
More Tokens, Lower Precision: Towards the Optimal Token-Precision
Trade-off in KV Cache Compression

Anonymous ACL submission

Abstract001

As large language models (LLMs) process in-002
creasing context windows, the memory usage003
of KV cache has become a critical bottleneck004
during inference. The mainstream KV com-005
pression methods, including KV pruning and006
KV quantization, primarily focus on either to-007
ken or precision dimension and seldom explore008
the efficiency of their combination. In this pa-009
per, we comprehensively investigate the token-010
precision trade-off in KV cache compression.011
Experiments demonstrate that storing more to-012
kens in the KV cache with lower precision, i.e.,013
quantized pruning, can significantly enhance014
the long-context performance of LLMs. Fur-015
thermore, in-depth analysis regarding token-016
precision trade-off from a series of key aspects017
exhibit that, quantized pruning achieves sub-018
stantial improvements in retrieval-related tasks019
and consistently performs well across varying020
input lengths. Moreover, quantized pruning021
demonstrates notable stability across different022
KV pruning methods, quantization strategies,023
and model scales. These findings provide valu-024
able insights into the token-precision trade-off025
in KV cache compression. We plan to release026
our code in the near future.027

1 Introduction028

As large language models (LLMs) have been029

widely used in various scenarios, such as docu-030

ment summarization (Zou et al., 2024), code com-031

pletion (Roziere et al., 2023) and agent frame-032

work (Shridhar et al., 2020), there is a growing033

demand for models with larger context windows to034

handle more extensive inputs. As a result, GPT-035

4 (Achiam et al., 2023) have been extended to036

support 200k input tokens, and Gemini 1.5 (Reid037

et al., 2024) to 10M tokens. However, these power-038

ful long-context capabilities come at the expense039

of significantly increased memory storage for the040

cached key and value (KV) states (Waddington041

et al., 2013). Take Llama3-8B (Dubey et al., 2024)042

H
ig

he
r

P
re

ci
si

on

More Tokens

Performance

Bad Good

4× Tokens
4-Bit

2× Tokens
8-Bit

1× Tokens
16-Bit

Figure 1: More tokens, lower precision leads to better
performance.

