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Abstract

Large Language Model (LLM)-based search agents have shown remarkable ca-
pabilities in solving complex tasks by dynamically decomposing problems and
addressing them through interleaved reasoning and retrieval. However, this in-
terleaved paradigm introduces substantial efficiency bottlenecks. First, we ob-
serve that both highly accurate and overly approximate retrieval methods de-
grade system efficiency: exact search incurs significant retrieval overhead, while
coarse retrieval requires additional reasoning steps during generation. Second,
we identify inefficiencies in system design, including improper scheduling and
frequent retrieval-induced stalls, which lead to cascading latency—where even
minor delays in retrieval amplify end-to-end inference time. To address these
challenges, we introduce SearchAgent-X, a high-efficiency inference framework
for LLM-based search agents. SearchAgent-X leverages high-recall approxi-
mate retrieval and incorporates two key techniques: priority-aware scheduling
and non-stall retrieval. Extensive experiments demonstrate that SearchAgent-X
consistently outperforms state-of-the-art systems such as vLLM and HNSW-based
retrieval across diverse tasks, achieving up to 3.4x higher throughput and 5Xx
lower latency, without compromising generation quality. Code is available at
https://github.com/tiannuo-yang/SearchAgent-X.

1 Introduction

Traditional Retrieval-Augmented Generation (RAG) typically uses a sequential retrieve-then-generate
approach [4, 6, 9, 12, 33, 38, 40, 41], which limits dynamic interaction with knowledge bases. Recent
advancements have ushered in RAG 2.0, known as Search Agents [32, 30, 20, 14, 2, 31, 34, 26].
This paradigm leverages the strong reasoning capabilities of Large Language Models (LLMs),
allowing for the dynamic and adaptive interleaving of reasoning steps with retrieval calls throughout
the generation process. Instead of a fixed pipeline, search agents can decide when and what to
retrieve based on LLM’s ongoing reasoning, leading to significant improvements in the quality and
depth of the generated responses. Leveraging post-training techniques similar to DeepSeek-R1,
some pioneering models can even autonomously initiate retrieval actions during reasoning without
intermediate supervision [14, 2, 31].

However, the improved generation quality achieved by search agents often comes at the cost of effi-
ciency—an overhead that is nontrivial in practical deployments. In reasoning-with-search scenarios,
achieving low-latency responses is critical for ensuring a seamless user experience [27, 15]. Moreover,
during post-training of LLM-based search agents, efficient model rollouts over large-scale training cor-
pora are essential to support scalable learning. While recent systems incorporate advanced inference
optimizations—such as sequence concatenation [14, 2, 31] and prefix caching [15, 18, 42]—these
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techniques are not specifically designed to address the unique computational challenges posed by the
tight interleaving of multi-step reasoning and dynamic retrieval.

To this end, we first conduct a systematic analysis of the efficiency factors governing LLM-based
search agents, uncovering insights that diverge from the understanding of naive RAG. Our in-
depth analysis reveals two key observations: First, we demonstrate a non-monotonic relationship
between retrieval accuracy and end-to-end efficiency. Both excessively high (e.g., exact search) and
excessively low retrieval recall degrade overall efficiency. While aiming for perfect recall incurs
unnecessary computational overhead in the retrieval phase, low recall necessitates more retrieval
iterations and longer reasoning paths by the LLM to compensate (as shown in Figure 1). This
highlights that search agent systems benefit from high-recall approximate search that effectively
supports reasoning without unnecessary retrieval costs. Second, we find that search agent systems
are highly sensitive to retrieval latency. Unlike naive RAG where retrieval is largely amortized, even
minor increases in retrieval time in the search agent system can cause a disproportionately large
increase in end-to-end latency (Figure 2a). We attribute this magnification effect to two primary
root causes: improper scheduling, where standard policies like FCFS fail to prioritize requests that
would benefit most from KV-cache reuse (Figure 2b), and retrieval-induced stalls, where timing
misalignments between asynchronous retrieval and token generation force requests to wait, leading to
unnecessary recomputation (Figure 2c).

Motivated by these findings, we propose SearchAgent-X, an inference system dedicated for efficient
search agents. SearchAgent-X is designed to optimize end-to-end system throughput and latency
by smoothly coordinating the interleaving of self-reasoning and retrieval. Since both overly low and
high retrieval efforts lead to degraded efficiency, SearchAgent-X chooses to build upon a high-recall
approximate retrieval method. To tackle the problem of improper scheduling, SearchAgent-X
schedules requests with priority awareness through their real-time status to enhance KV-cache
utilization. Moreover, in order to overcome frequent retrieval-induced stalls, SearchAgent-X
proposes a non-stall retrieval mechanism through an adaptive strategy that allows generation to
proceed without unnecessary waiting while ensuring sufficient retrieval quality.

Our extensive experiments demonstrate that SearchAgent-X consistently and significantly outper-
forms state-of-the-art baseline systems across various operational settings. In both offline and online
inference scenarios, SearchAgent-X achieves substantial improvements in system performance (e.g.,
1.3-3.4x higher throughput) by improving LLM KV-cache utilization (from 0.07 to 0.65), all while
maintaining the high generation quality characteristic of search agents with exact retrieval.

2 Background and Motivation

2.1 Preliminary: LLM-based Search Agent Systems

LLM-based search agent systems are designed to tackle complex requests by decomposing problems
into a series of interleaved, multi-turn reasoning and information retrieval steps. This allows the LLM
to adaptively seek and integrate external knowledge throughout its reasoning process. Appendix A
shows an example of the process of a LLM-based search agent.

Supporting Multi-Turn Reasoning. Search agent systems often build on LLM inference frameworks
like VLLM [14]. They use Sequence Concatenation for dynamic retrieval: during inference, the
system monitors model output for retrieval signals. Upon such a signal, LLM decoding pauses, a
query is issued, and retrieved results are concatenated with previously generated tokens to form a
new, extended Sequence. This is then re-injected into the LLM to resume reasoning.

To enhance efficiency, Prefix Cache is commonly leveraged [15, 42]. This technique stores key-value
(KV) pairs from the LLM’s attention mechanism for prior tokens, allowing efficient reuse in subse-
quent generations. This is particularly advantageous in search agents, as the concatenated sequence’s
prefix, excluding newly retrieved tokens, overlaps with the previous generation. Furthermore, shared
system prompts across search agent requests can be cached and reused. In our evaluation, enabling
prefix caching saved over 24% of token recomputation costs.

