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ABSTRACT

Reinforcement learning problems often involve large action spaces arising from
the simultaneous execution of multiple sub-actions, resulting in combinatorial ac-
tion spaces. Learning in combinatorial action spaces is difficult due to the expo-
nential growth in action space size with the number of sub-actions and the depen-
dencies among these sub-actions. In offline settings, this challenge is compounded
by limited and suboptimal data. Current methods for offline learning in combi-
natorial spaces simplify the problem by assuming sub-action independence. We
propose Branch Value Estimation (BVE), which effectively captures sub-action
dependencies and scales to large combinatorial spaces by learning to evaluate only
a small subset of actions at each timestep. Our experiments show that BVE out-
performs state-of-the-art methods across a range of action space sizesﬂ

1 INTRODUCTION

Offline reinforcement learning (RL) automates sequential decision-making in domains where trial-
and-error exploration is costly, risky, or impractical by learning from a fixed dataset (Lange et al.,
2012). While effective in various domains (Fu et al., 2020; Levine et al., 2020)), value-based offline
RL methods often require exhaustive enumeration of the action space, and policy-based methods are
typically designed for continuous action spaces (Lillicrap et al.,|2016; Delarue et al., [2020). How-
ever, in many real-world settings, the concurrent execution of multiple actions creates large, discrete
combinatorial action spaces, rendering traditional offline RL approaches ineffective. In healthcare,
for example, practitioners must choose from thousands of procedural combinations at every decision
point. Yet, to minimize risks and costs, they must only take the actions most informative for disease
diagnosis and treatment, a notoriously difficult task (Yoon et al.|[2019).

Learning in combinatorial action spaces is challenging due to the exponential increase in possible
actions with action space dimensionality. In an N-dimensional action space with m  discrete sub-

actions per dimension d, the total number of possible actions is given by Hfivzl mgq. In traffic light
control (Rasheed et al., 2020), for instance, where each light represents a dimension in the action
space and its status (red, green, yellow) is a sub-action, controlling just four intersections with
four lights each results in 3'® (>43M) possible actions. People naturally eliminate most unsuitable
actions, such as turning all lights green simultaneously, using common sense. RL agents lack this
intuition and must spend time and computational resources to discover the sub-optimality of nearly
all action combinations (Zahavy et al., [2018). Although offline RL methods can learn to avoid
ineffective actions through expert demonstrations (Levine et al.l 2020), we find that state-of-the-art
approaches struggle to resolve the complex dependencies among sub-actions, where the utility of
one sub-action can critically depend on the presence or absence of another.

We introduce Branch Value Estimation (BVE) to learn in environments with discrete, combinatorial
action spaces. Our key insight is that structuring combinatorial action spaces as trees can capture
dependencies among sub-actions while reducing the number of actions evaluated at each timestep.
Specifically, in our action space tree (Figure [I), each node represents a distinct sub-action combi-
nation, and each edge assigns a unique value to a specific sub-action. The tree is structured so that
a node inherits the values of sub-actions from its ancestors, with siblings having distinct values for

'Our implementation is available at https: //anonymous . 4open.science/r/branch_value_
estimation-B911
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Figure 1: Consider an action space tree for a three-dimensional action a = [a1, ag, as] with each
a; € {0,1,2}. Each node represents a unique sub-action combination, and edges assign values to
the current sub-action combination. Nodes inherit values from ancestors, with siblings differing only
in the current sub-action. For instance, at the first level, sibling nodes [0, 0, 0], [1,0, 0], and [2, 0, 0]
differ in a;. In the subtree rooted at [1,0, 0], all descendant nodes have a; = 1, with variations
occurring in the subsequent dimensions as and as.

the sub-action currently under consideration. At each tree level, BVE identifies the optimal sub-
action value by estimating the highest achievable Q-value conditioned on each value in my being
assigned to the sub-action. This traversal process continues until a complete action is constructed,
which is then used for learning via a behavior-regularized TD loss function. After training, we use
beam search to traverse the action space tree and extract the optimal action at each
timestep. BVE outperforms state-of-the-art baselines in environments with action spaces ranging
from 16 to over 4 million actions, as illustrated for the largest space in Figure[2]

Our contributions are as follows:

1. We define a behavior-regularized TD loss function
that inherently captures dependencies among sub- “10
actions in discrete combinatorial action spaces.

