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1. Introduction

In probabilistic machine learning, we are often interested in optimizing expectations of the
form Lφ,θ = Eqφ(z) [fφ,θ(z)] w.r.t. to their parameters, where fφ,θ(z) is some objective
function, and φ and θ denote the parameters of the sampling distribution qφ(z) and other
(e.g. model) parameters, respectively. In the case of widely used variational autoencoders
(VAEs, Kingma and Welling (2014), Rezende et al. (2014)), qφ(z) is the variational posterior
and θ denotes the model parameters.

In most cases of interest, this expectation is intractable, and we estimate it and its
gradients, ∇φL and ∇θL, using Monte Carlo samples z ∼ qφ(z). In this paper, we address
gradient estimation for continuous variables in variational objectives.

A naive implementation of ∇φL results in a score function, or REINFORCE, estimator
(Williams, 1992), which tends to have high gradient variance; however, if f depends on φ
only through z, we can use reparameterization (Kingma and Welling, 2014; Rezende et al.,
2014) to obtain an estimator with lower variance by replacing the score function estimator
of the gradient with a pathwise estimator.

In variational inference, fφ,θ(z) typically depends on φ not only through z but also
through the value of the log density log qφ(z). Then, the gradient estimators still involve the
score function ∇φ log qφ(z) despite using reparameterization. Roeder et al. (2017) propose
the sticking the landing (STL) estimator, which simply drops these score function terms to
reduce variance. Tucker et al. (2019) show that STL is biased in general, and introduce the
doubly-reparameterized gradient (DReGs) estimator for IWAE objectives, which again yields
unbiased lower-variance gradient estimates. This is achieved by applying reparameterization
for the second time, targeting the score function terms. The DReGs estimator has, however,
two major limitations: 1) it only applies to latent variable models with a single latent layer;
2) it only applies in cases where the score function depends on the same parameters as the
sampling distribution.

In this work we address both limitations and introduce GDReGs, a generalized doubly-
reparameterized gradient estimator that applies to general score functions; we also extend the
DReGs estimator to hierarchical models and show that both estimators improve performance
on conditional and unconditional image modelling tasks.
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2. Background

We are interested in computing gradients of variational objectives Lφ,θ = Ez∼qφ(z) [fφ,θ(z)]
w.r.t. the variational parameters φ of the sampling distribution qφ(z), and parameters θ of
a second distribution pθ(z), such as a learnable prior. Here fφ,θ(z) is a general function
that can depend on both qφ(z) and pθ(z) explicitly.

One such objective is the importance weighted autoencoder (IWAE) bound (Burda et al.,
2016). For a VAE with likelihood pλ(x|z), (learnable) prior pθ(z), and variational posterior
(or proposal) qφ(z|x), the IWAE objective with K importance weights wk is given by

LIWAE
φ,θ = Ez1,...,zK∼qφ(z|x)

[
log

(
1

K

K∑

k=1

wk

)]
wk = pθ(zk)pλ(x|zk)

qφ(zk|x) (1)

Gradient estimation. In practise, we approximate the expectation in Lφ,θ by Monte
Carlo sampling, so that our estimates of the expectation and of its gradients become random
variables. We can distinguish between two types of gradient estimators in this setting: (i)
score function (SF) estimators and (ii) pathwise estimators. ScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScore functionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctionsfunctions are gradients
of a log probability density w.r.t. its parameters, for example ∇φ log qφ(z); SF estimators
treat the function fφ,θ as a black box and often yield high variance gradients. In contrast,
pathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwisepathwise estimators move the parameter-dependence from the probability density into the
argument z of the function fφ,θ(z) and differentiate the computation path to often achieve
lower variance gradients by using the knowledge of ∇zfφ,θ(z); see Mohamed et al. (2020)
for a recent review.

When computing gradients of the objective Lφ,θ, we have to differentiate both the
sampling distribution of the expectation, qφ(z), as well as the function fφ,θ(z),

∇TD
φ Eqφ(z) [fφ,θ(z)] = Eqφ(z)

[
∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z) + fφ,θ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)

]
(2)

∇TD
θ Eqφ(z) [fφ,θ(z)] = Eqφ(z)

[
∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)∇θfφ,θ(z)

]
, (3)

and both can give rise to score functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functionsscore functions (note ∇φfφ,θ(z) = ∇log qφ(z)fφ,θ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)∇φ log qφ(z)).
In the following, we recapitulate how to address the score functions in Eq. (2) using

the reparameterization trick and doubly-reparameterized gradients (DReGs, Tucker et al.
(2019)), respectively. In Sec. 3 we introduce GDReGs, a generalization of DReGs, that
allows us to eliminate the score function in Eq. (3).

Reparameterization. We can use the reparameterization trick (Kingma and Welling,
2014; Rezende et al., 2014) to turn the score function, ∇φ log qφ(z), inside the expectation
in Eq. (2) into a pathwise derivative of the function fφ,θ(z) as follows: we express the latent
variables z ∼ qφ(z) through a bijection of new random variables ε ∼ q(ε), which are indepen-
dent of φ, z = Tq (ε;φ)⇔ ε = T −1q (z;φ). This allows us to rewrite expectations w.r.t. qφ(z)
as Eqφ(z) [fφ,θ(z)] = Eq(ε) [fφ,θ(Tq (ε;φ))], which moves the parameter dependence into the
argument of fφ,θ(z) and gives rise to a pathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradientpathwise gradient:

∇TD
φ Eqφ(z) [fφ,θ(z)] = Eq(ε)

[
∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z)∇φfφ,θ(z) +∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)∇zfφ,θ(z)∇φTq (ε;φ)

]
z=Tq(ε;φ). (4)
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Double reparameterization. Tucker et al. (2019) reduce gradient variance by replacing
the remaining score function in Eq. (4) with its reparameterized counterpart. Double
reparameterization is based on the identity (Eq. (5) in Tucker et al. (2019))

Ez∼qφ(z) [gφ,θ(z)∇φ log qφ(z)] = Eε∼q(ε)
[
∇TD
z gφ,θ(z)

∣∣
z=Tq(ε;φ)∇φTq (ε;φ)

]
(5)

which follows from the fact that both the score function and the reparameterization estimators
are unbiased and thus equal in expectation. For the IWAE objective Eq. (1), Tucker et al.
(2019) derived the following doubly-reparametererized gradients (DReGs) estimator:

∇̂DReGs
φ LIWAE

φ,θ =
K∑

k=1

w̃2
k∇TD

zk
logwk∇φTq(εk;φ); ε1:K ∼ q(ε); w̃k = wk∑K

k′=1 wk′
. (6)

While the DReGs estimator reparameterizes the score function in Eq. (4), the previously
proposed STL estimator (Roeder et al., 2017) simply drops it and is usually biased as a result.
Crucially, because DReGs relies on reparameterization, it is limited to score functions of the
sampling distribution qφ(z), making it inapplicable in the more general setting of arbitrary
score functions (Eq. (3)). In the following Sec. 3 we introduce the GDReGs estimator that
can be applied to these more general score function terms.