Sequence Scheduling. Efficient scheduling is vital for high throughput. Modern LLM inference
frameworks utilize Iteration-Level Scheduling, where GPU scheduling decisions occur at the granu-
larity of the single token generation step [18, 42]. Compared to sequence-level scheduling [24, 25],
iteration-level scheduling avoids waiting for all sequences in a batch to complete, thus preventing



bubble problems and becoming a leading solution. Frameworks like vLLM typically employ a
First-Come-First-Serve (FCFS) scheduling policy.

Retrieval Mechanism. On the retrieval side, semantic search techniques efficiently locate relevant
external knowledge. Queries are usually encoded into dense vector representations for searching
in vector space. The two primary approaches are exact nearest neighbor (ENN) search [3] and
approximate nearest neighbor (ANN) search [22, 8]. Graph-based ANN methods like HNSW [22]
offer a favorable speed/accuracy trade-off, making them suitable for large knowledge bases.

2.2 Key Insights: Factors Governing Efficiency

Despite significant progress in high-performance LLM inference and retrieval, the LLM-based search
agent’s efficiency remains poorly understood. In this section, we analyze the influence of two key
factors: 1) retrieval accuracy and 2) retrieval latency, and examine how they contribute to severe
inefficiencies in current solutions. For retrieval, we assume a local search with a fixed dense encoder.

2.2.1 Impact of Retrieval Accuracy

Insight 1:  Both overly high and overly low retrieval recall degrade end-to-end efficiency. High
recall increases retrieval overhead, while low recall leads to longer reasoning steps.

We first investigate the impact of different re-
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While average retrieval counts decrease slightly, throughput declines due to the higher cost of very
high-recall ANN searches. This suggests that simply maximizing retrieval recall is not the optimal
strategy for search agent efficiency. Once retrieval quality sufficiently supports reasoning, additional
search efforts offer marginal benefits and can even harm overall efficiency.

2.2.2 Impact of Retrieval Latency

Insight 2:  Compared to naive RAG, search agents are much more sensitive to retrieval latency due
to ignoring inter-request priorities and retrieval-induced stalls.

For naive RAG, all requests are retrieved before generation. Retrieval latency (millisecond level) is
negligible compared to the total request latency (second level), so it is insensitive to retrieval latency.
However, for search agents, retrieval occurs during self-reasoning, where the time scale of a single
token generation and retrieval latency are comparable. Minor retrieval latency can cause requests to
be inserted into different token generation iterations, leading to different system behaviors.
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Figure 2: Impact of Retrieval Latency on Search Agent Efficiency. (a) Search agents exhibit
significantly higher retrieval latency sensitivity than naive RAG (up to 83 x magnification), linked to
lower prefix KV-cache hit rates. (b, ¢) Root causes include: (b) improper scheduling, where serving
shorter requests first evicts cache for longer ones, causing recomputation; and (c) retrieval-induced
stalls, where requests missing a scheduling point must wait, risking cache eviction.

Figure 2 shows the average end-to-end latency of search agents and RAG under different retrieval
latency (controlled by different search ranges), with a request rate of 5 requests/second and a test
duration of 10 minutes. For fair comparison, we assume RAG generates the same length of tokens
with search agent, and its end-to-end latency te2¢ is calculated as tSQe + tret - Topet, With tﬁze as the
token generation time without retrieval, #,..; as the average retrieval time, and 71,..; as the average
retrieval counts per request. The results indicate that search agents suffer from drastic efficiency
degradation under even minor retrieval delays. As average retrieval latency increases from 0.6s to
4.4s, the end-to-end latency of the search agent is magnified by over 83 x, while RAG remains largely
stable. This severe magnification in search agent is strongly correlated with a sharp decrease in the
prefix KV-cache hit rate, dropping from over 30% to under 21%, which forces frequent and costly
KV recomputations (Figure 2a).

We identify two root causes for this observed behavior, both contributing to unnecessary KV recom-
putation, particularly for longer, multi-turn requests: improper scheduling and retrieval-induced
stalls. Figure 2b illustrates the issue of improper scheduling. Consider request #a, which involves
a longer reasoning path with 6 retrievals, and request #b, which just completes a single retrieval.
Even if request #a arrives first, if its retrieval completes slightly later than that of #b (¢ > t1), a
standard FCFS scheduler may choose to serve #b first in the next iteration. As #b proceeds with
its generation, it occupies valuable KV-cache space, potentially leading to the eviction of the prefix
KV-cache belonging to #a. When request #a eventually resumes, it encounters a cache miss and
must recompute its entire prefix from scratch, significantly increasing its latency. Our measurements
highlight the high cost of such improper scheduling: 55.9% of tokens were unnecessarily recomputed
in affected cases, leading to more than a 108% increase in computation time per request.

Even with improved scheduling, another significant inefficiency risk comes from reasoning stalls,
depicted in Figure 2c. The asynchronous execution of retrieval and generation can lead to subtle
timing misalignments. If a long request like #a completes its retrieval only slightly after the deadline
for inclusion in the next generation step, it misses the current scheduling batch and is forced to wait
until the subsequent one. We term this unproductive waiting period "retrieval-induced stalls." During
this stall, shorter requests (e.g., #b) that are ready can continue executing. Their execution may
further displace #a’s prefix from the KV-cache, once again resulting in costly recomputation upon
#a’s eventual resumption. Our data shows that, on average, more than 25% of sequences experience
such stalls after completing their retrieval across various scenarios.
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Figure 3: SearchAgent-X’s Architecture. Requests are scheduled with priorities. Reasoning and
retrieval are interleaved, with a non-stall retrieval mechanism to avoid unnecessary waiting.

Limitations of Existing Solutions. Our analysis highlights key limitations in current search agent
systems. ENN retrieval, despite full recall, incurs prohibitive retrieval overhead. While high-recall
ANN search is more suitable, it suffers from retrieval-induced stalls due to asynchronous execution.
Furthermore, prevalent FCFS scheduling in LLM inference frameworks [18, 1] disregards the search
agent’s unique request priorities, leading to suboptimal cache utilization and costly recomputation.

3 Design of SearchAgent-X

3.1 Overall Architecture

Drawing upon the above insights, we propose SearchAgent-X, a simple yet efficient inference
system that is easy to deploy, explicitly designed to optimize end-to-end efficiency for search agent
workloads by smoothly interleaving self-reasoning and retrieval. Figure 3 shows SearchAgent-X’s
architecture, a tightly integrated system processing search agent requests at the token generation
level. At each LLM output step, the system checks for special tags that trigger the Retriever for an
ANN-based search (e.g., <search>) or request completion (e.g., <answer>), respectively.

