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ABSTRACT

We present DeepSAT, a novel end-to-end learning framework for the Boolean sat-
isfiability (SAT) problem. Unlike existing solutions trained on random SAT in-
stances with relatively weak supervision, we propose applying the knowledge of
the well-developed electronic design automation (EDA) field for SAT solving.
Specifically, we first resort to logic synthesis algorithms to pre-process SAT in-
stances into optimized and-inverter graphs (AIGs). By doing so, the distribution
diversity among various SAT instances can be dramatically reduced, which fa-
cilitates improving the generalization capability of the learned model. Next, we
regard the distribution of SAT solutions being a product of conditional Bernoulli
distributions. Based on this observation, we approximate the SAT solving pro-
cedure with a conditional generative model, leveraging a novel directed acyclic
graph neural network (DAGNN) with two polarity prototypes for conditional SAT
modeling. To effectively train the generative model, with the help of logic simu-
lation tools, we obtain the probabilities of nodes in the AIG being logic ‘1’ as rich
supervision. We conduct comprehensive experiments on various SAT problems.
Our results show that, DeepSAT achieves significant accuracy improvements over
state-of-the-art learning-based SAT solutions, especially when generalized to SAT
instances that are relatively large or with diverse distributions.

1 INTRODUCTION

The Boolean satisfiability (SAT) problem is one of the most fundamental combinatorial optimization
problems, determining whether a combination of binary input variables exists for which a given
Boolean formula returns True. It has a broad range of applications, such as planning (Büttner &
Rintanen, 2005), scheduling(Horbach, 2010), and verification (Vizel et al., 2015).

SAT is NP-complete. Over the past decades, many powerful heuristic-based SAT solvers are pre-
sented in the literature (Selman et al., 1993; Sorensson & Een, 2005; Audemard & Simon, 2009;
Fleury & Heisinger, 2020). Recently, a family of data-driven techniques that apply deep learning
(DL) for SAT solving has emerged. Some methods try to learn optimized search policies used in
existing heuristic-based SAT solvers (Kurin et al., 2020; Yolcu & Póczos, 2019; Zhang et al., 2021b;
Wang et al., 2021). Though effective, the resulted model’s performance is bounded by the best so-
lutions provided by the general template of heuristics used in the underlying classical SAT solvers.
As an alternative, several end-to-end DL models are proposed for SAT solving (Selsam et al., 2019;
Amizadeh et al., 2019; Duan et al., 2022). These approaches try to learn SAT solutions from scratch,
and they have the potential to achieve solutions beyond those of existing heuristic-based SAT solvers,
despite the inferior performance as of now.

While promising, current end-to-end DL models for SAT solving share a few common weaknesses.
On the one hand, there exists notable distribution diversity among different SAT distributions, which
makes generalization difficult. On the other hand, the supervision cues used for model training are
relatively weak. Existing models are either trained with binary classification labels (i.e., SAT or
UNSAT) (Selsam et al., 2019) or in an unsupervised manner (Amizadeh et al., 2019), resulting in
unsatisfactory performance.

Given the above challenges, this work re-explores the essential elements of end-to-end DL models
for SAT solving. We investigate it from a fundamentally different perspective: we transfer the
domain knowledge from the electronic design automation (EDA) field (Jansen et al., 2003) to SAT
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solving and mimic the Boolean constraint propagation (BCP) (Wu et al., 2007) using a bidirectional
propagation process.

Specifically, we first propose a pre-processing procedure that applies logic synthesis algo-
rithms (Bjesse & Boralv, 2004; Mishchenko et al., 2006; Cortadella, 2003) to represent SAT in-
stances as optimized and-invertor graphs (AIGs), thereby reducing the diversity between training and
testing SAT distributions. Second, we formulate the SAT solving process as a generative modeling
procedure of the joint Bernoulli distribution of the binary inputs. Inspired by PixelCNN (Oord et al.,
2016), we factorize the joint Bernoulli distribution as a product of conditional univariate Bernoulli
distribution of every variable. Next, we obtain rich supervision labels by applying efficient logic
simulation on the AIG circuits to estimate the parameters in univariate Bernoulli distributions, i.e.,
the probability of signals in the AIG being logic ‘1’. The conditional generative model for approx-
imating the conditional probability is realized as a dedicated directed acyclic graph neural network
(DAGNN) with two polarity prototypes. The DAGNN learns a hidden space with good interpretabil-
ity of logic values through a bidirectional propagation process conditioned on gate masks. Finally,
we produce satisfying assignments for the SAT instance from the trained conditional generative
model using a simple solution sampling scheme.

We refer to the proposed framework for end-to-end SAT solving as DeepSAT. Overall, we make the
following contributions:

• To the best of our knowledge, DeepSAT is the first work that systematically transfers the
knowledge from EDA to learning-based SAT solving. In particular, we apply two well-
established EDA techniques, namely logic synthesis and logic simulation, for reducing the
distribution diversity of SAT instances and constructing the supervision labels, respectively.

• We reformulate the SAT solving process as a conditional generative modeling procedure
to sequentially determine the value of the variables based on previously resolved variables,
which enables the explicit SAT assignment prediction.

• We realize the conditional generative modeling using a novel DAGNN with two polarity
prototypes, and propose to train DAGNN through bidirectional propagation conditioned on
gate masks to mimic the BCP in traditional SAT solving. In this way, our DAGNN learns
interpretable hidden states for solution sampling compared with other GNN-based solvers.

Experimental results show that the proposed DeepSAT solver achieves superior performance on both
accuracy and generalization capabilities, compared to existing end-to-end learning-based solutions.

2 RELATED WORK

Learning-based SAT solvers. Applying deep learning techniques for combinatorial optimization
(CO) has been explored in the last few years (Khalil et al., 2017; Selsam et al., 2019; Chen & Tian,
2019; Yu et al., 2021; Peng et al., 2021; Hudson et al., 2022). The problems of interest are of-
ten NP-complete and traditional methods efficient in practice usually rely on heuristics or produce
approximate solutions (Yolcu & Póczos, 2019). Among them, the Boolean Satisfiability problem
(SAT) is one of the most fundamental problems and becomes a popular target for learning-based so-
lutions. There are two main lines of learning-based SAT solvers: the first is to use neural networks
to learn the optimal heuristics within the conventional SAT solvers automatically (Yolcu & Póczos,
2019; Kurin et al., 2020; Zhang et al., 2021b; Wang et al., 2021). Nevertheless, the performance of
these methods is bounded by the greedy strategy, which is sub-optimal in general (Amizadeh et al.,
2019). The alternative is to train a deep learning model towards solving SAT from scratch (Sel-
sam et al., 2019; Amizadeh et al., 2019; Duan et al., 2022). The representative approaches include
NeuroSAT (Selsam et al., 2019) and DG-DAGRNN (Amizadeh et al., 2019). In particular, Neu-
roSAT processes SAT problems as a binary classification task and proposes a clustering-based post-
processing analysis to find an SAT solution. DG-DAGRNN approximates logic calculation with an
evaluator network and trains the model to maximize the satisfiability value for SAT instances.

Graph neural networks. Graph neural networks (GNNs) (Kipf & Welling, 2017) have shown
their effectiveness in modeling non-Euclidean structured data and led to considerable performance
improvement in various domains (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018; Wang et al., 2019; Hu et al., 2020; Wu et al., 2020). Some recent efforts specialize GNNs
to handle directed acyclic graphs (DAGs) (Zhang et al., 2019; Thost & Chen, 2021; Zhang et al.,
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Figure 1: Pre-processing via logic synthesis.

