
Cooperative Foraging Behaviour Through
Multi-Agent Reinforcement Learning with

Graph-Based Communication

Hicham Azmani
Vrije Universiteit Brussel
hicham.azmani@vub.be

Andries Rosseau
Vrije Universiteit Brussel

andries.rosseau@vub.be

Ann Nowé
Vrije Universiteit Brussel

ann.nowe@vub.be

Roxana Rădulescu
Vrije Universiteit Brussel

roxana.radulescu@vub.be

Abstract

According to the social intelligence hypothesis, cooperation is considered a key
component of intelligence and is required to solve a wide range of problems, from
everyday challenges like scheduling meetings to global challenges like mitigating
climate change and providing humanitarian aid. Extending the ability for artificial
intelligence (AI) to cooperate well is critical as AI becomes more prevalent in our
lives. In recent years, multi-agent reinforcement learning (MARL) has emerged
as a powerful approach to model and analyse the problem of cooperation among
artificial agents. In this paper, we investigate the impact of communication on
cooperation among reinforcement learning agents in social dilemmas. These are
settings in which the short-term individual interests are in conflict with the long-
term collective ones, thus each individual profits from defecting, but the overall
group would benefit if everyone cooperates. We particularly focus on a tempo-
rally and spatially extended Stag-Hunt-like social dilemma that models animal
foraging behaviour using principles from Optimal Foraging Theory. We propose
a method for communication that combines a graph-based attention mechanism
with deep reinforcement learning methods. Additionally, we examine several
facets of communication, including the effects of the communication topology
and the communication range. We find that greater cooperative behaviour can
be achieved through graph-based communication using reinforcement learning in
social dilemmas. Additionally, we find that during foraging, local communication
promotes better cooperation than long-distance communication. Finally, we visu-
alise and investigate the learned attention weights and explain how agents process
communications from other agents.

1 Introduction

With artificial intelligence playing an increasingly important role in our lives, it becomes crucial for
artificial agents with individual goals to be able to efficiently coordinate and cooperate with each
other. This is especially important in social dilemma settings where it is easy for agents to get stuck
in detrimental low-reward group dynamics, even though high-reward outcomes are possible through
cooperation.

A powerful tool that can enable more cooperative behaviour is communication. In this paper, we
look at communication using a Graph-Based Attention mechanism in combination with Deep Rein-

16th European Workshop on Reinforcement Learning (EWRL 2023).

forcement Learning (RL) agents. We investigate our approach in a temporally and spatially extended
Stag-Hunt environment [20, 27, 33], in which communication is a bottleneck for cooperation [9].
Our environment is inspired by Optimal Foraging Theory (OFT) [28], a commonly used framework
in behavioural ecology that seeks to mathematically describe animal foraging behaviour. Optimal
foraging theory suggests that animals, through natural selection and reproduction, evolved to the
point where their foraging behaviour is optimal and fitness is maximised. Since fitness is not easily
measured directly, time and energy are often used as substitutes. One model for Optimal Foraging
comes from Charnov and Orians [7], who describe a patch exploitation model which examines how
long a forager should spend exploiting a food patch before switching to finding a new one. Another
model from Sih and Christensen [32] looks at optimal diet theory, and predicts the kinds of food that
foragers should choose for optimal foraging, ranging from low-energy foods that agents can forage
single-handedly, to high-energy foods which might require coordination with other agents.

These scenarios constitute a Stag-Hunt-like Sequential Social Dilemma (SSD) [20, 11] where indi-
viduals have mixed motives, characterised by: (i) when an agent forages individually, it can gather
low-energy foods, (ii) when agents cooperate, they can gather more energy-rich foods which are not
accessible as an individual, (iii) if an agent attempts to cooperate, but does not find partners, it gets no
food at all. These properties give rise to a tension between getting more energy through cooperation,
but with the risk of ending up with nothing. While cooperation is the clear best strategy, agents can
easily get stuck in a non-cooperative state out of fear [9].

The traditional computational approach for studying animal foraging behaviour is Stochastic Dynamic
Programming (SDP) [16]. In order to compute an optimal policy, SDP uses a divide-and-conquer
approach dividing the problem into smaller sub-problems, which are solved independently and
using backward induction. A major drawback of Stochastic Dynamic Programming is the need of
a complete model of the environment with all state transition probabilities and rewards. Moreover,
many state space regions are often simply not relevant to find the optimal policy, and SDP is therefore
prone to waste a lot of computational resources.

We propose to address this problem by using model-free reinforcement learning [4], which does not
require a model of the environment, but rather learns a policy through direct interaction with the
environment, balancing exploration and exploitation of the state space. Reinforcement learning can
be much more efficient, but once we use non-linear function approximators (like artificial neural
networks) to model the policy, or once we enter the multi-agent domain, we loose any guarantees that
our agents converge to the optimal policy [34]. However, reinforcement learning with artificial neural
networks (‘Deep RL’) has shown strong performance in practice [25, 12, 36, 31], solving increasingly
difficult problems over time. Moreover, the methods of reinforcement learning are originally inspired
by the way animals learn [34], so using model-free RL will provide a more biologically accurate
model than the model-based planning approach of SDP. Therefore, we model our foraging task as a
multi-agent reinforcement learning (MARL) setting. In recent years, MARL has become a staple
approach for learning in and analysing temporally complex SSDs [3, 20].

In short, our work presents the following main contributions:

• We create a Sequential Social Dilemma environment inspired by Optimal Foraging Theory,
by modifying the Level-Based Foraging environment [8]

• We propose GAPPO (Graph-Attention Proximal Policy Optimisation), a novel MARL
method that extends Proximal Policy Optimisation (PPO) [31] to allow agents to communi-
cate with each other based on a Graph-Attention neural network architecture.