To optimize GPU resource usage, SearchAgent-X incorporates a priority scheduler. It dynamically
prioritizes concurrent requests using real-time collected metrics like retrieval count and waiting time,
aiming to enhance KV-cache reuse by processing higher-priority requests first. During prefill, prefix
matching reuses existing KV pairs from cache, significantly reducing computational overhead; new
KV states are computed if caching is inapplicable or a miss occurs. Retrieval and generation operate
asynchronously to enhance throughput. When retrieval is triggered, the system queries a pre-built
ANN graph index. To proactively avoid retrieval-induced stalls, SearchAgent-X employs non-stall
retrieval with adaptive search termination, allowing generation to proceed without unnecessary
waiting while ensuring sufficient retrieval quality.

3.2 Priority Scheduling

SearchAgent-X employs a priority-based scheduling mechanism to efficiently and fairly manage
concurrent generation requests. As introduced earlier, each search agent request ¢ involves a list
of generation sequences [s; o, S;.1, - - -, Si,r, ], Where s; o is the initial sequence and s; ; (j > 0)
represents a sequence resumed after the j-th retrieval. Let r; denote the current number of retrievals
performed for request 7, and s; ., be the sequence currently being processed.

As discussed earlier, requests that have undergone more retrieval steps (i.e., higher r;) benefit more
significantly from prefix cache reuse due to longer shared prefixes. Prioritizing such requests can
therefore enhance overall cache efficiency and reduce redundant computation. However, scheduling
solely based on retrieval count risks starving requests with fewer or no retrievals, leading to increased
end-to-end latency and reduced fairness.



To mitigate these issues, SearchAgent-X utilizes a hierarchical scheduler that dynamically prioritizes
requests based on a combination of three key metrics associated with request : (1) the number of
retrievals completed R; = 7;; (2) the context length of the current sequence C; = Lgq,;; and (3)
the waiting time of the initial request W; = tnow — tar ;- The first two metrics implicitly prioritize
sequences with longer reusable prefixes, while the last ensures fairness by giving preference to
requests that have been waiting longer overall.

Instead of combining these diverse metrics into a single weighted score, which would require tedious
and potentially task-specific tuning of weights, SearchAgent-X discretizes each metric into G
distinct priority levels. For a given metric M € {R, W, C'}, the threshold defining the lower bound
for level k is calculated as:

Ty = min(M) + g -(max(M) —min(M)), 0<k<G (1)

A request ¢ is then assigned to the highest priority level k for which at least one of its metric values
(R;, W;, C;) exceeds the corresponding threshold T’y j:

k = max {j S [O,G*l] | R; > TRJ‘ v W; > TWJ' \Y Cl > Tc_’j} )

Requests that do not meet any threshold are assigned to the base level 0.

Within each assigned priority level, active sequences are further sorted according to their current

queueing time, defined as W™ = t,0 — tz(‘;’z where tg:rlz is the time when the sequence s; .,
becomes ready for processing (e.g., after retrieval completes). Sorting by W in descending order
ensures that among requests of similar priority level, those that have been waiting longest for their

current step are processed first, mitigating the risk of KV-cache eviction during extended waits.

Finally, SearchAgent-X determines the execution order by traversing the priority levels from highest
to lowest and processing the sequences within each level based on their sorted W ™.

3.3 Non-Stall Retrieval

To mitigate inefficiencies from retrieval latency and prevent retrieval-induced stalls (Section 2.2.2),
SearchAgent-X incorporates a flexible, non-stall early termination strategy for Approximate Nearest
Neighbor (ANN) search. Unlike traditional ANN search that iteratively refines candidates until
meeting pre-set criteria (e.g., explored nodes, list stability) and can thus cause pipeline stalls if
retrieval is slow, SearchAgent-X adaptively concludes the search. This adaptive termination is
based on two key conditions: the maturity of retrieval results and the readiness of the LLM engine,
ensuring generation proceeds without unnecessary blocking.

At the core of this strategy is the concept of a soft limit for the retrieval process. This soft limit repre-
sents a checkpoint where search results are likely to have achieved sufficient quality for the generation
task. SearchAgent-X estimates retrieval maturity by monitoring returns in quality improvement
during the ANN search. While retrieval quality generally improves with more explored neighbors,
we find that the rate of improvement diminishes significantly after a certain point, exhibiting a
"knee" where newly found points contribute less to the overall quality. SearchAgent-X exploits this
observation. A normalized metric RQ; is used to evaluate the quality of newly discovered candidates
at step t, defined as: (d; — dyest)/(dworst — dvest), Where d; is the new candidate’s distance to the
query, while dpey and dyorg are the distances of the best and worst candidates currently in ANN
algorithm’s list. A high RQ, value suggests the new candidate offers little improvement over existing
ones, indicating diminishing returns from further search (see details in Appendix B.2).

The maturity exit criterion is met when this smoothed quality signal (derived from RQ,) indicates
a plateau (i.e., exceeds a threshold 7) and the LLM engine is ready for its next token generation
operation. Upon meeting both conditions, SearchAgent-X halts the retrieval and provides the current,
sufficiently mature results to the LLM; otherwise, retrievals stop naturally. This adaptive alignment of
asynchronous retrieval and generation significantly reduces end-to-end latency without compromising
the quality of the retrieved context, contrasting with traditional fixed stopping criteria that may not
optimally synchronize with the dynamic state of the generation pipeline. SearchAgent-X’s complete
execution process and implementation details can be found in Appendix B.
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4 Evaluation

4.1 Experimental Setup

Models and Datasets. We evaluate our method on two different search agent models from Search-R1
[14] and ReCall [2]. For retrieval, we adopt a chunked Wikipedia dataset as the knowledge base,
using an ANN index constructed with HNSWIib [21]. Note that our approach is model-agnostic and
readily generalizes to other reasoning models/ANN methods.

Testbed. For the 7B model, we use a single NVIDIA L.20 GPU with 48GB memory. For the 14B
model, we use two A100 GPUs with 40GB memory each, connected via PCle 3.0. The retrieval
system runs on 22 CPU cores with 120GB of RAM.

Baselines. We compare the performance of four methods: 1) vLLM_ENN: the vanilla vLLM with exact
retrieval. 2) vLLM_ANN: vanilla vLLM system [18] with approximate retrieval. 3) CachevLLM_ANN:
vanilla vVLLM with approximate retrieval and prefix cache. 4) SearchAgent-X: our proposed system.
Refer to Appendix B.3 for detailed setup.