In App. C we discuss that the seemingly pathwise gradient in Eq. (4) can actually contain
score functions for hierarchical models and explain how to extend DReGs to this case.
Additional score functions arise because the distribution parameters (e.g. the mean and
covariance) of one stochastic layer depend on the latent variables of previous layers.

3. Generalized DReGs

Here, we generalize DReGs to score function terms that involve distributions pθ(z) different
from the sampling distribution qφ(z), such as Eqφ(z) [gφ,θ(z)∇θ log pθ(z)]. Such terms
appear, for example, when training a VAE with a trainable prior pθ(z) with the ELBO or
IWAE objectives. We cannot use DReGs directly here, as it relies on reparameterization of
the sampling distribution qφ(z), which means the path would then depend on the parameters
φ and double-reparameterization would only apply to its parameters φ, whereas the score
function is with w.r.t. parameters θ of a different distribution pθ(z).

To make progress we need to make the path depend on the parameters θ while still
sampling z ∼ qφ(z) during training. Our solution is to: a temporarily change the path

such that it depends on θ; b perform the reparameterized gradient computation; c change

z(q) ∼ qφ(z) re-express z(q) as if sampled from pθ(z)

ε z(q)(ε;φ) ε̃(ε;φ,θ) ε̃ z(p)(ε̃;θ)
Tq(ε;φ) T −1

p (z;θ) stop_grad Tp(ε̃;θ)

Figure 1: Computational flow to re-express a sample z from qφ(z) as if it were sampled from
pθ(z). Its numerical value and distribution remain unchanged but the pathwise gradient
through it now depends on θ: ∇θTp(ε̃;θ)|ε̃=T −1

p (z,θ). Note that ε̃ = T −1p (Tq(ε;φ);θ) has a

different, usually more complex, distribution than ε ∼ q(ε).
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the path back so we can use samples z ∼ qφ(z) to estimate the expectation. We change
the path by first using an importance sampling reweighting to temporarily re-write the

expectation, Eqφ(z) [∗] = Epθ(z)

[
qφ(z)
pθ(z)

∗
]
, and then applying reparameterization to the new

sampling distribution pθ(z): z = Tp(ε̃;θ) with ε̃ ∼ q(ε̃). We derive the gradient identity in
Eq. (7) for a general gφ,θ(z); we refer to it as the generalized DReGs (GDReGs) identity.

GDReGs identity

Ez∼qφ [g(z)∇θ log pθ(z)] = Ez∼qφ
[(
g(z)∇TD

z log
qφ(z)
pθ(z)

+∇TD
z g(z)

)
∇θTp(ε̃;θ)|ε̃=T −1

p (z,θ)

]
(7)

∇TD
θ Eqφ(z) [gφ,θ(z)]

a
= ∇TD

θ Epθ(z)

[
qφ(z)
pθ(z)

gφ,θ(z)
] a

= ∇TD
θ Eq(ε̃)

[
qφ(Tp(ε̃;θ))
pθ(Tp(ε̃;θ))gφ,θ(Tp(ε̃;θ))

]
(8)

b
= Eq(ε̃)

[
∇TD
z

(
qφ(z)
pθ(z)

g(z)
)
∇θTp(ε̃;θ) +

qφ(z)
pθ(z)

(
∇θgφ,θ(z)− g(z)∇θ log pθ(z)

)]
z=Tp(ε̃;θ)

(9)

c
= Eqφ(z)

[ (
g(z)∇TD

z log
qφ(z)
pθ(z)

+∇TD
z g(z)

)
∇θTp(ε̃;θ)|ε̃=T −1

p (z;θ) +∇θgφ,θ(z)− g(z)∇θ log pθ(z)
](10)

In the derivation we have used the identity x∇∗ log x = ∇∗x repeatedly. By noting that
∇TD
θ Eqφ(z) [gφ,θ(z)] = Eqφ(z) [∇θgφ,θ(z)], we can cancel these terms on the left hand side

of Eq. (8) and right hand side of Eq. (10). By moving −Eqφ(z) [gφ,θ(z)∇θ log pθ(z)] to the
other side we obtain the desired result.

Similar to DReGs (Eq. (5)), GDReGs allows us to transform score function gradients
into pathwise gradients. But, unlike DReGs, GDReGs applies to general score functions

and contains a correction term that vanishes when pθ(z) and qφ(z) are identical (log
qφ(z)
pθ(z)

in Eq. (7)). Note that the pathwise derivative ∇θTp(ε̃;θ) in Eq. (7) looks like a repara-
meterization of pθ(z) in terms of a noise variable ε̃ = T −1p (z;θ) with z ∼ qφ(z). We can
interpret this sequence of transformations as a normalizing flow (Rezende and Mohamed,
2015) z → ε̃→ z, such that Tp(ε̃;θ) = Tp(T −1p (z;θ);θ) = z. We can think of this procedure
as re-expressing the sample z ∼ qφ(z) as if it came from pθ(z): Its numerical value z
remains unchanged and it is still distributed according to qφ(z), yet its pathwise gradient
∇θTp(ε̃;θ) depends on θ. We illustrate the corresponding computational flow in Fig. 1.
Note that to derive the GDReGs identity, we only require pθ(z) to be reparameterizable
( in Fig. 1). While qφ(z) may be reparameterizable as well ( in Fig. 1), this is
not necessary; we only need to be able to evaluate its density in Eq. (7).

We use the GDReGs identity to address general score functions of the form Eq. (3) and
derive the GDReGs estimator for the IWAE objective w.r.t. the prior parameters θ:

∇̂GDReGs
θ LIWAE

φ,θ =
K∑

k=1

(
w̃k∇TD

zk
log pλ(x|zk)− w̃2

k∇TD
zk

logwk

)
∇θTp(ε̃k;θ)

∣∣∣
ε̃k=T −1

p (zk,θ)
(11)

with z1:K ∼ qφ(z|x); full derivation is in App. D. The second term in Eq. (11) looks like the
DReGs estimator for φ in Eq. (6) except that the samples zk are now re-expressed as if they
came from pθ(z). In addition we obtain a term that involves the likelihood pλ(x|z) and is
linear in w̃k. We do not apply GDReGs to the likelihood parameters λ because pλ(x|z) is
a distribution over x rather than z; in the following we therefore drop the subscript λ.