as an example, storing the KV cache of a single 043

message with 100k tokens requires a high memory 044

overhead of 20GB. Furthermore, as the decoding 045

process heavily relies on the GPU memory band- 046

width, the extensive KV cache also leads to dramat- 047

ically increased decoding time (Fu, 2024). 048

To efficiently serve LLMs, various approaches 049

have been proposed to compress KV cache (Pope 050

et al., 2023). The predominant methods involve 051

compressing the KV cache along two primary di- 052

mensions: token or precision. For the token dimen- 053

sion, KV pruning (or KV eviction) methods elim- 054

inate unimportant tokens to maintain a fixed KV 055

cache size (Xiao et al., 2023; Zhang et al., 2024b; 056

Ren and Zhu, 2024; Li et al., 2024). For the preci- 057

sion dimension, KV quantization technique reduces 058

memory usage by approximating KV cache with 059

lower precisions, like 8-bit or even lower (Sheng 060

et al., 2023; Liu et al., 2024c; Hooper et al., 2024; 061

Yang et al., 2024b). However, these existing works 062

focuses only one dimension, either token or preci- 063

sion, leaving the trade-off between these two or- 064

thogonal factors largely under-explored. 065

1

In this paper, we comprehensively investigate the066

token-precision trade-off in KV cache compression.067

First, we examine the feasibility of combining KV068

pruning and quantization under fixed budget. We069

demonstrate that storing more tokens in the KV070

cache with lower precision, which we call quan-071

tized pruning, can significantly enhance the long-072

context performance of LLMs. For example, with073

the same KV cache budget, storing 4× tokens in074

4-bit precision outperforms storing 1× tokens in075

16-bit precision across various downstream long-076

context tasks with various input length, as shown077

in Figure 1. Moreover, in extremely low-resource078

scenarios, quantized pruning effectively preserves079

performance, whereas relying solely on KV prun-080

ing or quantization often leads to a significant per-081

formance collapse.082

Furthermore, we conduct in-depth analysis re-083

garding token-precision trade-off from series of084

key aspects, including the impact on various down-085

stream task types and input lengths, model scal-086

ing effect, ablation on quantization strategies and087

fine-grained exploration of layer-wise quantized088

pruning. From the extensive experiments, we ob-089

serve that quantized pruning achieves substantial090

improvements in retrieval-related tasks and consis-091

tently performs well across varying input lengths.092

Moreover, quantized pruning demonstrates strong093

feasibility across different KV pruning methods,094

quantization strategies, and model scales, show-095

casing notable stability. The analysis on token-096

precision trade-off presents a more substantial com-097

pression potential compared to compressing along098

a single dimension. We believe that our findings099

could offer valuable insights for developing more100

effective KV compression strategies in future re-101

search.102

2 Related Work103

KV Pruning KV pruning compresses the KV104

cache along the token dimension by selectively105

removing unimportant tokens to reduce memory106

usage. Mainstream methods typically identify im-107

portant tokens based on attention scores, as seen108

in (Liu et al., 2024b; Zhang et al., 2024b; Oren109

et al., 2024; Li et al., 2024). Other methods use110

alternative factors such as initial tokens (Xiao et al.,111

2023), variance (Ren and Zhu, 2024), special to-112

kens (Ge et al., 2024) or the L2 norm (Devoto113

et al., 2024) to determine token importance. Re-114

cent studies delve deeper into optimizing the alloca-115

tion of KV cache memory budgets. Some explore116

KV cache budget allocation strategies across lay- 117

ers (Cai et al., 2024; Yang et al., 2024a), while 118

other studies explore head-level KV cache budget 119

allocation (Feng et al., 2024; Tang et al., 2024; Fu 120

et al., 2024; Xiao et al., 2024). 121

KV Quantization KV quantization compress 122

KV cache from the precision dimension by stor- 123

ing KV cache using a reduced number of bits. 124

FlexGen (Sheng et al., 2023) utilizes group-wise 125

4-bit quantization for both key and value cache. 126

KIVI (Liu et al., 2024c) applies per-channel quan- 127

tization on key cache and per-token quantization 128

on value cache. KVQuant (Hooper et al., 2024) 129

and CQ (Zhang et al., 2024a) use RoPE-related 130

quantization, while KVQuant also preverses out- 131

liers without quantization. Atom (Zhao et al., 2024) 132

reorders the outlier channels for fine-grained group 133

quantization with mixed-precision. GEAR (Kang 134

et al., 2024) uses low-rank approximation for quan- 135

tization. QAQ (Dong et al., 2024) and MiKV (Yang 136

et al., 2024b), inspired by the KV pruning methods, 137

store discarded tokens using lower bit precision 138

while retaining important tokens in full precision. 139

Other KV Compression Methods Compressing 140

KV cache from other dimensions typically requires 141

modifying the model architecture, which usually 142

necessitates additional training for adaptation. For 143

the layer dimension, LCKV (Wu and Tu, 2024), 144

CLA (Brandon et al., 2024) and MLKV (Zuhri 145

et al., 2024) reduce memory usage by sharing the 146

KV cache across adjacent layers. ShortGPT (Men 147

et al., 2024) and DynamicSlicing (Dumitru et al., 148

2024) achieve compression by eliminating redun- 149

dant layers. YOCO (Sun et al., 2024) changes 150

the model structure and shares a single global 151

KV cache across layers. For the head dimen- 152

sion, MQA (Shazeer, 2019) and GQA (Ainslie 153

et al., 2023) share the KV cache within each head 154

groups. DeepSeek-v2 (Liu et al., 2024a) employs 155

dimension-reduction techniques to compress all 156

heads into a single low-rank vector. These lines 157

of work is orthogonal to ours, as they can also be 158

combined together. 159

3 Preliminaries 160

The decoder-only transformer model consists of a 161

stack of transformer decoder blocks, each compris- 162

ing two main components: self-attention module 163

and the feed-forward network (FFN) module. Dur- 164

ing inference, KV cache is implemented within the 165

self-attention module and operates in two distinct 166

2

phases: i) the prefill phase, where the input prompt167

is used to generate KV cache for each transformer168

layer of LLMs; and ii) the decoding phase, where169

the model uses KV cache to generate the next token,170

and updates the KV cache with the new token.171

Prefill Phase. Let X ∈ Rb×lprompt×d be the input172

tensor, where b is the batch size, lprompt is the173

length of the input prompt, and d is the model174

hidden size. For clarity, we omit the layer index175

here. The key and value tensors can be computed176

by:177

XK = XWK ,XV = XWV (1)178

where WK ,WV ∈ Rd×d are the key and value179

layer weight. XK ,XV are cached in the memory180

for utilization in the subsequent decoding phase.181

Decoding Phase. Let h ∈ Rb×1×d be hidden182

state of current input token. hK = hWK and183

hV = hWV are the current key and value states.184

hK and hV are first employed to update the KV185

cache:186

XK ←− Concat(XK , hK),187

XV ←− Concat(XV , hV) (2)188

then attention output hO is calculated by:189

hO = Softmax(hQXT
k)XV (3)190

where hQ = hWQ is the output of the query layer.191

For ease of illustration, we ignore the FFN module192

and other parts of the inference workflow that are193

not addressed in our approach.194

KV Quantization The B-bit KV quantization195

process during the prefill phase can be expressed196

as follows: First, determine the minimum number197

zi and the maximum number mi in Gi, where Gi198

is a group of number in XK or XV . Using these199

numbers, compute the quantized result Q(Gi) for200

each group according to the formula:201

Q(Gi) =

⌊
Gi − zi

si

⌉
, si =

mi − zi
2B − 1

(4)202

The notation ⌊·⌉ represents rounding to the nearest203

integer. The results from all groups are aggregated204

to obtain Q(XK) and Q(XV). During the decoding205

phase, the quantized Q(XK) and Q(XV) and the206

stored quantization parameters zi and si are used207

to recover the original values. In the decoding208

phase, the dequantized result X′
K ,X′

V are used 209

to calculate the attention output. X′
K ,X′

V are 210

obtained through aggregated G′
i for each Gi. G′

i 211

can be computed using: 212

G′
i = Q(Gi) · sx + zx (5) 213

KV Pruning The goal of KV pruning is to find 214

two submatrices Xe
K ,Xe

V ∈ Rb×s×d from the full 215

matrices XK and XV during the prefill phase, 216

given a cache budget s < n, while maximizing 217

performance preservation. During the decoding 218

phase, LLMs with KV pruning only use Xe
K and 219

Xe
V to update KV cache and generate new tokens. 220

Xe
K ←− Concat(Xe

K , hK), 221

Xe
V ←− Concat(Xe

V , hV) (6) 222

Quantized Pruning Quantized pruning uses KV 223

pruning methods to obtain Xe
K and Xe

V first, and 224

then quantizes the preserved KV states Xe
K and 225

Xe
V to Q(Xe

K) and Q(Xe
V) using various KV quan- 226

tization methods in the prefill phase. In the decod- 227

ing phase, the dequantized results from Q(Xe
K) 228

and Q(Xe
V) are used to generate new tokens. 229

4 Experimental Setup 230

Benchmarks We assess the performances of 231

quantized pruning using LongBench (Bai et al., 232

2024) dataset and Needle-in-a-Haystack (Kamradt, 233

2023) test. We also employ RULER (Hsieh et al., 234

2024), a dataset with different input length and 235

diverse types of needles across 4 task categories, 236

to better access the impact of input length in Sec- 237

tion 6.1. More details can be seen in Appendix A. 238

LLMs We use state-of-the-art open-weight 239

LLMs, including Llama-3-8B-Instruct (Dubey 240

et al., 2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 241

2023). For scaling experiments in Section 6.2, 242

we also test the performance of Llama-3.2-1B and 243

Llama-3.2-3B (Dubey et al., 2024). 244

Setup We aim to comprehensively investigate 245

the token-precision trade-off in KV cache com- 246

pression. We report the ratio of compressed KV 247

cache and the full KV cache for memory budge. 248

For KV pruning, we employ PyramidKV (Cai 249

et al., 2024) and SnapKV (Li et al., 2024), rec- 250

ognized as leading methods in diverse scenarios. 251

We also include H2O (Zhang et al., 2024b) and 252

StreamingLLM (Xiao et al., 2023) to evaluate the 253

feasibility of quantized pruning in Section 5. For 254

3

Pruning Method
LongBench

Token=128 Token=512 Token=2048

16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit

StreamingLLM 32.1 32.2 31.7 19.1 34.6 34.5 33.9 20.7 38.1 38.2 37.8 23.8
H2O 35.6 35.6 34.7 15.8 37.5 37.4 36.7 17.7 39.8 39.7 39.0 21.1

