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ABSTRACT

Best Arm Identification is a very challenging problem in sequential decision-
making with many real-world applications. Existing works typically assume that
all arms are feasible or/and deal with expectation-based constraints with strong
assumptions, loose sample complexity bounds, and non-optimal algorithms. This
paper introduces a multi-task best arm identification problem with risk constraint
in the fixed-confidence setting, where each arm has multiple performance metrics.
The agent aims to optimize one metric while ensuring that the quantiles of other
metrics remain below specified thresholds for each task. We first derive a tight,
instance-dependent lower bound on sample complexity. Based on this bound, we
establish optimality conditions for the static optimal sampling ratio and illustrate
how it balances among different tasks and constraints, while addressing the trade-
off between optimality and feasibility. We derive a Track-and-Stop strategy with
asymptotically optimal sample complexity and a computationally efficient strat-
egy that iteratively solves the optimality conditions. Finally, we extend our results
to the linear bandit setting. Numerical experiments show that our algorithm per-
forms relatively well.

1 INTRODUCTION

In recent years, Best Arm Identification (BAI) has been attracting considerable attention and has
been widely applied in various fields such as chemistry (Bengio & LeCun| [2007; Wang et al.||[2024),
prompt learning (Shi et al.l 2024), recommendation systems (Zhao & Yang| |2024), and A/B/n test-
ing (Russac et al., |2021). In this paper, we consider a multi-task BAI problem with risk constraint.
In this problem, each arm has multiple performance metrics and the agent aims to optimize one of
the metrics while ensuring that the quantiles of the rest metrics remain below specified thresholds
for each task. At each time step ¢, the agent chooses a task, arm, and metric pair to sample, receiving
a reward drawn from the corresponding probability distribution. In the fixed-confidence setting, the
agent must assess the feasibility and optimality of each arm across all tasks, identifying the best arm
for each task with a probability of at least 1 — §, while minimizing the number of samples required.

The multi-task BAI problem with risk constraint has numerous real-world applications. In the con-
text of drug discovery, for example, the experimenter must identify the most appropriate drug for
each disease. A drug has multiple performance metrics, including its curative effect and potential
side effects. The experimenter aims to identify the drug with the best average curative effect while
ensuring that the risk of side effects remains below a certain threshold for each disease. In such
an application, some drugs may be infeasible due to high side effects in rare cases, despite hav-
ing strong average curative effects. The experimenter must consider both optimality and feasibility
while balancing the difficulty of identifying the best drug for various diseases. Additional motivating
examples are provided in Appendix[A.2]

The existing methods in the literature cannot be used directly to solve the multi-task BAI problem
with risk constraint. Traditional BAI models assume that all arms are feasible (Garivier & Kauf-
mann, 2016; Wang et al., [2021) with primary focus on evaluating the optimality of these arms.
They cannot simultaneously address both optimality and feasibility. While some works have tried
to tackle the BAI problem with constraint, their formulations either impose constraints on the sam-
pling rule (Das & Basuj;|Tang et al.||2024) rather than the multiple performance settings we consider
here, or they focus only on expectation-based constraints with very strong assumptions, such as
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linear structure (Shang et al.| [2023; [Wang et al.l |2022) and known objective value (Lindner et al.,
2022)). Previous work on risk-based BAI either uses a risk-based objective for unconstrained prob-
lems (Agrawal et al., 2021) or can only address a single performance metric setting (David et al.,
2018 |Chang et al.| |2020; Hou et al., 2022). Furthermore, the sample complexity lower bounds in
these works are often very loose and the optimality remains elusive.

The contributions of this paper are summarized as follows:

* We propose a multi-task BAI problem with risk constraint applicable to various real-world
problems. We derive a tight, instance-dependent lower bound on the sample complexity
required to guarantee a high probability identification of the feasible and optimal arm for
each task.

* Based on the lower bound, we derive the optimality conditions for the static optimal sam-
pling ratio and discuss how this ratio balances the difficulty across different tasks and
constraints, illustrating the trade-off between optimality and feasibility. Additionally, we
present a closed-form formula for the problem’s hardness by analyzing some challenging
instances.

* We derive a Track-and-Stop strategy for the multi-task BAI problem with risk constraint,
achieving asymptotically optimal sample complexity and a computationally efficient strat-
egy that iteratively solves the optimality conditions. Additionally, we extend our sample
complexity results to the linear bandit setting. Numerical experiments show that the pro-
posed algorithm performs well in comparison to several benchmarks.

Best arm identification. BAI is a widely studied problem in the bandit community (Even-Dar
et al.|[2006; (Gabillon et al.l 2012} Kaufmann & Kalyanakrishnan, [2013)). Our work builds on recent
research on standard BAI, which aims to derive instance-dependent sample complexity lower bounds
and asymptotically optimal strategies (Kaufmann et al.,[2016} Garivier & Kaufmann, 2016} Degenne
et al.,|2019; |Degenne & Koolen, 2019; [Wang et al., 2021). We extend these methods to address the
more challenging multi-task formulations with risk constraint, and the results for standard BAI can
be derived as a special case.

Constrained best arm identification. There is an extensive literature on the constrained BAI
problem. Some works focus on constraints related to the sampling ratio of arms, such as Fair
BAI (Russo & Vannella, 2024) and BAI with Knapsacks (Iran-Thanh et al., [2012; |L1 et al.l [2023))
and other settings (Das & Basuj [Tang et al., [2024)), which differ from our formulation. Others ad-
dress performance-based constraints (Faizal & Nair, 2022), such as in safety linear BAI (Camiller1
et al., 2022; |Shang et al., [2023). However, many of these works center on linear constraints with
stronger assumptions (Lindner et al., [2022)) or requires that constraints be satisfied throughout the
exploration phase (Shang et al., |2023; Wang et al., 2022). Unlike these works, our problem fo-
cuses on pure exploration, where the agent can choose each arm and estimate both its optimality and
feasibility simultaneously. Additionally, some works explore BAI with risk constraint, where formu-
lations typically consider the single performance metric of an arm, using the mean as the objective
function and the corresponding risk measures, such as variance (Hou et al., 2022) or conditional
value at risk (David et al.|, [2018)), as constraints. Our formulation differs from all prior works in that
we consider multi-task BAI with risk constraint in the fixed-confidence setting. Our lower bound
is both tight and instance-dependent, while the sample complexity upper bound of our algorithm
matches the lower bound and is asymptotically optimal.

Multi-objective best arm identification. Our work is also related to multi-objective BAI, which
considers arms with multiple performance metrics. However, different from the previous works that
focus on identifying the Pareto set (Auer et al., [2016; Kone et al.l 2023 2024)), we aim to optimize
one performance metric while keeping the quantiles of other metrics below known thresholds. These
two types of problems have different objectives, and the Pareto set identification algorithm cannot
be used to solve our problem.

2 PROBLEM FORMULATION

In this section, we present the formulation for the multi-task BAI problem with risk constraint and
define the notation used throughout the paper.
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The agent is given M BAI tasks, each with K arms. In each task a € [M] = {1,...,M}, arm
i € [K] ={1,...,K} corresponds to a random vector (X2, Y4,...,Y%) € R¥T!, where each
element represents a performance metric of arm i. Let F}*(-) and Fj(-) denote the cumulative
distribution function (CDF) of random variable X;* and Y}7, respectively, with ' and pf; being

. . ij>
their means. Define the ¢-quantile of Y} as

q(Yi5,¢) = inf{y : Fjj(y) = o} (1)
The agent needs to solve the following optimization problem for each task:
max E[X{] st g(¥j.0) <b. V) € [5]. @)
1€

For notational simplicity, we let I} represent F/%(b) and consider a uniform quantile level ¢ and
constraint threshold b, which can be easily extended to multiple quantile levels and thresholds. For
each task a, let pu* = (uf)icix), Q" = (9(Y3§, ¢))ic(k),jels)- Then, a multi-task BAI problem
instance can be denoted as P = (u®, Q)qe[ar]- We adopt the following widely used assumptions.

Assumption 1. Let S denote the set of problem instances P where a unique best arm i*(a, ’ﬁ) exists
for each task a, and all constraints are active. Assume that P € S.