Similarly to the DReGs estimator, we can also extend the GDReGs estimator to
hierarchical objectives as we explain in App. C.
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Figure 2: Average gradient variance and gradient signal-to-noise ratio (SNR) for the
variational posterior parameters φ and the prior parameters θ.

We learn all parameters by optimizing the same objective Eq. (1), but employ different
gradient estimators for different subsets of parameters. In practice, we implement these esti-
mators using different surrogate objectives for the likelihood, proposal, and prior parameters,
see App. F for details. While separate objectives might seem computationally expensive,
most terms are shared between them, and modern frameworks would avoid such duplicate
computation. In practise, we found the runtime increase for training with DReGs and
GDReGs estimators to be less than 10% without any optimization of the implementation.

4. Experiments

Here, we empirically evaluate the proposed GDReGs estimator as well as the proposed
hierarchical extensions of DReGs and GDReGs, and compare them to the naive IWAE
gradient estimator (labelled as IWAE) as well as STL (Roeder et al., 2017).

Illustrative example. We first consider an extended version of the illustrative example
introduced by Rainforth et al. (2018) and Tucker et al. (2019) to show that hierarchical
DReGs and GDReGs increase the gradient signal-to-noise ratio (SNR) and reduce gradient
variance compared to the naive IWAE gradient estimator. We consider a 2-layer linear
VAE with hierarchical prior and variational posterior and find that (see Fig. 2): (i) for the
parameters φ of the variational posterior, our extended version of the DReGs estimator also
resolves the vanishing SNR problem of the naive IWAE estimator (Rainforth et al., 2018)
in the hierarchical case by reducing the gradient variance at a faster rate with the number
of importance samples; (ii) for the paramters θ of the prior, the GDReGs estimator has
smaller gradient variance and better SNR than the naive IWAE estimator but scales at the
same rate with the number of importance samples.

Image modelling with VAEs. We also consider conditional and unconditional image
modelling tasks with single layer and hierarchical (multi-layer) VAEs on several standard
benchmark datasets: MNIST (LeCun and Cortes, 2010), Omniglot (Lake et al., 2015), and
FashionMNIST (Xiao et al., 2017). We use the dynamically binarized versions of the datasets
to minimize overfitting. In the hierarchical case, the generative path (prior and likelihood)
is top-down whereas the variational posterior is bottom-up; for conditional modelling we
predict the bottom half of an image given its top half, as in Tucker et al. (2019); in this
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Figure 3: Conditional image modelling of MNIST with a VAE with 1 layer (top) and 2
layers (bottom). Shaded areas denote ± 1.96 standard deviations σ over 5 reruns.

case, both the prior and variational posterior additionally depend on a context variable c
(qφ(z|x, c) and pθ(z|c), respectively).

First, we evaluate the choice of estimator for the parameters of qφ(z). Like Tucker et al.
(2019) for the single layer case, we find that our extension of DReGs to hierarchical models
leads to a dramatic reduction in gradient variance for the variational posterior parameters
φ on all tasks (third column in Fig. 3), which translates to an improved test objective in all
cases considered. DReGs is unbiased and typically outperforms the (biased) STL estimator.
We also observed similar improvements on the training objective.

Second, we consider the estimators for the θ parameters of the prior pθ(z). Using the
GDReGs estimator instead of the naive IWAE estimator consistently improves the train and
test performance when combined with any estimator for the variational posterior, especially
for conditional image modelling with deeper models. For unconditional image modelling
the improvements are marginal, though using GDReGs never hurts. In terms of gradient
variance for the prior parameters θ, GDReGs consistently performs better in the beginning
of training, when it always has lower variance. Later in training this is only consistently
true when also using the DReGs estimator for the variational posterior parameters φ.

5. Conclusion

In this paper we generalized the recently proposed doubly-reparameterized gradients (DReGs,
Tucker et al. (2019)) estimator for variational objectives in two ways. First, we showed that
for hierarchical models such as VAEs seemingly pathwise gradients can actually contain
score functions, and how to consistently and effectively extend DReGs to this case. Sec-
ond, we introduced GDReGs, a doubly-reparameterized gradient estimator that applies
to general score functions, while DReGs is limited to score functions of the variational
distribution. Finally, we demonstrated that both generalizations can lead to better train
and test performance on conditional and unconditional image modelling tasks.
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Appendix A. Additional results

estimator ∇TD
φ IWAE STL DReGs

estimator ∇TD
θ IWAE GDReGs IWAE GDReGs IWAE GDReGs

MNIST 1 layer −38.77±0.01 −38.71±0.02 −38.76±0.03 −38.68±0.03 −38.50±0.01 −38.44±0.01

2 layer −38.55±0.02 −38.42±0.03 −38.24±0.02 −38.14±0.02 −38.20±0.01 −38.02±0.02

3 layer −38.63±0.01 −38.44±0.02 −38.20±0.01 −38.10±0.02 −38.20±0.01 −38.04±0.01

Omniglot 1 layer −55.84±0.02 −55.66±0.03 −55.80±0.05 −55.62±0.05 −55.34±0.02 −55.24±0.02

2 layer −55.27±0.03 −54.98±0.02 −54.66±0.03 −54.28±0.02 −54.73±0.02 −54.36±0.03

3 layer −55.35±0.02 −54.93±0.02 −54.64±0.03 −54.21±0.03 −54.72±0.02 −54.28±0.02

FMNIST 1 layer −102.84±0.02 −102.80±0.02 −102.99±0.02 −102.88±0.02 −102.61±0.01 −102.58±0.01

2 layer −102.74±0.02 −102.68±0.01 −102.65±0.02 −102.48±0.03 −102.40±0.01 −102.30±0.02

3 layer −102.86±0.01 −102.71±0.01 −102.68±0.01 −102.42±0.02 −102.46±0.01 −102.26±0.01

Table A.1: Test objective values (higher is better) on conditional image modelling with a
VAE model trained with IWAE. Higher is better; errorbars denote ± 1.96 standard errors
(σ/
√

5) over 5 reruns.