4.2 End-To-End Performance

We first evaluate the end-to-end performance of different methods. For efficiency measurement, we
use Musique [16] and HotpotQA [36], two datasets of complex multi-hop queries. Two scenarios are
tested: (1) offline inference, where all requests arrive at the start; and (2) online inference, where
requests arrive at a fixed rate. In the offline setting, we process 1000 requests and measure efficiency
upon completion. In the online setting, requests arrive at rates from 1 to 6 over a 10-minute window.
Results for the 7B model are shown in Figures 4 and 5; full results across all metrics and models are
in Appendix C.1 and C.2.

In offline scenarios, SearchAgent-X consistently outperforms all baselines in terms of system
throughput and per-request latency. As shown in Figure 4, SearchAgent-X achieves 1.3-3.4x
higher throughput and only 0.2-0.6x the latency compared to the baselines across different top-k
values. Even in the most challenging case of top-k=5, SearchAgent-X still beats the best baseline
CachevLLM_ANN, with a significant margin (1.5 % in throughput and 0.6 in latency). We attribute
this improvement to the SearchAgent-X’s high-recall ANN, and the design of efficient scheduling



Table 1: Generation Quality of SearchAgent-X and Exact Retrieval.

Dataset Musique  NQ  2Wiki HotpotQA Bamboogle StrategyQA  Avg.
Generation Accuracy
Exact Retrieval 0.203 0316 0.371 0.429 0.472 0.788 0.430
SearchAgent-X 0203  0.320 0.370 0.428 0.472 0.789 0.430

and non-stall retrieval mechanisms. vLLM_ENN performs poorly in this scenario, as it incurs excessive
retrieval overhead and hinders end-to-end reasoning efficiency. vLLM_ANN employs a high-recall
ANN and performs obviously better than vLLM_ENN, but it still suffers from the inefficiencies of
large amounts of recomputation due to the lack of prefix cache. CachevLLM_ANN uses prefix cache
to reduce recomputation, but it still fails to wisely manage the scheduling of requests and avoid
retrieval-induced stalls, leading to a significant performance gap compared to SearchAgent-X.

We also find that the performance of all methods first increases then decreases with the increase
of top-k values. This aligns well with our previous observation that both overly high and overly
low retrieval quality degrade end-to-end efficiency. When the top-k value is too small, the model
may fail to retrieve useful documents, leading to longer reasoning sequences and lower throughput.
Conversely, when the top-k value is too large, the concatenated sequence becomes too long, resulting
in longer prefill time. However, we note that SearchAgent-X consistently outperforms all baselines
across all top-k values, indicating its robustness to different retrieval settings.

In online scenarios, SearchAgent -X utilizes computing resources more efficiently than baselines,
completing more requests in the same amount of time. As shown in Figure 5, SearchAgent-X
completes at least 1.5, and up to 3.5x more requests on average than the baseline, within the
request rate range of 1 to 6. We also observe that the advantage of SearchAgent-X over the
baselines increases with the request rate. For example, at a request rate of 6, SearchAgent-X
achieves 5.8 x more requests than vLLM_ENN, and 1.9x more than the most competitive baseline
CachevLLM_ANN. This is because high request rates mean more contention for GPU resources across
requests, while SearchAgent-X’s priority scheduling and non-stall retrieval significantly improve
KV-cache utilization and reduce recomputation, thus mitigating resource contention. Besides, we
observe that the latency of methods with prefix cache (CachevLLM_ANN and SearchAgent-X) is
obviously lower than vLLM_ENN and vLLM_ANN, indicating prefix cache’s benefit of reducing prefill
time. CachevLLM_ANN incurs similar latency as SearchAgent-X, because it only consumes half
of the requests as SearchAgent-X. Further, we record the pending sequence ratio that measures
the resource utility of the system, defined as the percentage of sequences that are initiated but not
completed within the test period. As shown in Figure 5 (right), SearchAgent-X achieves stable,
small pending sequence ratios (about 0.2), while the baselines experiences dramatic increases with
higher request rates (more than 0.6), indicating the effectiveness of SearchAgent-X’s scheduling.

SearchAgent-X achieves comparable generation quality to exact retrieval. We evaluate the
generation quality of SearchAgent-X and exact retrieval (vLLM_ENN) on six representative datasets.
We use the Exact Match metric as generation accuracy to measure the correctness of the generated
answers [16]. As shown in Table 1, SearchAgent-X achieves similar generation accuracy, retrieval
counts and output length (see Appendix C.2 for details) as exact retrieval across all datasets, indicating
that it does not compromise generation quality for efficiency. Another interesting finding is that
SearchAgent-X may even achieve higher generation accuracy on some datasets, such as NQ (0.320
vs. 0.316). The results could be attributed to two aspects. First, full ANN recall does not necessarily
mean optimal generation accuracy; the correct answer document may not always be captured by
semantic similarity. Second, the search agent model has the adaptability to adjust the reasoning
length. ANN might lead search agents to perform an extra reasoning step (e.g., 2.292 vs. 2.288 for
NQ), adjusting the retrieval query, which in turn improves generation accuracy.

4.3 Ablation Study

The priority scheduling and non-stall retrieval of SearchAgent-X help improve the prefix cache
utility, thus enhancing end-to-end efficiency. Figure 6 (left) shows the end-to-end performance
of different techniques for offline inference with top-k = 5. We have several observations. First,
the advantages of prefix cache are diminished in this challenging scenario. With top-k=5, it’s only
1.01x that of vLLM_ANN, compared to 1.91x with top-k=1. This validates that the benefits of prefix
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cache still require appropriate scheduling and retrieval methods to unleash its potential. Second,
SearchAgent-X’s priority scheduling reduces the end-to-end latency by 35.55% based on prefix
cache. This is because the priority of requests is properly managed, maximizing the utilization of
GPU resources. In addition, the prefix cache hit rate increases from 0.07 to 0.51, verifying the
effectiveness of the technique. Third, SearchAgent-X’s non-stall retrieval further improves the hit
rate to 0.65, leading to a further 6.3% reduction in latency. This shows that the adaptive termination
strategy fully utilizes the "free lunch" of asynchronous execution, timely recalling mature retrieval
results, thereby improving system processing efficiency.