2021c; Li et al., 2022). For example, Zhang et al. (2019) propose a variational autoencoder for
DAGs and apply it to neural architecture search and Bayesian network structure learning. In this
work, we leverage directed acyclic GNN (Zhang et al., 2019; Amizadeh et al., 2019; Thost & Chen,
2021) as the basic machinery to capture computational dependencies on a Boolean circuit.

3 DEEPSAT

In this section, we introduce the proposed DeepSAT framework in detail. To facilitate understand-
ing, we first show preliminaries of SAT solving problem in Section 3.1, where three different rep-
resentations of SAT instances are presented. In Section 3.2, we introduce our logic synthesis based
pre-processing procedure. In Section 3.3, we present our formulation of SAT solving as a con-
ditional generative procedure and the construction of the supervision labels. We detail the model
design in Section 3.4, and show how to produce satisfying assignments with the trained conditional
generative model in Section 3.5.

3.1 PRELIMINARIES

A Boolean logic/propositional formula ϕ takes a set of I variables {xi}Ii=1 ∈ {True, False}, and
combines them using Boolean operators {AND−∧,OR−∨,NOT−¬, · · · }, returning logic ‘1’ (True)
or logic ‘0’ (False). The Boolean satisfiability (SAT) problem asks whether there exists at least one
combination of binary input {xi}Ii=1 for which a Boolean logic formula ϕ returns logic ‘1’. If so, ϕ
is called satisfiable; otherwise unsatisfiable.

There are various forms for representing a Boolean formula. The most commonly used form is
conjunctive normal form (CNF) (Tseitin, 1983), wherein the variables are organized as a conjunction
(∧) of disjunctions (∨) of variables. By convention, each disjunction inside parentheses is termed
as a clause, and each variable (possibly negation) within a clause is termed as a literal. Such CNF
forms are used in NeuroSAT (Selsam et al., 2019) and its following-ups (Yolcu & Póczos, 2019;
Kurin et al., 2020; Zhang et al., 2021b; Duan et al., 2022) to represent Boolean formulas, resulting
in bipartite graphs with two node types: literal and clause. Besides CNF, a Boolean formula can
be represented in a Boolean circuit format (also known as Circuit-SAT), wherein the primary inputs
(PIs) of the circuit denote variables of a Boolean formula, and the internal gates denote Boolean
operators. In this way, more structure information can be embedded in the inputs. A usage of
Circuit-SAT can be found in (Amizadeh et al., 2019), where the CNF instances constructed from
Boolean formulas are further converted to circuits, and encoded as directed acyclic graphs (DAGs).

In this work, inspired by the common practice in many EDA processes, we propose to represent
Boolean formulas in a unique format of circuits, i.e., and-invertor graph (AIG) which is more brief
compared with normal circuits. An AIG contains three types of nodes: PIs, two-input AND gates,
and one-input NOT gates. It is theoretically guaranteed that any Boolean circuit has an AIG coun-
terpart. By representing SAT instances in AIGs, we can bridge SAT solving and advanced EDA
algorithms, e.g., using logic synthesis to pre-process the circuit forms (See Section 3.2).

3.2 PRE-PROCESSING VIA LOGIC SYNTHESIS

Existing learning based SAT solvers (Selsam et al., 2019; Yolcu & Póczos, 2019; Kurin et al., 2020;
Zhang et al., 2021b) show poor generalization ability for different SAT classes, i.e., they need to
design different heuristics for different distributions of SAT problems. Figure 1 shows the distribu-
tion diversity among three SAT instances, each belonging to a different SAT class. Yolcu & Póczos
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(2019) also observe that the performance of heuristic specialized to a particular SAT distribution
degrades considerably on other distributions.

To this end, we leverage the logic synthesis techniques (Cortadella, 2003; Bjesse & Boralv, 2004;
Mishchenko et al., 2006) in the EDA field to reduce the distribution diversity among different SAT
distributions, thus improving the generalizability of DeepSAT. Specifically, we first represent the
given SAT instances in AIG format. Then we apply two logic synthesis techniques, i.e., logic rewrit-
ing (Bjesse & Boralv, 2004; Mishchenko et al., 2006) and logic balancing (Cortadella, 2003). The
former reduces the total number of AIG nodes, and latter constructs a more balanced circuit with
minimal logic level. Please refer to (Brayton & Mishchenko, 2010; Eén et al., 2007) and Appendix A
for more technical details about these techniques.

We quantitatively show the change of the distributions before and after logical synthesis, using
a scale-independent measurement, i.e., balance ratio (BR) (Walker & Wood, 1976) - the average
ratio of larger fanin region size to smaller fanin region size for each two-fanin gate, i.e., AND gate
in AIG. A BR value closer to 1 indicates more balanced fanin regions of the gate. As shown in
Figure 1, AIGs from different SAT sources have distinct frequency histogram of BR values. But
after performing logic synthesis, these histograms become similar showing BR values close to 1,
since all the AIGs are optimized to have more balanced fanin regions of the gate. This demonstrates
that logic synthesis can reduce the distribution diversities among AIGs from different SAT sources,
which naturally introduces a strong inductive bias (i.e., compactness and balance) for more effective
SAT solving.

3.3 SAT SOLVING AS A CONDITIONAL GENERATIVE PROCEDURE

Problem formulation. As introduced in Section 3.1, we represent a Boolean formula as an AIG-
based directed graph G = (V = {VP ,VG}, E), where the nodes VP = {vi}Ii=1 correspond to the
primary inputs (PIs), the nodes VG = {vi}|V|

i=I+1 denote the logic gates, and the directed edges E
represent wires among the gates. The PI states can be viewed as a random variable following the
multivariate Bernoulli distribution, x=(x1, x2, · · · , xI)

T ∈{0, 1}I ∼Bernoulli(θ), where I is the
number of PIs and θ is the parameter of the distribution. The primary output (PO) y is the state of
the gate at the last logic level, which follows the univariate Bernoulli distribution, indicating whether
the Boolean circuit evaluates to logic ‘1’ or not. A feasible solution for a satisfiable Boolean circuit
can be derived by:

Solution x∗ = argmax
x

p(x|y = 1;G,θ). (1)

Similar to PixelCNN (Oord et al., 2016), we handle the intractable joint probability distribution of
x by factorizing it into a product of conditional univariate Bernoulli distributions:

p(x|y = 1;G,θ) =
I∏

i=1

p(xi|x<i, y = 1;G, θi), xi|x<i ∼ Bernoulli(θi), (2)

where x<i = {x1, x2, · · · , xi−1} denote the PIs of which the values have been determined, and
p(xi|x<i, y = 1;G, θi)=θxi

i (1− θi)
xi .

Supervision label construction. To obtain the joint probability in Equation 2, we need to figure
out θi, and then calculate p(xi|x<i). Note that different from PixelCNN (Oord et al., 2016), we
do not have a natural fixed order for picking xis. To facilitate subsequent discussions, we rewrite
the condition terms x<i in Equation 2 as xm. The determined PIs are designated using a mask
m = (m1, · · · ,m|V|)

T ∈ {1, 0,−1}|V| to simulate the generative procedure, which is applied on
all nodes V to indicate whether the state of a node is determined or not:

mj =

{
0 if vj ∈ VG or xj /∈ xm

1 if xj ∈ xm and xj = True,
−1 if xj ∈ xm and xj = False.

(3)

Following a frequentest setting, we estimate a value for each θi by maximum likelihood estimation
(MLE) (Bishop & Nasrabadi, 2006). Suppose we feed N random assignments (also known as logic
simulation in EDA context) to the Boolean circuit G and observe variable xi being logic ‘1’ for M
times. Then we can obtain the maximum likelihood estimator for θi of p(xi;G, θi):

θ̂i =
M

N
. (4)
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Figure 2: The overview of model architecture. We use polarity prototypes to replace the hidden
states of gates with masks during forward and reverse propagation.