estimator ∇TD
φ IWAE STL DReGs

estimator ∇TD
θ IWAE GDReGs IWAE GDReGs IWAE GDReGs

MNIST 2 layer −86.07±0.02 −86.04±0.03 −85.29±0.02 −85.23±0.03 −85.25±0.02 −85.32±0.02

3 layer −85.69±0.02 −85.70±0.02 −85.01±0.03 −84.94±0.05 −84.87±0.03 −84.90±0.04

Omniglot 2 layer −105.20±0.02 −105.11±0.02 −104.10±0.05 −104.00±0.05 −104.12±0.05 −104.05±0.04

3 layer −104.68±0.02 −104.71±0.03 −104.02±0.02 −103.55±0.03 −104.71±0.03 −103.51±0.06

FMNIST 2 layer −230.65±0.03 −230.61±0.02 −230.14±0.02 −229.98±0.02 −230.04±0.03 −229.98±0.03

3 layer −230.60±0.03 −230.59±0.03 −230.26±0.04 −229.92±0.03 −229.92±0.02 −229.87±0.03

Table A.2: Test objective values on unconditional image modelling with a VAE model
trained with IWAE.
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Figure A.1: Unconditional image modelling on FashionMNIST; 3 layers.
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Figure A.2: Train objective (leftmost column) and total average KL (rightmost column) in
addition to the test objective and prior gradient variance for conditional and unconditional
models with 3 stochastic layers on FashionMNIST. We find that the KL is lower for conditional
models than unconditional models, which indicates that the variational posterior and the
prior are closer to each other in this case.

Appendix B. Related work

Roeder et al. (2017) observed that the reparameterization gradient estimator for the ELBO
contains a score function term and proposed the STL estimator obtained by dropping this
score function to reduce the estimator variance. They applied the estimator to hierarchical
ELBO models but did not discuss how to treat indirect score functions. While the STL
estimator is unbiased for the ELBO objective, Tucker et al. (2019) showed that it is biased
for more general objectives such as the IWAE bound. They proposed the DReGs estimator
that yields unbiased and low variance gradients for IWAE and resolves the diminishing
signal-to-noise issue of the naive IWAE gradients first discussed by Rainforth et al. (2018).
We extend DReGs to hierarchical models, discuss how to treat the indirect score functions,
and generalize it to general score functions by introducing GDReGs.

A number of classic techniques from the variance reduction literature have also been
applied to variational inference and reparameterization. For example, Miller et al. (2017)
and Geffner and Domke (2020) proposed control variates for reparameterization gradients;
while Ruiz et al. (2016) used importance sampling with a proposal optimized to reduce
variance. Such approaches are orthogonal to methods such as (G)DReGs and STL, and can
be combined with them for greater variance reduction.

Appendix C. DReGs and GDReGs for hierarchical models

We now consider models with hierarchically structured latent variables and show that even
terms that look like pathwise gradients, such as ∇TD

z fφ,θ(z) in Eq. (4), can give rise to score

10
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functions in this case. The score functions appear because the distribution parameters of one
stochastic layer depend on the latent variables of another layer.

To illustrate this, consider a hierarchical model with two layers where we first sample
z2 ∼ qφ2(z2) and then z1 ∼ qφ1(z1|z2).1 Note that the conditioning on z2 is through
the distribution parameters of qφ1(z1|z2); to highlight this dependence of z1 on z2, we
rewrite qφ1(z1|z2) = qα1|2(z2,φ1)(z1), where we explicitly distinguish between the distribution
parameters α1|2, such as the mean and covariance of a Gaussian, and the network parameters
φ1 that parameterize them together with the previously sampled latent z2. A derivative
w.r.t. z2 that looks like a pathwise gradient actually gives rise to a score function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function termscore function term at
the subsequent level (we omit the true pathwise gradients (. . . )):

∇TD
z2 log qφ1(z1|z2) = ∇TD

z2 log qα1|2(z2,φ1)(z1) (C.1)

= ∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇α1|2 log qα1|2(z1)∇z2α1|2(z2,φ1) + . . . . (C.2)

Similar additional score functions arise for seemingly pathwise gradients of hierarchical
and/or autoregressive priors and variational posteriors.

C.1. Extending DReGs to hierarchical VAEs

Here we show how to extend DReGs to hierarchical VAEs to effectively reduce gradient
variance for the variational posterior despite the results in the previous section. We still
consider the IWAE objective (Eq. (1)), but now the latent space z is structured, and both
pθ and qφ are hierarchically factorized distributions.

Let us consider a 2-layer VAE z2 z1 x and examine the term∇TD
φ2

log qφ1,φ2(z1, z2)
in the total derivative of the IWAE objective as a concrete example. We have sampled z1
and z2 hierarchically using reparameterization: z2(φ2) ≡ Tq2 (ε2;α2(φ2)) and z1(φ1,φ2) ≡
Tq1(ε1;α1|2(z2(φ2),φ1)):

∇TD
φ2

log qα2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)α2(φ2)

(
z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)z2(φ2)

)
qα1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)α1|2(z2(φ2),φ1)

(
z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)z1(φ1,φ2)

)
(C.3)

The total derivative w.r.t. parameters of the upper layer, φ2, gives rise to three types
of gradients: (true) pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2pathwise gradients w.r.t. z1 and z2, a direct score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score functiondirect score function because
the distribution parameters α2(φ2) directly depend on φ2, and an indirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score functionindirect score function
because α1|2(z2(φ2),φ1) indirectly depends on φ2 through z2. Other terms in the gradient
of the objective w.r.t. φ as well as gradients w.r.t. the θ parameters decompose similarly.
We have three options to estimate each score function individually: (1) leave it—this naive
estimator is unbiased but potentially has high variance; (2) drop it, similar to STL—this
estimator is generally biased; (3) doubly-reparameterize it using DReGs—this estimator is
unbiased, but can generate further score function terms.

For IWAE objectives we find that the indirect score functions come up twice: once when
computing pathwise gradients of the initial reparameterization, and a second time (with a
different prefactor) when computing pathwise gradients for the double-reparameterization of
the direct score functions. The same happens for the (true) pathwise gradients, and it is this
double-appearance and the resulting cancellation of prefactors that helps reduce gradient

1. The subscript indices refer to the latent layer indices and not to the importance samples in this case.
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variance for DReGs. Moreover, for most model structures it is impossible to consistently
replace all successively arising score functions by doubly-reparameterized gradients. Thus,
to extend DReGs to hierarchical models, we leave the indirect score functions unchanged
and only doubly reparameterize the direct score functions. We provide detailed derivations
and a general DReGs estimator for arbitrary hierarchical structures in App. E, and show
how to implement the corresponding surrogate loss functions in App. F.