• We investigate the capacity of graph-based communication in MARL to promote cooperative
behaviour in a temporally and spatially extended Stag-Hunt social dilemma where agents
act in a self-interested way. We then compare to approaches without communication.

• We analyse the attention weights of our agents and show that agents can meaningfully filter
out the relevant communication messages from other agents for better coordination.

2 Related Work

Due to their capacity to model and process spatial data, there has been an increasing amount of
methods using Graph Neural Networks (GNNs) as a communication mechanism in MARL. One of
the earliest approaches to use GNNs in MARL was DGN [18], which modelled each agent acting as

2

a node in the graph, and local observations of the agents serving as node features. Through graph
convolutions, which serve as a communication mechanism, neighbouring agents are able to exchange
their observations which in turn increases their receptive fields and promotes cooperation. Agarwal
et al. [1] expanded on this concept by including environment entities as part of the graph.

Instead of limiting communication to only nearby agents, MAGNet [24] and G2ANet [22] employ
a learnable method to determine which agents should communicate with one another. The former
generates a relevance graph using the self-attention mechanism while the latter uses a hard-attention
mechanism to prune edges between agents which do not need to communicate. In a comparable
manner, MAGIC [26] employs two separate components to learn a useful communication topology:
(1) a scheduler to learn when agents should communicate and with whom; (2) a message processor in
the form of a graph attention network, to handle the communication signals.

Out of the discussed methods, the closest to our approach are DGN and G2ANet. We apply DGN’s
principle of representing the multi-agent environment as a graph and exchanging messages via graph
convolutions. However, whereas DGN focuses on fully cooperative (team-based) scenarios, our
paper’s main goal is to study self-interested agents in a mixed-motive sequential social dilemma
setting where cooperation is not directly incentivised. Moreover, we extend the GNN-based PPO
algorithm from G2ANet, a policy gradient reinforcement learning algorithm, to promote agent
cooperation: unlike G2ANet, in which a central solver learns which agents can communicate, we
only allow communication between agents that are in a certain range from each other, which is a
restriction frequently found in real-world applications due to the cost of communication. Furthermore,
G2ANet, like DGN, again only considers cooperative tasks.

3 Preliminaries

3.1 Partially Observable Stochastic Games

In this work, we model our MARL problem as a Partially Observable Stochastic Game (POSG), a
generalisation of Stochastic (Markov) Games [21] to settings where agents are only able to observe
parts of the environment’s state. A POSG is a tuple ⟨N,S,A, T ,R,O, Te⟩ [17, 37], where N is the
number of agents, S is the set of all possible global states of the environment, A := A1×A2×. . .×AN

represents the set of actions, where Ai is the action space of agent i, T : S × A → △(S) is
the transition probability function between global states, based on the joint action of the agents,
R := R1 × · · · ×RN is the reward function, where Ri : S ×A× S → R is the individual reward
function of agent i, O := O1 ×O2 × . . .×ON is the set of observations, with Oi representing the
individual observation set for each agent i, and Te : S × A → △(O) is the observation function,
where Te(o|a, s) represents the probability of observing o ∈ O, given the join action a ∈ A and a
new state s ∈ S from the environment transition.

The behaviour of an agent is defined by its policy πi : Oi ×Ai → [0, 1]. An agent’s goal is to find a
policy πi which maximises the expected discounted long-term reward:

V πi = E

[
T∑

t=0

γtri,t | π

]
(1)

where π = (π1, . . . , πn) is the joint policy of the agents acting in the environment, γ ∈ [0, 1] is the
discount factor, T is the amount of time steps in an episode, and ri,t = Ri(st,at, st+1) is the reward
obtained by agent i at time step t, for the joint action at ∈ A, at state st ∈ S and transitioning to the
next state st+1 ∈ S.

3.2 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) [31] is a policy gradient method for single-agent reinforcement
learning. The main benefit of PPO is the introduction of a clipping formula, which prevents unstable
learning caused by excessive policy updates. By limiting the change in the probability ratio between
the new and old policies using Equation 2, the clipping formula limits the policy update step.

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (2)

3

where LCLIP(θ) represents the clipped objective function, ϵ a hyperparameter that controls the extent
of the clipping, θ the parameters of the policy, rt(θ) the probability ratio between the new and old
policy at timestep t, and At the advantage function which estimates the relative value of a particular
action at timestep t.

The PPO algorithm has been used in numerous studies to solve multi-agent reinforcement learning
problems, with some demonstrating performance that is comparable with state-of-the-art algorithms
in a variety of cooperative challenges [39]. The Independent PPO (IPPO) method is the most
straightforward way to use the PPO algorithm in MARL. Using the IPPO algorithm, each agent treats
the other agents as being part of the environment and computes its actions based solely on its own
local observation [40]. The obtained policy is only conditioned on the agent’s own rewards [39].

3.3 Graph Neural Networks

A Graph Neural Network (GNN) is a neural network model suitable to represent and operate on
graph structured data. Each node in the graph is characterised by a feature representation that is
exchanged with its neighbours. Each node then aggregates and processes the incoming representations,
including its own features, through a (potentially shared) neural network, thereby also updating its
own representation. This process can undergo several iterations (i.e., network layers), until the nodes
use the final features for the designated task (e.g., classification) [6]. Consider a graph G = ⟨V, E⟩
with a set of nodes V with d features and a set of edges E . We can update the representation of every
node using a GNN layer which expects two inputs: the set of node representations {hi ∈ Rd | i ∈ V}
and the set of edges E . A GNN layer then produces a new set of updated node representations h

′

i

of a potentially different feature dimension Rd′
: {h′

i ∈ Rd′ | i ∈ V}. This set of updated node
representations is obtained by applying a parametric function fθ to every node i and its neighbours
Ni = {j ∈ V|(j, i) ∈ E}:

h
′

i = fθ(hi, AGGREGATE({hj | j ∈ Ni})) (3)

Most GNN types vary in their definition of the parametric function fθ and the aggregation function [6].

