as well as the baseline DrQ-v2 (Yarats et al., 2021) with the success-reward only. Notably,
ALIX and TACO are both built on DrQ-v2. The results are shown in Fig. 7, where ‘*’ means that
only 0-1 success reward is given. Only FAC can achieve 100% success rates in all the environments.
DrQ-v2*, ALIX*, TACO* can not work on hard tasks such as bin-picking and door-open. And
FAC requires fewer environmental steps to reach 100% success rates, as shown in the Figure. The
results on the new baselines can verify the significance and efficiency of utilizing the abundant prior
knowledge for RL in a way.

A.3 IMPLEMENTATION DETAILS

Since FAC is built on top of DrQ-v2, the hyper-parameters of training the actor-critic model are the
same as DrQ-v2 (Yarats et al., 2021). The n-step TD target value and the action in Eq. 2 are as
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Figure 7: Here ‘*’ in DrQ-v2, ALIX and TACO means only the 0-1 success reward is provided from
the environment, which is different from the original settings in their works. FAC can work for all
the tasks while the other baselines fail in half of them. It is significant and sample-efficient to utilize
prior knowledge for reinforcement learning.

follows, where θ̄k are the moving weights for the Q target networks.

y =

n−1∑
i=0

γirt+i + γn min
k=1,2

Qθ̄k(st+n, at+n),

at = πϕ(st) + ϵ, ϵ ∼ clip(N (0, σ2),−c, c)

(3)

Morever, the observation shape is 84×84, and we stack 3 frames while repeating actions for 2 steps.
In Meta-world, we follow the experimental setup of (Haldar et al., 2023). Specifically, the horizon
length is set to 125 frames for all tasks except for bin-picking and button-press-topdown, which are
set to 175. Notably, we set the same camera view of all the tasks for consistency. As for the policy
regularization term, the KL objective can be simplified to the MSE objective, which indicates the
implemented training objective of the actor is:

Lactor(ϕ) = −Est∼D

[
min
k=1,2

Qθk(st, at)

]
+ β ||at −Mπ(st|T )||2 , at ∼ πϕ(st).

rt = αMR(st|T ) + γMV(st+1|T )−MV(st|T ).

(4)

Training Inverse Dynamics Model We build the inverse dynamics model ρ(st, st+1) as follows:

• Takes inputs as st, st+1, with the shape of 3× 84× 84.
• A Downsample Model, which outputs the representation with the shape of 128× 2× 2.
• Flatten the planes into 512-dimension vectors.
• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.
• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.
• 1 Linear layer with ReLU, which outputs the action dimension vectors (equal to 4).

The Downsample model is designed as follows:

• 1 convolution with stride 2 and 128 output planes, output resolution 42× 42. (ReLU)
• 2 residual block with 128 planes.
• Average pooling with stride 2 (kernel size is 3), output resolution 21× 21. (ReLU)
• 2 residual block with 128 planes.
• Average pooling with stride 3 (kernel size is 5), output resolution 7× 7. (ReLU)
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• 2 residual block with 128 planes.

• Average pooling with stride 3 (kernel size is 4, no padding), output resolution 2×2. (ReLU)

We use the 1M replay buffer trained from vanilla DrQ-v2 for each task and collect them together as
the dataset.

Distilling Policy Foundation Models We use the fine-tuned VLM Seer to collect 100 videos for
each task (1000 in bin-picking-v2), and use the trained inverse dynamics model ρ(st, st+1) to la-
bal pseudo actions for the videos. Then, we do supervised learning to train the policy foundation
prior model under the dataset, which is conditioned on the task. For convenience, we encode the
task embedding as a one-hot vector, which labels the corresponding task. Thus, the size of the
task embedding is 8. Here, the architecture of the distilled policy model is as follows, where the
downsample model is the same as that in the inverse dynamics model.

• Takes inputs as st, et, with the shape of 3× 84× 84 and 1× 8.

• A Downsample Model, which outputs the representation with the shape of 128× 2× 2.

• Flatten the planes into 512-dimension vectors.

• Concat the 512 vector and the task embedding into 520-dimension vectors.

• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.

• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.

• 1 Linear layer with ReLU, which outputs the action dimension vectors (equal to 4).

The training hyper-parameters of the inverse dynamics model ρ(st, st+1) and the distilled policy
model Mπ(st|T ) are in Table 1. The hyper-parameters of training FAC agents are the same as
DrQ-v2 (Yarats et al., 2021).

Table 1: Hyper-parameters for Building the Policy Foundation Models in FAC.

Parameter Training ρ(st, st+1) Training Mπ(st|T )

Minibatch size 256 256
Optimizer AdamW AdamW
Optimizer: learning rate 1e-4 5e-4
Optimizer: weight decay 1e-4 1e-4
Learning rate schedule Cosine Cosine
Max gradient norm 1 1
Training Epochs 50 300

A.4 OPTIMALITY OF POTENTIAL-BASED SHAPING FUNCTION

Theorem 1 (Ng et al., 1999) Suppose that F takes the form of F (s, a, s′) = γΦ(s′)−Φ(s), Φ(s0) =
0 if γ = 1, then for ∀s ∈ S, a ∈ A, the potential-based F preserve optimal policies and we have:

Q∗
G′(s, a) = Q∗

G(s, a)− Φ(s)

V ∗
G′(s) = V ∗

G (s)− Φ(s)
(5)

A.5 PROOF OF THE OPTIMALITY UNDER POLICY REGULARIZATION

Lemma 1 The policy πm = 1
1+β π̂ϕm + β

1+βMπ , is the solution to the optimization problem of the
actor shown in Equation 2.