Roeder et al. (2017) apply the STL estimator to hierarchical ELBO objectives but do
not discuss indirect score functions. Their experimental results are consistent with dropping
the direct score functions while maintaining the indirect ones, similar to how we extend
DReGs to hierarchical models; the STL estimator is biased for IWAE objectives (Tucker
et al., 2019).

C.2. Extending GDReGs to hierarchical VAEs

z
(q)
1 ,z

(q)
2 ∼ qφ(z1,z2) re-express z

(q)
1 ,z

(q)
2 as if sampled from pθ(z1,z2)

ε2

ε1 z
(q)
1 (ε;φ)

z
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2 (ε;φ)

ε̃1(ε;φ,θ)
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ε̃1

ε̃2

z
(p)
1 (ε̃;θ)

z
(p)
2 (ε̃;θ)

Tq1 (ε1;α1(φ1))

Tq2|1 (ε2;α2|1(z1,φ2))

T −1
p1|2 (z1;β1|2(z2,θ1))

T −1
p2 (z2;β2(θ2))

stop_grad

stop_grad

Tp1|2 (ε̃1;β1|2(z2,θ1))

Tp2 (ε̃2;β2(θ2))

Figure C.1: Computational flow to re-express samples z1, z2 from qφ(z1, z2) =
qφ1(z1)qφ2(z2|z1) as if they were sampled from pθ(z1, z2) = pθ2(z2)pθ1(z1|z2). Their
numerical values and distribution remain unchanged but the gradient flow through them
changes. Note that ε̃i follows a different, usually more complex, distribution from εi. αi and
βi denote the distribution parameters of the variatonal posterior and the prior, respectively.

When extending GDReGs to hierarchical models, we again encounter direct and indirect
score functions (see App. C), and we apply GDReGs to the direct score functions but leave
the indirect score functions. See App. E for derivations of a general GDReGs estimator for
arbitrary hierarchical structures and App. F for surrogate losses to implement them.

To apply GDReGs we need to re-express samples from qφ(z) as if they came from
pθ(z). We do this for the entire hierarchy jointly. In Fig. C.1 we illustrate the necessary
computational flow for the example of a 2-layer VAE with the variational posterior factorized
in the opposite direction from the generative process; see App. E for the general case. We draw
samples z1, z2 ∼ qφ(z1, z2) = qφ1(z1)qφ2(z2|z1) (by transforming independent variables
εi) and then re-express them as if they were sampled from the prior pθ2(z2)pθ1(z1|z2),
which factorizes in the opposite direction. While the numerical values of z1 and z2 remain
unchanged, z1 is now dependent on z2 and both depend on the respective θ parameters when
computing gradients; we can view (z1, z2) as samples that were obtained by transforming
independent variables (ε̃1, ε̃2) that follow a more complicated distribution than (ε1, ε2). As
in the single-layer case, only pθ(z) needs to be reparameterizable.
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Appendix D. Derivation of the GDReGs estimator for the IWAE
objective

In this section we apply the GDReGs identity derived above to derive the GDReGs
estimator for the IWAE objective, Eq. (11) in the main paper.

D.1. Preliminaries on the IWAE objective

The importance weighted autoencoder (IWAE) objective is given by

LIWAE
φ,θ = Ez1:K∼qφ(zk|x)

[
log

(
1

K

K∑

k=1

wk

)]
wk =

pθ(z)p(x|zk)

qφ(zk|x)
(D.1)

where wk are the importance weights (Burda et al., 2016).
Due to the structure of the IWAE objective, any gradient w.r.t. any of its parameters

can be written as

∇TD
∗ LIWAE

φ,θ = Eε1:K∼q(ε)

[
K∑

k=1

w̃k∇TD
∗ logwk

]
; w̃k =

wk∑
j wj

(D.2)

using the chain rule and ∇∗wk = wk∇∗ logwk. w̃k are the normalized importance weights,
and we have reparameterized zk as Tq (εk;φ). Typically, the derivatives we are interested in
are w.r.t. the parameters φ and θ.

We also note the following identity that we use in the derivation of the doubly reparame-
terized estimators,

∇TD
z w̃k =

(
w̃k − w̃2

k

)
∇TD
z logwk (D.3)

which follows from applying the chain-rule and using ∇∗wk = wk∇∗ logwk.
Tucker et al. (2019) derive the DReGs identity (Eq. (5)) and use it to derive the follow-

ing doubly-reparameterized gradient estimator (DReGs) w.r.t. the approximate posterior
parameters φ as:

∇̂DReGs
φ LIWAE =

K∑

k=1

w̃2
k∇TD

zk
logwk∇TD

φ Tq (εk;φ) . ε1:K ∼ q(ε) (D.4)

D.2. Derivation of the GDReGs estimator

Similarly, we can derive a generalized doubly-reparameterized gradient (GDReGs) estimator
w.r.t. the prior parameters θ. We use the GDReGs identity (Eq. (7)) derived above with

gφ,θ(z) = w̃k and note that the reweighting term log
qφ(z)
pθ(z)

looks like a log importance weight
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except for the missing likelihood:

∇TD
θ LIWAE

φ,θ = Ez1:K∼qφ(zk|x)

[
K∑

k=1

w̃k∇TD
θ logwk

]
= Ez1:K∼qφ(zk|x)

[
K∑

k=1

w̃k∇TD
θ log pθ(z)

]

(D.5)

(7)
= Ez1:K∼qφ(zk|x)

[
K∑

k=1

(
w̃k∇TD

zk
log

qφ(zk|x)

pθ(zk)
+∇TD

zk
w̃k

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)

]

(D.6)

(D.3)
= Ez1:K∼qφ(zk|x)

[
K∑

k=1

(
w̃k∇TD

zk
log

qφ(zk|x)

pθ(zk)
+
(
w̃k − w̃2

k

)
∇TD
zk

logwk

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)

]

(D.7)

= Ez1:K∼qφ(zk|x)

[
K∑

k=1

(
w̃k∇TD

zk
log p(x|zk)− w̃2

k∇TD
z logwk

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)

]
.

(D.8)

Thus, the GDReGs estimator is given by:

∇̂GDReGs
θ LIWAE

φ,θ =
K∑

k=1

(
w̃k∇TD

zk
log p(x|zk)− w̃2

k∇TD
z logwk

)
∇θTp(ε̃k;θ)|ε̃k=T −1

p (zk;θ)
z1:K ∼ qφ(zk|x).