Figure 6 (right) further demonstrates the per-sequence generation time of different parts. We have
more observations. First, for vVLLM_ENN, the retrieval time is the largest component, accounting for
over 60% of the total time. Instead, its prefill time is the lowest across different techniques, since its
reasoning requires waiting for long-time retrieval, thus reducing the pressure on token generation.
Second, for priority scheduling, we note that it reduces not only the prefill time (due to more prefix
cache utilized), but also the decode time, showing a better system processing capability. This is
because by improving KV-cache utilization, it avoids recomputation of long requests, freeing up
GPU space earlier for better decode parallelism. Third, non-stall retrieval actually only reduces 0.01s
of retrieval time (from 0.16s to 0.15s), with about 24% of the retrievals being early terminated, but
significantly reduces the end-to-end latency (41s). This aligns well with our previous observation that
minor retrieval latency can cause drastic efficiency degradation (as shown in Figure 2). Non-stall
retrieval adaptively terminates only a small set of retrievals when necessary, yet yields the significant
benefit of better cache utilization. More experiments can be found in Appendix C.3 to C.7.

5 Related Work

Prior work on end-to-end RAG efficiency—spanning caching [15, 37], pipelining [13, 39], and
hyperparameter tuning [27, 5]—primarily targets the traditional sequential “retrieve-then-generate”
paradigm. These methods are generally ill-suited for tightly interleaved, multi-turn reasoning and
dynamic retrievals characteristic of search agents. Meanwhile, broader agent workflow optimizations,
such as auto-tuning [10], KV-cache management [1], and partial tool execution [35], improve overall
efficiency but overlook the specific challenges of retrieval accuracy and latency in search agents. In
contrast, SearchAgent-X directly addresses these challenges by tightly coupling priority-scheduled
reasoning with non-stall retrieval, yielding improved efficiency. Notably, our approach is orthogonal
to, and can potentially be combined with, other RAG optimization techniques such as context
compression [29] and retrieval reranking [7].

6 Conclusion

LLM reasoning-driven search agents offer great potential for complex problems, but face severe,
distinct efficiency challenges. This paper highlights the non-trivial impact of retrieval accuracy and
the latency sensitivity caused by scheduling deficiencies and retrieval-induced stalls. Our proposed
system, SearchAgent-X, designed based on these insights, demonstrates substantial improvement
in system efficiency, all while maintaining high generation quality. This study provides important



insights for practical deployments of high-efficiency LLM-based search agents, and the proposed
solutions are easily adaptable to other ANN retrieval methods and LLM reasoning models.
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Appendix
A An Illustration of LLLM-Based Search Agents

Figure 7 shows an example of a search agent process. Faced with a complex query ("Curious is
a women'’s fragrance by a singer born in what city and state?"), the search agent first engages in
preliminary reasoning ("I need to find out which city and state a singer..."). Recognizing a knowledge
gap regarding the "Curious fragrance," the model proactively decides to initiate a search ("search
Curious fragrance information"). Upon receiving the crucial information ("Curious is a women’s
fragrance by Britney Spears"), the model doesn’t conclude its process. Instead, it integrates this
new knowledge into its subsequent thought process and reasoning. This triggers further searches,
of which the retrieval result is concatenated with previously generated tokens and re-injected into
LLMs. Through this dynamic cycle of "think-search-rethink," the model progressively assembles
the necessary pieces of the knowledge puzzle required to answer the question fully. This culminates
in a high-quality answer that addresses all aspects of the initial query ("McComb, Mississippi").
This ability to autonomously plan retrieval actions and iteratively incorporate new information into
its reasoning process allows the search agent to tackle more complex questions and deliver better
responses, moving beyond reliance solely on pre-trained knowledge or a single retrieval.

<think> | need to find out which
city and state a singer ... </think>
<search> Curious fragrance
information </search>
<information> Curious is a
women's fragrance by Britney
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Figure 7: An illustration of reasoning and search interleaved LLM-based search agents.

B Implementation Details

B.1 SearchAgent-X Execution

This section outlines the high-level execution flow of the SearchAgent-X system, as depicted in
Algorithm 1, complementing the conceptual component descriptions in Section 3 of the main paper.
SearchAgent-X orchestrates LLM inference (with prefix caching, Section 3.1), dynamic high-recall
approximate retrieval, Priority Scheduling (Section 3.2), and Non-Stall Retrieval (Section 3.3) to
achieve efficient search agents. The system initializes an LLM inference engine and manages
incoming requests, active asynchronous search tasks, and their results.

The main execution loop begins by ingesting new user requests into the LLM engine’s pool (line5-7).
Concurrently, if Non-Stall Retrieval is active, SearchAgent-X consults an external signal to identify
and expedite the completion of any ongoing retrieval tasks that have reached sufficient maturity or
for which LLM engine readiness dictates early termination (line 10-11), thus preventing pipeline
stalls. Upon completion of a search (either normally or via early termination), retrieved documents
are concatenated with the original context, and the augmented request is resubmitted to the LLM
engine (line 15-20).

13



The core of the processing loop involves LLM generation and the agentic control flow. Before
each LLM generation step, SearchAgent-X’s Priority Scheduling policy is applied to the queue
of waiting requests, reordering them to optimize system throughput and KV-cache utilization (line
23). Following token generation by the LLM, the output for each active sequence is parsed (line
25-28). If a <search> tag is detected, indicating a need for external knowledge, SearchAgent-X
halts further generation for that sequence and launches an asynchronous high-recall ANN retrieval
task (line 29-34). Conversely, if a <answer> tag is identified or the sequence naturally concludes,
the request is finalized (line 35-38). This iterative and asynchronous process enables the dynamic
interleaving of LLM reasoning, external knowledge retrieval, and intelligent scheduling, which is
fundamental to SearchAgent-X’s efficient handling of complex search agent workloads.