Assumption 2. The distribution of X' belongs to the single-parameter exponential family. F; )
has a continuous density function.

Assumption E] is widely used in the BAI problem (Garivier & Kautmann, 2016; (Camilleri et al.,
2022), as distinguishing between two arms with identical means or determining whether quantiles
equal to the threshold would require an infinite number of samples. The single-parameter exponen-
tial family (SPEF) in Assumption [2]is general and includes common distributions such as Bernoulli
and Gaussian with known variance. More details about the SPEF can be found in Appendix

In the online setting, at each time step ¢, the agent chooses a task, arm, and metric pair 7t =
(at,it, j') to sample, where j* = S + 1 indicates sampling from the objective function X. The
agent then observes a random sample Z;, drawn independently across tasks, arms, and metrics,
corresponding to the chosen random variable. Let F; = o(n!, Z1,..., 7%, Z;) denote the sigma-
field generated by the sampling decisions and observations up to time ¢.

Remark 1. In the formulation above, the agent observes only one performance metric for each
sample. In contrast, some works in the literature (Hunter & Pasupathy, 2013} |Camilleri et al.|
2022} |Kone et al., |2023|) assume the agent observes a vector of all metrics after pulling an arm. We
focus on the former, as it is more challenging, and the sample complexity scales with the number of
constraints. An extension to the latter case is provided in Theorem[3]

Remark 2. In this formulation, we adopt the multi-task setting. An alternative is to solve each
task individually. However, the mathematical model and analysis of this setting are more general,
enabling extension to scenarios with linear structure across tasks (see Appendix[D.4|for details).

A strategy for BAI is defined by three components: the sampling rule {m’};, where 7t is F;_1
measurable; the stopping rule 7, which is a stopping time with respect to F;; and the decision rule
(ir (@))ae[ar)> Where i (a) denotes the recommended arm for task a when the algorithm terminates.
Let N/ (t),7 € [S]and Niis+n) (t) represent the number of samples of constraint j and the objective,
respectively, for arm i in task a up to time ¢. wg; (t) = N{.(t)/t, j € [S+1] denote the corresponding
sampling ratio up to time ¢. In the fixed confidence setting, given a confidence level § € (0,1), the
agent aims to identify the best arm ¢*(a, P) for all tasks a € [M] with a probability of at least 1 — J,
while minimizing the sample complexity E[r]. To simplify notation, we omit the dependence of
i*(a,P) on P when it does not cause any confusion.

Additional notation. Denote by Q = {w € RfK(SH) D Y ae(My ek jels+1 Wi = 1} DY =
{i € [K]: p§ < (o), V5 € [S],q(Yi5, ¢) < b} is the set of all suboptimal arms, Dj = {i € [K] :
g > g oy 37 € [S],q(Yi5, ¢) > b} is the set of all infeasible arms with better objective value,
and D§ = {i € [K] : pf < pi.(,),3j € [S],q(Y5,$) > b} is the set of all infeasible arms with
worse objective value for task a. Let B{ (i) = {j € [S] : q(V;%,#) < b} represent the indices of
feasible constraints for arm ¢, and B (i) = [S]\ B (¢) represent the indices of infeasible constraints.
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Denote A(P) = {P’' € S : Ja € [M],i*(a, P) # i*(a, P’)} as the set of problem instances where
the best arm for at least one task a differs from that in P. Define kl(p,q) = plog(p/q) + (1 —
p)log((1 —p)/(1 — q)) for p,q € (0,1), and d(p, q) as the Kullback—Leibler divergence between
two distributions in a SPEF with means p and ¢, respectively. A table summarizing the notation is

provided in Appendix

3 SAMPLE COMPLEXITY

In this section, we establish the lower bound for the sample complexity and derive the optimality
conditions for the static optimal sampling ratio. Formal proofs of these results are provided in

Appendix [B]
3.1 LOWER BOUND ON THE SAMPLE COMPLEXITY

In this subsection, we derive an instance-dependent lower bound on the sample complexity E[7].
This bound defines the minimum number of samples required to identify the best arm for all tasks
with high probability. To exclude trivial cases, we assume that for each task a, there are four types
of arms: the optimal arm i*(a), suboptimal arms in DY, infeasible arms with better objective values
in Dg, and infeasible arms with worse objective values in Dj§. Theorem [I] provides the lower bound
on E[7].

Theorem 1. Given a fixed confidence level § € (0, 1), define 15 (o) = arginfy wf(sﬂ)d(uf, i)+
wf*(a)(s+1)d(u§*(a), ). Under Assumptions for any problem instance P € S and any strategy

satisfying P (Va € [M],i*(a) = %T(a)> >1-—9,
E[r] > H*(P)kl(5,1 — 9), (3)

as 6 — 0, we have 2
E[r

liminf ——— > H* 4

B0 log(1/0) — H(P), @

where H*(P)~! = max,,eq mingep min (Vi (w), Vi (w), Vi (w), Vi (w)), with

Vi (w) = Jrg[lsl}] Wi (a); U Fi (a)55 8)
Vi (w) = irgiprg Wf(sH)d(/i?a M?,i*(a)) + wia*(a)(SJrl)d(/j‘?*(a)? N?,i*(a))a
1

V3'(w) = min wid(Fj, ¢),

Vi(w) = min wis+ 1) AHT s 15 4+ (2)) T Wi (a) (541 A 0y K5 i+ (a)) T Z wid(F%, 8).
? JEBS ()

The basic idea behind the analysis of Theorem E] is that we can construct an alternative, indistin-
guishable problem instance P e A(P), which has a different best arm for some tasks. Using
Lemma 1 in|Kaufmann et al.|(2016)), we can derive the number of samples necessary to distinguish
between these two instances. The main insight from Theorem|[I]is that arms with varying feasibility
and optimality contribute differently to the overall complexity, as explicitly derived in Proposition|[I]
for certain challenging instances.

Technical Novelty. Theorem [I|extends the sample complexity results of Theorem 1 in|Garivier &
Kaufmann| (2016) to the multi-task BAI with risk constraint setting. The primary technical novelty
lies in transforming the problem of comparing quantiles with a threshold into one of comparing
the CDF value at a given point with the corresponding quantile level, classifying the arms for each
task into four categories based on optimality and feasibility, and analyzing the sample complexity
for each category. The analysis method is general and can be extended to other formulations, as
discussed in Section[land [E.2]

The lower bound on the sample complexity depends on an J-related constant kl1(d, 1 — ) and the
statistical complexity #*(P). The complexity #*(P) is defined by a multi-level optimization prob-
lem. The inner problem seeks to find a problem instance indistinguishable from P in terms of KL
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divergence, while the outer problem tries to maximize the difference between these two instances
by finding a static optimal sampling ratio

w*(P) = argmax min min (V;*(w), V3'(w), Vit (w), Vi (w)) . (5)
weN  a€[M]

A strategy is optimal when its sampling ratio w(¢) meets w™*(P), we omit the dependence of w*(P)
on P whenever it is unambiguous.

3.2  STATIC OPTIMAL SAMPLING RATIO

In this subsection, we derive the optimality conditions for problem (5) and provide some insights

into the static optimal sampling ratio w*. Denote j(a, i) = arg max;epga ;) d(Fy;, ¢) as the most

distinguishable infeasible constraint of arm 4 in task a. We omit the dependence of j,(a, ) on (a, 1)

whenever it is unambiguous. Theorem 2] establishes the optimality conditions for w*.