SnapKV 35.7 35.7 35.1 16.6 40.3 40.4 39.7 20.2 41.7 41.7 41.0 22.9
PyramidKV 37.4 37.3 36.4 17.5 40.3 40.3 39.6 20.9 41.8 41.8 41.3 23.6

Pruning Method
Needle-in-a-Haystack

Token=128 Token=512 Token=2048

16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit

StreamingLLM 27.7 27.7 27.5 30.9 35.3 35.3 35.5 37.3 66.4 66.5 66.4 61.8
H2O 46.9 46.6 46.8 36.4 91.2 91.1 91.0 54.8 100 100 100 74.1

SnapKV 83.7 83.7 82.5 55.9 97.4 97.4 97.2 66.3 100 100 100 78.1
PyramidKV 98.9 98.9 98.8 67.5 100 100 100 78.6 100 100 100 79.6

Table 1: Feasibility of quantized pruned tokens on LongBench and Needle-in-a-Haystack with Llama-3-8B-Instruct
as backbone model. We use four KV pruning methods to retain 128, 512 and 2048 tokens, and report the results of
further quantization.

KV quantization, we adopt KIVI (Liu et al., 2024c)255

as the default method due to its stability and broad256

compatibility. Moreover, in Section 6.3, we exam-257

ine the effects of quantization strategies from Flex-258

Gen (Sheng et al., 2023) and KVQuant (Hooper259

et al., 2024) for a comprehensive comparison. We260

use HQQ (Badri and Shaji, 2023) framework to261

perform quantization on KV cache. More details262

can be seen in Appendix B.263

5 Optimal Token-Precision Trade-Off264

In this section, we aim to find the optimal token-265

precision trade-off in KV cache compression. We266

frist examine the feasibility of combining KV prun-267

ing and quantization(Q1). Subsequently, we ex-268

plore the best optimal allocation strategy between269

precision and token under varying memory bud-270

gets(Q2).271

Q1. Is it feasible to quantize pruned KV
cache for a lower compression rate?

We first evaluate the feasibility of quantized272

pruned KV cache as a prerequisite for exploring273

the token-precision trade-off. We use Llama-3-8B-274

Instruct and evaluate various KV pruning methods275

on the LongBench and NIAH. We report the results276

of quantizing the remaining tokens to different pre-277

cision levels after applying KV pruning.278

From Table 1, we observe that it is feasible to279

quantize pruned KV cache for a lowe compression280

rate. For most KV pruning methods we evalu- 281

ate, further quantizing the preserved tokens to as 282

low as 4-bit precision results in minimal perfor- 283

mance degradation, but quantizing to 8-bit preci- 284

sion shows negligible impact. However, reducing 285

precision to 2-bit leads to a drastic performance 286

decline across most KV pruning methods. This 287

observation holds consistently across different KV 288

pruning methods and varying numbers of preserved 289

tokens. 290

Compared with precision, reducing the number 291

of preserved tokens leads to more significant perfor- 292

mance degradation. Specifically, when the number 293

of preserved tokens is reduced to 1/4 (from 2048 294

to 512), all KV pruning methods experience a no- 295

ticeable performance drop. In contrast, when the 296

precision is reduced to 1/4 (from 16-bit to 4-bit), 297

which has the same memory budget as token di- 298

mension, the performance degradation is relatively 299

mild. This suggests that, under the same mem- 300

ory budget, tokens might have a more significant 301

impact on the results compared to precision. 302

Q2. What is the optimal allocation strategy
between precision and token under varying
memory budgets?

Observing that KV pruning and KV quantization 303

can be effectively combined, we further investigate 304

that, given a fixed memory budget, how to balance 305

the trade-off between number of preserved tokens 306

and precision to achieve optimal performance. To 307

4

1/128 1/32 1/8 1/4 1

45

42

39

36

33

30

LB
-A

vg

LLaMA-3-SnapKV

1/128 1/32 1/8 1/4 1

45

42

39

36

33

30

LLaMA-3-PyramidKV

1/256 1/64 1/16 1/4 1

45

42

39

36

33

30

Mistral-v0.2-SnapKV

1/256 1/64 1/16 1/4 1

45

42

39

36

33

30

Mistral-v0.2-PyramidKV

1/128 1/32 1/8 1/4 1

100

90

80

70

60

N
IA

H

LLaMA-3-SnapKV

1/128 1/32 1/8 1/4 1

100

98

96

94

92

LLaMA-3-PyramidKV

1/256 1/64 1/16 1/4 1
80

85

90

95

100
Mistral-v0.2-SnapKV

1/256 1/64 1/16 1/4 1

100

97

94

91

88

Mistral-v0.2-PyramidKV

KV Cache Budget

Full KV 4× KV tokens, 4-bit 2× KV tokens, 8-bit 1× KV tokens, 16-bit

Figure 2: The token-precision trade-off under varying memory budgets on LongBench and NIAH. We report the
results of SnapKV-based and PyramidKV-based quantized pruning on Llama-3 and Mistral-v0.2.