Algorithm 1 SearchAgent-X Main Execution Loop

1: Initialize LLM_Engine, ArrivalQueue, ActiveSearchTasks, FinishedOutputs

2: Configure PriorityScheduling (enabled/type), NonStallRetrieval (enabled)

3: while LLM_Engine has unfinished requests or not ActiveSearchTasks is empty or not Ar-
rivalQueue is empty do

4 // Step 1: 1Ingest new requests

5 for each request R, in ArrivalQueue ready for processing do

6 Add R, to LLM_Engine’s request pool

7: Remove R,.,, from ArrivalQueue

8: end for

9 // Step 2: Non-Stall Retrieval Check (if enabled)
10:  if NonStallRetrieval is enabled and ActiveSearchTasks is not empty and LLM_Engine has

waiting requests then

11: TerminatedSearchIDs <— CheckExternalNonStallSignal()
12: // Queries for searches to terminate early
13:  end if

14: // Step 3: Process completed search tasks
15 for each search task .S; in ActiveSearchTasks that has completed do

16: Ryig, retrieved_docs, search_finish_time < S;.getResult()

17: new_context <— Concatenate(Rorig .context, retrieved_docs)

18: AddResumedRequest(R,,;4, new_context, search_finish_time) to LLM_Engine
19: Remove S; from ActiveSearchTasks

20:  end for

21: // Step 4: LLM Generation Step
22:  if LLM_Engine has unfinished requests then

23: // Section 3.2

24: ApplyPriorityScheduling(LLM_Engine.waiting_requests)

25: LLM_Outputs, Scheduler_Info +— LLM_Engine.step()

26: RecordTokenTimingsAndPrefixCacheStats(Scheduler_Info)

27: for each output O; in LLM_Outputs do

28: current_text <— O;.getGeneratedText()

29: if DetectSearchTag(current_text) then

30: query <+ ExtractSearchQuery(current_text)

31: LLM_Engine.abortRequest(O;.request_id)

32: Shew < LaunchAsyncRetrievalTask(O;.request_id, current_text, query)
33: // High-recall ANN

34: Add S,,.., to ActiveSearchTasks

35: else if DetectAnswerTag(current_text) or O;.isFinished() then
36: Add Oj to FinishedOutputs

37: LLM_Engine.abortRequest(O;.request_id)

38: end if

39: end for

40:  end if

41: end while
42: CleanupRemainingTasks()
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B.2 Retrieval Maturity Estimation

In practice, the raw RQ, signal described in Section 3.3 exhibits short-term fluctuations that may
hinder robust maturity estimation. To address this, SearchAgent-X applies an exponential moving
average (EMA) [11], with a window size of 500, to smooth the signal.

Selecting an appropriate threshold 7 for the EMA is critical to balancing retrieval quality and latency.
To determine a suitable value, we sample queries from the Musique dataset and record the evolution
of the EMA curve as the number of explored candidates increases. For each query, we identify the
point where the EMA curve flattens—i.e., where marginal improvements approach zero—indicating
that newly explored candidates are far from the query and contribute little to quality. This point
reflects the onset of retrieval maturity. As shown in Figure 8, the recall at this stage also stabilizes
and reaches a high level (around 0.98). We adopt the corresponding EMA value (7 = 0.9) at this
"knee" as the practical threshold 7 in SearchAgent-X to reliably trigger maturity exit. We provide
more analysis of this design to verify its effectiveness in Appendix C.3.

B.3 Detailed Experimental Setup

We implement SearchAgent-X by building upon VLLM [18], a state-of-the-art LLM inference
engine to use its efficient PagedAttention mechanism. For retrieval component, we use a knowledge
base constructed from a chunked Wikipedia dataset, containing approximately 21 million text chunks.
Each chunk is embedded into a 384-dimensional vector using the al1-MiniLM-L6-v2 model [28].
An Approximate Nearest Neighbor (ANN) index is built offline over these embeddings using HN-
SWIib [21], configured with parameters such as up to 32 neighbors per node and an efConstruction
(candidate list size during build) of 500. This index serves as the foundation for all ANN-based
retrieval methods in our experiments. For these ANN searches (employed by SearchAgent-X and
approximate retrieval baselines), we generally set the search range (e.g., efSearch) to 10,000 to
achieve high recall with acceptable computational overhead, based on empirical analysis. These
HNSW ANN searches leverage inter-query parallelism with 4 threads to optimize throughput while
managing memory access contention.

Specific configurations for the different systems are as follows. For the exact retrieval baseline
(VLLM_ENN), we adapt HNSWIib to perform exhaustive search more efficiently by enabling intra-
query parallelism, utilizing 6 threads. For SearchAgent-X, beyond using the aforementioned high-
recall ANN setup, we set its unique parameters: the priority scheduling level G is configured to 6 (we
note that SearchAgent -X exhibits low sensitivity to this specific value, as shown in our ablation study
in Appendix C.4). The threshold 75 4 for estimating retrieval maturity in the non-stall mechanism
is set to 0.9, determined via offline profiling detailed in Appendix B.2. The approximate retrieval
baselines (VLLM_ANN, CachevLLM_ANN) also utilize the general ANN search settings described above,
including the search range of 10,000 and 4 threads for inter-query parallelism.
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Table 2: Comparison across seven key metrics and top-k values for different methods. Throughput
and efficiency gains are marked by x multipliers. Lower values are better for metrics marked with J..

Metric Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3
Search-R1-7B Search-R1-14B
Throughput
vLLM_ENN 0.44 0.69 0.62 0.63 0.61 0.46 0.47 0.43
vLLM_ANN 0.62 1.04 0.76 0.73 0.68 0.94 0.77 0.61
CachevLLM_ANN 1.18 1.25 0.89 0.77 0.69 1.08 0.89 0.70
SearchAgent-X 1.59 2.36 1.64 1.39 1.01 1.40 1.09 0.76
Max Ratio 3.61x 3.42x 2.65 % 2.20% 1.66x 3.04x 2.32x 1.77x
Min Ratio 1.35% 1.89x 1.84x 1.81x 1.46 % 1.30% 1.22x 1.09x
Token Throughput
VLLM_ENN 69.90 90.85 86.12 97.79 84.26 156.35  127.28  111.21
VLLM_ANN 101.21  136.81  106.09 114.28 94.65 320.76  206.46  159.70

CachevLLM_ANN  191.65 16446 12459 119.17 95.64 366.85  239.01 182.60
SearchAgent-X  259.94  309.73 22996 216.21 139.25 | 472776  292.13  199.14

Max Ratio 3.72x 3.41x 2.67x 2.21x 1.65x% 3.02x 2.30x 1.79x

Min Ratio 1.36x 1.88x 1.85% 1.81x 1.46x 1.29x 1.22x 1.09x
Latency |

VvLLM_ENN 1300.56 1066.05 1089.37 1154.62 1205.16 | 1642.86 1567.85 1614.71

vLLM_ANN 57136 62533  790.68 930.29 102046 | 767.46  923.74 1052.74

CachevLLM_ANN  429.60 562.47  759.57 91658 102691 | 67335 805.60  980.35
SearchAgent-X  238.00 266.50 347.14 466.78  620.07 | 502.10 690.20  939.42