2. We introduce BVE, an offline RL method for learning
in discrete, combinatorial action spaces. BVE han-
dles sub-action dependencies and scales to large ac-
tion spaces by representing the action space as a tree.
At each timestep, BVE selects the optimal action by
traversing the tree and predicting the maximum Q-
value achievable along each branch.
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3. Our experiments demonstrate that BVE consistently
outperforms state-of-the-art baselines in discrete, Figure 2: BVE outperforms state-
combinatorial action spaces, regardless of action of-the-art methods in complex,
space size or sub-action dependencies. combinatorial action spaces.

2 PRELIMINARIES

Reinforcement learning problems can be formalized as a Markov Decision Process (MDP), M =
(S, A, p,r,7v, ) where S is a set of states, A is a set of actions, p : S x A xS — [0,1] is
a function that gives the probability of transitioning to state s’ when action « is taken in state s,
r: 8§ x A — Ris areward function, v € [0,1] is a discount factor, and x : S — [0, 1] is the
distribution of initial states. A policy 7 : S — IP(.A) is a distribution over actions conditioned on
astate 7(a | s) = Plax = a | sy = s]. In our work, we assume states S can be either discrete or
continuous and that the MDP has a finite horizon H.

While the standard MDP formulation abstracts away the structure of actions in A, we explicitly as-
sume that the action space is combinatorial; that is, A is defined as a Cartesian product of sub-action
spaces. More formally, A = A; X Ay x --- x Ay, where each Ay is a discrete set. Consequently,
a; is an N-dimensional vector wherein each component is referred to as a sub-action.
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The agent’s goal is to learn a policy 7* that maximizes cumulative discounted returns:

H
™= argmgx]Eﬂ [ZW’tT(Staat) | 50 ~ pu(-),ae ~ (- | ), 8441~ p(- | Staat)] .
t=0

In online RL, an agent learns by trial and error interaction with its environment. In offline RL, by
contrast, the agent learns from a static dataset of transitions B = {(s¢, a, r+, st+1)l}ij\;0 generated
by, possibly, a mixture of policies collectively referred to as the behavior policy 7g.

Like many recent offline RL methods, our work uses approximate dynamic programming to mini-
mize temporal difference error (TD error) starting from the following loss function:

L(a) = E(s,a,r,s’)NB |:(7“ + ’VH}IE}XQ(SIv al; 07) - Q(sv a; 9))2:| ) (1)

where (s, a; 0) is a parameterized Q-function that estimates the expected return when taking action
a in state s and following the policy 7 thereafter, and Q(s, a; 07) is a target network with parameters
60—, which is used to stabilize learning.

For out-of-distribution actions a’, Q-values can be inaccurate, often causing overestimation errors
due to the maximization in equation [I| To mitigate this effect, offline RL methods either assign
lower values to these out-of-distribution actions via regularization or directly constrain the learned
policy. For example, TD3+BC (Fujimoto & Gul [2021)) adds a behavior cloning term to the standard
TD3 loss:

T = arg mT?“XE(s,a)NB AQ (s, m(s)) — (m(s) — a)ﬂ , ()
where ) is a scaling factor that controls the strength of the regularization.

More recently, implicit Q-learning (IQL) (Kostrikov et al., 2021) used a SARSA-style TD backup
and expectile loss to perform multi-step dynamic programming without evaluating out-of-sample
actions:

2
<T+7 max Q(s',a';mQ(s,a;e)) , 3)

L(@) = E(s,a,r,s’)NB W' €9(s)

where Q(s) = {a € A | mg(a | s) > 0} are actions in the support of the data.

As we will describe in section[3] we combine ideas from TD3+BC (equation2)) and IQL (equation|3))
to create a regularized, SARSA-style TD loss function.

3 BRANCH VALUE ESTIMATION

Learning near-optimal policies in discrete, combinatorial action spaces often requires accounting for
dependencies among sub-actions. We thus create a TD loss function that is defined across all action
dimensions:

Al e « 2
L1p(0) = Bgapsrans |(r+7 (0Q(s,&507) — [|la —a'l) - Q(s,:0))°] . &)
where &’ is arg max, Q(s’,a’;07) in equation

This loss inherently captures dependencies among sub-actions by evaluating actions as integrated
wholes rather than as aggregates of their individual components, such as in a linear decomposi-
tion (Tang et al.l [2022). As the action space grows exponentially with the number of sub-actions,
traditional value-based RL methods struggle to accurately identify &’ due to errors in Q-function
estimation. These errors frequently result in convergence to suboptimal policies, especially in envi-
ronments with large action spaces (Thrun & Schwartz, |1993} Zahavy et al.,2018)). Our experiments,
detailed in section.3] corroborate these findings.