Theorem 2. Let My = {i € Dg : d(u, ;) > d(F,,0)} and M5 = {i € D5 :

d(pds 1 e (qy) < d(F,, &)} Assume that D§ = M{ U M3 for each task a € [M], then the

static optimal sampling ratio w* satisfies:

ViH(w") = V3l (") = V3l (") = Vi (")

(wit *“(a )J) d<Fic}‘(a)j7¢> =

(Wis1)) A1, 15 i (a)) T (Wi (@) (541)) A (0)s B i+ () = 275 Va € [M], i € DY UMY

)

3 W:LVCLE[M]
i€EDFUMS i Fiix(a)
(wiy, )" d(Ff, , ¢) = 2",Va € [M],i € Dy U Mjy
(wiy)* = 0,Va € [M],i € DY UMY, j € [5]
(w; )fOVGG[M]aiGDSUMSJ#jh

> 2 > (W)
ac[M]i€[K] je[S+1]
(wis)" > 0,Va € [M],i € [K],j€[S+1]

(6)
Remark 3. MY includes the arms in D4 that are easier to identify as suboptimal than infeasible,
while M$ represents the opposite case. For simplicity, we disregard the case where d(112, ,“;11* ( a))
d(F2 o @), since the optimal solution is not unique, and the solution to equations @ is one of the
optimal solutions.

Insights and illustrative examples. Here we provide some insights on the static optimal sam-
pling ratio w*. First, it aims to balance difficulty and equalize error probability across tasks, i.e.,
Vi (w*) = Vi (w*), for all task a and o’. Second, it seeks to equalize the error probability among
the four types of arms for each task, i.e., V*(w*) = ..., = V/(w™*). Third, for the best arm i*(a),
the optimal sampling ratio is proportional to the difficulty of identification, i.e.,

(8 )/ (8 ) = AEE 01502 0) /AL 015, 0), Ya € [M),j, ' € 18],

Finally, for arms in D{ and MY, it focuses on identifying them as suboptimal, while for arms in
Dg and M3, it focuses on identifying them as infeasible. Illustrative examples are provided in

Appendix D.1]

Hardness of problem instance. The complexity #*(P) quantifies the difficulty of the problem
instance P. However, it is defined through a multi-level optimization problem, making it challenging
to identify the specific factors contributing to the problem’s hardness. To make it more explicit, we
examine some particularly challenging problem instances.

Lemma 1. Define Af = . ) — pif, AL ) = miniepe s (15 o) — 1f), of = ([ 2?dF (a) —
(1)2)2 € (0,00), then for each task a € [M], and arm i € D% U M2, as Ai — 0,
: a a ~a a a ~a (Mg — 'U/?*(a))Q
inf Wi(s+1)d(ﬂi A+ Wz‘*(a)(s+1)d(ui*(a)a Mi*(a)) -

B0, (o) (03 (@)
(a) 2(— + —
“is+1)  Yir(a)(s+1)

)
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Lemma 2. Define AY; = |Ff% — ¢, of, = (F3(1 — Fi‘;-))% € (0,00), then for each task a € [M],
arm i € [K| and constraint j € [S], as A§; — 0,

(F5 — ¢)°
2(0“ )2

j

d(Fy, ¢) — ®)

Lemma [[] and Lemma [2] show that as the problem instance becomes increasingly difficult, the KL
divergence can be approximated using only the first two moments. Using these two lemmas, we can
derive both an upper and lower bound for H*(P) in the following proposition.

Proposition 1. Define

24— (U?“(a)j)2 (03)2 (Ugjh,)Q 9
B Z Z (NG 3 T Z (A)? + Z (Ax )2 | ©)
aE[M] ; z*(a) ) ; a a s (3 ; a a 1Jh
J€[8] J i€DIUMGU]i* (a)} i€DIUMS

For the problem instance P with A§ — 0,Va € [M],i € D UMY, and Aj; — 0,Va € [M],i €
[K],j € [S], we have 2H < H*(P) < 4H.

Propositionprovides better insight into the magnitude of 74*(P). For the best arm i*(a), the prob-
lem’s hardness depends on the feasibility gap across all constraints. For suboptimal and infeasible
arms in D§ and M, it depends on the variance and optimality gap, while for infeasible arms in D§
and M9, it is determined by the feasibility gap of the most distinguishable constraints. Addition-
ally, Proposition[I]leads to a sampling ratio in Lemma 3] which is proportional to the identification
difficulty.

Lemma 3. For the problem instance P with A¢ — 0,Va € [M],i € DYUMY, and A; — 0,Va €
[M],i € [K],j € [S], consider the static sampling ratio & with

gy = ) M, 5 € [S)
i*(a)j H(A?*(a)j)27 9
~a (01(1)2 . a a -k
G5 = HADE Va € [M],i € D UM U {i*(a)} (10)
[t :M Va € [M],i € D UM$
LJh H(A?jh)w ) 2 2

@f = 0 otherwise. Define H(P,&) ™" = minge (g min (ViH(@), VaH(@), V@), ViH(@)), then we
have H(P,®) = O(H), where O(-) represents the suppression of certain constants.

Comparison to previous work. The most related work to ours is |Garivier & Kaufmann| (2016),
which considers the unconstrained, single-task BAI problem. Their formulation is a special case of
ours with M = 1, D§ = D§ = (), and the agent knows that all arms are feasible. In this case,
Theorem 2] reduces to w* € €,

(wigs11)) " d(pis piiv) + (Wis (541)) " d(pis, pii=) = 2, Vi € [K]\ {i"}

Z d(pi= pii=) _ 1 (1)
d iy M,5* ’
ety 0t i)

recovering their main results given in Theorem 5 of |Garivier & Kaufmann|(2016).

4 THE OPTIMAL STRATEGY

In this section, we propose an asymptotically optimal strategy and a computationally efficient strat-
egy for the multi-task BAI problem with risk constraint. Formal proofs for all the results in this
section are provided in Appendix
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4.1 TRACK-AND-STOP STRATEGY

We extend the Track-and-Stop strategy proposed in |Garivier & Kaufmann| (2016) for solving the
unconstrained, single-task BAI problem. The main novelty lies in deriving a new sampling rule by
solving the equations in (6) and a stopping rule that incorporates the influence of multiple tasks and
risk constraints.
Sampling rule. From the analysis of Theorem [l the constraint q(Yi‘]‘»7 ¢) < b is equivalent to
Fj; > ¢. Therefore, a problem instance can be represented as P = (pn°, F“)GG[M] with F'¢ =
(F¥))ie(x1,jels)- Define
1
() = o= Y Zl(a® = a,i® =i,5° = S+ 1),
Nitsn(®) £
. 1 ;
> U(Z, <b)l(a® = a,i® =1i,j° = j),

a
s<t

12)

ij (t) = Nf; (t)

and let P(t) = (a*(t), Fa(t))ae[ ) denote the empirical problem instance. The static optimal
sampling rule w*(P) is not implementable because it depends on the unknown parameters P. A
natural approach is to plug in the estimate P(¢) and track the empirical optimal sampling ratio
w*(P(t)). The sampling rule can be defined as

ot _ { argmin, ; »ep, N5 (t) if Uy # 0 (13)

argmax q ; j)e[m)x [k x[s+1) Hwis) " (P(£)) = Nj(8)

with Uy = {(a,i,j) : Njj(t) < Vt— MK (S +1)/2}. Since the computation of w*(P(t)) depends

on the empirical sets {i*(a, P(t))} and D¢(t), the algorithm will, for simplicity, apply an equal
sampling rule when either of these sets is empty for some task a.

The sampling rule chooses each (a, %, j) pair at least Q(1/7) times overall. Asymptotically, P(t)

converges to P* and w* (P(t)) converges to w* (P).

Algorithm 1 Track-and-Stop Strategy

1: Initialization. Pull each (a, i, j) € [M] x [K] x [S + 1] ng times.

2: Sett < ngMK(S + 1), and update P(t), w* (P(t)), Ur, N5, (1), Ni5(1).
3: whileinfs_ 5y, f(P(t),P) < B(t,5) do
4.

ot _ { argmin, ; » N5 (t) if Ui #Qor3a e [M],{i*(a,P(t))} = 0 or DE(t) =

argmax, ; - t(ws;)* (P(t)) — Ni(t)

Sample the **! and obtain one observation Z; 1.

Sett <=t + 1, and update P(t), w*(P(t)), Ur, N g1 (t), Nij(1).
end while . .
Output. Select i, (a) = argmax;c(g) 47 (7) st. (1) > ¢, Vj € [S], as the best arm for
each task a € [M].