this end, we evaluate the performance of quantized308

pruning using two leading KV pruning methods,309

SnapKV and PyramidKV, across different memory310

budgets on LongBench and NIAH.311

Specifically, we compare three configurations312

with approximately equivalent memory usage: 1)313

Using standalone KV pruning to retain 1× tokens314

in 16-bit precision. 2) Quantized pruning by re-315

taining 2× tokens in 8-bit precision. 3) Quantized316

pruning by retaining 4× tokens in 4-bit precision.317

As shown in Figure 2, we observe that quantized318

pruning, which preserves more tokens at a lower319

precision, consistently outperforms standalone KV320

pruning methods across various budgets. For the321

NIAH task, the improvements from quantized prun-322

ing are particularly pronounced. This may be at-323

tributed to that quantized pruning can cover more324

tokens for retrieval under the same memory budget325

compared to standalone KV pruning.326

In high-budget scenarios, the 8-bit strategy tends327

to deliver slightly better performance, which may328

due to the number of tokens at this budget is al-329

ready quite large. In low-budget scenarios, such330

as 1/128 KV cache budget, storing more tokens at331

4-bit precision yields superior results, highlighting332

the importance of token coverage when resources333

are constrained. Overall, using lower precision to334

preserve more tokens under a limited budget re-335

sults in notable performance gains, compared to336

standalone KV pruning methods that use full preci- 337

sion to store fewer tokens. 338

Summary We demonstrate that storing more to- 339

kens in the KV cache with lower precision can sig- 340

nificantly enhance the long-context performance of 341

LLMs under fixed KV cache memory budget. 342

6 Further Analysis 343

In this section, we further investigate series of key 344

aspects regarding token-precision trade-off, includ- 345

ing the impact of quantized pruning on various 346

downstream task types and input lengths, model 347

scaling effect, ablation on quantization strategies 348

and fine-grained exploration of layer-wise quan- 349

tized pruning. 350

6.1 Impact on Task Types and Input Lengths 351

Task Types To further investigate the token- 352

precision trade-off in different task types, we eval- 353

uate PyramidKV-based quantized pruning on six 354

task types from LongBench and the 8K subset of 355

the RULER dataset. We use PyramidKV with 512 356

retained tokens as the baseline, and explore the 357

token-precision trade-off under this fixed mem- 358

ory budget, as this setting exhibits minimal per- 359

formance differences across three precision levels, 360

making it easier to assess the impact of task types. 361

As illustrated in Table 2, we observe that the 362

performance of quantized pruning is remarkably 363

5

Models Token Bit
Task Types

SQA MQA SUMM Fewshot Syn. Code RULER-8k

Llama-3-8B-Instruct
512 16 28.2 31.9 23.5 67.6 37.7 57.6 67.5
1024 8 29.6 33.1 24.3 67.9 37.4 58 74.9
2048 4 30.7 32.5 25.3 68.8 37.2 57.6 82.2

Mistral-7B-Instruct-v0.2
512 16 33.7 27.3 24.3 65.6 41.75 54 53.1
1024 8 34.2 29 25.6 66.4 43.73 54.8 62.1
2048 4 35.2 28.14 26.6 66.9 43.08 55.4 73.6

Table 2: The token-precision trade-off in different task types. We report the results of 6 task types in LongBench
and 8k subset of RULER. We use PyramidKV-based quantized pruning.

consistent across different task types. Specifically,364

lower precision, which retains more tokens in KV365

cache, leads to substantial performance improve-366

ments in the RULER task, which heavily relies367

on retrieving content from the input. Tasks with368

high retrieval demands, such as Summarization and369

Single-Doc QA, also show noticeable gains with370

quantized pruning, particularly when 4× tokens371

are preserved at 4-bit precision.372

For tasks requiring more reasoning rather than373

intensive retrieval, such as Code Completion, Syn-374

thetic and Multi-Doc QA, the benefits of trading375

precision for more tokens are less pronounced. In376

these cases, storing fewer tokens with higher preci-377

sion generally performs better. For example, using378

1024 tokens in 8-bit precision achieves the hightest379

score of 58 in Code task with Llama-3.380

Input Lengths To evaluate the token-precision381

trade-off across various input lengths, we conduct382

experiments on subsets with different input length383

of the RULER dataset. Additionally, we analyze384

LongBench by grouping its data based on input385

length. The results is shown in Figure 3 and more386

detailed information can be found in Appendix A.387

Our observations are as follows: quantized prun-388

ing consistently outperforms standalone KV evic-389

tion methods across various input length, regard-390

less of the models and task types. Within the same391

dataset, scores decrease as input length increases;392

however, the relative differences among different393

compression methods remain similar across vary-394

ing input lengths. Moreover, quantized pruning395

achieves significant performance improvements396

across all input lengths for retrieval demanded tasks397

like RULER.398

6.2 Scaling Effect on Quantized Pruning399

To investigate the impact of model scaling on400

quantized pruning, we conducted experiments on401

LB-4k LB-8k LB-16k RULER-4k RULER-8k
0

20

40

60

80

Sc
or

e

Llama-3-8B-Instruct-PyramidKV
512 KV tokens, 16-bit 1024 KV tokens, 8-bit 2048 KV tokens, 4-bit

LB-4k LB-8k LB-16k RULER-4k RULER-8kRULER-16k
0

20

40

60

80

Sc
or

e

Mistral-7B-Instruct-v0.2-PyramidKV
512 KV tokens, 16-bit 1024 KV tokens, 8-bit 2048 KV tokens, 4-bit

Figure 3: The token-precision trade-off in different input
lengths. We report the results of LongBench and three
subsets of RULER. We use PyramidKV-based quantized
pruning.

three models from the Llama series: Llama3-8B, 402

Llama3.2-3B, and Llama3.2-1B. For both the Base 403

models and Instruct models, we evaluated their per- 404

formance on LongBench under two fixed KV cache 405

budgets: 1/16 and 1/64. 406

As shown in Figure 4, we observe that quantized 407

pruning consistently achieves better performance 408

across all scaling levels. The performance gap be- 409

tween quantized pruning and standalone KV prun- 410

ing methods remains relatively stable across differ- 411

ent model scales. Notably, when the KV cache bud- 412

get is relative small to 1/64 , the performance im- 413

provement brought by quantized pruning is higher 414

compared to 1/16 KV cache budget, which aligns 415

with the conclusions we observed earlier in Q2. For 416

6

1B 3B 8B
KV Cache Budget=1/64

20

25

30

35

40

LB
-A

vg
4× tokens, 4-bit Base
2× tokens, 8-bit Base
1× tokens, 16-bit Base

4× tokens, 4-bit Inst
2× tokens, 8-bit Inst
1× tokens, 16-bit Inst

1B 3B 8B
KV Cache Budget=1/16

25

30

35

40

LB
-A

vg

Figure 4: Scaling effect on Llama family models, with
PyramidKV-based quantized pruning. All models are
under fixed ratio of KV cache budget.

Llama-3-SnapKV Llama-3-PyramidKV Mistral-v0.2-SnapKVMistral-v0.2-PyramidKV
35

36

37

38

39

40

41

LB
-A

vg

FlexGen FlexGen+Outlier 1% KIVI KIVI+Outlier 1%

Figure 5: Ablation of quantization strategies on quan-
tized pruning, remaining 512 KV tokens in 4-bit.

Base models, although the performance improve-417

ment from scaling is smaller compared to Instruct418

models, quantized pruning still provides a notice-419

able performance boost.420

These findings highlighting the robustness and421

effectiveness of quantized pruning across model422

scaling.423

6.3 Ablation on Quantization Strategies424

While there has been extensive research on strate-425

gies for KV cache quantization, it remains unclear426

whether existing quantization strategies remain ef-427

fective when combined with KV pruning methods.428

In this section, we aim to investigate the impact of429

KV quantization strategies and group size on quan-430

tized pruning, and present our results in Figure 5431

and Table 3.432

Model Method
GroupSize

32 64 128

Llama-3
SnapKV 40.42 39.55 38.87

PyramidKV 40.33 39.65 38.91

Mistral-v0.2
SnapKV 40.45 40.30 40.09

PyramidKV 40.31 40.49 40.03

Table 3: The impact of group size for quantized pruning
on LongBench, remaining 512 KV tokens in 4-bit.