3.3.1 Graph Attention Networks (GATs)

A popular variant of GNNs are Graph Attention Networks (GATs) [35]. GATs differ from most
GNN architectures by computing the updated representation of a node as a weighted average of
the representations of its neighbours using the attention mechanism, while most GNN approaches
assign equal importance to the representations of its neighbours by using max or mean-pooling as
aggregation functions [6].

In order to compute the updated node features h′ a GAT layer first computes attention coefficients or
scores for every pair of connected nodes i and j using the self-attention mechanism a : Rd×Rd → R.
These attention coefficients indicate the importance of the features of node j to node i [6]. Veličković
et al. [35] use a single-layer feed-forward neural network with a LeakyRelu non-linearity activation
function as a scoring function leading to the following equation:

e(hi, hj) = LeakyReLU(−→a T · [Whi || Whj]), (4)

where || is concatenation. The weight matrix W represents a linear transformation that is applied
to every node i and j of the provided set of node features h to attain sufficient expressive power to
compute higher-level features based on the provided input features. Brody et al. [6] notes that the
attention computed by Eq. 4 is a form of static attention that leads to a global ranking of nodes such
that certain influential nodes will always be prioritised over the other nodes regardless of the query.
In order to compute a dynamic form of attention where each node has a different ranking of nodes
it is sufficient to alter the order of the internal operations in GAT by applying the a layer after the
LeakyReLU activation function and the W layer after the concatenation which leads to Eq. 5.

e(hi, hj) =
−→a TLeakyReLU(W × [hi || hj]) (5)

Furthermore, softmax is used to normalise the attention scores of node i across all its neighbours
j ∈ Ni in order to make coefficients easily comparable across different nodes:

4

aij = softmaxj(e(hi, hj)) =
exp(e(hi, hj))∑

j′∈Ni
exp(e(hi, hj′))

(6)

Finally, the GAT layer uses the normalised attention coefficients to compute the updated represen-
tations of every node i as a linear combination of the neighbouring node representations. The final
updated representations produced by the GAT layer are obtained by applying a non-linearity σ [35].

−→
h′
i = σ

∑
j∈Ni

aijW
−→
h j

 (7)

In order to stabilise the learning process we use the multi-headed attention mechanism instead of
the single-head attention mechanism. In the case of multi-head attention, we compute Eq. 7 in K
independent heads. The results of the K heads are either concatenated in the case of multiple GAT
layers or averaged in the case of a single GAT layer. We average the results of the K heads using
Eq. 8 as we only consider a single GAT layer.

−→
h′
i = σ

 1

K

K∑
k=1

∑
j∈Ni

akijW
k−→hj

 (8)

4 Methods

A major component of this work is to examine whether graph-based communication can promote
cooperation in sequential social dilemmas. Towards this end, we compare both non-communicating
agents and communicating agents in a sequential social dilemma inspired by the Optimal Foraging
Theory. First, we introduce the multi-agent reinforcement learning social dilemma environment. We
then describe GAPPO, our variant of the Proximal Policy Optimisation algorithm extended with a
graph-based communication mechanism.

4.1 Model of the Foraging Setting

We use a modified version of the Level-Based Foraging (LBF) environment [2, 8] to create a Sequen-
tial Social Dilemma environment that is motivated by Optimal Foraging Theory. Our environment is
a mixed-incentive game where self-interested agents (i.e., agents that each have their own individual
reward function) are competing for food. Our environment is a rectangular grid world where N
randomly placed agents have to collect M randomly placed food items by navigating the world within
a certain time. We provide a visualisation of the environment in Figure 3. The action space for the
agents is either: do nothing, move to an adjacent grid cell (north, east, south, west) as long as that cell
is empty, or capture a food item in an adjacent cell. Each food item is assigned a level of 1 or 2; level
1 food can be captured by one agent, but level 2 food needs the simultaneous presence of (at least)
two adjacent agents for the agents to capture that food. Level 1 food gives a reward of 1, and level 2
food gives a reward of 8. One can also provide higher level foods (with an exponentially increasing
reward) up until level 4. This represents the natural case where animals can learn to coordinate to
get access to improved resources. It is more difficult to obtain these resources, but if successful, the
reward is more than what one would get on their own (e.g., learning to hunt larger prey together,
or being strong enough together to move an obstacle and reach higher quality foods). The reward
is divided evenly between all agents that were simultaneously around the food to capture it. When
a food item is captured, it respawns after 5 time steps elsewhere in the environment. Episodes are
terminated when the episode has reached T = 50 steps. We introduce an energy loss penalty of
−0.01 per time step, in accordance with the biological energy loss of agents from their metabolism
keeping them alive (and moving them in the world). There is also an energy cost associated with food
capture and consumption in Optimal Foraging Theory [23, 13, 30], but one can assume this is already
calculated in the food rewards without loss of generalisation. This environment forms a sequential
social dilemma, which is a temporally and spatially extended Stag-Hunt game [20, 33, 27] with
multiple cooperative levels induced by the multiple levels of food. An in-depth explanation of the
observation space, action space, and reward structure of our environment, along with a comparison to
the original LBF environment, is given in Appendix B.

5

4.2 Graph-Attention PPO (GAPPO)

In order to analyse the effects of communication on cooperation we extend the single-agent re-
inforcement learning algorithm of Proximal Policy Optimisation (PPO) [31] with a GNN-based
communication layer.