@R W

Stopping rule and decision rule. We derive the stopping rule using the generalized likelihood ratio
test method. Define

fP@.P) = Y Niissny Od(@g (), i) + Y NE@OAEG 0, F5) |, (14
a€[M),i€[K] J€[S]
andlet 7 = inf{t € N :infz_ 4p(4) f(P(t),P) > B(t,8)}. The algorithm stops only if the GLS
statistic exceeds the threshold j3(t, 9). Lemma establishes the statistical validity of the stopping
rule. For the decision rule, we use P(t) to determine the best arm for each task a € [M].
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Lemma 4. Given a fixed confidence level 6 € (0,1) and o > 1. There exists a constant
Cla, M, K,S) such that for any sampling rule {w'},, using the stopping rule with 3(t,5) =

log (S£%), then for all problem instance P € S, P (Ha € [M),ir(a) # i*(a)) < 0.

Sample complexity. The following theorem establishes the sample complexity upper bound for Al-
gorithm[I} Combined with Theorem(I] this allows us to conclude that Algorithm [I]is asymptotically
optimal.
Theorem 3. Under Assumptions[I\2] for problem instance P € S, Algorithm[l]satisfies
E[7]
limsup ———= < H*(P). (15)
P ios1/n) = )

Remark 4. The intuition behind Theorem [3]is that as 6 — 0, the exploration step ensures each
metric is sampled infinitely often, while the sample complexity required to eliminate randomness
becomes negligible. Meanwhile, the tracking procedure ensures the empirical sampling ratio con-
verges to the static optimal ratio, making the upper bound asymptotically matching the lower bound.

4.2 AN EFFICIENT STRATEGY

While the Track-and-Stop strategy is asymptotically optimal, it incurs high computational costs due
to the need to solve an optimization problem at every iteration. To address this, we propose a more
computationally efficient strategy based on the optimality conditions outlined in Theorem 2}

Sampling rule. For each task a € [M], define

w'?(SJrl)(t)d(:u’?a Mﬁi*(a)) + W?*(a)(sﬂ)(t)d(u?*(a), Mii*(a))a ifi e DY UMS, j =[S +1]
W (4 (O A(FE ()5 )i i = i*(a), j € [S]

a,i,j Pa t)) = .
Said (PO =0 e Wa(rs | o). ifi € D3 UM, = jn

ijn
o0, otherwise.
(16)

The optimality conditions in Theorem aim to equalize s,,; j(P,t), which is non-decreasing with
respect to the corresponding sampling ratio. Consequently, a natural strategy can be derived by
iteratively solving these conditions. Define

(at,i*, ") = arg min Sq,i(P,w(t)). (17)
(a,1,7)E[M]X[K]X[S+1]

The sampling rule is to choose (a', i, j*) if i* € D§ U MG U {i*(a)} or i’ € D U M§ with

Nk (¢ (1) - (Wi (ay;0)" (P) (18)
Ni(i(a)jt(t) + Nit e (t) (w;l*(a)jf)*(,])) + (W?tjt)*(P)

and choose (a', i* (a), j*) otherwise. In its implementation, we can use P(t) to estimate P and adap-
tively update the sampling ratio. This strategy is similar to the BestChallenger method in |Garivier,
& Kaufmann| (2016), with an extension to the multi-task and risk-constrained setting based on the
results in Theorem 2]

5 NUMERICAL EXPERIMENT

In this section, we conduct numerical experiments to evaluate the performance of the proposed
algorithms. Additional experimental results and further details are provided in Appendix

Two experiments with different configurations are considered. The first experiment involves a Gaus-
sian bandit, and the second involves a Bernoulli bandit. Each experiment consists of 2 tasks, 4 arms,
and 1 constraint. Arm 1 is the best, while arms 2, 3, and 4 are suboptimal and infeasible with a
better mean, and infeasible with a worse mean, respectively. The detailed parameters of the problem
instances are summarized in Appendix

Since no existing methods can directly be applied to solve our problem, we propose the following
benchmarks for comparison:
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Figure 1: Empirical sample complexity for 1000 runs with 6 = 0.1 and ny = 10 for Gaussian bandit
(left) and Bernoulli bandit (right).
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0 25000 50000 75000 100000 125000 150000 175000 200000
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Figure 2: Change in empirical sampling ratio for ESR strategy in Gaussian bandit.

e Equal Sampling Rule (USR): sampling each task, arm, and constraint/objective pair
equally.

* Approximate Sampling Rule (ASR): using the sampling ratio proposed in Lemma([3] which
is proportional to the difficulty of identification.

¢ Frank-Wolf Sampling Rule (FWSR): extending the state-of-art strategy for unconstrained,
single task BAI (Wang et al., 2021) to the multi-task BAI with risk constraint setting.

The pseudo-code for all strategies, along with the derivation of the Frank-Wolfe strategy, can be
found in Appendix [D.3] We refer to the Track-and-Stop strategy as the Exact Sampling Rule (ESR)
and the efficient strategy in Section[4.2]as the Sequential Sampling Rule (SEQSR).

Figure[T]illustrates the empirical sample complexity for 1000 independent runs of various strategies
across two experiments, with = 0.1 and ny = 10. For all experiments, we use the same stopping
rule with 3(¢, ) = log(log(t) + 1)/d, which is suggested in |Garivier & Kaufmann|(2016)), and is
also used in [Degenne et al|(2020) and (Wang et al., 2021). The SEQSR and ESR outperform or are
comparable to other benchmarks. Figure [2| shows the change of empirical sampling ratio relative
to the total sample size for ESR strategy in Gaussian bandit. As the total sample size increase, the
empirical sampling ratio converges to the static optimal ratio, confirming the asymptotic optimality
of the ESR sampling ratio. The conclusion remains consistent across different hyperparameters
no (D.5)), confidence levels d (D.6), and on a larger example (D.8). The computational efficiency of
ASR, FWSR, SEQSR, and USR is comparable and significantly higher than that of ESR (D.7).

6 EXTENSION TO LINEAR BANDIT

In this section, we address the multi-task linear BAI problem with constraint and show that Theo-
rem|I]extends naturally to the linear bandit setting.
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In the linear bandit setting, arm ¢ corresponds to a vector x; € R<. For each task a € [M], arm ¢ has
multiple performance metrics (X2, Y4, ...,Y4) € Rt that exhibit a linear structure. Another
formulation that incorporates the linear structural information across tasks is provided in Theorem 6]
of Appendix [E.2]

Assumption 3. There exist unknown parameters 0, ...,0% | € R satisfying X¢ = x10% | +&?
and Yj = zZTH? + 55, where ef ~ N(0,(a{)?), €f; ~ N(0,(08;)?), |will2 < 1,Vi € [K], and
022 <1,Ya € [M],j € [S+1].

The agent needs to solve the following optimization problem for each task

T pa T pa .
m T'g 1ozl <b, VjelS]. 19
ie[a}g% st1 SLowp by < j €[S] (19)

Theorem [ extends Theorem [I] to the linear setting, providing a lower bound on the sample com-
plexity E[7].

Theorem 4. Given a fixed confidence level § € (0,1). Under Assumption (3| for any linear BAI
problem instance P € S and any strategy satisfying P (Va € [M],i*(a) = %T(a)) >1-4,

Elr] > H*(P)ki(5,1 - §), (20)
:El:ET a _ a 17177'
where A} = Zie[K] Wiy (U%)Q,ASH = Zie[K] Wiis11) oFyE
]. bfxg;a0@2 i — . Tga 2
#H*(P)~' = < sup min min [ min T( aa )1 i , min (@i — @ (a))2 1) ’
2 weqaelM] \ GelS) . (o) (AF) 1Ty EDE i = @i ag, )1
(2D
b—xT@‘?Q i Li*(a To¢ 2 b—.I‘TGL-IQ
min > (T o _]1) . min ((x} Tir@) B841)" | 3 (TA% .
D5 B o) zj (A})~tw; €Dy ||ac,—aci*(a)||(A%+l)71 jeBg(xi)xi( oIz,

7 CONCLUSION

We study the multi-task BAI problem with risk constraint in the fixed-confidence setting. We pro-
vide a lower bound on sample complexity, derive the optimality conditions for the optimal sampling
ratio, extend the Track-and-Stop strategy with an upper bound asymptotically matching the lower
bound, and derive an computationally efficient strategy. Numerical experiments demonstrate that
our algorithm outperforms relatively well. Some potential future research directions include: 1) to
derive the optimal strategy in the fixed-budget setting or to design efficient algorithms to address
the optimization problem associated with the sample complexity lower bound; 2) to consider per-
formance constraints on the arms as well as constraints on the sampling ratio, such as fairness and
resource constraints.
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A NOTATION AND MOTIVATING EXAMPLES

A.1 TABLE OF NOTATION

Table [T] summarizes the notations and their meanings used throughout the paper.