Quantization methods We explore the methods 433

in FlexGen (Sheng et al., 2023), KIVI (Liu et al., 434

2024c), and KVQuant (Hooper et al., 2024). To 435

elaborate, for the FlexGen methods, KV quantiza- 436

tion is applied to both the key and value caches 437

along the token dimension, grouping every 64 ele- 438

ments without filtering outlier numbers. We modify 439

the FlexGen by (1) filtering 1% of outlier numbers 440

in both the key and value caches, as mentioned in 441

KVQuant (2) quantizing the key along the channel 442

dimension, as in KIVI and (3) combining (1) and 443

(2). These correspond to the results labeled as Flex- 444

Gen+Outlier 1%, KIVI, and KIVI+Outlier 1% in 445

the Figure 5. 446

We can observe that none of the quantization 447

strategies show significant performance degrada- 448

tion when combined with KV pruning methods, 449

demonstrating the relative stability of quantized 450

pruning. The KIVI method consistently outper- 451

forms FlexGen across various models and KV prun- 452

ing methods. The improvement is particularly pro- 453

nounced for PyramidKV on the Mistral model, un- 454

derscoring the significance of quantizing key states 455

along the channel dimension. Filtering 1% of out- 456

lier numbers proves effective for the FlexGen strat- 457

egy but yields limited improvements for KIVI. It 458

shows some benefit on Llama models but can result 459

in negative gains on the Mistral model. 460

Overall, KIVI demonstrates strong performance 461

when combined with KV pruning methods, while 462

other KV quantization strategies also maintain 463

good results, highlighting the stability of quantized 464

pruning. 465

Group Size We then analyzed the impact of 466

group size during KV quantization. Using the 467

SnapKV and PyramidKV methods to retain 512 468

tokens, we experimented with 4-bit quantization 469

and observed the performance variations when the 470

group sizes were set to 32, 64 and 128. 471

As shown in Table 3, smaller group sizes lead 472

7

to performance improvements at the cost of higher473

memory usage. Reducing the group size from 128474

to 64 resulted in a notable improvement, but fur-475

ther decreasing it from 64 to 32 yielded minimal476

gains for the Mistral model. Therefore, we set the477

default quantization group size to 64 to balance per-478

formance and memory usage in our experiments.479

6.4 Exploration on Layer-Wise Quantized480

Pruning481

Inspired by the observation that different layers482

may have varying requirements for the number of483

tokens in PyramidKV (Cai et al., 2024) and Pyra-484

midInfer (Yang et al., 2024a), we further investigate485

whether the demands for precision and preserved486

tokens are consistent across layers. To explore this,487

we use the best-performing configuration from pre-488

vious experiments, 4-bit precision with 4× tokens,489

as the baseline and compare it against layer-wise490

configurations adopting 8-bit precision with 2× to-491

kens and 16-bit precision with 1× tokens. Using492

SnapKV as the KV pruning method, we present the493

results for Llama-3 and Mistral-v0.2 under two bud-494

get constraints in the Figure 6. Configurations are495

modified every 4 layers for the initial and final lay-496

ers, while intermediate layers are reconfigured ev-497

ery 8 layers. The x-axis indicates the layers where498

the modified configurations are applied, while the499

y-axis shows the relative change to the baseline (4-500

bit precision with 4× tokens) on LongBench and501

RULER-4k.502

Initially, it is evident that for most layers, tran-503

sitioning from 4× tokens with 4-bit precision to504

higher precision and fewer tokens results in a per-505

formance decline under constrained KV cache bud-506

gets. Specifically, the shift to 8-bit shows a rela-507

tively minor performance drop, whereas moving to508

16-bit with fewer preserved tokens leads to a more509

significant decrease. These layers-wise trade-off510

conclusions are consistent with our experiments511

before.512

Notably, modifying intermediate layers causes513

a drastic performance decline, while adjustments514

made at the initial and final layers result in com-515

paratively smaller performance reductions. This516

effect is especially pronounced in retrieval-related517

tasks such as RULER-4k, where significant perfor-518

mance differences are observed. On LongBench,519

changes are less significant, with a notable per-520

formance drop only observed at 16-bit precision.521

These findings highlight that, under the same mem-522

ory budget, preserving more tokens in intermediate523

[0-4) [4-12) [12-20) [20-28) [28-32)
-16%

-12%

-8%

-4%

0%

R
el

at
iv

e
C

ha
ng

e

2×tokens, 8-bit in Modified Layers

[0-4) [4-12) [12-20) [20-28) [28-32)
-16%

-12%

-8%

-4%

0%
1×tokens, 16-bit in Modified Layers

[0-4) [4-12) [12-20) [20-28) [28-32)

-9%

-6%

-3%

0%

R
el

at
iv

e
C

ha
ng

e

2×tokens, 8-bit in Modified Layers

[0-4) [4-12) [12-20) [20-28) [28-32)

-9%

-6%

-3%

0%

1×tokens, 16-bit in Modified Layers

KV Cache Budget=1/64

KV Cache Budget=1/16

Modified Layer Range

Relative Change in LB-Avg Relative Change in RULER-4k

Figure 6: The results of layer-wise quantized pruning on
Llama-3-8B-Instruct, with SnapKV as pruning method.
We use 4× KV token 4-bit as baseline and report the
relative change.

layers is crucial for the performance, while the 524

token-precision trade-off in the initial and final lay- 525

ers exerts a more balanced influence on the results. 526

7 Conclusion 527

We investigate a series of critical yet unexplored 528

questions regarding the effectiveness and feasibil- 529

ity of token-precision trade-off in KV cache com- 530

pression. Through comprehensive experiments, 531

we demonstrate that storing more tokens in the 532

KV cache with lower precisioncan significantly en- 533

hance the long-context performance of LLMs, and 534

demonstrating robust performance across diverse 535

input lengths, downstream tasks, with particularly 536

significant gains in retrieval tasks. Moreover, we 537

find quantized pruning demonstrates strong feasi- 538

bility across different KV pruning methods, quan- 539

tization strategies, and model scales. Our analysis 540

sheds light on the token-precision trade-off of KV 541

cache memory optimization, offering valuable in- 542

sights into designing more efficient compression 543

strategies. We hope this work deepens our under- 544

standing of KV cache compression and inspires 545

future research. 546

8

Limitations547

While our work demonstrates the effectiveness of548

KV compression through trade-offs between token549

and precision dimensions, other potential dimen-550

sions, such as head and layer, remain unexplored.551

Investigating the feasibility of combining these di-552

mensions with token and precision for a more sub-553

stantial compression potential represents an avenue554

for future research. Additionally, the current im-555

plementation of quantized pruning suffers from556

inefficiencies in dequantizing the KV cache, hin-557

dering the full realization of speedup benefits from558

the memory savings. In future work, we aim to ad-559

dress this issue by optimizing the implementation,560

such as integrating fusion operators to combine561

dequantization with matrix multiplication.562

References563

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama564
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,565
Diogo Almeida, Janko Altenschmidt, Sam Altman,566
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.567
arXiv preprint arXiv:2303.08774.568