To allow for inter-agent communication we make use of a Graph Attention Layer. In order to
use GATs we first need to model the problem as a graph. We create a node for each agent in the
environment, with the features of each node being the local observation of the corresponding agent.
The nodes of communicating agents are then connected via an edge to allow them to exchange their
local observations. The existence of an edge between two agents will depend on the underlying
graph topology. We provide more information on the various topologies we used in Appendix C and
provide a comparison between the topologies in Section 5. Once the environment is transformed
into a graph, we can allow agents to communicate by updating each node of the graph using the
GAT layer. Each node i is updated by a weighted average of the representations of itself and its
neighbours j ∈ N using the attention mechanism of Equation 7. In summary, we first apply a linear
transformation, represented by the weight matrix W , to obtain higher-level features. Next, for each
node i we compute attention coefficients for all its neighbours j which indicate the importance of
the features of node j to node i. When the observations of an agent contain more useful information
(e.g., food) we assume that it will receive a larger attention coefficient to indicate its importance. We
compute the updated node representation as a weighted sum using the computed attention coefficients.

As described in Section 3.3.1, multi-headed attention is used to stabilise the learning process. Both the
IPPO algorithm and the GAT communication mechanism are combined in the architecture presented
in Figure 1.

Figure 1: Architecture of GAPPO. Local observations are first passed through an encoder. Encoded
observations are then exchanged using the GAT communication mechanism. Finally, probabilities of
actions are computed based on the original encoded observations computed by the encoder as well as
the updated encoded observations computed by the GAT communication mechanism.

At first, the observations of all agents ot1, o
t
2, ..., o

t
N are transformed by an encoding layer into

embedded observations ht
1, h

t
2, ..., h

t
N . The encoder in GAPPO is a multi-layer perceptron (MLP)

with a single layer that encodes the observations. For more complex observations, such as RGB
images, Convolutional Neural Networks (CNN) can be used instead of a simple MLP.

The encoded observations ht
1, h

t
2, ..., h

t
N are then exchanged with neighbouring agents in the GAT

layer. As mentioned earlier the feature of each node is the encoded observation of the corresponding
agent. The GAT layer produces updated node representations h

′t
1 , h

′t
2 , ..., h

′t
N which contain the

encoded observation of the agent itself combined with the encoded observations of its neighbours.

Finally, an action layer computes probabilities for each action based on both the encoded observations
produced by the encoder ht

1, h
t
2, ..., h

t
N as well as the updated encoded observations produced by the

GAT layer h
′t
1 , h

′t
2 , ..., h

′t
N . The original encoded observations provided by the encoder are provided

to the action layer in order to allow the agent to be able to navigate in its neighbourhood easily. Using
solely the updated encoded observations leads to situations where agents have difficulty navigating
their neighbourhood when surrounded by many other agents as the updated encoded observation
contains information from different agents combined.

6

0.0 0.2 0.4 0.6 0.8 1.0
Number of Environment Steps 1e6

0

10

20

30

40

50

Av
er

ag
e

Re
wa

rd

Topology
RANGE (OURS)
KNN
FULLY-CONNECTED
IPPO

Figure 2: IPPO vs GAPPO with different communication topologies (range, KNN and fully-
connected) in a 10x10 grid world with 4 agents. The observation range of the agents is always
set to two.

We use parameter-sharing in GAPPO to allow agents to learn a shared encoding of observations
which in turn facilitates learning how to combine exchanged encoded observations.

5 Results and Discussion

In this section, we investigate the performance of Graph-Attention Proximal Policy Optimisation
(GAPPO) on our sequential social dilemma foraging environment. As a baseline, we use Independent
PPO (IPPO), since one of our primary goals is to analyse the impact of communication on the
agents’ learned behaviour. We also perform an in-depth study on how GAPPO is impacted by various
communication topologies and communication ranges, environment sizes and configurations
(Appendix - Section E), as well as how meaningful the resulting attention weights are for each agent
(i.e., can agents’ learn to which messages they should pay more attention to in certain contexts?).

We evaluate the range communication topology of GAPPO in comparison to a K-Nearest-Neighbour
(KNN) [14] based communication and a fully connected communication topology. Several methods
including DIAL [15], TarMAC [10], and SchedNet [19], are built on top of the fully-connected
communication topology, while the KNN-based topology was introduced by DGN [18] as a substitute
(due to implementation constraints) for the range communication topology we use. We provide more
details on the topologies in the Appendix (Section C). We also conduct a scalability analysis in which
we evaluate GAPPO’s performance in varying environment sizes and food densities in the Appendix
(Section E). We repeat each trial five times with a different predetermined random seed to assure
fairness. We use K = 2 for the KNN-based communication topology which means that each agent
always communicates with its two nearest agents.

Impact of Communication. We present the learning curves of IPPO and GAPPO (with various
communication topologies) in Figure 2. Firstly, we can observe that GAPPO outperforms IPPO with
all communication topologies. GAPPO converges faster than IPPO and achieves a higher average
reward, showing that communication enables agents to coordinate and collaborate on gathering
higher-level food items and reaching higher average rewards, despite the mixed-inventive scenario.

Communication Topologies. When comparing the performance of the various communication
topologies, we find that the range communication topology performs better than the others, which
suggests that in the LBF environment, local communication fosters better cooperation than long-
distance communication. Further analysis of the impact of various communication ranges (see
Appendix D) leads us to conclude that the optimal communication range is one that is equal to
the agent’s observation range which in this case is two. Additionally, we observe that the KNN-

7

based topology, which was used by DGN as a substitute for the range communication topology,
performs worse. We propose a dual explanation for why local communication performs better than
long-distance communication in the LBF environment. First, we believe local communication is
favoured due to the messages’ nature. Agents share their local observations which primarily include
information relevant to agents in their vicinity. In scenarios involving long-distance communication,
agents are occasionally unable to pinpoint where in the environment an observation originates from.
Second, the nature of the tasks in the LBF environment, such as picking up food items, strongly
favours local cooperation. Agents cooperate by picking up the same food item from adjacent
locations. With long-distance communication, agents that are far away from each other can influence
one another, but in order to cooperate one of the agents would need to travel a great distance to reach
the other agent. With local communication, we limit communication to nearby agents which are
easily reachable and thus easy to cooperate with.