To overcome this phenomenon, we create an action space tree wherein each node represents a unique
combination of sub-actions, and each edge assigns a specific value to a sub-action in a;. A node
inherits previously assigned sub-action values from its ancestors, while its siblings have distinct
values for the sub-action currently under consideration (Figure [T). We impose no restrictions on
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sub-action cardinalities. However, for clarity, subsequent examples will focus on multi-binary action
spaces, where sub-actions are either included (a; = 1) or excluded (a; = 0).

To determine the optimal action &’, we traverse the action space tree with a neural network f :
RISIXIAlL — RI*IAal parameterized by #. This network predicts a node’s scalar Q-value ¢ and a
vector of branch values v, where (q,v) = f(s,a;6). Each v; € v represents the maximum Q-value
reachable through the sub-tree rooted at its corresponding child node.

Letu = [q,v1,v2,. .., Uy] denote a vector comprising the predicted scalar Q-value ¢ and the branch
values v for the given (s, a). Each component u; represents the value of selecting its corresponding
node. Tree traversal proceeds to nodes with probability proportional to their values:

(i | 5) = exp (u;/7)

i =t 7
Do exp (ui/7)

where 7 is the temperature parameter.

Traversal terminates under two conditions. First, if a leaf node is reached, meaning every sub-action
has been explicitly assigned a value. Second, if a node’s Q-value exceeds all of its children’s branch
values. This second condition ensures that the agent can access every action, not just those with a
specific number of sub-actions. For instance, in the action space illustrated in Figure|l| the agent
must be able to select any of the 27 actions in each state. If the agent is constrained to traverse to a
leaf rather than selecting an action where ¢ > v;Vv; € v, some actions, such as [1,0,0], would be
unavailable. BVE’s tree traversal procedure is illustrated in Figure

The parameters 6 of our network f(s,a;0)
are updated to minimize regularized TD er-
ror (equation [ and branch value error L =
aLtp + Lpy g, where « adjusts the contribu-
tion of the TD loss to the total loss. Branch
value error is computed starting from a node
a sampled from 5, with a target defined by
equation[d] The target is propagated to a’s par-
ent node, where it is used to compute loss and
is then updated to the maximum of the propa-
gated target and the branch values of the par-
ent’s other children. As shown in Algorithm ]
and Figure[d] this process repeats until the loss
for all nodes is computed.

While the behavior cloning regularizer in equa-
tion [4] minimizes overestimation error, further
mitigation is possible by sparsifying the action
space tree to include only actions in B (Fuji-
moto et al.,2019)). Leveraging the behavior pol-
icy’s expertise in this manner is particularly ad-
vantageous in real-world settings where some
sub-actions never co-occur, leaving a much
smaller subset of viable action combinations.
For example, in healthcare, certain medications
are never simultaneously prescribed due to their
conflicting effects.

Figure 3: BVE traversal when a € {0,1}3 (with
the full action space tree at bottom-right). Starting
from the root node &’ = [0, 0, 0], we select @] = 1
as its branch value (11) exceeds the root’s Q-value
(8) and the other children’s branch values (4 and
—1). Traversal continues, including a5 = 1, to
a’ = [1, 1, 0], which is chosen because its Q-value
(16) is greater than its child’s branch value (1).

We use two methods to reduce errors in action selection caused by inaccurate branch value estima-
tions near the tree root. First, we introduce a depth penalty parameter, ¢, to weigh the contribution of
nodes during the BVE loss calculation. Because we traverse from node to root, § > 1 assigns greater
weight to branch value errors closer to the root, prioritizing corrections at higher levels of the tree,
where decisions have a broader impact on the selected action (see line 12 of Algorithm . Second,
when extracting a policy after learning, we use beam search (Reddy||1977), a technique from natural
language processing, to enable a broader exploration of action combinations. Specifically, we use
the same tree traversal process illustrated in Figure 3| except we retain the top W actions — based
on their values in u — at each level for further exploration. The best action from all explored beams
is selected at the end of the search.
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Figure 4: In this example, a € {0, 1}* (full action space tree at bottom-right). We calculate branch
value error starting from the sampled node a = [1, 1, 1, 0], using a target defined by equation This
target is propagated to the parent node a = [1, 1,0, 0]. At this parent node, the target is determined
by taking the maximum between the propagated target and the branch values of the node’s other
children. This new target is then propagated up the tree. The process repeats until the loss for all
nodes is calculated.