It should be noted that such estimation is achieved without any conditions, e.g., the circuit being
satisfiable or values of some nodes are known in advance. If some conditions are imposed into
the circuit, we simply filter out the random assignments that violate the conditions during logic
simulation, therefore can estimate θi in the conditional distribution.

We refer θ̂i as the simulated probability of node being logic ‘1’ in the following discussion. To
avoid in-accurate estimation associated with maximum likelihood, we perform logic simulations
with a large number of random patterns (e.g., 15k random patterns to each AIG in our experiments)
to obtain faithfully simulated probability values. Alternatively, for larger problems, a practical way
is to first use an efficient all solutions SAT solver (Toda & Soh, 2016) to obtain all possible satisfying
solutions, and then estimate the supervision signal θ̂i from these assignments. In general, the cost of
our logic simulation is on par with those of other SAT solving algorithms such as NeuroSAT (Selsam
et al., 2019), where the SAT-related supervision labels are generated from a classical SAT solver.
Please refer to Appendix B for more details about dataset construction.

Training objective. The core of our approach is a graph-based model taking a DAG G and the
conditions m as inputs to approximate the simulated probabilities at the node-level directly. Our
hypothesis is that a DAG structure sufficiently defines the logic computation of the Boolean circuit
and characterizes the dependence of the different gates/variables. With enough relational induc-
tive biases, a parameterized graph-based model is able to predict the simulated probability of all
gates under logic simulation. Driven by this hypothesis, we designate the training objective as the
following mapping:

F : (G,m) 7→ θ̂, where θ̂ = {θ̂i = argmax
θi

p(xi|xm, y = 1;G, θi)|xi ∈ G}, (5)

where the condition xm corresponds to the determined nodes defined by the mask m (Equation 3).
We generate a mask m initialized from a zero vector by fixing the element for PO to 1 (i.e., let
y = 1), and then assign the elements corresponds to a randomly designated condition terms xm

with 1 or -1. Given m, the objective is to regress the simulated probabilities of the remaining
nodes vi being logic ‘1’, i.e., to approximate θ̂i. Each conditional probability is parameterized by a
deep neural network whose architecture is chosen according to the required inductive biases for the
graph-structured Boolean circuits. The function F is learned by minimizing the least absolute error
between the prediction and the supervision label θ̂.

3.4 THE PROPOSED MODEL

To capture directed relational bias embedded in circuits, we leverage the dedicated directed acyclic
GNNs (DAGNNs) (Zhang et al., 2019; Thost & Chen, 2021) as the model F in Equation 5 to learn
structural information and the computational behavior of logic circuits, and embed them as vectors
on every logic gate (Li et al., 2022). As shown in Figure 2, the model consists of two stages of
directed acyclic GNN propagation along with the masking operations defined in Equation 3. Then
an multi-layer perceptron (MLP) regressor is applied on node vectors for predicting the simulated
probability.

Given a circuit graph G, we use fi and hi to denote the gate type and the hidden vector, respectively.
Specifically, as three types of gates, i.e., PI, AND and NOT, are present in AIGs, we encode the gate
type as a 3-d one-hot embedding for each node according to its gate type. We elaborate the details
of the model design in DeepSAT below.

5



Under review as a conference paper at ICLR 2023

Polarity prototypes. The training objective derived in Equation 5 requires the model to be able to
condition on some given gate states. To enable such conditional modeling, we define two proto-
types (Snell et al., 2017), hpos and hneg , for two polarities of node probabilities, one for node being
logic ‘1’ (positive polar) and the other for node being logic ‘0’ (negative polar), respectively.

Assuming every node vi is encoded as a hidden vector hi, the hidden vectors for the masked nodes
are replaced by their corresponding prototypes according to the value of the mask:

h′
i =

{
hpos if mi = 1,
hi if mi = 0,
hneg if mi = −1.

(6)

In practice, the initial hidden vectors are sampled from a normal Gaussian distribution. Therefore,
we fix the hidden vectors for two polarities as two near-boundary points, i.e, all positive ones for
logic 1 (hpos = [1, 1, · · · .1]) and all negative ones for logic 0 (hneg = [−1,−1, · · · ,−1]), respec-
tively. The two polarity prototypes can be thought of as two extreme points lying on opposite sides
of a sphere in hidden space. Intuitively, during training, the hidden vectors of gates with a probability
close to 1 will be pulled to all ones, and vice versa. Therefore, the two polarity prototypes facilitate
learning a continuous and compact hidden space with good interpretability of logic values. Note
that other polarity prototypes are also feasible, as long as the two polarity prototypes are far away
from each other in the hidden space. Detailed explanation of the polarity prototypes are included in
Appendix C

For notational simplicity, we omit the superscript prime ’′’, and directly use hi to denote the input
hidden vector after the masking operation defined in Equation 6.

Forward propagation. To aggregate the information from node v’s predecessors, we implement
the attention mechanism in the additive form (Thost & Chen, 2021) as:

afw
v =

∑
u∈P(v)

αfw
uv h

init
u where αfw

uv = softmax
u∈P(v)

(w⊤
1 hinit

v + w⊤
2 hinit

u ), (7)

where P(v) denotes the set of direct predecessors of v. Using the ‘Attention’ language, the inital
hidden state hinit

v serves as a query, and the representation of predecessors hinit
u serves as a key.

We then use the GRU to combine the aggregated information with v’s information, including the
encoded gate type fv and the initial hidden vector hinit

v to update the hidden vector of target node v:

hfw
v = GRU([afwv , fv],h

init
v ), (8)

wherein afwv , fv are concatenated together and treated as input, while hinit
v is the past state of GRU.

The above functions process nodes according to the logic levels defined by circuit’s topological
orders, starting from PIs and ending up with the single PO. After that, the node hidden vector hfw

v
is further updated by according to the same mask following Equation 6.

Reverse propagation. To model the effect of the conditional term related to satisfiability, i.e.,
y = 1 in Equation 5, we perform a reverse information propagation after the forward propagation.
Specifically, we imposes the condition of satisfiability PO by masking its hidden vector as hpos, and
process the graph in reversed topological order to propagate the condition to PIs. By doing so, the
updated node hidden vector hbw

v contains extra information about the satisfiability compared with
hfw
v that is obtained only using forward propagation.

The backward propagation is similar to the forward propagation regarding computation of aggre-
gation and combination function, except that during the aggregation, we only consider the direct
successors S(v) of target node v. The hidden vector hbw

v is further processed using the same mask
as above following Equation 6, and fed into the regressor for predicting the simulated probabilities.

Comparison with previous methods using bidirectional propagation. Adopting a reverse propa-
gation besides the forward propagation for training DAG structures is not new in GNN-based SAT
solving (Amizadeh et al., 2019; Thost & Chen, 2021), yet we highlight key differences that sup-
port the superior SAT solving performance of DeepSAT. In DAGNN (Thost & Chen, 2021) and
DG-DAGRNN (Amizadeh et al., 2019), the reason to perform forward and reverse propagation is
to enrich the node state vectors with information from both the ancestor and the descendant nodes.
While in DeepSAT, the goal of using bidirectional propagation along with polarity prototypes is to
mimic the Boolean constraint propagation (BCP) (Wu et al., 2007; Belov & Stachniak, 2010; Zhang
et al., 2021a) mechanism in logic reasoning.
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Figure 3: Example of forward/reverse propagation in BCP and DeepSAT. DeepSAT enables con-
straint propagation by bidirectional propagation and polarity prototypes during learning.