5.1 Attention Weight Analysis

In addition to the learning curves, we can also observe how the weights of the GAT layer change over
the course of an episode. A GAT layer has the advantage over a straightforward GNN layer in that
agents can learn to focus more on particular agents during communication. The attention weights of
the GAT layer can therefore provide us with useful insights into how agents communicate.

We describe the general behaviour and communication strategies of trained GAPPO agents with the
range communication topology across episodes. We provide a recording of the behaviour across a
whole episode here. At the start of episodes, agents are mostly scattered around the environment,
which makes it difficult for them to communicate with one another and forces them to solely rely on
their own observations. When agents encounter food items without being able to communicate with
other agents they either pick it up if it is a level 1 food item or wait at the food item until another
agent arrives to coordinate in getting the food. Once the agents start exploring the environment and
come across other agents, however, we can start analysing the communication behaviour of agents.
First, we can see that agents tend to give all of their neighbours’ observations equal or nearly equal
weights when they are interacting with other agents who are not observing any food items. This
can be observed by looking at the weights of agent3 in Figure 3. Neither agent3 nor its neighbour,
agent1, can see a food item which leads agent3 to assign almost equal weights to both observations.
This leads to agents mostly exploring the environment by moving in random directions looking for
food items, but often staying close enough to each other in order to be able to communicate once they
locate a food item.

When agents do encounter food items we can see agents start attributing different weights to different
agents. If an agent observes a food item itself it starts assigning more importance to its own local
observation while reducing the attention it gives to the obtained observations of its neighbours, as seen
in Figure 3. Agent0 in this case encounters a food item of level two which it tries to pick up. Even
though agent0 can communicate with other agents such as agent1, we can see that it assigns 89%
of its attention to its own observation. This can lead to groups of agents splitting up once multiple
agents of the group encounter food items. When agents do not encounter food items themselves
but instead one of their neighbours encounters a food item we can see that the observation of that
agent gets significantly more attention and the agent moves towards that agent. In Figure 3, agent1
cannot directly observe any food items due to its observation range of two. However, because it can
communicate with agent0, which is trying to pick up a food item of level two, it assigns 75% of its
attention to the observation of agent0 and starts moving towards agent0 and the food item. Even
when using other communication topologies like the KNN-based and fully-connected topologies,
we observe that agents still learn to prioritise observations which include items of interest like food.
However, they now struggle to consistently move in the right direction as they cannot always pinpoint
the location of the food in the environment, which further reinforces our intuitions.

Based on both the learning curves and attention weights analysis, we can observe that local communi-
cation promotes cooperation in our foraging environment. Firstly, we can observe that agents learn
to stay within each other’s communication range to be able to discover food items more efficiently
which in turn leads to a higher average reward. This is in line with the emergence of group or swarm
foraging in Foraging Theory and has been observed among many animal species, including lions [29]
and ants [5]. Second, we observe that agents learn an explainable communication strategy in which
they prioritise observations of agents that are registering food over others.

8

https://youtu.be/PjarLSBFKMk

Figure 3: Example of 10x10 environment with 4 agents. Agent0 first observes a high-level food item
which leads it to ignore other agents and focus on its own observation. When agent0 communicates
this to agent1, agent1 prioritises the observation of agent0 as it does not see any food item itself
and starts moving towards agent0. On the other hand, agent3 assigns around equal weights to its
own observation and the observation of agent1 as neither of them can see food.

6 Conclusion

In this paper, we analyse the effect of graph-based communication in multi-agent reinforcement
learning social dilemmas. We chose to model animal foraging behaviour as a sequential social
dilemma by extending and modifying the level-based foraging environment, an existing multi-
agent reinforcement learning environment that simulates animal foraging behaviour. We propose
a graph-based communication method, GAPPO (Graph-Attention Proximal Policy Optimisation),
as well as a visualisation method which allows us to gain a deeper knowledge of the learned
communication strategies. Finally, we analysed the effects of various aspects of communication
such as the communication topology and communication range on the performance of the agents.
We conclude that graph-based communication with attention can be a strong cooperative enabler
in temporally and spatially extended social dilemmas. In the case of a foraging environment, local
communication leads to better cooperation than long-distance communication. Finally, we observed
that the learned communication strategy can be explained through a visualisation of the attention
weights of the graph-based communication mechanism.

Future Work

We consider two directions for future work on this topic. First, future research may try to improve the
graph-based communication system. In this work, we only consider a basic permanent communication
policy. Future work may include more intricate communication policies, such as individual and
global communication policies that let agents select which other agents they want to communicate
with. One can also allow agents to share other information in addition to their local observations.
While there exist methods that implement individual and global communication policies, they have
only been analysed in the context of teams of cooperative agents. In social dilemmas, arguably the
hardest class of mixed-motives problems, agents can show much more complex or even manipulative
communication strategies and can be incentivised to withhold information.

Second, future research may aim to increase the environment’s realism. Currently, the environment
incorporates only a few of the fundamental ideas underlying animal foraging theory. Some factors are
not taken into consideration, such as the decreasing marginal benefits of foraging, or the possibility
of an animal dying from starvation or becoming prey itself. We describe reinforcement learning as a
promising model for animal foraging behaviours, but for reinforcement learning to be a viable method
for behavioural ecologists, models will need to be extended to include more ecological factors as
well.

9

Acknowledgments Roxana Rădulescu is supported by the Research Foundation – Flanders (FWO),
grant number 1286223N. Andries Rosseau is supported by funding from the Optimesh ICON project
(grant code VLAFLX7). The resources and services used in this work were provided by the VSC
(Flemish Supercomputer Center), funded by the FWO and the Flemish Government.

References
[1] Agarwal, A., Kumar, S., and Sycara, K. (2019). Learning transferable cooperative behavior in

multi-agent teams. arXiv preprint arXiv:1906.01202.