Algorithm 1 Compute BVE Loss
In summary, BVE learns in discrete combina- Require:

torial action spaces by estimating Q-values us- f(0): neural network with parameters
ing equation [} Unlike traditional RL meth- f(67): target network with parameters 6~
ods, which often misidentify the optimal next {s,a,r, s',a'}: transition from B

action &’ in equation 4} BVE reduces the effec- a’: action selected via tree traversal given s

tive action space by organizing it as a tree. The
optimal action, &’, is found through a traver-
sal process, guided by a neural network that
predicts each node’s scalar Q-value and a vec-
tor of branch values. Each branch value rep-
resents the maximum Q-value attainable from
the sub-tree rooted at the corresponding child
node. The network is updated by minimiz-
ing a weighted sum of TD loss (equation M), 9:
which is a behavior-regulaized variant of the .

(q,v) < f(s,a;0)

(¢',v') < f(s,a;07)

Y oA — & —al|)

total loss < (¢ — Y)?

node < a

d<+ 1

while node is not null do
parent <— GETPARENT(node)
q,v < f(s,parent;0)

RN AR 2N

standar'd RL loss, and the BVE loss (Algprithm }(1) ;.:l?_ldifge?o? Ilf OT d?i{IIlLC?l}f]iI:e%)arem)
[I), which reduces branch value prediction er- 12: loss < ((V[i] = Y) % & d)2
rors. 13: total loss <— total loss + loss
14: v[i] <Y
4 EXPERIMENTAL EVALUATION 15: Y < max(q, V)
16: node < parent

17: d+—d+1
18: end while
19: return total loss/d

We evaluate the effectiveness of BVE in an
N-dimensional grid world in which each sub-
action corresponds to movement in a specified
direction. For example, in a 2D grid, the agent
can move in directions defined by combinations of up (U), down (D), right (R), and left (L) (e.g.,
[U], [UR], [UDL), [UDRL], etc.). Opposing sub-actions (e.g., [U D]) cancel each other out when
selected simultaneously, whereas complementary sub-actions (e.g., [U R]) enable the agent to reach
the goal more efficiently than executing the same actions sequentially (e.g., a;, = [U], a, = [R]).
Notably, the complexity of this environment grows exponentially with IV, as both the action space
(22N and state space (KV, where K is the grid size) scale with the grid dimension.

At each timestep, the agent receives a negative reward —p(s, g) proportional to its distance from the
goal, except in the goal state or a pit. The goal and pit states are terminal, with a pit being associated
with failure. Upon reaching the goal, the agent receives » = 10. Because the agent incurs a negative
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Figure 5: Average returns and standard deviations calculated from the final 15 evaluations and 5
seeds. The best results are highlighted in blue . In lower-dimensions, FAS matches BVE’s perfor-
mance. However, in higher dimensional environments, the discrepancy between the linearly decom-
posed and true reward functions becomes more significant, leading to instability in FAS’s learning.

reward at each timestep, it may be incentivized to enter a pit if reaching the goal requires covering
a long distance. To deter this behavior, a penalty ten times the distance from the agent’s starting
location to the goal (r = —10 x p(sg, ¢g)) is imposed for falling into a pit.

In this deterministic grid-world domain, we use an augmented form of A* to generate our dataset 5.
Because the optimal policy requires few actions to reach the goal, the A* agent selects the optimal
action with a probability of 0.1, choosing randomly otherwise to ensure state-action diversity in 5.

Baseline Comparison We compare BVE’s performance to state-of-the-art baselines, Factored Ac-
tion Spaces (FAS) (Tang et al.l [2022), which learns linearly decomposable Q-functions for combi-
natorial action spaces, and Implicit Q-Learning (IQL) (Kostrikov et al.| [2021), a general-purpose
offline RL method included to demonstrate the necessity of approaches purpose-built for combina-
torial action spaces. We train each algorithm for 20,000 gradient steps, assessing the learned policy
every 100 timesteps.