Specifically, BCP is initiated when a logic value is assigned to an unassigned gate v, which leads to
value changing of some unassigned gates in the neighbourhood of v (i.e., fanin and fanout). There
are two types of propagation considering the direction: forward propagation and reverse propaga-
tion (Figure 3). Similarly, in DeepSAT, we introduce polarity prototypes as hidden states for gates
assigned with known logic states. Specially, the satisfiability is modeled by assigning logic ‘1’ to
PO. To this end, optimizing the conditional gate-level probability p(xi|xm, y = 1;G, θi) (Equa-
tion 2) with bidirectional propagation and polarity prototypes enables learning BCP in the hidden
space (Figure 3). Such design encourages a continuous and compact hidden space with good in-
terpretability of logic values. More importantly, with polarity-regularized hidden space, we can
manipulate the states of nodes and thus perform conditional solution sampling as described below.

3.5 SOLUTION SAMPLING SCHEME

To sample solutions from the well-trained conditional model, we iteratively select the undetermined
PI with the highest confidence values predicted by the model, i.e., the PI with probability prediction
closest to 0 or 1. Specifically, given an SAT instance G with I variables, we conduct the following
auto-regressive procedure: 1) We mask PO as logic ‘1’, and generate the corresponding mask vector
m0. 2) At t iteration, we pass (G,mt) to well-trained DeepSAT model to estimate the simulated
probability of all un-masked PIs. The PI with the highest confidence is selected and masked as logic
‘0’ if the prediction is smaller than 0.5, otherwise logic ‘1’. According to the selected PI and its
masked value, a new mask mt+1 is generated. 3) Repeat the second step until all PIs have been
masked (I iterations in total). Then we obtain a candidate assignments x̂ from mI .

To explore more possible assignments to satisfy the SAT instance, we also develop a simple flipping-
based strategy to sample more solutions from the conditional model ((I + 1) solutions in the worst
case). Briefly, if the initial sampled assignment is not the satisfying solution, we record the order of
PIs being masked and flip a specific PI in the next sampling step, following the recorded order. The
implementation details, as well as the pseudo-code, are provided in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines. We compare our solution with the representative end-to-end method for SAT solving in
the literature1: NeuroSAT (Selsam et al., 2019). NeuroSAT assumes that the input problem is in
CNF. There are several follow-up works of NeuroSAT (Yolcu & Póczos, 2019; Kurin et al., 2020;
Zhang et al., 2021b; Duan et al., 2022) that consuming CNFs. Nevertheless, they target on differ-
ent settings and NeuroSAT still stands for a strong baseline for end-to-end SAT solving. We give
more discussion about the related models and implementation details in Appendix E and additional
analysis in Appendix G. To enable a fair comparison, we implement DeepSAT and NeuroSAT in a
unified framework2 with PyTorch Geometric (PyG) (Fey & Lenssen, 2019) package.

Training datasets. We follow the SAT instance generation scheme proposed in NeuroSAT (Sel-
sam et al., 2019) to generative random k-SAT CNF pairs. We use SR(n) to denote random k-SAT
problems on n variables generated by this scheme. In particular, we generate a SR(3 − 10) dataset
of 230k SAT and UNSAT pairs. We restrict the scale of the training dataset due to limited GPU
resources. However, we demonstrate that DeepSAT can generalize well to problems that are larger
or with novel distributions, as shown below. For NeuroSAT, these pairs are directly used for binary
classification, while DeepSAT is only trained on SAT instances. For DeepSAT, we convert CNFs

1We do not compare DeepSAT with DG-DAGRNN (Amizadeh et al., 2019) as we cannot reproduce its
results, despite that we have rigorously followed the descriptions in the paper. Our implementation of DG-
DAGRNN is also attached in the supplementary materials.

2The code is available at: https://anonymous.4open.science/r/deepsat_iclr23_E513/.
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Table 1: Performance comparison of DeepSAT and NeuroSAT on in-sample instances (Problems
Solved). All models are trained on 230k SR(3-10) training data. We consider two settings: i) Same
message passing iterations, where the number of message passing iterations is determined by the
number of variables. ii) Test metric converges, where models iteratively run until no instance can be
solved by increasing the number of iterations. The test sets follow the same formats used in training.

Same Iterations Test Metric Converges

Methods Format SR(10) SR(20) SR(40) SR(60) SR(80) SR(10) SR(20) SR(40) SR(60) SR(80)

NeuroSAT CNF 65% 58% 32% 20% 20% 92% 74% 42% 20% 20%

DeepSAT Raw AIG 67% 60% 36% 23% 21% 94% 79% 45% 25% 23%
Opt. AIG 72% 66% 40% 31% 23% 98% 85% 51% 37% 26%

to raw AIG3and Optimized AIG via logic synthesis (abbreviated as Opt. AIG). Note that in all
experiments we convert the test instances to the same formats as the ones used in model training.

Evaluation metric. DeepSAT is an incomplete (Selman et al., 1993; Zhang et al., 2021b) solver,
i.e., an instance is detected as satisfiable only after the model finds a satisfying assignment and
otherwise returns unsolved. Therefore, we only include satisfiable instances in the testing dataset
for all experiments and measure the percentage of the successfully solved SAT instances out of
all instances (abbreviated as Problems Solved). In Appendix F, we discuss more details of the
evaluation metrics for end-to-end SAT solvers.

4.2 RANDOM k-SAT

This section shows comparisons of DeepSAT and NeuroSAT on solving random k-SAT problem. To
evaluate the generalization performance, we validate our method on SAT instances generated from
a much larger number of variables. In particular, we evaluate the well-trained DeepSAT on SR(10),
SR(20), SR(40), SR(60) and SR(80), and compare with the results with the baseline.

Since DeepSAT and NeuroSAT use different assignment decoding schemes to yield the SAT assign-
ments given an SAT instance, we consider two experimental settings for performance comparison: i)
compare under the same computational cost, which is measured by the number of message passing
iterations, and ii) compare the upper-bound of performance regardless of the computational cost.
For the first setting, we fix the number of message passing iterations as I for an I-variable SAT in-
stance. This is because DeepSAT needs to perform at least I message passing iterations to generate
a solution for an I-variable SAT instance, while NeuroSAT can generate the solution for a specific
problem once by clustering on the literal embedding after a number of bidirectional message passing
iterations. Hence, for a I-variable SAT instance, we fix the number of message passing iterations
as I , in which case DeepSAT can generate one and only one complete assignment and NeuroSAT
are aligned with same message passing cost. For the second setting, we let both models generate
as many assignments as possible until the test metric converges. In this way, NeuroSAT is queried
for multiple times for assignment decoding under different iterations of message passing, in order
to monitor the test metric. In other words, NeuroSAT will generate multiple assignments for one
SAT instance. As for DeepSAT, we follow the proposed solution sampling scheme introduced in
Section 3.5, which samples at most I + 1 solutions in worst case.

We present Problems Solved on different testing datasets with different formats in Table 1. From this
table, we have several observations. First, compared with the baselines, DeepSAT can achieve the
highest Problems Solved on all evaluated datasets under both experiment settings, with a significant
margin. For example, on SR(20), DeepSAT trained on Opt. AIGs can solve 85% of problems, while
NeuroSAT trained on CNFs only solve 74% of problems. Second, the performance of both models
degrades as we increase the number of variables. Yet, DeepSAT generalizes better to bigger and
harder problems than NeuroSAT.