[2] Albrecht, S. V. and Ramamoorthy, S. (2015). A game-theoretic model and best-response learning
method for ad hoc coordination in multiagent systems. arXiv preprint arXiv:1506.01170.

[3] Atrazhev, P. and Musilek, P. (2022). Investigating effects of centralized learning decentralized
execution on team coordination in the level based foraging environment as a sequential social
dilemma. In Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Sys-
tems Simulation. The PAAMS Collection: 20th International Conference, PAAMS 2022, L’Aquila,
Italy, July 13–15, 2022, Proceedings, pages 15–23. Springer.

[4] Barto, A. G., Sutton, R. S., and Watkins, C. (1989). Learning and sequential decision making.
University of Massachusetts Amherst, MA.

[5] Beckers, R., Goss, S., Deneubourg, J.-L., and Pasteels, J.-M. (1989). Colony size, communication
and ant foraging strategy. Psyche, 96(3-4):239–256.

[6] Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491.

[7] Charnov, E. and Orians, G. H. (2006). Optimal foraging: some theoretical explorations.

[8] Christianos, F., Schäfer, L., and Albrecht, S. (2020). Shared experience actor-critic for multi-agent
reinforcement learning. Advances in neural information processing systems, 33:10707–10717.

[9] Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R., Leibo, J. Z., Larson, K., and
Graepel, T. (2020). Open problems in cooperative ai. arXiv preprint arXiv:2012.08630.

[10] Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rabbat, M., and Pineau, J. (2019). Tarmac:
Targeted multi-agent communication. In International Conference on Machine Learning, pages
1538–1546. PMLR.

[11] Dawes, R. M. (1980). Social dilemmas. Annual review of psychology, 31(1):169–193.

[12] Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R.,
Abdolmaleki, A., de Las Casas, D., et al. (2022). Magnetic control of tokamak plasmas through
deep reinforcement learning. Nature, 602(7897):414–419.

[13] Emlen, J. M. (1966). The role of time and energy in food preference. The American Naturalist,
100(916):611–617.

[14] Fix, E. (1985). Discriminatory analysis: nonparametric discrimination, consistency properties,
volume 1. USAF school of Aviation Medicine.

[15] Foerster, J., Assael, I. A., De Freitas, N., and Whiteson, S. (2016). Learning to communicate
with deep multi-agent reinforcement learning. Advances in neural information processing systems,
29.

[16] Frankenhuis, W. E., Panchanathan, K., and Barto, A. G. (2019). Enriching behavioral ecology
with reinforcement learning methods. Behavioural Processes, 161:94–100.

[17] Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming for par-
tially observable stochastic games. In Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI’04, pages 709–715. AAAI Press.

[18] Jiang, J., Dun, C., Huang, T., and Lu, Z. (2018). Graph convolutional reinforcement learning.
arXiv preprint arXiv:1810.09202.

[19] Kim, D., Moon, S., Hostallero, D., Kang, W. J., Lee, T., Son, K., and Yi, Y. (2019). Learning to
schedule communication in multi-agent reinforcement learning. arXiv preprint arXiv:1902.01554.

[20] Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., and Graepel, T. (2017). Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037.

10

[21] Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning.
In Machine learning proceedings 1994, pages 157–163. Elsevier.

[22] Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., and Gao, Y. (2020). Multi-agent game abstrac-
tion via graph attention neural network. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7211–7218.

[23] MacArthur, R. H. and Pianka, E. R. (1966). On optimal use of a patchy environment. The
American Naturalist, 100(916):603–609.

[24] Malysheva, A., Kudenko, D., and Shpilman, A. (2019). Magnet: Multi-agent graph network
for deep multi-agent reinforcement learning. In 2019 XVI International Symposium" Problems of
Redundancy in Information and Control Systems"(REDUNDANCY), pages 171–176. IEEE.

[25] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller,
M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

[26] Niu, Y., Paleja, R. R., and Gombolay, M. C. (2021). Multi-agent graph-attention communication
and teaming. In AAMAS, pages 964–973.

[27] Owen, G. (2013). Game theory. Emerald Group Publishing.
[28] Perry, G. and Pianka, E. R. (1997). Animal foraging: past, present and future. Trends in Ecology

& Evolution, 12(9):360–364.
[29] Scheel, D. and Packer, C. (1991). Group hunting behaviour of lions: a search for cooperation.

Animal behaviour, 41(4):697–709.
[30] Schoener, T. W. (1971). Theory of feeding strategies. Annual review of ecology and systematics,

2(1):369–404.
[31] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347.
[32] Sih, A. and Christensen, B. (2001). Optimal diet theory: when does it work, and when and why

does it fail? Animal behaviour, 61(2):379–390.
[33] Skyrms, B. (2001). The stag hunt. In Proceedings and Addresses of the American Philosophical

Association, volume 75, pages 31–41. JSTOR.
[34] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
[35] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017). Graph

attention networks. arXiv preprint arXiv:1710.10903.
[36] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi,

D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–354.

[37] Wiggers, A. J., Oliehoek, F. A., and Roijers, D. M. (2016). Structure in the value function
of two-player zero-sum games of incomplete information. In Proceedings of the Twenty-second
European Conference on Artificial Intelligence, pages 1628–1629. IOS Press.

[38] Wong, A., Bäck, T., Kononova, A. V., and Plaat, A. (2021). Multiagent deep reinforcement
learning: Challenges and directions towards human-like approaches. CoRR, abs/2106.15691.

[39] Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., and Wu, Y. (2022). The surprising
effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information Processing
Systems, 35:24611–24624.

[40] Zhang, K., Yang, Z., and Başar, T. (2021). Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pages
321–384.

11

A Hyperparameters

We used the RLlib Reinforcement Learning library, which allows us to create a flexible and extendable
experimental framework. We include the hyperparameters for both IPPO and GAPPO in Table 1 for
reproducibility. Each experiment was repeated five times using the same hyperparameters with a
different predetermined random seed to assure fairness. Additionally, we provide the codebase with
the configuration files used for each experiment on Github.