Experimental Setup We evaluate these methods in 20 environments, categorized into two types:
those with and without a cluster of pits along the optimal path. We create ten instances for each
type, varying in dimension from 2D, with 16 available actions in each state (4| = 16) (i.e.,
{0,[U],[UD],|[UDL],[ULR],[UDLR], [D],[DR],...}), to 11D, with over four million available
actions in each state (|.A| = 4,194,304). We use a grid of size 5 in each dimension. Consequently,
the smallest environment, in 2D, has 25 states, while the largest, in 11D, exceeds 48 million states.
In all environments, the agent begins in the bottom left corner and the goal state is in the top right
corner. We present results averaged over five seeds, with the shaded areas in our figures indicating
one standard deviation.

4.1 N-DIMENSIONAL GRID WORLD WITHOUT PITS

In the pit-free environments, the agent’s task is relatively simple because the optimal action is the
same in all states. Moreover, the transition probability from s to s’ can be decomposed into inde-
pendent probabilities for each sub-action, and the policy into a product of independent sub-action
policies.

Notably, sub-actions aren’t fully independent, as the reward model cannot be decomposed into
separate rewards. Still, FAS learns a high-performing policy despite the bias from its linear de-
composition, as sub-action interactions are relatively mild. In higher-dimensional environments,
however, the difference between the linearly decomposed and true reward functions becomes more
pronounced, causing instability in FAS’s learning. BVE, by contrast, does not exhibit this behav-
ior, as our loss (equation [ evaluates actions as unified entities rather than aggregates of individual
components.
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Figure 6: Average returns and standard deviations calculated from the final 15 evaluations and 5
seeds. The best results are highlighted in blue . BVE outperforms both FAS and IQL across all
environments. FAS struggles in lower dimensions due to the stronger dependencies among sub-
actions in these settings, performing poorly until |.A| =4,096.

Because BVE explicitly accounts for interactions between sub-actions, it performs as well as or
better than FAS and IQL, as demonstrated in Figure 5} Full learning curves for these experiments
are available in Appendix

4.2 N-DIMENSIONAL GRID WORLD WITH PITS

We create pit clusters by placing a pit on the optimal path and randomly adding four additional
adjacent pits, thus ensuring the optimal policy requires a diverse set of actions with varying numbers
of sub-actions.

In worlds with pits, action effectiveness critically depends on sub-action coordination, especially
in lower-dimensional environments. For example, in two dimensions, navigating around a pit re-
quires careful selection of all sub-actions. Because the number of states grows exponentially with
dimensionality, higher-dimensional environments offer more paths for an agent to navigate around
a pit. Consequently, lower-dimensional environments are higher-stakes; the wrong combination of
just two actions can doom the agent. This complexity explains why FAS underperforms in lower
dimensions, while BVE performs well in all worlds as shown in Figure[6] Full learning curves for
these experiments are provided in Appendix [A]

4.3 ABLATIONS AND HYPERPARAMETERS

As described in section[3] we apply a depth penalty ¢ to minimize action selection errors due to inac-
curate branch value estimations near the tree root. This section evaluates the impact of removing this
penalty. Additionally, because BVE learns through a weighted combination of TD loss (equation )
and BVE loss (Algorithm[I)), L = oLy p + Ly g, we examine its sensitivity to c.. Finally, to assess
the necessity of our tree structure, even with the inductive bias from selecting actions in B (section
), we compare BVE’s performance with that of a Deep Q-Network (DQN) (Mnih et all [2015).
The DQN is constrained to select actions from the dataset using its standard action-selection mech-
anism and is trained with BVE’s TD loss function (equation[)). These experiments are conducted in
environments with pits.

We observe that BVE shows minimal sensitivity to the depth penalty, set to § = 1 across all envi-
ronments. However, as Figure [7a]and Appendix [B.1] illustrate, incorporating this penalty is crucial
for both learning speed and asymptotic policy quality, especially as dimensionality increases.