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury569
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.570
2023. GQA: Training generalized multi-query trans-571
former models from multi-head checkpoints. In The572
2023 Conference on Empirical Methods in Natural573
Language Processing.574

Hicham Badri and Appu Shaji. 2023. Half-quadratic575
quantization of large machine learning models.576

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,577
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao578
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,579
and Juanzi Li. 2024. LongBench: A bilingual, multi-580
task benchmark for long context understanding. In581
Proceedings of the 62nd Annual Meeting of the As-582
sociation for Computational Linguistics (Volume 1:583
Long Papers), pages 3119–3137, Bangkok, Thailand.584
Association for Computational Linguistics.585

William Brandon, Mayank Mishra, Aniruddha586
Nrusimha, Rameswar Panda, and Jonathan Ragan587
Kelly. 2024. Reducing transformer key-value588
cache size with cross-layer attention. Preprint,589
arXiv:2405.12981.590

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu591
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao592
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv:593
Dynamic kv cache compression based on pyramidal594
information funneling. Preprint, arXiv:2406.02069.595

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,596
Noah A Smith, and Matt Gardner. 2021. A dataset of597
information-seeking questions and answers anchored598
in research papers. arXiv preprint arXiv:2105.03011.599

Alessio Devoto, Yu Zhao, Simone Scardapane, and 600
Pasquale Minervini. 2024. A simple and effective 601
l2 norm-based strategy for kv cache compression. 602
Preprint, arXiv:2406.11430. 603

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. 604
2024. Qaq: Quality adaptive quantization for llm kv 605
cache. Preprint, arXiv:2403.04643. 606

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 607
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 608
Akhil Mathur, Alan Schelten, Amy Yang, Angela 609
Fan, et al. 2024. The llama 3 herd of models. arXiv 610
preprint arXiv:2407.21783. 611

Razvan-Gabriel Dumitru, Paul-Ioan Clotan, Vikas Ya- 612
dav, Darius Peteleaza, and Mihai Surdeanu. 2024. 613
Change is the only constant: Dynamic llm slic- 614
ing based on layer redundancy. arXiv preprint 615
arXiv:2411.03513. 616

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, 617
and Dragomir R Radev. 2019. Multi-news: A 618
large-scale multi-document summarization dataset 619
and abstractive hierarchical model. arXiv preprint 620
arXiv:1906.01749. 621

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and 622
S. Kevin Zhou. 2024. Ada-kv: Optimizing kv cache 623
eviction by adaptive budget allocation for efficient 624
llm inference. Preprint, arXiv:2407.11550. 625

Yao Fu. 2024. Challenges in deploying long-context 626
transformers: A theoretical peak performance analy- 627
sis. Preprint, arXiv:2405.08944. 628

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue 629
Dong, and Wen Xiao. 2024. Not all heads matter: 630
A head-level kv cache compression method with 631
integrated retrieval and reasoning. arXiv preprint 632
arXiv:2410.19258. 633

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 634
Jiawei Han, and Jianfeng Gao. 2024. Model tells you 635
what to discard: Adaptive KV cache compression for 636
LLMs. In The Twelfth International Conference on 637
Learning Representations. 638

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek- 639
sander Wawer. 2019. Samsum corpus: A human- 640
annotated dialogue dataset for abstractive summa- 641
rization. arXiv preprint arXiv:1911.12237. 642

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju- 643
lian McAuley. 2023. Longcoder: A long-range pre- 644
trained language model for code completion. In In- 645
ternational Conference on Machine Learning, pages 646
12098–12107. PMLR. 647

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, 648
and Akiko Aizawa. 2020. Constructing a multi-hop 649
qa dataset for comprehensive evaluation of reasoning 650
steps. arXiv preprint arXiv:2011.01060. 651

9

https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.11430
https://arxiv.org/abs/2406.11430
https://arxiv.org/abs/2406.11430
https://arxiv.org/abs/2403.04643
https://arxiv.org/abs/2403.04643
https://arxiv.org/abs/2403.04643
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2405.08944
https://arxiv.org/abs/2405.08944
https://arxiv.org/abs/2405.08944
https://arxiv.org/abs/2405.08944
https://arxiv.org/abs/2405.08944
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,652
Michael W. Mahoney, Yakun Sophia Shao, Kurt653
Keutzer, and Amir Gholami. 2024. Kvquant: To-654
wards 10 million context length llm inference with655
kv cache quantization. Preprint, arXiv:2401.18079.656

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-657
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-658
burg. 2024. RULER: What’s the real context size of659
your long-context language models? In First Confer-660
ence on Language Modeling.661

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng662
Ji, and Lu Wang. 2021. Efficient attentions for663
long document summarization. arXiv preprint664
arXiv:2104.02112.665

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-666
sch, Chris Bamford, Devendra Singh Chaplot, Diego667
de las Casas, Florian Bressand, Gianna Lengyel, Guil-668
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,669
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,670
Thibaut Lavril, Thomas Wang, Timothée Lacroix,671
and William El Sayed. 2023. Mistral 7b. Preprint,672
arXiv:2310.06825.673

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke674
Zettlemoyer. 2017. Triviaqa: A large scale distantly675
supervised challenge dataset for reading comprehen-676
sion. arXiv preprint arXiv:1705.03551.677

Greg Kamradt. 2023. Needle in a haystack - pressure678
testing llms. https://github.com/gkamradt/679
LLMTest_NeedleInAHaystack.680

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa681
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.682
2024. Gear: An efficient kv cache compression683
recipe for near-lossless generative inference of llm.684
Preprint, arXiv:2403.05527.685

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris686
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-687
ward Grefenstette. 2018. The narrativeqa reading688
comprehension challenge. Transactions of the Asso-689
ciation for Computational Linguistics, 6:317–328.690