Hyperparameter IPPO GAPPO
discount 0.99 0.99

batch size 4000 4000
minibatch size 128 128
num_sgd_iter 30 30

kl_coeff 0.2 0.2
kl_target 0.1 0.1
λ (GAE) 1.0 1.0

optimiser Adam Adam
learning rate 5e− 05 5e− 05

Number of layers in encoder 1 1
Hidden units of encoder layers 128 128

Encoder activation function ReLU ReLU
Number of GAT layers / 1

Hidden units of GAT layer / 128
GAT activation function / ReLU

Number of heads in GAT layer / 2
Table 1: Hyperparameters during training.

B Foraging Environment

In this section, we provide a thorough overview of the observation space, action space, and reward
structure of the foraging environment and compare it to the original LBF environment.

B.1 Observation Space

The LBF environment provides both full and partial observability. Original studies on the LBF
environment were primarily conducted under the assumption that the environment was completely
observable [8]. Instead, we focus on the partially observable variant. We use our Graph-Attention
Proximal Policy Optimisation (GAPPO) method to allow the agents to exchange their partial observa-
tions in order to obtain a better global view of the environment, which is one of the ways to address
the challenge of partial observability [38].

The LBF environment provides two types of observations: triplet observations and grid observations.
Consider the environment in Figure 4 which we will use to describe the two types of observations.

When using triplet observations, the observation of each agent consists of a fixed-size array of size
3×(N+M) with N being the number of agents and M the amount of food. The first 3×M cells are
used to store x-, y-, and levels of food items. The remaining cells are used to store x-, y-, and levels
of agents, with the first three cells always being reserved for the agent of whom we are analysing
the observation. Figure 5 provides the triplet observation of agent0 in the example environment of
Figure 4.

The second type of observation is grid observation. When using grid observations each agent receives
a layered (2 ∗ observation_range+ 1)× (2 ∗ observation_range+ 1)× 3 grid observation. This
is because we allow the agent to see observation_range grid cells in each direction and provide 3
layers. The three layers are a food layer, where only food items are shown, an agents layer, where
only agent IDs are shown, and finally, a wall layer where accessible cells are indicated. Figure 6
provides the grid observation of agent0 in the example environment of Figure 4.

12

https://github.com/gappo-ssd/gappo-ssd

Figure 4: Example 10x10 LBF environment with 2 agents and 2 low-level food items.

Figure 5: Example of the triplet observation of agent0. The first six cells are used to store the x- and
y-coordinates of the two food items as well as their level. When a food item is outside of the agent’s
observation range it is indicated by -1 x- and y-coordinates. The next 3 cells are used for agent0’s
own x-coordinate, y-coordinate, and ID. The remaining cells are used to indicate the positions and
IDs of the other agents in the environment. Agents that are outside of the agent’s observation range
are also indicated by -1 x- and y-coordinates.

Figure 6: Example of the grid observation of agent0. The observation consists of 3 layers stacked
on top of each other. The agent is always in the centre of the (2 ∗ observationrange + 1) × (2 ∗
observationrange+1) grid. The first layer only contains food item levels if a food item is present in
that cell. The second layer only contains agent IDs at the agents’ positions. The third layer indicates
cells that agents can move to. Cells that are outside the grid are not accessible. Similarly, cells which
contain a food item or another agent are not accessible.

13

In this work, we focus exclusively on grid observations.

B.2 Action Space

Each agent has a choice of six different actions during each time step, including moving in any of the
four directions (North, East, South, or West), doing nothing, or attempting to load/capture a nearby
food item (there is one action for capturing, no matter which direction you come from).

We start with the ’load’ action, which allows agents to pick up food items. Any of the four adjacent
locations is available for agents to pick up food items. Agents are only rewarded when the food
item is successfully loaded while they are picking it up. When multiple agents are picking up the
same food item at the same time, the total reward of the food item is split equally among the agents,
whereas in the original LBF environment, all agents obtain the full reward associated with a food
item.

In addition to the ’load’ action, agents can also use one of the 4 moving actions to move to an adjacent
grid cell, or remain still. As long as the cell is still in the grid and free, agents are free to move to any
of the four cells that are close by. A location is considered free if it is within the grid and is free of
another agent or any food. The free cells are provided to the agent in the grid observation, as can be
seen in Figure 6.

As all agents move simultaneously and treat one another as being part of the environment, one issue
with the moving actions is that agents may attempt to move into the same free cell. We prevent these
collisions by cancelling both agents’ actions, causing the two agents to remain in the same position
for the following time step. Consider the example environment in Figure 4. If agent0 decides to
move right and agent1 decides to move up they are both moving to the same cell, which leads to
a collision. In order to avoid this collision we cancel the actions of both agents. Both agent0 and
agent1, therefore, keep their current positions. Due to the cancellation of movements in the case of
collisions, agents can sometimes find themselves in a deadlock situation where they are blocking each
other in successive time steps because they have no way of knowing what actions other agents chose
in the previous time step or what they intend to carry out in this time step. However, this phenomenon
usually becomes much less frequent as training progresses.

B.3 Reward Structure

Instead of a reward being shared globally among all agents or a team of agents, each agent receives
their own reward. Agents only receive positive rewards when they pick up food; all other rewards
are negative. When a food item is picked up, the agents that took part in collecting it are rewarded.
Every food level has a reward attached to it that corresponds to the amount of energy it produces
when consumed. Higher-level food types that require the coordination of multiple agents produce a
higher reward than lower-level food types that can be picked up by a single agent. When a group
of agents picks up a food item, the reward associated with that food item is divided equally among
the number of agents that participated in the pickup. In the case of level one food that can be picked
up by a single agent, an agent is rewarded more if it consumes the food item on its own than if it
shares it with other agents. Therefore, the agents must cooperate in order to pick up higher-level food,
which can only be picked up by groups of agents, while they compete for lower-level food.