(11)

Note that the zk are sampled from qφ(zk|x) but re-rexpressed as if they came from pθ(z).
We can rewrite the importance weights as

wk =
pθ(zk)p(x|zk)

qφ(zk|x)
=
pθ(zk|x)pθ(x)

qφ(zk|x)
. (D.9)

Thus, if the variational posterior qφ(zk|x) is equal to the true posterior pθ(zk|x), all weights
wk become equal to pθ(x) and thus constant w.r.t. zk. In that case the second term in the
GDReGs estimator Eq. (11) vanishes and the overall expression simplifies to

∇̂GDReGs
θ LIWAE

φ,θ =
K∑

k=1

w̃k∇TD
zk

log p(x|zk) ∇θTp(ε̃k;θ)|ε̃k=T −1
p (zk;θ)

. z1:K ∼ qφ(zk|x)

(D.10)

In contrast, the usual IWAE gradient involves the score function for pθ(zk):

∇̂naive
θ LIWAE

φ,θ =
K∑

i=1

w̃k∇θ log pθ(zk), z1:K ∼ qφ(zk|x). (D.11)
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Appendix E. Derivation of the DReGs and GDReGs estimator for IWAE
objectives of hierarchical VAEs

In this section we derivations of and further details on the extension of DReGs and GDReGs
to hierarchical VAEs with the IWAE objective.

E.1. Preliminaries and notation for the hierarchical IWAE objective

For a hierarchically structured model with L stochastic layers the IWAE objective is still
given by Eq. (D.1) but with importance weights wk given by

wk =
pλ(x|zk1, . . . ,zkL) pθ(zk1, . . . ,zkL)

qφ(zk1, . . . ,zkL|x)
. (E.1)

Here, zkl denotes the kth importance sample (k ∈ {1, . . . ,K}) for the lth layer (l ∈
{1, . . . , L}). Both the variational posterior and the prior distribution factorize according to
their respective hierarchical structure. While the prior factorizes top-down in most cases,
the variational posterior can have many different structures. In order for the distributions
to be valid in the context of a VAE, we require the individual dependency graphs for the
prior (generative path) and the variational posterior (inference path) to be directed acyclic
graphs. Cycles would mean that a latent variable conditionally dependent on itself. To keep
the dependency structure general, we write the factorization of the variational posterior and
prior as follows:

qφ(zk1, . . . ,zkL|x) =

L∏

l=1

qφl(zkl|paα (l) ,x) =

L∏

l=1

qαl(paα(l);φl)(zkl) (E.2)

pθ(zk1, . . . ,zkL) =
L∏

l=1

pθl(zkl|paβ (l)) =
L∏

l=1

pβl(paβ(l);θl)(zkl) (E.3)

Here, αl(·;φl) and βl(·;θl) are the distribution parameters of the variational posterior and
prior distribution in the lth layer, respectively, and we have made the dependencies of the
conditional distributions explicit; paα (l) denotes the “parents” of the latent variable zkl
according to the dependency graph of the inference path (the factorization of the posterior);
similarly, paβ (l) denotes the latent variables that zkl directly depends on according to the
factorization of the prior pθ. Typically, the prior is assumed to factorize top-down, such
that paβ (l) = zk(l+1) for all but the top-most layer.

The samples zkl are drawn from the variational posterior and can be expressed through
reparameterization as zkl = Tql(εkl;αl(paα (l) ,φl)), where εkl is an independent noise
variable per importance sample and layer.

We note that it is these dependencies of the distribution parameters αl and βl on paα (l)
and paβ (l), respectively, that give rise to the indirect score functions as discussed in App. C.
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E.2. Derivation of the hierarchical DReGs estimator for IWAE

With notation fully set up we consider the reparameterized gradients of the IWAE objective
w.r.t. the variational parameters in a particular stochastic layer φl:

∇TD
φl
LIWAE
φ,θ = Eε1:K∼q(ε)

[
K∑

k=1

w̃k∇TD
φl

logwk

]
(E.4)

= Eε1:K∼q(ε)

[
K∑

k=1

w̃k

(
∇TD
zkl

logwk∇φlTql (εkl;αl(paα (l) ,φl)) +∇φl logwk

)
]

(E.5)

where we have used the chain-rule to arrive at Eq. (E.5); the first term contains both
the (true) pathwise gradients as well as the indirect score functions; the second term only
contains a direct score function as we only take the partial derivative w.r.t. φl.

We can rewrite this direct score function gradient because only one term in the (log-
)importance weight directly depends on φl,

∇φl logwk = −∇φl log qαl(paα(l);φl)(zkl). (E.6)

Applying the DReGs identity to this term and using Eq. (D.3) yields:

Eε1:K∼q(ε)

[
K∑

k=1

w̃k∇φl logwk

]
= −Eε1:K∼q(ε)

[
K∑

k=1

(w̃k − w̃2
k)∇TD

zkl
logwk∇φlTql (εkl;αl(paα (l) ,φl))

]

(E.7)

which agrees with the first term in Eq. (E.5) up to the prefactor. Thus, both the true
pathwise gradients as well as the indirect score functions appear twice and the prefactors
partly cancel to give rise to the DReGs estimator for hierarchical IWAE objectives:

DReGs estimator for hierarchical IWAE objectives

∇̂DReGs
φl

LIWAE
φ,θ =

K∑

k=1

w̃2
k∇TD

zkl
logwk∇φlTql (εkl;αl(paα (l) ,φl)) ; ε1:K ∼ q(ε) (E.8)

where zkl = Tql(εkl;αl(paα (l) ,φl)),∀l ∈ {1, . . . , L},∀k ∈ {1, . . . ,K} through reparame-
terization.

We emphasize that the total derivative w.r.t. zkl contains pathwise gradients as well
as indirect score functions for both the variational posterior as well as for the prior. The
hierarhical DReGs estimator otherwise looks very similar to the DReGs estimator in the
single layer case (Tucker et al., 2019).

In App. F.1 we explain how to implement this estimator effectively and in a structure-
agnostic way. That is, we do not have to derive a new estimator for each new dependency
graph of the variational posterior or the prior.

E.3. Derivation of the hierarchical GDReGs estimator for IWAE

Next, we derive the expression for the GDReGs estimator for hierarchical VAEs with IWAE
objective.
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Applying the GDReGs identity entails re-expressing the samples zkl from the variational
posterior as if they were sampled from the prior. Starting form a sample (zk1, . . . ,zkL) ∼
qφ(z1, . . . ,zL|x), we use the inverse flow of pθ to obtain new noise variables for each layer,
(ε̃k1, . . . , ε̃kL). We then use the forward flow of pθ to obtain back (zk1, . . . ,zkL) but with
the gradient path now depending on θ as discussed in Sec. 3.