A.2 MOTIVATING EXAMPLES

In this subsection, we present motivating examples for our problem formulation.

* Drug discovery. In drug discovery, each drug (arm) has multiple metrics, like efficacy and
side effects. The experimenter can choose one metric to evaluate via clinical experiments
in each iteration. The goal is to identify the drug with the highest mean efficacy while
ensuring side effect risk (quantile-based) stays below a threshold for each disease (task).

* Supply chain management. In supply chain management, each supplier (arm) has multi-
ple metrics, such as total cost, delivery reliability, and product quality. Since monitoring a
metric incurs additional costs, companies can evaluate one metric per iteration. The goal is
to identify the supplier with the lowest mean total cost while ensuring the risk of significant
delays or quality issues (quantile-based) stays below a threshold for each product (task).

* Financial risk management. In financial risk management, each investment strategy (arm)
has multiple metrics, such as return, volatility, and drawdown. The decision-maker can
evaluate one metric per iteration. The goal is to identify the strategy with the highest mean
return while ensuring risk metrics (quantile-based) remain below a threshold under each
market condition (task).

12
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Table 1: Notation

Notation Meaning
M, K,S Number of tasks, arms, and constraints, respectively
X7 Random performance in the objective function of arm ¢ under task a
Y5 Random performance in the j-th constraint of arm ¢ under task a
Fe(), FE () Cumulative distribution function of X" and Y%, respectively
i s 1 Expectation of X" and Y7, respectively
q(Y3, 0) The ¢-quantile of Y}, with ¢ € (0,1)
T Stopping time of the algorithm
ir(a) Arm identified as the best for task a upon algorithm termination
N (t) Number of samples of constraint 7 for arm 7 in task a up to time ¢
N fz S+1) (t) Number of samples of the objective for arm ¢ in task a up to time ¢
wiy(t) Sampling ratio up to time ¢
The confidence level § € (0,1)
Dy Set of all suboptimal arms for task a
Ds Set of all infeasible arms with better objective value for task a
Ds Set of all infeasible arms with worse objective value for task a
(1) Indices of feasible constraints for arm 3 in task a
B4 (4) Indices of infeasible constraints for arm ¢ in task a
d(p,q) KL divergence between two distributions with means p and ¢
P A BAI problem instance P = (u®, Q%) ac|a
i*(a,P) Best arm under task a in problem instance P, often denoted by i*(a)
A(P) Set of alternative problem instances of P
Jn(a, i) The most distinguishable infeasible constraint of arm 7 in task a
w*(P) The static optimal sampling rule for problem instance P
2o (t) Empirical estimate of u® = (uf);c[x) at time ¢
F:‘a t) Empirical estimate of F'* = {Fi(;'}ie[K],je[Sj at time ¢ )
P(t) Empirical estimate of instance P at time ¢, P(t) = (f1*(t), F*(t)qc[m]

De(t), D4(t), Dg(t) Empirical estimate of sets D¢, Dg, D¢ at time ¢

B SAMPLE COMPLEXITY ANALYSIS

B.1 PROOF OF THEOREM[I]

Theorem Given a fixed confidence level § € (0, 1), define 1 i () = BT8 inf} wf<s+1)d(u?, Q) +
w;‘*(a)(sﬂ)d(u;i(a), ). Under Assumptions for any problem instance P € S and any strategy

satisfying P (Va € [M],i*(a) = %T(a)> >1-9,
E[r] > H*(P)ki(,1 - §), (22)

as 6 — 0, we have

o El7] .

where H*(P)~! = maxg,eq mingeppy) min (Vi (w), Vi (w), Vi (w), Vi (w)), with

Vi (w) = Jnel[lg}] wg*(a)jd(Fili(a)ﬁ ),

Vi(w) = Z.Igli)% Wf(sH)d(N?a M?,i*(a)) + Wf¥(a)(s+1)d(/v‘?*(a)v Mf,i*(a))a
1

VSa(w) = ngang - . w%d(Fz%,¢),
JeB5 (i)
Vil (w) = fggé Wis41) A 15 5+ () + Wi (a) (541 DB (a) s i i (a)) T+ Z wi;d(F5, ).

jeB3 (i)

13
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Proof. Consider the original optimization problem in (2)),

max E[X{] st q(YZ ¢) <b, Vje[S]. (24)
1€

According to Assumption 2} the CDF F%(-) has a continuous density function, then by definition,
we have q(Y}%, ¢) = (F;;)‘l(qb)

Therefore, the constraints are equivalent to

(F5) (@) <b, Vje[S), (25)

which is also equivalent to
Fj(b) = ¢, Vj € [S]. (26)
By the definition of CDF, we have I (b) = E[I(Y;% < )], and the original optimization problem is

equivalent to
max ELX] st B[V <)) > 6, V) € 13], 27)
1€
where [(+) is the indicator function, it takes on the value 1 if - is true, and 0 otherwise. For notational
simplicity, we let £ represent £} (b).
Let P = (u®, F*)qc|n) represent a problem instance, A(P) = {P’ € S : Ja € [M],i*(a,P) #
i*(a,P")}.

In the fixed confidence setting, for a problem instance P € S, the algorithm needs to satisfy that,
P(3a € [M],i-(a) # i*(a, P)) <6, (28)

and for any problem instance P € S,

P(3a € [M],ir(a) #i*(a,P)) > 1. (29)
Define
w P, P Z Z z(S+1)d :uz 7“’1 Z wz]d Fz(;vFa . (30)
a€[M]i€[K] J€[S]

Then, we can obtain that

> Z Nito oy (Pd(pg i) + > B[N (7)|d(Fg, F)

ac[M]ic[K JE[S]
€2y
7Y D [ wisnydud 1) + > whd(FE, FS)
ac[M]i€[K] JE[S]
= E[T]f(w,P,P).
According to the Lemma 1 of [Kaufmann et al.[(2016), we have
E[r]f(w,P,P) > KI(6,1 - ),VP € A(P). (32)
Then we can obtain that
KI(6,1—06) <E[7] _inf f(w,P,P) <E[r]sup inf f(w,P,P). (33)

PEA(P) weQ PEA(P)

According to (31)), we have

E[r] sup _ inf Z S wispnydud 59 + > whd(FE FS) | > KI(6,1—6). (34)
weN PeA(P) M) i€[K] 5E[S]

Therefore, we conclude that
E[r] > H*(P)kI(4,1 — 9), (35)

14
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where

H*(P)"! = sup _inf Z Z wiis1yd(uss i) Z wisd( FZ‘;,F“ . (36)
weQ PEA(P) ac[M] i€[K]

Next, we provide a detailed analysis on H*(P). For each task a € [M] and constraint j € [S],
define

C’L *(a,P)j — {(I"'a ) F *(a,P)j < ¢} (37)

For each task a € [M] and arm ¢ € [K] \ {i*(a, P)}, define

Ct = (i F): if = i o0y, Ffy = 0,¥5 € [S]}, %)

where (f1, F) = (%, ﬁ"‘)ae[ M = P denote the problem instance P.

Then we can represent A(P) as the intersection of some subsets.