Xin Li and Dan Roth. 2002. Learning question clas-691
sifiers. In COLING 2002: The 19th International692
Conference on Computational Linguistics.693

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat694
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,695
Patrick Lewis, and Deming Chen. 2024. Snapkv:696
Llm knows what you are looking for before genera-697
tion. Preprint, arXiv:2404.14469.698

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,699
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong700
Ruan, Damai Dai, Daya Guo, et al. 2024a.701
Deepseek-v2: A strong, economical, and efficient702
mixture-of-experts language model. arXiv preprint703
arXiv:2405.04434.704

Tianyang Liu, Canwen Xu, and Julian McAuley. 705
2023. Repobench: Benchmarking repository-level 706
code auto-completion systems. arXiv preprint 707
arXiv:2306.03091. 708

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao 709
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril- 710
lidis, and Anshumali Shrivastava. 2024b. Scis- 711
sorhands: Exploiting the persistence of importance 712
hypothesis for llm kv cache compression at test time. 713
Advances in Neural Information Processing Systems, 714
36. 715

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, 716
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and 717
Xia Hu. 2024c. KIVI: A tuning-free asymmetric 2bit 718
quantization for KV cache. In Proceedings of the 719
41st International Conference on Machine Learning, 720
volume 235 of Proceedings of Machine Learning 721
Research, pages 32332–32344. PMLR. 722

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, 723
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng 724
Chen. 2024. Shortgpt: Layers in large language 725
models are more redundant than you expect. arXiv 726
preprint arXiv:2403.03853. 727

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, 728
and Roy Schwartz. 2024. Transformers are multi- 729
state rnns. Preprint, arXiv:2401.06104. 730

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, 731
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan 732
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi- 733
ciently scaling transformer inference. In Proceedings 734
of Machine Learning and Systems, volume 5, pages 735
606–624. Curan. 736

Machel Reid, Nikolay Savinov, Denis Teplyashin, 737
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste 738
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi- 739
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un- 740
locking multimodal understanding across millions of 741
tokens of context. arXiv preprint arXiv:2403.05530. 742

Siyu Ren and Kenny Q. Zhu. 2024. On the effi- 743
cacy of eviction policy for key-value constrained 744
generative language model inference. Preprint, 745
arXiv:2402.06262. 746

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 747
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 748
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023. 749
Code llama: Open foundation models for code. arXiv 750
preprint arXiv:2308.12950. 751

Noam Shazeer. 2019. Fast transformer decod- 752
ing: One write-head is all you need. Preprint, 753
arXiv:1911.02150. 754

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo- 755
han Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, 756
Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy 757
Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 758
2023. Flexgen: High-throughput generative infer- 759
ence of large language models with a single gpu. 760
Preprint, arXiv:2303.06865. 761

10

https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://arxiv.org/abs/2310.06825
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://proceedings.mlr.press/v235/liu24bz.html
https://proceedings.mlr.press/v235/liu24bz.html
https://proceedings.mlr.press/v235/liu24bz.html
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2303.06865

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,762
Yonatan Bisk, Adam Trischler, and Matthew763
Hausknecht. 2020. Alfworld: Aligning text and em-764
bodied environments for interactive learning. arXiv765
preprint arXiv:2010.03768.766

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui767
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,768
and Furu Wei. 2024. You only cache once: Decoder-769
decoder architectures for language models. ArXiv,770
abs/2405.05254.771

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan772
Hong, Yiwu Yao, and Gongyi Wang. 2024. Razo-773
rattention: Efficient kv cache compression through774
retrieval heads. arXiv preprint arXiv:2407.15891.775

Daniel Waddington, Juan Colmenares, Jilong Kuang,776
and Fengguang Song. 2013. Kv-cache: A scalable777
high-performance web-object cache for manycore.778
In 2013 IEEE/ACM 6th International Conference on779
Utility and Cloud Computing, pages 123–130.780

Haoyi Wu and Kewei Tu. 2024. Layer-condensed kv781
cache for efficient inference of large language models.782
Preprint, arXiv:2405.10637.783

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian784
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song785
Han. 2024. Duoattention: Efficient long-context llm786
inference with retrieval and streaming heads. arXiv787
preprint arXiv:2410.10819.788

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song789
Han, and Mike Lewis. 2023. Efficient streaming790
language models with attention sinks. arXiv.791

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin792
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-793
mid kv cache compression for high-throughput llm794
inference. Preprint, arXiv:2405.12532.795

June Yong Yang, Byeongwook Kim, Jeongin Bae,796
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung797
Kwon, and Dongsoo Lee. 2024b. No token left be-798
hind: Reliable kv cache compression via importance-799
aware mixed precision quantization. Preprint,800
arXiv:2402.18096.801

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-802
gio, William W Cohen, Ruslan Salakhutdinov, and803
Christopher D Manning. 2018. Hotpotqa: A dataset804
for diverse, explainable multi-hop question answer-805
ing. arXiv preprint arXiv:1809.09600.806

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali807
Shrivastava. 2024a. Kv cache is 1 bit per channel: Ef-808
ficient large language model inference with coupled809
quantization. Preprint, arXiv:2405.03917.810

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong811
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-812
dong Tian, Christopher Ré, Clark Barrett, Zhangyang813
Wang, and Beidi Chen. 2024b. H2o: heavy-hitter814
oracle for efficient generative inference of large lan-815
guage models. In Proceedings of the 37th Interna-816
tional Conference on Neural Information Processing817

Systems, NIPS ’23, Red Hook, NY, USA. Curran 818
Associates Inc. 819

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn 820
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, 821
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low- 822
bit quantization for efficient and accurate llm serv- 823
ing. Proceedings of Machine Learning and Systems, 824
6:196–209. 825

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia 826
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli 827
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. 2021. 828
Qmsum: A new benchmark for query-based multi- 829
domain meeting summarization. arXiv preprint 830
arXiv:2104.05938. 831

Anni Zou, Wenhao Yu, Hongming Zhang, Kaixin Ma, 832
Deng Cai, Zhuosheng Zhang, Hai Zhao, and Dong 833
Yu. 2024. Docbench: A benchmark for evaluat- 834
ing llm-based document reading systems. Preprint, 835
arXiv:2407.10701. 836

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid 837
Adilazuarda, Ayu Purwarianti, and Alham Fikri 838
Aji. 2024. Mlkv: Multi-layer key-value heads for 839
memory efficient transformer decoding. Preprint, 840
arXiv:2406.09297. 841