Proof 1 First, π̂ϕm
is the RL policy optimized by standard RL optimization problem in m-th itera-

tion, illustrated in the following equation.

π̂ϕm = argmax
π̂ϕ

Eτ∼π̂ϕ
[Q(s, a)] as m → ∞ (6)
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Note that the following derivation omits the variance of Gaussian distribution for convenience. This
is because the variance is independent of the state in the deterministic Actor-Critic algorithms DrQ-
v2 algorithm.

According to Equation 2, the policy πm can be represented as:

πm = argmin
π

[−Eτ∼πQ(s, a) + βKL(π,Mπ)] (7)

Adding Eτ∼π̂ϕm
Q(s, a) in Equation 7, we can rewrite it as:

πm = argmin
π

[Eτ∼π̂ϕm
Q(s, a)− Eτ∼πQ(s, a) + βKL(π,Mπ)] (8)

Considering Eτ∼π̂ϕm
Q(s, a) is not related to the optimization objective, the above equation holds.

Intuitively, we can observe that there exist two parts in the objective. About the first part, we can
use importance sampling to obtain:

Eτ∼π̂ϕm
Q(s, a)− Eτ∼πQ(s, a) = Eτ∼π̂ϕm

[
π̂ϕm

− π

π̂ϕm

Q(s, a)] (9)

Since π̂ϕm
can be represented as argmaxπ̂ϕ

Eτ∼π̂ϕ
[Q(s, a)] when m approaching to infinity, the

minimum of Eτ∼π̂ϕm
Q(s, a) − Eτ∼πQ(s, a) can be achieved when the minimum of the following

equation exits.

argmin
π

∥π̂ϕm
− π∥ ⇐⇒ argmin

π
∥ argmax

π̂ϕ

Eτ∼π̂ϕ
[Q(s, a)]− π∥ as m → ∞ (10)

Let us see the second part in Equation 8. π and Mπ are Gaussian distributions and the variances of
distributions are constant in our framework. Thus, KL(π,Mπ) ⇐⇒ ∥π −Mπ∥ holds.

Hereafter, we can reformulate Equation 8 as follows:

πm = argmin
π

[∥ argmax
π̂ϕ

Eτ∼π̂ϕ
[Q(s, a)]− π∥+ β∥π −Mπ∥] (11)

Based on the Lemma 1 in (Cheng et al., 2019), the solution to the above problem is derived as:

πm =
1

1 + β
π̂ϕm +

β

1 + β
Mπ (12)

To this end, the policy πm is the solution to the proposed optimization problem in this paper.

Theorem 2 Let Dsub = DTV(πopt,Mπ) be the bias between the optimal policy and the prior policy,
the policy bias DTV (πm, πopt) in m-th iteration can be bounded as follows:

DTV(πm, πopt) ≥ Dsub −
1

1 + β
DTV(π̂ϕm ,Mπ)

DTV(πm, πopt) ≤
β

1 + β
Dsub as m → ∞

(13)

Proof 2 Note that the following derivation is most inspired by Theorem 1 in (Cheng et al., 2019).
According to Lemma 1, the policy πm can be represented as 1

1+β π̂ϕm
+ β

1+βMπ .

Then, let us define the policy bias as DTV (πm, πopt), and Dsub = DTV (πopt,Mπ). Since DTV is
a metric that represents the total variational distance, we can use the triangle inequality to obtain:

DTV (πm, πopt) ≥ DTV (Mπ, πopt)−DTV (Mπ, πm) (14)

According to the mixed policy definition in Equation 12, we can further decompose the term
DTV (Mπ, πm):

DTV (Mπ, πm) = sup
(s,a)∈SxA

∣∣∣∣Mπ − 1

1 + β
π̂ϕm

− β

1 + β
Mπ

∣∣∣∣
=

1

1 + β
sup

(s,a)∈SxA

|π̂ϕm
−Mπ|

=
1

1 + β
DTV (π̂ϕm

,Mπ)

(15)
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This holds for all m ∈ N from Equation 14 and Equation 15, and we can obtain the lower bound as
follows:

DTV (πm, πopt) ≥ Dsub −
1

1 + β
DTV (π̂ϕm

,Mπ) (16)

The RL policy π̂ϕm
can achieve asymptotic convergence to the (locally) optimal policy πopt through

the policy gradient algorithm. In this case, we can derive the bias between the mixed policy πm and
the optimal policy πopt as follows:

DTV (πopt, πm) = sup
(s,a)∈SxA

∣∣∣∣πopt −
1

1 + β
π̂ϕm

− β

1 + β
Mπ

∣∣∣∣
=

β

1 + β
sup

(s,a)∈SxA

|πopt −Mπ| as m → ∞

=
β

1 + β
DTV (πopt,Mπ) as m → ∞

=
β

1 + β
Dsub as m → ∞

(17)

Therefore, we obtain the upper bound.
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