A(P) = {(, F) : 3a € [M),i" (a,P) # " (a, P) }
= U {@F):it@p) £ P)]

a€[M]
_ S S BE[EN\{i*(a,P)},
= ({(HaF) gEVAS [S] *(aP < ¢} U {( ) ﬁ‘;z/lf*(a,p),F%zd),VjE[S]})
a€[M)]
= U Cars | U U o
a€[M] JE[S] i€[K\{i*(a,P)}
(39)
Define G(w, P) = infs 4(p) f(w,P,P), according to |i we have
G(w,P) = min min <m1n u , P min M w, P ) , 40
(P = S8 S @Pa P g ity 1P 40
where f7. , p);(w,P) = infﬁec;;(a o f(w,P,P), fi(w,P) = infpece flw,P,P).
By the definition of C7. , 5, and Cf, we have
fiap)w,P) = inf F(w,P,P) = Wity ), A F (09> D)5 (41)
PECap)i
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and
min Hw, P
ie[K\{i* (a,P)} Ji(w. )

= min inf f(w,P, P
i€[K]\{i*(a,P)} Pecs g )

= min inf s wzdFla,Fa
i€[KN\{i* (a,P)} Beca 2 2 | Wlsrnydlul i)+ D wiid(E

i ge[M]i€[K] JE[S]
= min | min inf w d(ud, @?), mln inf Z wid(F F“)
i “ i(S+1) i Hg )y W5
( i€DY Pecy i€[K) D3 pecy ic[K] €[]
min inf w wid(F F“
b a5 i(S+1) :U/z ?/’Lz Z ij 70 )
i€P8 Pect k) jels)

min (Z%HDI% ﬁ?ggﬁg(a) W?(S+1)d(,u;’l7 fii) + w?*(a)(s+1)d(ﬂg*(a)v ﬂ?*(@%

min wi;d(F5, ¢),
min _ inf )w?(s+1)d(ﬂz§l,/1§1)+Wf*(a)(s“)d(ﬂf*(a)vﬂ?*(a))+ > d(FJAb))

JEB(4)
= min(Vy'(w), V3'(w), Vi (w)).

, where the last equality is from the Lemmal[3] @
Then, we conclude that
G(e.P) = min min (Vi"(w). V(). Vi (). V{ () @3)
and
H(P)™! = max min min (V] (w). V§'(w). V' (). Vi'(w)). (44)
O

B.2 PROOF OF THEOREM [2]

Lemma 5. D.eﬁne g(w) = infzespa % f(sﬂ)d(u?,ﬂ;i) + Wik (o) (541 AW () e (o) and
1 e (a) = arginf; wf(sﬂ)d(,ui J ) + Wl *(a)(S+1)d(l’qu*(a)’ ii), then we have

9(w) = Wits 1) A1 1= (a) F Wit (a)(5+1) UG- (0 Hi i (a)):

a a a a a 45
o 9(w) = d(y; :Ni,i*(a))v &079(‘*’) = d(ﬂi*(a)aﬂi,i*(a))- )

0wy i (a)(S+1)

2(S+1)
Proof. Since both d(u?, i) and d(,u?*(a)7 ft) are decreasing in (—oo, u¢), and are increasing in
(1. (4)s F00), then it is sufficient to search the infimum in the interval [1f, pg.. )] Therefore, we
have

gw)=_ inf  wig,nd(uf, 47) + Wik (@) (s+1) U1 (a)s A (a))
>0
= ﬁe[ﬂiffa ]Wfb(sH)d(M?a 1) + Wik (a) (541 A= (a) 1)
P oy (46)

= i%f wis+1) A1 1) + Wi 0y (541) UK (a) 0 )

= w541 AT 15 i (@) + Wi (a) (511) A (a) 2 5% (a) ) -
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In our analysis, we assume that d(u¢, i) is strictly convex function of i, Va € [M],i € [K], which
is satisfied by many distributions in SPEF such as Bernoulli, Gaussian with known variance and
Gamma with known shape parameter (Juneja & Krishnasamyl, [2019). Therefore, u;” i*(a) is the
unique solution of

Ad (s 1 o () Ad(pi (a)s i+ ()

(JJ,EZ A a + OJ?* a = 0 (47)
(5+1) 8“7:,1'*(@) (a)(5+1) ops.,. @
Then we can obtain
0
7 9(w)
a‘*’z(5+1)
A ) (8 0ds Mo @) 0d (4 (a)» “?,i*<a>)) Opiic@ (48)
AVIRY i(S+1) " a0 i*(a)(S+1 a
i,i* (a) i( ) aul i+ (a) (a)( ) 8Mi,i*(a) awz(S+1)
= d(:u’?7 /’Liz*(a))
We can also obtain ﬁg(w) = d(p. () 15 - (a)), which concludes the proof. O
i*(a)(S+1 )
Lemma 6. The optimization problem
max min min (V}*(w), V5! (w), V' (w), Vi (w)), (49)

wER ac[M]

is a convex optimization problem.

Proof. According to the proof of Theorem|l} we have

H*(P)~! = max G(w,P)

we

= max min min (mm [ apyj (@ P), min fia(w773)>

W€D ac[M] JELS] i€[K\{i*(a,P)} (50)

= max min min [ min inf f(w,P,ﬁ), inf f(w7’P,75) ,
weQ ag[M] JEISIPECL , py; Pece

where
Cliapy; = L F) s Flypy; < 0}, CF ={(i, F) 1 il > i oy, FYy > 6,V5 € [S]} (51)

and

Fw, P P)y= > > | wheind(ud, i) + Y whd(Fy, Ff) (52)

a€[M]ic[K] JE[S]

For each P, f(w,P,P) is a concave function of w. Since G(w,P) is the infimum of concave
functions, it is also concave. 2 is a convex set, consequently, the corresponding maximization
problem is a convex optimization problem. O

Theorem@ Let M{ = {i € D§ : d(uf,uf () > d(FY,.¢)} and M§ = {i € D :
d(ps 1 (o)) < d(F,, @)} Assume that D3 = M7 U M for each task a € [M], then the
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static optimal sampling ratio w* satisfies:
Vit(w") = V3 (w") = V3" (w") = Vi ("
(W?*(a)j)*d( ici(a)jw ¢
(Wi(s+1)) A 15 4+ (0)) + (Wi () (541)) A (05 i 42 () = 275 Va € [M],i € DY UMY
)

> d(f W tr@) _y g, e )
i€DFUMS (s i z*(a))
)7 d(F,

(wljh

,¢) = 2",Va € [M],i € D3 UMS§

(wf)* = 0,Ya € [M],i € Df UM, j € [S]
(wy)* =0,Va € [M],i € Dy UMS,j # ju

S OY )

a€[M] i€[K] j€[S+1]

(wi;)* > 0,Ya € [M],i € [K],j € [S+1].
(53)

>i<:17

Proof. The static optimal ratio can be obtained by solving the following optimization problem

max min min (Vi (), V2'(w), V3'(w), Vi), (54)

which is equivalent to

maxz
St Wl g d(FE 0 8) > 2 Ya € [M],j € [S] (\ea),)
Wis11) 1T s 1 ix (a)) T Wi (@) (541 U B (a)s Hiix (@) = 2, Va € [M],i € DY (AF)
> whd(FY,¢) > 2, Va € [M],i€ DS (A
JEBS(4)

Wf(s+1)d(uf7ﬂ?,i*(a))+w?*(a)(s+1)d(/1i (a), pi 7,*((1 + Z W d FJ,¢ (55)
JEBS ()
Va € [M],i € D§ (A})

YD D W= W)

a€[M]i€[K] jE€[S+1]
W = 0,¥a € [M)i € [K],j €[S +1] (o):

The KKT condition of this problem includes the following four part:

* The stationary condition:

PO IR DD DI (56)

ac[M] j€[S] a€[M]i€DFUDSUDYG

Al (@ UES ()55 @) + Pieay; = v, Va € [M],j € [S] (57

ALy 13- (o)) + Plg41y = v, Va€[M],i e DY UD; (58)
Z AL A1 (ays B (a)) T Pix(ay(s41) =V Va € [M] (59)

i€DFUDS

N d(F, ¢) +pf; =v, Vae[M],ieDyUDs,je B5(i) (60)

* The complementary slackness condition:

18
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Xy (98 g F 0y 0) = 2) =0, Va € [M],j € [9] 1)

AL ( ise) A 1 50 (a)) F Wik () 51y A (145 ()u“*(a))—z) =0, (62

Ya € [M ] e Df 63)

XD whd(FS.¢)— 2 | =0, Vae [M],icDj (64)
JEB3 (D)

)‘;1( z(S+1)d(/1‘z7:u’z z*(a)) +w; *(a)(S+1)d( *(a)’ ) My z*(a))

+ 3 whd(FS,¢) - ):0, Va € [M],i € D¢ (65)
]EB“(Z)
pz] zj O Va € [ ] [K]aj € [S+ 1] (66)

* The feasibility of dual problem:

)\lil*(a)j 2 O, Va c [M]ﬂ] € [S] (67)
Ay >0, Va € [M],i € Df UDSUDy (68)
pi; >0, Vae[M],ic[K],je[S+1]. (69)

* The feasibility of the original problem (33).