More precisely, we find that

z
(q)
kl = Tql (εkl;αl(paα (l) ,φl)) original sampling of (zk1, . . . ,zkL) ∼ qφ(z1, . . . ,zL|x)

(E.9)

ε̃kl = T −1pl

(
z
(q)
kl ;βl(paβ (l) ,θl)

)
inverse prior flow to obtain new “noise” variables

(E.10)

zkl = Tpl
(
ε̃kl;βl(paβ (l) ,θl)

)
forward prior flow to re-express the zkl (E.11)

where εkl ∼ q(ε) follows a simple distribution that is different from the more complicated
distribution of ε̃kl. Note how the initial reparameterization of a sample zkl depends on
the dependency structure of the variational posterior (through paα (·)), while the other
transformations depend on the dependency structure of the prior (paβ (·)).

As for DReGs, we note that only one term in the log importance weight directly depends
on the variable θl,

∇θl logwk = ∇θl log pβl(paβ(l);θl)(zkl). (E.12)

With these prerequesits, we can compute the GDReGs estimator for parameters θl of the
lth stochastic layer.

∇TD
θl
LIWAE
φ,θ = Ez1:K∼qφ(z|x)

[
K∑

k=1

w̃k∇θl logwk

]
(E.13)

E.12
= Ez1:K∼qφ(z|x)

[
K∑

k=1

w̃k∇θl log pβl(paβ(l);θl)(zkl)

]
(E.14)

7
= Ez1:K∼qφ(z|x)

[ K∑

k=1

(
w̃k∇TD

zkl
log

qφ(zk1, . . . ,zkL|x)

pθ(zk1, . . . ,zkL)
+

+
(
w̃k − w̃2

k

)
∇TD
zkl

logwk

)
∇θlTpl (ε̃kl;θl)|ε̃kl=T −1

pl
(zkl;θl)

] (E.15)

GDReGs estimator for hierarchical IWAE objectives

∇̂GDReGs
θl

LIWAE
φ,θ = (E.16)

=
K∑

k=1

(
w̃k∇TD

zkl
log pλ(x|zk1, . . . ,zkL)− w̃2

k∇TD
zkl

logwk

)
∇θlTpl (ε̃kl;θl)|ε̃kl=T −1

pl
(zkl;θl)

with z1:K ∼ qφ(zk|x), and where we suppressed dependencies on pa∗ (l) where they are
not necessary to simplify notation.

The estimator looks very similar to the GDReGs estimator for a single layer IWAE
model Eq. (11). Note that just like above for hierarchical DReGs, the total gradients
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w.r.t. zkl give rise to both (true) pathwise gradients as well as indirect score functions
through the hierarchical dependencies of the variational posterior and prior.

In App. F.2 we show how to implement the hierarchical GDReGs estimator Eq. (E.16)
effectively and in a way that is agnostic to the structure of the model. That is, we do not
have to derive a separate estimator for every dependency graph of the variational posterior
and prior.

E.4. Double reparameterization and indirect score functions

In principle, we could apply double-reparameterization to the indirect score functions as
well. However, as we explain now, we often cannot doubly-reparameterize all indirect
score functions; moreover, even in cases where this is possible, it is still impractical, as the
corresponding estimator depends on the exact model structure and would require adaptation
to each dependency graph of the prior and variational posterior.

Double reparameterization of indirect score functions works in the same way as for the
direct score functions except that gφ,θ(z) is given by w̃2

k instead of w̃k in this case. The
derivatives of w̃2

k have a similar reproducing property as we observed in Eq. (D.3):

∇TD
z w̃2

k = 2(w̃2
k − w̃3

k)∇TD
z logwk. (E.17)

Thus, double reparameterization of the indirect score functions similarly gives rise to further
indirect score functions. We note that these indirect score functions only appear for the
“children” of the current stochastic layer, that is, stochastic variables in those layers that
depend on the current layer. In this context, “children” refers to all children w.r.t. the
dependency structure of both, the variational posterior and the prior. For a particular layer
l we obtain indirect score functions from double reparameterization of all of its (direct or
indirect) parent nodes. Following the dependency structure, we could collect all of these
terms and reparameterize them to obtain pathwise gradients only.

However, a problem arises, because we need to account for dependencies of both the
variational posterior and the prior. Reparameterization of a score function gives rise to
indirect score functions in all its “children” layers for both the variational posterior and
the prior. For general hierarchical structures, this leads to cycles, in that some of the
children of one dependency tree (the variational posterior) are the parents in the other (the
prior) and/or vice versa. In this case we are never able to collect all the terms and fully
reparameterize all the score functions.

Moreover, even if the joint dependency graph of the variational posterior and the prior
were acyclic, this derivation would be structure-specific and would need to be repeated for
each hierarchical structure. We therefore do not doubly reparameterize the indirect score
functions.

Appendix F. Surrogate losses to implement the DReGs and GDReGs
estimators for IWAE objectives

As we discussed in Sec. 3 and similar to Tucker et al. (2019), we use surrogate loss functions
to compute the gradients w.r.t. the likelihood, proposal, and prior parameters. That is, we
use different losses, such that backpropagation results in the respective gradient estimator.
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While Tucker et al. (2019) use a single surrogate loss to compute the gradient estimators for
all parts of the objective, we choose to use separate surrogate losses for each of the three
parameter groups (likelihood, variational posterior, prior). In principle, we could combine
them into a single loss, but in order to keep presentation simple we keep them separate.
Computationally this does not make a difference as modern deep learning frameworks avoid
duplicate computation.

For the likelihood parameters, we use the regular (negative) IWAE objective Eq. (1) as
a loss. That is, the gradient estimator for the likelihood parameters is given by the gradient
of the negative IWAE objective.

To construct the other surrogate losses we need to stop the gradients at various points
in the computation graph. In the following, we use the shorthand notation

88888888888888888
to indicate

that we stop gradients into the underlined parts of an expression. Where it might be
ambiguous, or to highlight where we do not stop gradients, we use the shorthand

44444444444444444
to

indicate that gradients flow. For example, f(
44444444444444444
φφφφφφφφφφφφφφφφφ,

88888888888888888
θθθθθθθθθθθθθθθθθ) means that we backpropagate gradients

into φ but not into θ.