To further validate the effectiveness of our proposed formulation, i.e., SAT solving as a genera-
tive modeling procedure, we monitor Problems Solved during the solution sampling procedure on
SR(10). By sampling a single solution for each problem, DeepSAT can solve 72% of all problems. If
we sample two more solutions for each problem from DeepSAT, the percentage of solved problems
increases to 93%. Contrarily, to solve 92% of problems on SR(10), NeuroSAT requires additional
tens of iterations of message propagation to make prediction coverage. DeepSAT terminates when

3Convert CNF to AIG using the cnf2aig tool: http://fmv.jku.at/cnf2aig/
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Table 2: The comparison of DeepSAT and NeuroSAT on novel distributions.
Method Format Coloring Acc. Domset Acc. Clique Acc. Vertex Acc. Avg. Acc.

NeuroSAT CNF 0% 44% 35% 0% 22%

DeepSAT Raw AIG 63% 81% 77% 82% 76%
Opt. AIG 98% 99% 92% 97% 97%

the latest sampled solutions are satisfying and samples 1.63 solutions on average for SR(10). The
result on other test datasets shows the same tendency. See Appendix G.1 for more results on the
proposed solution sampling scheme.

4.3 EFFECTIVENESS OF LOGIC SYNTHESIS

In Table 1, we see that DeepSAT maintains state-of-the-art performance even when trained on raw
AIGs without logic synthesis. Specifically, DeepSAT trained on raw AIGs outperforms NeuroSAT
trained on CNFs consistently across all test sets, despite that raw AIGs include less structural infor-
mation for learning. For example, DeepSAT trained on raw AIGs successfully solves 94 and 79 out
of 100 SR(10) and SR(20) problems, respectively, which is better NeuroSAT trained on CNFs. In
summary, we believe that the performance gain of DeepSAT not only comes from EDA optimiza-
tion, but also thanks to the customized bidirectional propagation with polarity prototypes that can
effectively model the conditional distribution of possible assignments.

4.4 NOVEL DISTRIBUTIONS

To further investigate the generalization ability of our DeepSAT model, we evaluate the model
trained on SR(3 − 10) on the different NP-Complete problems with novel distributions: graph
k-coloring, vertex k-cover, k-clique-detection and dominating k-set. The above problems can be
reduced to the SAT problems and solved by a SAT solver. We generate 100 random graphs with
6 − 10 nodes and the edge percentage of 37% for each problem. For each graph in each problem
type, we generate graph coloring instances (3 ≤ k ≤ 5), dominating set problems (2 ≤ k ≤ 4),
clique-detection problems (3 ≤ k ≤ 5) and vertex cover problems (4 ≤ k ≤ 6). We report the
results when the test metric converges. Notably, the generated problem instances are not particularly
difficult for state-of-the-art SAT solvers. For our purpose, the evaluated results in this section serve
as simple benchmarks to demonstrate the superiority of DeepSAT over the baseline.

As shown in Table 2, DeepSAT trained on Opt. AIGs can solve 98% of graph coloring problems,
99% of dominating set problems, 92% of clique-detection problems, and 97% of vertex cover prob-
lems. When DeepSAT is trained on raw AIGs, the performance degrades to some extent, yet is still
better than NeuroSAT on these datasets. In contrast, we observe there is an apparent discrepancy
in performance of NeuroSAT between novel distribution problems and the in-sample distribution
used for training, even though the size of problems is similar. To sum up, DeepSAT maintains the
same solving ability on novel problems, and the pre-processing of logic synthesis enables better
generalization ability of novel distributions.

5 CONCLUSION AND FUTURE WORK

This paper presents DeepSAT, an EDA-driven end-to-end learning framework for SAT solving.
Specifically, we first propose to apply a logic synthesis-based pre-processing procedure to reduce
the distribution diversity among various SAT instances. Next, we formulate SAT solving as a condi-
tional generative procedure and construct more informative supervisions with simulated logic prob-
abilities. A dedicated directed acyclic graph neural network with polarity prototypes is then trained
to approximate the conditional distribution of SAT solutions. Our experimental results show that
DeepSAT outperforms the existing end-to-end baseline.

While DeepSAT demonstrates considerable improvements in end-to-end SAT solving, there is still a
significant performance gap compared to state-of-the-art heuristic-based SAT solvers. In our future
work, on the one hand, we plan to improve its performance further; on the other hand, we would
also explore novel joint solutions that combine them, e.g., using constraint propagation mechanism
learned in DeepSAT to guide better heuristic in classical Circuit-SAT solvers.
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Figure 4: Examples of graph optimization based on logic synthesis.

Table 3: The balance ratio and logic level before and after EDA opt. (Avg. ± Std.)
Graph Coloring Random k-SAT k-Clique

BR Level BR Level BR Level

Before EDA opt. 19.67± 10.38 45.71± 7.04 9.21± 1.46 67.58± 34.34 29.83± 15.14 106.75± 44.00
After EDA opt. 1.16± 0.09 14.15± 0.99 1.50± 0.14 12.40± 0.96 1.21± 0.08 13.29± 0.81

A LOGIC SYNTHESIS

We apply two techniques of logic synthesis in Section 3.2, namely logic rewriting and logic balanc-
ing. In this section, we give more details about these two techniques. Examples of graph optimiza-
tion based on logic synthesis are included in Figure 4.

A.1 LOGIC REWRITING

Rewriting is a greedy circuit optimization technique for minimizing the circuit structure (Bjesse
& Boralv, 2004; Mishchenko et al., 2006). It enumerates sub-graphs and replaces them with the
equivalent smaller sub-graphs iteratively. To facilitate subsequent discussion, we first define cut
as a set of nodes on the circuits with only one root node. A cut is K-feasible if the number of
variables does not exceed K. In AIG rewriting (Mishchenko et al., 2006), all non-redundant 4-
feasible cuts are pre-computed and stored in advance. With the above prerequisite, the rewriting
algorithm can be summarized as the following four steps: (1) select a certain node as the root
node in the topological order from PI to PO; (2) perform the 4-feasible cut enumeration; (3) in
each iteration, get a cut and corresponding Boolean function; (4) if there is an implementation of
the function with a smaller number of gates, choose the implementation; otherwise, leave the AIG
unchanged. Figure 4(a) shows an example where the sub-graph can be replaced by a simplified one
without logic modification.

A.2 LOGIC BALANCING

Logic balance creates an equivalent circuit with minimum delay, i.e., the minimum number of logic
levels. As suggested by its name, the optimized circuits is derived by balancing the various fan-in re-
gions of multi-input gates. The main algorithm constructs a Boolean function trees and decomposes
the tree from root to leaves (Cortadella, 2003). In our setting, since all AND gates only have two
fan-in wires, the logic balance refers to logic bi-decomposition problem. In each balancing iteration:
(1) the logic tree is decomposed into several sub-trees; (2) balance the sub-tree recursively; (3) insert
the balanced sub-trees back to the main stem. Figure 4(b) shows a logic balancing instance, where
the balancing achieves one logic level reduction.

The above logic synthesis techniques are implemented in the open-source tool ABC (Brayton &
Mishchenko, 2010) with commands rewrite / rw and balance / b, respectively. It should be noted
that both commands achieve the locally optimal effect based on the current topological structure. In
other words, the circuit will not be modified when executing the same command for multiple times.
Therefore, including some perturbation into the circuit can expose new minimizing opportunities.
For example, (Eén et al., 2007) perturbs the AIG by decomposing the local structure and (Cortadella,
2003) transforms the circuit based on different laws alternately. The rewrite and balance operations
are considered as perturbation factors mutually. In this work, we perform both operations iteratively
for three times (rw; b; rw; b; rw; b.) to obtain optimized AIGs.
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Table 4: The Error between Logic Simulation and Enumeration.
# Samples Difference Error Rate

100k 0.0007 1.75%
10K 0.0019 4.75%
1K 0.0144 36.00%
0.1K 0.1037 259.25%

1.00

1.00

1.00

1.000.50
1.00

Mask PO as True0.50

0.50

0.25

0.750.50
0.25

Figure 5: An example of logic simulation w/ and w/o mask.