We can derive the optimality equations in Theorem [2] by solving the KKT condition.
First, for each task a € [M], it is easy to observe that

(wij)* =0,Vi € DY, j € [S]

(wiy)* =0,Vie Dy uUDs,j € Bi(i) (70)
(W(s41)))" =0,Vi e D3.
Since we can find a feasible solution ww = 1/MK(S + 1) and the corresponding objective value

z > 0. Then any solution with z = 0 is not optimal.

According to the constraints in problem (55), we have z = 0 if Ja € [M],5 € [9], Wik (497 = 0,

orJa € [M],i € D}, wig,;) = 00r w41y = 0. Therefore, we have (wi. ,);)* > 0,Va €
[M],j € [S] and (wf(s+1))*.> 0, (Wi (a)(s41))* > 0,Va € [M],i € Df. Acconing to , we
have pf. ), =0,Va € [M],j € [S]and pf( g 1) = 0,pf. () (511) = 0,Va € [M],i € Dy.

Consider the arm i € D§ U DY, according to (60), we have
)‘?d(FZ”¢)+pgj:l/a Vae[M],ieDSUDﬁ,jEBg(i). (71)

Since j, = arg max;ega ;) d(F5}, @), then in order to satisfy , we have

pi; > 0,Va € [M],i € Dy UD3, j € B3(i),j # jn- (72)
According to (66), we have
(wiy)* = 0,Va € [M],i € Dy UDS, j € By (i) \ {jn}- (73)

By combining (70) and (73), we can obtain that
(wi;)* = 0,Yi € D3, j # jn. (74)

Now, we prove that A% > 0,Va € [M],j € [S], and A > 0,Va € [M],i € D UDg U Dg.

i*(a)j
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e )@

i*(a

); > 0,Va € [M],j € [S]:

Since we know that (wf,);)* > 0 and p. ). = 0, assume that Ja € [M],j €
[S], Af.(y; = 0, then according to , we have v = 0, which will lead to AL, ), =
0,Ya € [M],j € [S] and A} = 0,Va € [M],i € D U DS U DY in order to satisfy

-. This contradicts , and we conclude that A% ). > 0,Va € [M],j € [S].
* N >0,VYa € [M],i € D} UDS:

[M],i € D}, A\? = 0, then according to (58), we have v = 0, which will lead to /\?*(a)j =

0,Va € [M],j € [S]and A = 0,Va € [M],i € D{UDSUDY in order to satisfy (57)-(60).
This contradicts (56), and we conclude that A\¢ > 0,Va € [M],i € DY. For i € Dj, the
analysis is the same, hence we omit it.

For ¢ € D¢, since we know that (wf(s* > 0 and p?(s+1) = 0, assume that Jda €
58

* A\ >0,VYa € [M],i € Dg:

Itis easy to see that (Wi g 1))" > 0, (W () (541))" > 0or (wij, )* > 0, otherwise, we will
have z = 0, which will not be the optimal solution. Assume that Ja € [M],i € D, \¢ =
0, then for the first case (wf g 1))" > 0, (Wil (4)(s41))" > 0, according to (66), we have
pf(S_H) = 0. According to , we have v = 0, which will lead to )\;ﬂ(a i = 0,Va €
[M],j € [S]and A¢ = 0,Ya € [M],i € D{ UDS§ U D§ in order to satisfy (57)-(60). This
contradicts (56). For the second case (wfjh)* > 0, according to , we have p; = 0.
Then using (60), we can obtain v = 0, which will lead to A% ), = 0,Va € [M],j € [S]
and \? = 0,Va € [M],i € DfUDSUDY in order to satisfy —. This contradicts .
And we conclude that Ay > 0,Va € [M],i € Dj.

Since ALL(,y; > 0,Va € [M],j € [S], and A > 0,Va € [M],i € Df UD5 U DS, according to the
complementary slackness condition, we have

Wi () A(Ff (0> 8) = 2, Va € [M],j € [S] (75)
Wi+ 1)@ s 147+ (a)) + @it (@) (511) A= () Hi v (@) = 25 (76)
Va € [M],i € D (77)
wiy, d(Ffs @) = 2, Ya € [M],i € Dy (78)
w?(s-u)d(,u?: :u;'l,i*(a)) + Wf*(a)(s+1)d(ﬂg*(a)a U?,i*(a))
+wil, (F{;h,d)) =z, Ya€[M],i€Ds (79)

For each task a € [M], consider arm i € Dg, they need to satisfy
AL (s 15 i+ (o)) + Pls41y = v, Va € [M] i€ Dy
)‘?d(Fi(}thS)"_pgjh:Vv VaG[M},iEDg
Fori € M{ with d(pf, pif ;. ,)) > d(F}j, , ¢), then using , we have pf; > 0. According to
, we have (wf;, )* = 0. Then (wfig,))" > 0, and (Wi ,y(g41))" > 0. In this case, (79) is
equivalent to

Wis 1)1 s 15 i+ (a)) F Wi (@) (541 A= () Hi i+ () = 2, Va € [M],i € M{. (8D

(80)

In this case, we have
Ad(pd s 1 iea)) = v, Va € [M],i € DY UMY

> Nl ) 1) =, Va € [M] (82)
i€EDFUMYS

which can be simplified to

> Wty M) _ (83)
i€DIUMS d(/,b?, qu,i*(a))
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For i € Mg with d(uf, uf ;. (o)) < d(F” ,®), then using (80), we have pf g, ) > 0. According to
, we have (wfi,))* = 0. Then (wg;, )* > 0, and (79) is equivalent to

wiy, d(F, , ¢) = 2,Ya € [M],i € Ms. (84)

According to Lemma [6] and the fact that the KKT conditions are sufficient for a global optimal
solution of a convex optimization problem, we conclude the proof of Theorem 2] O

B.3 SINGLE-PARAMETER EXPONENTIAL FAMILY

The single-parameter exponential family can be defined as

I'= { (Pn)yexc  dpn(x) = exp(nz — A(n))dp(x)}, (85)

where p denote the reference measure on R, A(n) = log [, exp(nz)dp(z), K = {n : A(n) <

oo} C R. According to|Dembo| (2009), A(+) : K — R is convex and C> in K°. Proposition 2]
provides some useful properties:

Proposition 2. Define A*(0) = sup,cxc(nf — A(n)), and let p = [ xdp,,v = [ xdp, denote
the mean of distribution p, and p., respectively, KL(-,-) denote the Kullback-Leibler divergence
between two distributions, then

(1) p=A(n), Vn e K.
(2) n=A"(p) and A*(p) + A(n) = pn.
(3) Vn,v € K°,
d(p,v) = KL(py,py) = Ay) = A(n) — p(y —m) = A" (n) — A" (v) —y(p —v). (86)

2
(4) W =0, % = % where o2 is the variance of distribution p;,.

v=p

v=p
Proof. (1) By definition, we have

fmeR zexp(nz)p(x)de

M) = S = /  resp(ne = A)pla)ds = (8)
(2) Since
A (0) = SEEW —A(m) =n"0 — A(n"), (88)

where n* satisfy that § = A’(n*). Let § = u, we have up = A’'(n*) = A’(n) according to
(1). Then A*(p) = nand A*(u) + A(n) = un.