BVE’s performance remains stable over a large range of « values, particularly in lower-dimensional
environments. In higher-dimensional settings, larger « values generally yield better results. Inter-
estingly, in simpler, lower-dimensional environments, o = 0 can still be effective. We hypothesize
this is due to the inclusion of TD error in the BVE error calculation, as detailed in Algorithm
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Figure 7: Ablation study over BVE’s components. While removing the depth penalty § does not
affect results in some environments, in others, it hurts performance considerably (Figure[7a). Perfor-
mance remains stable across various « values, but removing TD loss from the total loss calculation
(a = 0) may result in sub-optimal policies (Figure[7b). Despite the inductive bias from constraining
the DQN to select actions in B, it performs poorly (Figure .

and illustrated in Figure [d However, omitting this term from the loss calculation can lead to catas-
trophic consequences, as observed in the 8D environment (Figure[7b). Full learning curves for these
experiments are available in Appendix

Figure and Appendix [B.3] illustrate the tree structure’s importance to BVE’s effectiveness.
Though trained with the same behavior-regularized TD loss function as BVE and restricted to se-
lecting actions in B, the DQN performs poorly. This indicates that the DQN struggles to manage the
dependencies between sub-actions, particularly when there are many actions from which to choose.
For instance, in the 11D world, the DQN must predict the 8,927 unique actions in B simultaneously.
BVE mitigates this complexity by structuring the action space as a tree, thereby requiring predictions
for only a small subset of Q-values at each timestep.

5 RELATED WORK

5.1 TREE-BASED RL

Monte Carlo Tree Search (MCTS) (Couloml [2006), used most notably in AlphaZero (Silver et al.,
2018)), recursively selects actions using the Polynomial Upper Confidence Trees (PUCT) algorithm
(Auger et al.,|2013). PUCT selects action a; as a; = argmax, (Q(s¢, @) + U(s¢, a)), where U(sy, a)
provides an upper confidence bound on Q-values. Traditionally, this method is used for an or-
dered decision process, where the value of an action at time ¢ depends on subsequent actions at
t1,ta,...,tm, as in chess. Therefore, MCTS is ill-suited for environments with unordered or cate-
gorical actions, like in our experiments, where sub-actions must be selected simultaneously.

TreeQN (Farquhar et al.l |2017) integrates model-free RL with online planning by constructing an
abstract MDP model that combines learned transition dynamics and reward predictions. It builds
a tree of state representations and rewards for all action sequences up to a specified depth. Value
estimates are recursively refined through a tree backup process to improve their accuracy.

Because traditional decision trees are non-differentiable if-then rules, they are incompatible with
gradient descent, limiting their use in online RL. Silva et al.| (2020) address this by introducing dif-
ferentiable decision trees (DDTs), which replace rigid decision boundaries with smooth, differen-
tiable functions, enabling gradient-based optimization in RL. After training, DDTs can be converted
back into discrete trees, preserving interpretability.

Ernst et al| (2005) propose an offline RL approach that uses tree-based supervised learning algo-
rithms within a fitted Q-iteration framework to approximate the Q-function. This method iteratively
refines the Q-function using classical techniques like CART, Kd-trees, and tree bagging, leverag-
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ing observed system transitions. By applying tree-based regression, the approach generalizes the
learned policy to unobserved state-action pairs.

5.2 COMBINATORIAL ACTION SPACES

Due to the prevalence of combinatorial action spaces in real-world problems, various methods have
been developed for learning in these environments. Many of these are tailored to specific domains,
including text-based games and natural language action spaces (Zahavy et al.,2018; He et al., 2015;
2016)), vehicle routing (Delarue et al., 2020; Nazari et al., | 2018)), the traveling salesperson problem
(Bello et al., [2016), and resource allocation (Chen et al., 2024). These methods, however, often
depend on problem-specific assumptions, whereas BVE is designed for broader applicability.

Other approaches are more general-purpose. For example, [Tavakoli et al.| (2018)) introduce a novel
architecture that distributes action controller representations across individual network branches,
with a shared decision module encoding a latent input representation to coordinate these branches.
Farquhar et al.|(2020) propose using a curriculum of progressively expanding action spaces to accel-
erate learning in online environments where random exploration may be inefficient. This approach
is effective when a restricted action space enables random exploration to generate significantly more
informative experiences than in the full action space, and when regularities in the action space facil-
itate transferring learning to the full task. Amortized Q-learning (AQL) (Van de Wiele et al., [2020)
avoids exact maximization over the action set at each step. Instead, it learns to search for the optimal
action, thereby amortizing the cost of action selection over training. The search is treated as a dis-
tinct learning task, replacing exact maximization with maximization over a set of actions sampled
from a learned proposal distribution.