F.1. DReGs for variational posterior parameters φ

F.1.1. Single stochastic layer

Here we reproduce part of the surrogate loss for the variational parameters φ by Tucker
et al. (2019) for the single stochastic layer case:

LDReGs(φ) =
K∑

k=1
88888888888888888

w̃2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
k

(
log pλ(x|

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk) + log pβ(θ)(

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)− log qα(

88888888888888888
φφφφφφφφφφφφφφφφφ)( 44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)
)

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk = Tq (εk;

44444444444444444
φφφφφφφφφφφφφφφφφ) εk ∼ q(εk)

(F.1)

That is, we sample zk ∼ qφ(zk|x) as usual (by reparameterizing independent noise variables
εk) but stop the gradients of the parameters that parameterize the distributions when
evaluating their densities, log qα(

88888888888888888
φφφφφφφφφφφφφφφφφ)( 44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk). In addition we stop the gradients around the

normalized importance weights w̃k. Differentiating LDReGs w.r.t. the proposal parameters
φ yields the DReGs estimator Eq. (6). Note that we do not explicitly stop gradients into λ
or θ because we use separate surrogate losses for those parameter groups. If we were to use
a combined loss, we would potentially have to stop gradients into these parameters as well,
depending on the estimator used.

To practically implement this surrogate loss, we use two copies of the variational posterior
distribution. An unaltered one (no stopped gradients) to sample z and one with gradients
into the proposal parameters stopped to evaluate the log densities. The stopped gradient
makes sure that we do not obtain a direct score function as we have doubly-reparameterized
it.

Note that for single-stochastic-layer models we could also stop the gradients of the
distribution parameters α instead as they only depend on φ. We emphasize that this is not
possible for hierarchical models as this would eliminate the indirect score functions and thus
produce potentially biased gradients.
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F.1.2. Multiple stochastic layers

For multiple layers, the surrogate loss for the DReGs estimator Eq. (E.8) is given by:

LDReGs(φ) =
K∑

k=1
88888888888888888

w̃2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
kw̃
2
k logwk

logwk = log pλ(x|
44444444444444444

zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1zk1,
44444444444444444

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . ,
44444444444444444

zkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkLzkL) +
L∑

l=1

log pβl(
44444444444444444

paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l);θl)
(

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl)−

L∑

l=1

log qαl(
44444444444444444

paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l);
88888888888888888

φlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφl)
(

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl)

44444444444444444
zklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzklzkl = Tql

(
εkl;αl(

44444444444444444
paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l),

44444444444444444
φlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφl)
)

εkl ∼ q(εkl)
(F.2)

Again, we do not explicitly stop gradients into λ or θl as we only take gradients w.r.t. φl.
The indirect score functions arise due to the indirect dependence of the distribution

parameters αl(
44444444444444444

paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l);
88888888888888888

φlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφlφl) and βl(
44444444444444444

paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l);θl) on the parent latent variables
44444444444444444

paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l)paα (l) and
44444444444444444

paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l)paβ (l),
respectively. Note how the former depends on the hierarchical structure of the variational
posterior, whereas the latter depends on the hierarchical structure of the prior.

To implement this surrogate loss effectively, we again use two copies of the variational
posterior distribution. One un-altered one (without stopped gradiends) from which we
sample the individual reparameterized zkl and through which gradients can flow; we use
these samples to evaluate densities at and to parameterize the distribution parameters at
subsequent layers. Derivatives w.r.t. φl will then give rise to pathwise gradients and indirect
score functions. We use the second copy of the variational posterior, where we have stopped
the parameters φl, to evaluate the density at for the log importance weights in the last
summand of Eq. (F.2).

F.2. GDReGs for prior parameter θ

F.2.1. Single stochastic layer

LGDReGs(θ) =
K∑

k=1
88888888888888888

w̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃kw̃k log pλ(x|
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kw̃
2
kw̃
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(
log pλ(x|

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk) + log pβ(

88888888888888888
θθθθθθθθθθθθθθθθθ)( 44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)− log qα(φ)(

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk)
)

44444444444444444
zkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzkzk = Tp (

88888888888888888
ε̃k̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk;

44444444444444444
θθθθθθθθθθθθθθθθθ)

88888888888888888
ε̃k̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk̃εk =

88888888888888888
T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ)T −1p (Tq (εk;φ) ;θ) εk ∼ q(εk)

(F.3)
Taking the derivative of Eq. (F.3) w.r.t. θ gives rise to the GDReGs estimator for the single
stochastic layer IWAE objective. As explained in Sec. 3, we need to re-express zk such that
its path depends on θ. In effect, we first sample zk = Tq (εk;φ), then compute the new
noise variable ε̃k = T −1p (z;θ), and re-compute zk = Tp(ε̃k;θ). Note that we have to stop
gradients into the noise variables ε̃k to obtain the correct gradient estimator. This explains
the stop_grad in Fig. 1.

As above, we do not explicitly stop gradients into λ and φ as we use separate losses for
these parameter groups and only compute gradients of Eq. (F.3) w.r.t. θ.

To effectively implement this loss, we use two copies of the prior distribution. One
that we implement as a normalizing flow and a second one with stopped gradients into the
parameters. We then proceed as follows:
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• Compute the new noise variables ε̃k by using the inverse flow T −1p on the samples zk
from the variational posterior.

• Stop the gradients into ε̃k.

• Use the forward flow Tp(ε̃k;θ) to re-compute zk but with path dependent on θ. These
samples when derived w.r.t. θ will give rise to the pathwise gradients.

• Use the second copy of the prior (with stopped gradients into its parameters) to
evaluate the log density at the samples zk. The stopped gradients make sure that we
do not obtain the direct score function.

F.2.2. Multiple stochastic layers

For multiple stochastic layers the surrogate loss that gives rise to the GDReGs estimator
Eq. (E.16) is given by:

LGDReGs(θ) =
K∑

k=1
88888888888888888
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logwk = log pλ(x|
44444444444444444
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(F.4)
As for the single layer case, we need to re-express variational posterior samples zkl as if

they were sampled from the prior. To obtain the correct gradients, we again have to stop
gradients into the new noise variables ε̃kl, also see Fig. C.1.

As for hierarchical DReGs, the indirect score functions stem from the second and third
term of logwk and arise because the distribution parameters αl and βl depend on the
“parent” stochastic layers.

As before we use two copies of the prior distribution, one with regular gradients that is
set up as a flow, and a second with stopped gradients into the parameters. This allows us to
implement the GDReGs estimator regardless of the model structure.
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