A.3 OTHER QUANTITATIVE ANALYSIS

Beside the balance ratio (BR) we present in the main context, we also evaluate the number of logic
level ((Level), which indicates the depth of the circuits. A smaller number of logical levels means
a more evenly distributed arrangement of the logical units. As can be observed from the Tab. 3,
the optimized AIGs typically have BR values that are closer to 1 and a smaller number of logical
levels compared with those of the original AIGs, showing that the distribution diversity of AIGs
after optimization is reduced.

B DATASET CONSTRUCTION BY LOGIC SIMULATION

The constructed training dataset D consists of tuples of (G(i),m(i), θ̂(i)), where G(i) is a Boolean
circuit, m(i) is a conditional mask and θ̂(i) is the simulated probabilities for every node in the
Boolean circuit.

In the logic simulation, we aim at estimating the probability of a node being logic ‘1’, which is
used as a supervision signal in the following experiments. Specifically, the probability is estimated
by counting the number of times the value of a gate becomes logic ‘1’ when feeding N random
assignments to the circuit. For example, if a gate becomes logic 1 for 1,000 times under 10,000
random patterns, then the supervision of this gate will be a real value 1,000/10,000=0.1, which is
the estimated probability of this gate being logic ‘1’.

Empirically, we apply 15k random patterns to each AIG to construct the training data. Given a
conditional mask m, we only count the random patterns that fulfill the condition. A tiny example is
shown in Figure 5. When we mask the PO as logic ‘1’, the simulated probability of nodes will be
changed accordingly.

In the previous end-to-end solutions (Selsam et al., 2019; Amizadeh et al., 2019), a classical SAT
solver is used to offer single-bit of supervision (SAT/UNSAT) (Selsam et al., 2019), or exclude un-
satisfiable circuits from datasets (Amizadeh et al., 2019). Since the classical SAT solver is based on
some hand-crafted searching heuristic, tens of thousands of backtracking / branching are required
to obtain the final satisfying solutions or give the unsatisfying certificates. On the other hands, the
random simulation does not require any specialized designs, but a random input generator. More-
over, the logic simulation can be accelerated using parallelization algorithms and hardware (e.g.,
GPUs). Consequently, the cost of our logic simulation is on par with those of other learning-based
SAT solving algorithms. For larger problems, an alternative is to first use an efficient “all solutions
SAT solvers” to obtain all possible satisfying solutions, and then estimate the supervision signal θ̂i
from these assignments.
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Similarly to (Li et al., 2022), we observe that by applying 15k random patterns to each AIG, we can
achieve a balance between training efficiency and the quality of learning. We experiment with the
numbers of samples ranging from 100 to 100k on the SR(20) training dataset (Table 4). The results
show that the performance stopped increasing after the number of samples reaching 10k. Note that
for smaller SAT problems, we randomly generate samples without considering the repetitions. For
exampple, we enumerate all possible assignments for an SR(20) instance and get the overall logic-1
probability as the ground truth. Then, we perform the logic simulation with 100K, 10K, 1K, and
0.1K samples. The table below shows the average difference between simulated logic-1 probability
and ground truth. Since the final training loss of our model is about 0.04, the error caused by logic
simulation with 10K samples is only 4.75%. Therefore, we believe that simulating with 10K samples
offers a good trade-off between simulation runtime and error. For the feasibility of covering enough
satisfiable solutions, in our case, since the training dataset SR(3)-SR(10) is rather small, it is very
likely that logic simulation with 10k patterns can cover enough satisfiable solutions for estimating.

C POLARITY PROTOTYPES

C.1 POLARITY PROTOTYPES AS LATENT SPACE REGULARIZATION

We interpret the polarity prototypes as one of latent space regularization techniques. Incorporating
regularized structure into latent space is preferred in many scenarios, such as data generation (Had-
jeres et al., 2017; Kingma & Welling, 2013; Shen et al., 2020), unsupervised domain adoption (Kang
et al., 2019), and few-show learning (Snell et al., 2017). In general, strategies belonging to this class
make use of additional constraints imposed on the latent vectors, effectively reducing the extent
of space each of them can occupy (Barbato et al., 2021). In this paper, we introduce two polarity
prototypes with specific physical meanings (logic ‘1’ or logic ‘0’) into latent space, and facilitate
learning a continuous and compact hidden space with good interpretability of logic values. More
importantly, with polarity-regularized embedding space, we can manipulate the states of nodes and
thus do the conditional solution sampling.

C.2 LEARNABLE POLARITY PROTOTYPES

Similar to learnable tokens in the Transformer-based models Dosovitskiy et al. (2021); He et al.
(2021); Devlin et al. (2018), we can randomly initialize two polarity prototypes and make them
learnable along with the model parameters by back-propagation. By this way, the polarity pro-
totypes can be discovered by the model automatically. In this subsection, we train another same
DeepSAT model besides learnable polarity prototype and compare with the default setting (non-
learnable polarity prototypes) under same training iterations. As a result, the model with learnable
setting has PE = 0.1107, which under-performs than the original DeepSAT model with fixed polarity
prototypes (PE = 0.0648). Therefore, we use the fixed polarity prototypes in our experiments.

D SOLUTION SAMPLING SCHEME

In this section, we provide more details of our proposed solution sampling scheme. The pseudo-code
is provided in Algorithm 1.

To sample solutions from the well-trained conditional model, we iteratively select the undetermined
PI with the highest confidence values predicted by the model, i.e., the PI with probability prediction
closest to 0 or 1. Specifically, given an SAT instance G with I variables, we conduct the following
auto-regressive procedure:

1. We mask PO as logic ‘1’, and generate the corresponding mask vector m0.

2. At t iteration, we pass (G,mt) to well-trained DeepSAT model to estimate the simulated
probability of all un-masked PIs. The PI with the highest confidence is selected and masked
as logic ‘0’ if the prediction is smaller than 0.5, otherwise logic ‘1’. According to the
selected PI and its masked value, a new mask mt+1 is generated.

3. Repeat the second step until all PIs have been masked (I iterations in total).
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Algorithm 1: Conditional Inference with Backtracking
Input: The problem instance in AIG format G. The number of variables #var. The trained

model DeepSAT.
Output: Return the satisfiable assignment (for predicted SAT instance) or empty ∅ (for

predicted unknown instance)
/* Iterative solving function */

1 Function IterativeSolve(G,DeepSAT, agn, #var):
2 NoAgned = #var − (agn == 0) ;
3 O = ∅ ;
4 for it← NoAgned to #var do
5 m = obtainMask(agn) ; // Generate mask
6 V = DeepSAT(G,m);
7 idx = findMostConfidentDecision(V, agn) ;
8 agn[idx] = (V < 0.5) ? − 1 : 1 ;
9 O.append(idx) ; // Save decision order

10 end
11 return (agn,O) ;
/* Initial solving assumption */

12 x∗ = [0] ∗ #var ;
13 x∗,O = IterativeSolve(G,DeepSAT,x∗, #var) ;
14 if VerifySolution(G,x∗) then
15 return x∗ ;
16 end
/* Flipping-based strategy with O */

17 for i← 0 to len(agn) do
18 agn = [0] ∗ #var ;
19 for j ← 0 to i do
20 agn[O[j]] = x∗[j] ; // Pre-assign the variables
21 end
22 agn[O[i]] = (agn[O[i]] == 1) ? − 1 : 1 ; // Flip one assigned variables
23 agn, = IterativeSolve(G,DeepSAT, agn, #var) ; // Try another assumption
24 if VerifySolution(G, agn) then
25 return agn ;
26 end
27 end
28 return ∅ ; // Fail to find assignment, mark the instance as unknown