Max Ratio 0.18x 0.25x 0.32x 0.40 % 0.51x 0.31x 0.44x 0.58%

Min Ratio 0.55x% 0.47x 0.46 x 0.51x 0.60x 0.75x 0.86x 0.96 x
P99 Latency |

vLLM_ENN 1758.64 1441.18 1462.45 1569.80 1641.90 | 2205.26 2136.75 2237.55

vLLM_ANN 915.04 95646 1160.86 1348.87 1459.13 | 1066.63 1334.67 1555.47

CachevLLM_ANN  609.70  797.46 1073.03 1296.03 1446.88 | 930.06 1159.02 1454.61
SearchAgent-X 37320 42132 56628 716.88 99398 | 732.16 958.78 1362.24
Max Ratio 0.21x 0.29x 0.39x 0.46 x 0.61x 0.33x 0.45x% 0.61x
Min Ratio 0.61x 0.53 % 0.53 % 0.55x 0.69x 0.79% 0.83x 0.94x

C More Results

C.1 Detailed Overall Efficiency

We note that SearchAgent-X outperforms all baselines in different scenarios including model sizes,
deployment methods (single GPU or distributed GPUs), top-k values, and query datasets.

Different Model Sizes and Top-k Values Table 2 presents detailed results of overall efficiency
across different methods for Search-R1 under 7B (on a single L40 GPU) and 14B models (on two
40GB A100 GPUs). The advantage of SearchAgent-X is bigger in the 7B model and small top-%
values of the 14B model. This is due to two reasons. First, although the 14B model distributes model
weights across two A100s, its KV-cache space is still smaller than the 7B model (because the model
weights are larger, resulting in a larger KV-cache for a single token). The 7B model has a larger
available KV-cache space, thus yielding greater benefits from managing the prefix cache. Second, the
14B model we test calls retrievals more cautiously, while the 7B model calls more retrievals (e.g., 4.9
of the 7B model vs. 3.3 of the 14B model when top-k = 3 for Musique dataset), resulting in a greater
distinction in request priority.
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Different Datasets Moreover, as shown in Table 3, on the HotpotQA dataset, SearchAgent-X also
outperforms all baselines, achieving 1.47x to 2.55x higher throughput and 1.62x to 2.81x lower
latency compared to the strongest baseline, CachevLLM_ANN.

Table 3: Comparison of system efficiency under the HotpotQA dataset.

TopK Method Throughput Latency Token Throughput Cache Hit Rate
3 vLLM_ENN 0.78143 483.4094 106.0500 0.0000
CachevLLM_ANN 1.30926 282.9210 179.9000 0.3890
SearchAgent-X 1.99253 171.9478 271.8200 0.8890
4 vLLM_ENN 0.74530 505.7417 102.6500 0.0000
CachevLLM_ANN 0.95950 375.9803 133.7800 0.3040
SearchAgent-X 1.57188 210.8670 217.4600 0.9100
5 vLLM_ENN 0.68400 543.9000 87.5970 0.0000
CachevLLM_ANN 0.81700 443.1300 105.2410 0.1706
SearchAgent-X 1.20400 273.6900 154.8331 0.7340

Different Search Agent Models To further demonstrate the generality of our method, we apply it to
a different search agent architecture, ReCall [2]. We observe that SearchAgent-X consistently delivers
best efficiency. As shown in Table 4 below, when applied to ReCall’s 7B model, SearchAgent-X
attains 1.12x to 1.74x higher throughput, 1.31x to 1.81x lower latency, and 1.49x to 2.86x higher
cache hit rate than baselines. The results demonstrate that SearchAgent-X still outperforms the
most competitive baseline in this different search agent architecture, confirming the generality of
SearchAgent-X.

Table 4: Comparison of system efficiency under the ReCall search agent model.

TopK Method Throughput Latency Token Throughput Cache Hit Rate
3 vLLM_ENN 0.6370 376.375 224.550 0.000
CachevLLM_ANN 0.9861 273.360 342.490 0.570
SearchAgent-X 1.1035 207.920 391.898 0.849
4 vLLM_ENN 0.6200 423.070 205.630 0.000
CachevLLM_ANN 0.8242 342.870 276.810 0.383
SearchAgent-X 1.0780 234.390 364.066 0.804
5 vLLM_ENN 0.7180 393.390 220.810 0.000
CachevLLM_ANN 0.7566 383.490 236.660 0.250
SearchAgent-X 0.9570 282.085 302.049 0.716

C.2 Detailed Generation Quality

Table 5 further shows the generation details beyond Table 1 of SearchAgent-X and exact retrieval
(VLLM_ENN) across different datasets. We note that SearchAgent-X achieves similar generation
length as exact retrieval across all datasets (6822 tokens vs. 6826 tokens), indicating that our non-stall
retrieval does not lead to unusual search agent model/retriever behaviours, making SearchAgent-X
possible for maintaining perfect generation quality.
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Table 5: Generation Quality of SearchAgent-X and Exact Retrieval.

Dataset Musique  NQ  2Wiki HotpotQA Bamboogle StrategyQA  Avg.
Retrieval Counts
Exact Retrieval 3247  2.288 3.126 2.702 2.440 2.496 2.717
SearchAgent-X 3251  2.292 3.138 2.699 2.448 2.476 2717
Output Length
Exact Retrieval 8125 5839 7575 6840 6152 6402 6822
SearchAgent-X 8134 5847 7600 6839 6151 6382 6826

C.3 Analysis of Maturity Exit Mechanism

The maturity exit mechanism effectively halts unnecessary searches without compromising
retrieval quality. To validate the effectiveness of non-stall retrieval, we analyze whether the maturity-
based termination reliably halts unnecessary ANN iterations. We compare the retrieval traces of
representative queries under two settings: maturity-based early stop and standard natural stop. As
shown in Figure 9, we make several observations. First, query difficulty varies significantly across
the dataset, resulting in different numbers of candidate nodes explored before natural convergence.
This highlights the need for an adaptive termination strategy rather than relying on a fixed exploration
budget. Second, for queries of varying difficulty, the number of candidates explored by the maturity-
based strategy closely matches the natural termination point of standard search, indicating our maturity
exit accurately captures query difficulties. More importantly, the recall achieved by maturity-stopped
queries remains consistently high (0.963 on average). These results confirm that our non-stall retrieval
effectively terminates redundant search iterations while preserving retrieval quality.
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Figure 10: Comparison of Different Priority Levels G on Musique dataset. The numbers on the
X-axis represent different priority scheduling levels; N/A indicates that priority scheduling is not
used.
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Figure 11: Comparison of Different Priority Levels G on HotpotQA dataset. The numbers on
the X-axis represent different priority scheduling levels; N/A indicates that priority scheduling is not
used.