11

https://api.semanticscholar.org/CorpusID:269626143
https://api.semanticscholar.org/CorpusID:269626143
https://api.semanticscholar.org/CorpusID:269626143
https://doi.org/10.1109/UCC.2013.34
https://doi.org/10.1109/UCC.2013.34
https://doi.org/10.1109/UCC.2013.34
https://arxiv.org/abs/2405.10637
https://arxiv.org/abs/2405.10637
https://arxiv.org/abs/2405.10637
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2407.10701
https://arxiv.org/abs/2407.10701
https://arxiv.org/abs/2407.10701
https://arxiv.org/abs/2406.09297
https://arxiv.org/abs/2406.09297
https://arxiv.org/abs/2406.09297

A Datasets842

LongBench LongBench (Bai et al., 2024) in-843

cludes 17 datasets covering 6 categories of844

tasks, which can be divided into single-document845

QA (Dasigi et al., 2021; Kočiskỳ et al., 2018),846

multi-document QA (Yang et al., 2018; Ho et al.,847

2020), summarization (Huang et al., 2021; Fab-848

bri et al., 2019; Zhong et al., 2021), few-shot849

learning (Gliwa et al., 2019; Joshi et al., 2017;850

Li and Roth, 2002), synthetic, and code genera-851

tion (Guo et al., 2023; Liu et al., 2023). Long-852

Bench features an average input length ranging853

from 1,235 to 18,409 tokens. For inputs exceeding854

the model’s context window length(8k for Llama-3-855

8B-Instruct (Dubey et al., 2024), we split the data856

and only take the beginning and end segments of857

the input to fill the context window length. Ad-858

ditionally, we reserve sufficient space for newly859

generated tokens based on the specific type of sub-860

dataset. For Q4, we select datasets with sufficient861

data to cover three input length ranges: (<4k, 4k 8k,862

and >8k). These datasets include MultiFieldQA-en,863

2WikiMultihopQA, GovReport, TREC, TriviaQA,864

SAMSum, and RepoBench-P, representing a vari-865

ety of task types. We refer to the three subsets as866

LB-4k, LB-8k, and LB-16k, respectively.867

NIAH Needle-in-a-Haystack(NIAH) (Kamradt,868

2023) is a challenging pressure test designed to869

assess the ability of models to accurate identify and870

retrieve relevant information from lengthy context.871

NIAH randomly inserts key information into an872

arbitrary position within a long essay. In our setup,873

we use PaulGrahamEssays as the haystack and the874

sentence "The best thing to do in San Francisco is875

eat a sandwich and sit in Dolores Park on a sunny876

day." as the needle, which is the default setting877

of NIAH. We vary the essay length from 1,000878

tokens up to the models’ context window limits,879

increasing by 100 tokens per step for Llama-series880

models and 400 tokens per step for Mistral. The881

results are reported as the average score across all882

tests.883

RULER RULER (Hsieh et al., 2024) generates884

synthetic examples to evaluate long-context lan-885

guage models with configurable sequence lengths886

and varying task complexities. It includes four887

task categories: Retrieval, Multi-hop Tracing, Ag-888

gregation, and Question Answering. The dataset889

comprises six subsets with input lengths of 4K, 8K,890

16K, 32K, 64K and 128K tokens. In our experi-891

ments, we use the 4K, 8K and 16K subsets to test892

the models within their context window limits. 893

B Experiment Setup 894

Memory Budgets We report the ratio of com- 895

pressed KV cache and the full KV cache for mem- 896

ory budge. The full KV cache for Llama-3 is 8k 897

KV tokens in 16-bit on both LongBench and NIAH, 898

while for Mistral-v0.2 is 16k KV tokens on Long- 899

Bench and 32k KV tokens on NIAH in 16-bit. 900

KV eviction methods We retain the last 32 901

tokens for StreamingLLM (Xiao et al., 2023), 902

H2O (Zhang et al., 2024b), and SnapKV (Li et al., 903

2024), while keeping 8 tokens for PyramidKV (Cai 904

et al., 2024), as recommended in the correspond- 905

ing paper (Cai et al., 2024). For other settings, 906

we adopt the default configurations from the Pyra- 907

midKV codebase. 908

KV quantization We utilize HQQQuantized- 909

Cache from Huggingface and adjust the group di- 910

mensions of keys and values to implement grouped 911

quantization strategies from FlexGen (Sheng et al., 912

2023) and KIVI (Liu et al., 2024c). We use 64 913

as the default group size which is suggested in 914

FlexGen (Sheng et al., 2023).In the experiments 915

involving outlier filtering, we exclude numbers in 916

the KV cache with a absolute value exceeding 6 917

from quantization, which roughly corresponds to 918

the top 1% of outliers based on our validation set 919

analysis. 920

C More results in Experiments 921

Layer-Wise Quantized Pruning We alse report 922

the results for Mistral-v0.2 in Figure 7, we can see 923

the layer-wise results are similiar to Llama-3. 924

12

[0-4) [4-12) [12-20)[20-28)[28-32)
-25%

-20%

-15%

-10%

-5%

0%

R
el

at
iv

e
C

ha
ng

e

2×tokens, 8-bit in Modified Layers

[0-4) [4-12) [12-20)[20-28)[28-32)
-25%

-20%

-15%

-10%

-5%

0%
1×tokens, 16-bit in Modified Layers

[0-4) [4-12) [12-20)[20-28)[28-32)

-15%

-10%

-5%

0%

R
el

at
iv

e
C

ha
ng

e

2×tokens, 8-bit in Modified Layers

[0-4) [4-12) [12-20)[20-28)[28-32)

-15%

-10%

-5%

0%

1×tokens, 16-bit in Modified Layers

KV Cache Budget=1/64

KV Cache Budget=1/16

Modified Layer Range

Relative Change in LB-Avg Relative Change in RULER-4k

Figure 7: The results of Layer-Wise Quantized Pruning
on Mistral-7B-v0.2-Instruct, with SnapKV as pruning
method. We use 4× KV token 4-bit as baseline and
report the relative change.

13

	Introduction
	Related Work
	Preliminaries
	Experimental Setup
	Optimal Token-Precision Trade-Off
	Further Analysis
	Impact on Task Types and Input Lengths
	Scaling Effect on Quantized Pruning
	Ablation on Quantization Strategies
	Exploration on Layer-Wise Quantized Pruning

	Conclusion
	Datasets
	Experiment Setup
	More results in Experiments