Agents in our environment consume energy while looking for food, in a manner similar to the
principle of Optimal Foraging Theory. We model this by giving each agent a penalty of -0.01 in each
time step. By incurring a -0.01 penalty for each time step spent waiting for another agent to assist
in picking up the food, as opposed to continuously searching for level one food that can be picked
up by a single agent, this penalty makes opting for a higher level food item a more costly option.
Another cost comes simply from waiting, and therefore not being able to eat lower level foods in the
meantime, thereby missing out on rewards as well. The amount of food is constrained in the original
LBF environment because food does not re-spawn, which means that a waiting agent will eventually
receive assistance from the other agents when low-level food has been depleted. However, in our
variation, the other agents can decide to pursue other food items instead of helping the waiting agent,
which makes the environment more like a stag-hunt setting.

14

C Analysing the Communication Topology

In Section 5 we present the learning curves of IPPO and GAPPO with various communication
topologies. In Figure 7 we present the used topologies through an example.

Figure 7: Example of different communication topologies in GAPPO.

We consider three types of communication topologies. The range-based topology connects all agents
within a certain observation range of each other, in this case, two (meaning 5 x 5 grid cells). It
is possible for agents to not communicate with any other agent when they are isolated, such as
Agent1 in Figure 7. In the KNN-based topology, each agent is allowed to send its observations
to the closest K agents. While the range-based communication topology is symmetrical, agents
can always communicate in both directions; this is not the case for the KNN-based communication
topology. Agent1 for example sends its observations to Agent3 as it is one of its closest agents, but
Agent3 sends its observations to Agent1 and Agent2 instead. The final communication topology
is the fully-connected communication topology. Under this communication topology, all agents
communicate with one another.

D Analysing the Communication Range

0.0 0.2 0.4 0.6 0.8 1.0
Number of Environment Steps 1e6

0

10

20

30

40

50

Av
er

ag
e

Re
wa

rd

Algorithm
GAPPO_2 (OURS)
GAPPO_4
GAPPO_6
GAPPO_8
GAPPO_10
IPPO

Figure 8: IPPO vs GAPPO with different communication ranges in a 10x10 LBF grid world with 4
agents. All agents have a observation range of two.

We present the learning curves for IPPO and GAPPO with different communication topologies in
Section 5. We mention that the best-performing GAPPO communication topology is the range-based
topology with a communication range of two, which is equal to the observation range of the agents.

15

This was concluded from an experiment where we investigated the effect of different communication
ranges. We present the learning curves of this analysis in Figure 8.

We can observe in Figure 8 that GAPPO with a range of two outperforms other larger communication
ranges. We believe that the reasons for this phenomenon are the same as the ones explained in Section
5 for the poor performance of the KNN-based and fully-connected topologies.

E Scalability Analysis

We examine how GAPPO performs in various environmental conditions. We compare GAPPO and
IPPO in a selection of food densities and environment sizes.

We consider two environments, a small environment of size 10 × 10 and a large environment of
size 20× 20. In both environments, we consider low and high-food density variants. For the small
environment, we introduce 8 food items (four of level 1 and four of level 2) in the high-food density
setting and 4 food items (two of level 1 and two of level 2) in the low-density food setting. In the
large environment, we define 16 food items (eight of level 1 and eight of level 2) in the high-food
density setting and 8 food items (four of level 1 and four of level 2) in the low-food density setting.
In all environmental conditions, we maintain a fixed number of four agents. We present the learning
curves of GAPPO and IPPO in the different environmental conditions in Figures 9 and 10.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Environment Steps 1e6

0

10

20

30

40

50

Av
er

ag
e

Re
wa

rd

Topology
GAPPO (OURS)
IPPO

(a) Small environment with low food density

0.0 0.2 0.4 0.6 0.8 1.0
Number of Environment Steps 1e6

0

10

20

30

40

50

60

Av
er

ag
e

Re
wa

rd

Topology
GAPPO (OURS)
IPPO

(b) Small environment with high food density

Figure 9: Learning curves of IPPO and GAPPO under varying environmental conditions (small
environment 10x10).

16

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Environment Steps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Re
wa

rd

Topology
GAPPO (OURS)
IPPO

(a) Large environment with low food density

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Environment Steps 1e6

0

5

10

15

20

25

30

Av
er

ag
e

Re
wa

rd

Topology
GAPPO (OURS)
IPPO

(b) Large environment with high food density

Figure 10: Learning curves of IPPO and GAPPO under varying environmental conditions (large
environment 20x20).

We can see that the results are scale-invariant across the different environment sizes and food densities.
We observe that GAPPO outperforms IPPO in all settings by achieving a higher average reward
and converging faster. Additionally, we observe that in the smaller environment, GAPPO performs
better in an environment with low food density, requiring more cooperation between the agents to
reliably obtain rewards. However, in a larger environment, IPPO and GAPPO appear to receive
significantly fewer rewards than their counterpart with a high food density, which is not the case in a
smaller environment where both settings lead to similar average rewards. We conclude that the sparse
distribution of food and agents in the big environment makes it harder for agents to learn to cooperate
together.

17

	Introduction
	Related Work
	Preliminaries
	Partially Observable Stochastic Games
	Proximal Policy Optimisation
	Graph Neural Networks
	Graph Attention Networks (GATs)

	Methods
	Model of the Foraging Setting
	Graph-Attention PPO (GAPPO)

	Results and Discussion
	Attention Weight Analysis

	Conclusion
	Hyperparameters
	Foraging Environment
	Observation Space
	Action Space
	Reward Structure

	Analysing the Communication Topology
	Analysing the Communication Range
	Scalability Analysis