C.4 Comparison of Different Priority Levels G

The performance of SearchAgent-X is insensitive to its priority level setting. The priority level
G mentioned in Section 3.2 is an important hyperparameter of our method. In this section, we conduct
an ablation study to evaluate the performance of SearchAgent-X with different priority levels G.
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Table 6: System performance under different concurrency for vLLM and SearchAgent-X.

Concurrency 1 10 50 100 200 300 400 500
Cache Hit Rate
vLLM_ANN 0.131 0.065 0.088 0.135 0.168 0.173 0.173  0.177

SearchAgent-X 0.999 0920 0920 0920 0920 0.589 0.555 0.495

End-to-End Latency
vLLM_ANN 2181.75 633.37 477.88 448.64 437.12 425.89 41544 411.67
SearchAgent-X 1378.82  323.21 212.05 199.29 208.07 295.39 314.80 327.87

Throughput
vLLM_ANN 0.190 0.604 0.782 0.843 0.853 0.865 0.862 0.865
SearchAgent-X 0.203 0.848 1.348 1517 1582 1.137 1.100 1.060

The evaluation is performed on the Musique and HotpotQA datasets using the Search-R1 7B model
in offline scenarios. We set G =2, 4, 6, 8, 10, and 12, and compare them with the baseline without
priority scheduling (N/A). The results are shown in Figure 10. We note that the performance of
SearchAgent-X is not sensitive to the choice of G, and all efficiency metrics (including throughput,
token throughput, latency, and prefix cache hit rate) first improve and then stabilize after G' = 6. This
is expected because the average retrieval number of the 7B model is within 4 and 6, while the primary
objective of priority scheduling is to distinguish requests with different retrieval numbers for effective
management.

We further validate this observation on the HotpotQA dataset. As shown in Figure 11, the efficiency
consistently improves as G increases (e.g., up to a 1.62 x throughput gain), and stabilizes once G > 6.
This again confirms that the performance of SearchAgent-X is not sensitive to the choice of G,
making it straightforward to tune across different settings.

C.5 Comparison of Differnet Concurrency Settings

SearchAgent-X consistently outperforms baselines across different concurrency levels. To
explore the impact of concurrency levels on system performance, we conduct an analysis to validate
the effectiveness of SearchAgent-X under explicitly controlled request concurrency by tuning
key parameters: iteration-level concurrency (max_num_seq) in vLLM [18]. The evaluation is
conducted on the Musique dataset using the Search-R1 7B model in offline scenarios.

As detailed in Table 6, when increasing concurrency from 1 to 500, SearchAgent-X maintains a
high cache hit rate up to around 200. Beyond that point, the cache hit rate drops more significantly.
Meanwhile, system efficiency first increases then declines, showing a turning point: latency is
minimized around concurrency = 100, and throughput peaks at concurrency = 200. This suggests
that the GPU becomes saturated or experiences resource contention when concurrency exceeds
300. In practice, we typically choose the default value 256, which yields performance close to
the optimal. The results demonstrate that SearchAgent-X consistently outperforms vLLM in both
throughput and latency while exhibiting a tradeoff between cache hit rate and concurrency. We
also observe that vLLM consistently suffers from low cache hit rates and lower system efficiency
compared to SearchAgent-X across all concurrency levels. This is because suboptimal scheduling
and retrieval under interleaved reasoning-retrieval workloads, where cache for previous tokens is
frequently evicted—even with relatively small concurrency—causing inefficient reuse.

C.6 Comparison with a Naive Early-Stopping Baseline

SearchAgent-X aligns stopping decisions with the LLM’s prefill/decode progress, making the
stop decision more timely and effective. In contrast, naive early-stopping approaches make halting
decisions based exclusively on retrieval-side signals, such as a machine learning model that predicts
the "maturity" of retrieval, while disregarding the state of LLM inference. To further validate the
effectiveness of SearchAgent-X’s non-stall retrieval, we conduct a comparison against a vanilla
early-stop baseline that only relies on retrieval status to decide the stopping point. The evaluation
is conducted on the Musique dataset using the Search-R1 7B model with Top-5 retrieval in offline
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Table 7: Performance comparison of vanilla early stop and SearchAgent-X’s Non-Stall Retrieval.

Method Throughput (req/sec) Latency (sec) Cache Hit Rate Accuracy
Vanilla HNSW 0.7872 661.85 0412 0.15
Early Stop 0.8050 634.77 0.564 0.15
SearchAgent-X 0.9502 620.07 0.645 0.15

Table 8: Comparison of system efficiency under the NSW search engine.

TopK Method Throughput Latency Token Throughput Cache Hit Rate
3 vLLM_ENN 0.7880 395.040 97.640 0.000
CachevLLM_ANN 1.7401 173.026 216.970 0.666
SearchAgent-X 2.1270 129.862 265.690 0.891
4 vLLM_ENN 0.7196 578.940 99.487 0.000
CachevLLM_ANN 1.0706 285.390 147.590 0.350
SearchAgent-X 1.6560 172.340 227.730 0.864
5 vLLM_ENN 0.6940 428.642 87.531 0.000
CachevLLM_ANN 0.8959 333.206 115.081 0.281
SearchAgent-X 1.1402 241.234 146.360 0.690

scenarios. Table 7 shows SearchAgent-X outperforms vanilla HNSW and the early-stop baseline.
Early-stop baseline [19] boosts throughput by 2.26% and cache hit rate by 0.152, cutting latency by
27.08 sec while keeping accuracy at 0.15. SearchAgent-X further increases throughput by 18.04%
and cache hit rate by 0.081, reducing latency by 14.70 sec, with accuracy unchanged at 0.15. This
confirms the efficiency gains of SearchAgent-X’s non-stall retrieval via aligned LLM scheduling
and retrieval.

C.7 Scalability To Other Retrieval Methods

To further validate the generalizability of our method, we implemented and evaluated it on an
alternative retrieval backend, NSW [23], which is another widely-used approximate search method.
The experiments are conducted on the Musique dataset in offline scenarios using the Search-R1 7B
model. As shown in Table 8, our method boosts the throughput of the NSW-based system by up
to 2.7x and the cache hit rate by 2.46x, while reducing latency by 3.04 x. These results confirm
that our method is robust across retrieval strategies and our design is compatible with any iterative
retriever, including cluster-based (e.g., IVF [17]) and graph-based (e.g., HNSW [22]) methods.
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