To explore more possible assignments to satisfy the SAT instance, we also develop a simple flipping-
based strategy (line 17 - line 27 in Alg. 1) to sample more solutions from the conditional model
((I + 1) solutions in the worst case). To be specific, during the initial solution sampling step, we
record the masking order in the iteratively solving procedure as O = {o1, o2, . . . , on}. For the round
r, where r = 1, 2, . . . , n, we modify the initial mask mr

0 as Eq. 9, where flip the rth approximated
assignment and keep the former assignment as the initial mask mr

0 to estimate another possible
solution.

mOi
=

 x∗
Oi

i < r
¬x∗

Oi
i = r

0 i > r
(9)

For example, if we get the initial solution x∗ = {0, 0, 0} for a three variable SAT instance and the
iterative order is O = {v3, v2, v1}. For the round r = 1, the initial mask should be m1

0 = {mPO =
1,mOr = ¬x∗

Or
}, i.e., m1

0 = {mPO = 1,mv3 = 1}. For the round r = 2, the initial mask should
be m2

0 = {mPO = 1,mv3 = 0,mv2 = 1}. The above re-sampling procedure is executed until
finding a satisfying solution or exceeding round n.
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Figure 6: Three graph representations of the Boolean formula in Equation 10.

Table 5: The training and model setting of default DeepSAT
Configuration Value

Training

Optimizer Adam
Learning rate 1e-4
Weight decay 1e-10
Training epochs 20
Batch size 64

Model

Hidden vector dimension 64
Aggregator Attention
Update function GRU
Regressor 3-layer MLP with ReLU

E IMPLEMENTATION DETAILS AND COMPARISON TO RELATED MODELS

E.1 DIFFERENT CIRCUIT FORMATS

NeuroSAT consumes CNF as a bipartite graph, while DG-DAGRNN and DeepSAT can process
various circuit formats. Here we give an example of SAT instances, and visualize it under different
circuit formats in Figure 6. The example we use is Equation 10 in the CNF format, which consists
of 3 variables.

ϕ := (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x3) (10)

E.2 IMPLEMENTATION DETAILS OF DEEPSAT

DeepSAT consists of one forward propagation layer and one reverse propagation layer. In particular,
we use a single-layer GRU and a attention-based aggregation function to instantiate each propagation
layer. The forward propagation layer and reverse propagation layer do not share the parameters. The
dimension of node hidden states is set as 64. The regressor is a 3-layer MLP with hidden dimension
64. We train DeepSAT for 60 epochs with batch-size 128 on 4 Nvidia V100 GPUs. The Adam
optimizer (Kingma & Ba, 2015) is adopted with the learning rate 10−4 and weight decay 10−10.
We use the topological batching technique introduced in (Thost & Chen, 2021) to accelerate the
training. The details of the model setting and training setting are listed in Tab. 5

E.3 IMPLEMENTATION DETAILS OF NEUROSAT

NeuroSAT supports the instance in CNF format. We reproduce the NeuroSAT based on the original
configurations. The message-passing is performed for 10 iterations between literals and clauses
during training. The dimension of node hidden states is 128.

E.4 IMPLEMENTATION DETAILS OF DG-DAGRNN

DG-DAGRNN is a GNN model specialized for Circuit-SAT problems. Following the the original
paper, we set the number of node hidden states is 100. We also adjust temperature τ in evaluator
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network dynamically as τ = t−0.4, where t is the number of training epochs. The k in loss function
is set 10 in the following experiment. Besides, we set the number of GNN iterations as 10.

Besides the model configuration in Amizadeh et al. (2019), we also provide the modified configura-
tion to further improve the model performance. 1) Since the CNF is converted into a circuit based
on Cube and Conquer paradigm Heule et al. (2011), the number of fan-in wires for different gates
is not fixed. The original aggregation function in GNN sums up all messages from predecessors
without considering the various number of fan-in wires. We replace the original aggregation with an
attention-based aggregation function Li et al. (2022) to calculate the weighted sum. 2) The original
DG-DAGRNN includes a linear projection to project the hidden state into lower dimension vectors
and feedback as the next layer inputs. The information about gate type loses after multiple message-
passing rounds. We remove the linear projection and directly feedback the concatenation of hidden
state and one-hot encoded gate type into next layer propagation. 3) The SAT instance in the original
training dataset consists of a large number of clauses. Usually, there are only 1 or 2 out of 2n sat-
isfiable assignment for a SR(n) instance. Find an assignment to satisfy such instance is extremely
difficult. We augment the training dataset with many simple instances by removing the clauses from
the difficulty instances.

We try to reproduce DG-DAGRNN (including the original configuration and our modified configu-
ration described above) and also apply the same EDA optimizations to it, as the official code of DG-
DAGRNN remains publicly unavailable up to now. In order to test the correctness of our implemen-
tation, we try our re-implementation of DG-DAGRNN on SR(3) problems and train for 200 epochs.
As the instances in the training dataset are easily satisfied by random guessed assignment, the initial
testing accuracy is 33%. After training for the first 86 epochs, the testing accuracy improves only
1%. The model converges after 100 epochs and only achieves 44% testing accuracy. Although we
explore the other configurations with different k values in the loss function (k = 0.1, 1, 5, 10), the
model still converges slowly and only improves a little testing accuracy. Unfortunately, when we
train the model on the same dataset in DeepSAT (Section 4), with all the efforts, we still fail to train
DG-DAGRNN to converge.

We attribute the difficulty of training DG-DAGRNN to its vulnerability to training crash. On the
one hand, DG-DARGNN employs a soft-evaluator as the reward network and is a variant of Policy
Gradient method during training. As we observe empirically, the training is sensitive to several
hyper-parameters and is extremely difficult to optimize even we follow the same setting described
in the original paper. On the other hand, increasing the number of logical levels would result in
a large stack of smoothed max and min functions in DG-DAGRNN. Consequently, the gradient
tends to vanish and thus the training tends to fail. Moreover, even though we cannot reproduce
DG-DAGRNN, the results DeepSAT obtains is still better than the ones reported in the original
paper.

Note that we will add DG-DAGRNN as another baseline once the authors release the code.

E.5 COMPARISON TO RELATED WORKS

We compare DeepSAT with NeuroSAT in the main text, and describe the reason why we do not
consider DG-DAGRNN as the baseline above. Besides NeuroSAT and DG-DAGRNN, there are
other existing end-to-end SAT solutions. We enumerate the published works here and elaborate
the differences between these models and DeepSAT. In addition, we give the explanation why we
consider NeuroSAT as the strong baseline in our experiments.

ContrastiveSAT (Duan et al., 2022) studies contrastive learning on end-to-end SAT solvers. They
demonstrate that using label-preserving augmentations of CNFs can learn a meaningful representa-
tion, which can achieve achieve comparable test accuracy to fully-supervised learning while using
only 1% of the labels for finetuning. The baseline is also NeuroSAT. The code of this work is not
open-sourced and they only argue a similar performance of proposed method compared with Neu-
roSAT. In addition, they follow a unsupervised setting, which is differs from ours. Thus, we do not
consider ContrastiveSAT as another baseline.