While these methods are designed for online learning, |Tang et al.|(2022) propose an offline approach,
which we refer to as FAS in our experiments, that linearly decomposes the Q-function, conditioning
each component on a single sub-action and the full state space. This reduces the action space’s
dimensional complexity but the sufficient conditions for unbiased Q-value estimations — in effect,
independence among sub-actions — often do not hold in real-world environments. BVE, by contrast,
simplifies the problem by structuring the action space, enabling its application to problems where
sub-actions may be interdependent.

6 CONCLUSION

In many real-world sequential decision making problems, discrete combinatorial action spaces
emerge from the simultaneous selection of multiple sub-actions. Traditional RL approaches strug-
gle in these spaces due to both the exponential increase in the action space size with the number of
sub-actions and the complex dependencies among the sub-actions. These challenges are exacerbated
in offline settings, where available data is often limited and sub-optimal. We present Branch Value
Estimation (BVE), an offline RL method for learning in discrete, combinatorial action spaces. By
structuring combinatorial action spaces as trees, BVE captures sub-action dependencies while re-
ducing the number of actions evaluated per timestep, thus allowing it to scale to large action spaces.
Our empirical experiments demonstrate that BVE outperforms state-of-the-art baselines across envi-
ronments with varying action space sizes and sub-action dependencies. Future work should explore
using BVE within an actor-critic framework to extend its applicability to continuous and mixed
(discrete and continuous) combinatorial action spaces.
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A  N-DIMENSIONAL GRID WORLD LEARNING CURVES

We compare BVE’s performance to state-of-the-art baselines, Factored Action Spaces (FAS) (Tang
et all 2022), which learns linearly decomposable Q-functions for offline combinatorial action
spaces, and Implicit Q-Learning (IQL) (Kostrikov et all [2021)), a general-purpose offline RL
method.

We evaluate these methods in 20 N-dimensional grid worlds in which each sub-action corresponds
to movement in a specified direction. The complexity of these environments increases exponentially
with N, with both the action space (22) and state space (K, where K is the grid size) scaling
with the grid dimension.

The environments are categorized into two types: those with and without a cluster of pits along the
optimal path. We create ten instances for each type, varying in dimension from 2D (|.A| = 16), to
11D (| A| = 4,194,304). We use a grid of size 5 in each dimension, resulting in 25 states in the
smallest (2D) environment and over 48 million states in the largest (11D) environment.

This section presents the learning curves for these methods, averaged over five seeds, with shaded
areas representing one standard deviation across these seeds.
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Figure 8: Learning curves for all agents in pit-less environments show that both BVE and FAS
quickly establish effective policies; however, FAS exhibits instability when environmental dimen-
sionality exceeds 4D (].4| = 256).
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A.2 WITH PITS
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Figure 9: Learning curves in pit environments show BVE outperforming all baselines, especially
FAS in lower dimensions where sub-actions are strongly dependent.
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B ABALATION AND HYPERPARAMTER LEARNING CURVES

This section presents learning curves from three ablation/hyperparameter studies: 1) the impact of
removing the depth penalty 6, 2) BVE’s sensitivity to «, the weight of TD error in our total loss,
and 3) the necessity of BVE’s tree structure. In the third study, we compare BVE’s performance to
that of a DQN constrained to selecting actions from the dataset 3 and trained using BVE’s TD loss
function (equation[d). All experiments were conducted in environments with pits.

B.1 DEPTH PENALTY ABALATION
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Figure 10: Learning curves for BVE agents with and without a depth penalty ¢ show that the former
learns more quickly and achieves superior asymptotic performance than the latter.
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B.2 VARYING TD WEIGHT IN LOSS
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Figure 11: Learning curves for BVE agents with varying « values indicate stable performance,
particularly in low-dimensional environments where even o = 0 is sometimes effective. In high-
dimensional settings, larger o values tend to improve results.
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B.3 COMPARISON TO DQN
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Figure 12: Despite being trained with the same behavior-regularized TD loss function as BVE and
constrained to actions in B3, learning curves show that the DQN fails to learn an effective policy.
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