(Yolcu & Póczos, 2019; Kurin et al., 2020) use Reinforcement Learning to train branching heuristic
in stochastic local search (SLS) solvers and conflict driven clause learning (CDCL) solvers. The
input representation in these two works all follows the one used in NeuroSAT: a bipartite graph
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Table 6: The number of problems solved v.s. the number of sampled solutions for SR(10)
# Sample Solutions 1 2 3 4 5 6 7 8 9 10 11

# Problem Solved 72 8 11 1 2 2 1 0 1 0 0

Table 7: The number of problems solved v.s. the number of sampled solutions for SR(20)
# Sample Solutions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

# Problem Solved 66 5 4 2 0 2 1 0 1 2 0 0 0 0 1 1 0 0 0 0 0

representation defined by CNF. More importantly, the design principle of graph neural networks is
the same with NeuroSAT, where the message passing is iteratively conducted between literals and
clauses. These two works are learning-aided SAT solvers, and in the original works the baselines
are classical SAT solvers. Therefore, we do not consider them as the baselines for comparison. Note
that the proposed DeepSAT has the potential to aid the conventional Circuit-SAT solvers, and we
plan to explore this direction in the future work.

NLocalSAT (Zhang et al., 2021b) is a learning-aided SAT solver, which boosts the stochastic local
search (SLS) solvers by initializing the assignments, which is compared with classical SLS solvers
such as CCAnr and YalSAT. Though NLocalSAT can also be evaluated as an end-to-end SAT solver,
the model structure of NLocalSAT is almost the same as NeuroSAT, expect the authors modify the
learning objective. Hence, we compare our model with NeuroSAT directly.

F DISCUSSION ON EVALUATION METRIC FOR END-TO-END SAT SOLVERS

Since the proposed DeepSAT is an incomplete solver, it predicts a problem as SAT if and only if it
finds a satisfying assignment, otherwise returns UNKNOWN. To this end, if we evaluate DeepSAT
on both SAT and UNSAT instances, the false positive rate (FP) will be 0 because the UNSAT ones
would never be predicted as SAT by DeepSAT. Moreover, we focus on generating a solution for
SAT instead of the binary SAT/UNSAT prediction problem, since the latter is less attractive unless
a satisfying assignment can be given for every instance that is predicted as SAT. Therefore, we
only consider testing on satisfiable instances. Note that testing only on satisfiable instances is also
adopted in DG-DAGNN.

G ADDITIONAL ANALYSIS

In this section, we conduct ablation studies to investigate the effectiveness of our proposed methods.
To enable a fair comparison, all models are trained for 10 epochs. Beside the evaluation metric
Problem Solved defined in Section 4.1, we also report Prediction Error (PE), the least absolute error
between the prediction and the supervision label. PE can be treated as the loss of models during
training and validation, reflecting how well the model fits into the datasets. In general, PE has a
strong correlation with the metric Problem Solved. The smaller PE is, the higher Problem Solved
model can achieve. Besides, we construct a validation SAT dataset with 100 SAT instances.

G.1 SOLUTION SAMPLING SCHEME

The number of re-sampling varies for different problems. We show the statistics of the number of
sampling solutions for solving 100 SR(10) problems (Table 6) and 100 SR(20) problems (Table 7).
As can be observed, DeepSAT samples 1.6 solutions on average for SR(10) and terminates when
the latest sampled solutions are satisfying. In terms of the number of iterations, the results are still
better than the baselines. The result on 100 SR(20) shows the same tendency.

Please note that even though the DeepSAT produces I+1 solutions in the worst case (‘I=number
of vars‘), in most cases, the proposed method can generate satisfying assignments in the first few
sampling rounds.
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Table 8: The comparison of directed and undirected model
Model Aggregator Prediction Error Problem Solved

Undirected

Conv. Sum 0.4296 1%
DeepSet 0.4298 0%
GatedSum 0.4299 0%
Attention 0.4297 1%

Directed

Conv. Sum 0.0669 33%
DeepSet 0.0651 57%
GatedSum 0.0675 35%
Attention 0.0648 64%
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Figure 7: The comparison of models with different hidden vector dimension for prediction errors.

Furthermore, to explore the effectiveness of our proposed solution sampling scheme in Section 3.5,
we design other three simplified sampling schemes and use 100 SR(10) problems to evaluate them.
In the first sampling scheme, we only mask the PO and use DeepSAT to get the probabilities of sat
assignments on PIs. By setting the threshold at 0.5, we obtained 4% accuracy under this setting. In
the second inference setting, we again mask the PO, but use DeepSAT iteratively to achieve the SAT
assignment on each PIs one by one. During each iteration, we choose the PI with most uncertain
probability (i.e., PI with probability around 0.5) to be masked. We obtained only 1% accuracy under
this setting. In the third inference setting, we again mask the PO and use DeepSAT iteratively to
achieve the SAT assignment on each PIs one by one. But during each iteration, we choose the PI
with most certain probability i.e., either close to 1 or close to 0, to be masked. We obtained 70%
accuracy under this setting.

To sum up, the proposed inference scheme outperforms other simplified sampling schemes. Note
that in this work, we keep the solution sampling scheme as simple as possible. We expect designing
more complex sampling designs to be able to further improve DeepSAT’s performance. For exam-
ple, we can use Reinforcement Learning to train an agent to decide which PI to be masked during
sampling. We leave it for future work.

G.2 EFFECTIVENESS OF DIRECTED ACYCLIC GNNS

To verify the effectiveness of our DAG-based design in Section 3.3, we compare the performance
of Directed GNN models and Undirected GNN models. For the undirected GNN, we replace the
forward and reverse propagation as two undirected propagation layers, where the propagation is
conducted bidirectionally and simultaneously. Both models are equipped with the attention-based
aggregator Thost & Chen (2021); Veličković et al. (2018) as Equation 7. The experimental results
are shown in Table 8. The directed model with Attention aggregator shows PE = 0.0648 and solves
64% SAT problems. Not surprisingly, since the undirected model does not capture the relational bias
in circuits, such a model performs poorly in representing circuits. In addition, the undirected model
with the same aggregator almost solves no SAT problems because the model predicts the masked
simulation probability quite inaccurate (PE = 0.4297).
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G.3 DIFFERENT AGGREGATION FUNCTION

In order to demonstrate the effectiveness of aggregation function in Equation 7, we compare
Attention-based aggregation with other 3 different aggregator designs, which include representa-
tive works for DAG learning, i.e., Convolutional Sum (abbr. Conv. Sum) Selsam et al. (2019),
Gated Sum Zhang et al. (2019) and DeepSet Amizadeh et al. (2019). The attention-based aggre-
gator has the lowest PE (PE = 0.0648) than the other three aggregators, including the Conv. Sum
(PE = 0.0669), Gated Sum (PE = 0.0675) and DeepSet (PE = 0.0651) (see Tab. 8). We suspect that
the superiority of the attention mechanism comes from its modeling capacity for logic computation.
Specifically, when we do the logic computation in digital circuits, the controlling value of a logic
gate determines the output of that gate. Therefore, controlling values are far more important than
non-controlling values. To mimic this behaviour, the attention mechanism can learn to assign high
weights for controlling inputs of gates and give less importance to the rest of the inputs. allocates
a higher attention weight to these dominant node neighbors. In summary, the DAG-based models
with an attention-based aggregator achieves the best results, compared to other kinds of aggregation
functions.

G.4 HIDDEN VECTOR DIMENSION

We investigate the influence of the hidden vector dimension (HVD) by training three models with
three different setting: HVD = 32, 64 and 128, respectively. The prediction errors of various con-
figurations in the last 5 epochs are shown in Figure 7. With the increasing hidden vector dimension,
the prediction error decreases. Yet, we observe that with more training iterations, the performance
gap between models with latent vector dimension as 64 and 128 becomes less significant. At train-
ing epochs 10, the PE gap is only 0.0004, about 0.62% PE of the model with 64 hidden vector
dimension. Therefore, we set the latent vector dimension as 64 in the experiments.
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