(3) By definition of the KL divergence, we have

d(p,v) = KL(py, py) = Ep, | log <Zpﬂ(x)>]

~

P~ (T

(
| xp(nz — A1)
" _log <e><p(vrv - A(v)))]

@

(89)

=Ey, [(n =)z +A(y) — A(n)

=A() = Am) — ply —n).
Notice that, y = A’(n), = N(v),n = A (u), v = A¥(v), then it is straight to see that

d(p, v) = A" (p) = A*(v) =y (p —v).
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(4) According to (3), we have d(u,v) = A*(u) — A*(v) — v(u — v), then by definition
ad(p, v) 2l

— _A*/ _ _
£ (v) 81/(“ v)+7y
*/ oy */
=—-A'v)— —(u—v)+A'(v) (90)
ov
O
- %(V - M)a
and we have % = 0. Furthermore,
v=p
0?d(p,v) 0%y Oy
’ — 2 1, halt A 91
0%v 82V(V )+ ov’ Ob
Since v = A* (v), using the Danskin’s Theorem, we have
-
5= A" Ww). (92)
Therefore, we have
a2d(u7 V) x//
821/ v - A (/1’)

- / __ rexp(ne = Am)(x — N ()p(a)ds

[ explo — Amp(a)ds ~ [ sexplns — Aw)p(o)ds
z€eR

xR
= Epr,, [X2] - M2
_ 1
o2’
93)
O]

B.4 PROOF OF LEMMAII

Lemmall] Define A} = pi. () — i, D o) = mingepgonms (1 (o) — ), of = ([ o*dFy (2)
(12)?)2 € (0,00), then for each task a € [M], and arm i € D¢ U M4, as A — 0,
(Mftl - M?"(a))Q

T )

Witsty - Wit (s+1)

inf  wigynd(ug, 15) + Wik (o) (541 ABG (@) B () = —. (94

A >R ()

Proof. The proof is motivated by the Theorem 2 of [Shin et al.|(2018)). Define

g(w) = ﬂaggg W;'I(S-s-l)d(ﬂga fii) + wél*(a)(s-i-l)d(ﬂ'?*(a)?ﬂ;‘l*(a))a 95)
i ~Hix ()

According to Lemmal[5] we have

w) = inf  wigd(pd, i) + wk, A3 (q)» (96)
g(w) Al it )] (S+1) (ui's 1) (a)(S+1) (1 ()H)

Applying the second order Taylor Extension for d(p¢, i) at fi = p¢, we can obtain that
od(ps, 1) L (A=) O, 1)
ofi 2 0%

p=pg a=pg

+o((f = 1§)?)

o7

d(pg, i) = d(pg, pg) + (i — pg)
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According to Proposition 2] we have
~ (i —pi)? ~ 2
d(ul, i) = ~———— — pd 98
(ni' 1) CIE +o(( — pi)7), (98)
By the same argument, we can obtain
(la - ,U/;l* (a))2

2(0_a )2 +0(([L—[L,7*(a))2), (99)
i*(a)

Define ~ " . - u " _
flw,p) = wi(SJrl)d(:ui R) + wi*(a)(SJrl)d(:u’i*(a)v 1),
~ ~ a 2
_ (/i — pg)? (7 = i )
C(w, i) = Wf(s“)ialg + wzq*(a)(S+1)a72’
2(o}) 207 () (100)
(H§ = 1 ))®

- a a 2
RE[p 1 0] 9 (:7, )? (a”i*(w)
Yis+1)  “ix(a)(S+1)

Since i € [u, pi ()], we can obtain that
flw, i) = ¢(w, 4) + o((a) — 15)?) (10D

Let i, = arginfﬂe[ug’#?*(a)] flw, 1), i = arginfﬂe[w’u?*(a)] ((w, fi). Then, we have g(w) =
fw, fi1), h(w) = ((w, fiz). Therefore, we can obtain
9(w) — h(w)| = |f(w, i) — C(w, f2)]|
< | flw, 1) = C(w, )| + [¢(w, 1) = ((w, fi2)]

- L O0C(w, - - 102
= (a2 — 1)) + | n —u2>(aﬁ1) ol — )| 1%
! 1=z

= o((1 () — 118)?)-

Therefore, we conclude that, as Ay — 0,
9(w) — h(w), (103)

which means
(M? - /J‘?*(a))Q
inf a d(us, i) + wk d(pse s 15 — = 104
/1;‘>12;‘*(a,> wis+1) A1 f17) + Wik (@) (541 UG () s B (a)) o) CPNE (104)
Wits+y - Wity (s+1)

O

B.5 PROOF OF LEMMA[2]

Lemma 2} Define AY; = |Ff — ¢|, of; = (Ffi(1 — Fi‘}))% € (0, 00), then for each task a € [M],
arm i € [K| and constraint j € [S), as Ag =0,

(Ff — )
2(c%)2 -

]

d(Ffs, ¢) — (105)

Proof. Applying the second order Taylor Extension for d(Fi‘;»7 @) at ¢ = Ff, we can obtain that

15
O(F2,
d(F, ¢) = d(F, Fij) + (¢ — F%>(a;)¢)
d’:F;;
— )2 52 a
G QF”) 0 d(g’]’@ +o((6 - F)?) (106)

¢

¢:Flu7

(Ff — ¢)°

= W +o((¢ — F{;)Q)-
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(Ff—9)*
2(0 )2

as A, — 0, we have d(F, ¢) —

B.6 PROOF OF PROPOSITION[]

Proposition[I} Define

(J'{il* a j)2 Ui 2 (J%;L)Q
P DI D VRN U . B

a€[M] \j€[S] i€DIUMEU{i*(a)} * i€DEUME \Tidn

For the problem instance P with A§ — 0,Va € [M],i € D UMY, and Aj; — 0,Va € [M],i €
[K],7 € [S], we have 2H < H*(P) < 4H.

Proof. Combining the results of Theorem [T]and 2] we have

HY(P)~' = = max m[lz\r}] min (V" (w), V3' (), V' (w)) (108)
with
| = i e (a)i
1'(w) ]Igfg]w (@) AEFE () D)
Vi (w) = ieigr{‘lg}\/l‘l" ﬂqggg*m wits+1) A1 7)) + Wik 4y (541 ABG- () Bl (@) (109)

V' (w) = ieggb%awmd(%, ).

According to Lemmal we have as Af; — 0,Va € [M],i € [K],j € [S],

(F& s — 0 (Fa, — o)
d(Ff ()5 0) = —57 05— A(F,, 0) = — 75— (110)
i*(a)j 2<Ui*(a)j)2 ijn 2(Uijh)2
According to Lemmall] we have as A? — 0, Va € [M],i € [K],
: a a ~a a a ~a (Mla B ‘u?*(a))Q
ﬂ?;gg‘;(a) wis+1) A1 1F) + Wik () (541 UK (@) A (a)) = » S CGANE )~ (111)
Wis+1) Wik (a)(s+1)
Define
- (F(); — 9)
Vi (w) = min wi oy, ————
'(w) = jels) (@i 2(o ;z*(a)j)z
. (1f = i (0))”
Vi(w) = _min e,
i€eDEUME 2( (02)2 (0% (0y)
Wits+1)  @it(ay(s+) 112
‘73‘1(03) = min 7( i — 9)
ieDguMg  2(0% )2

1Jh

H(P)™! = max H(P,w)™" = = mex min min (W‘(w), %“(w),‘%“(w)) :

H*(P) ! = maxH(P,w) ! = max min min (V;*(w), V3 (w), V§*(w)) .

wel weQ ac[M]

Then, it is straightforward to check that as A} — 0,Va € [M],i € D} UM¢{, and A}, — 0,Va €
[M],i € [K],j € [S], i

H(P,w)™ ! = H(P,w). (113)
Let

w* = arg max min min (Vi*(w), Vi (w), Vi (),
we  a€[M]
- - (114)
@ = argmax min min (Vf(w)ﬂ@“(u), 3 (w)
weQ  a€[M]

i
N—
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then we have H*(P)~' = H(P,w*) "L and H(P)~' = H(P,&)~ "

Furthermore, as A{ — 0,Va € [M],i € D} UMY, and A, — 0,Va € [M],i € [K],j € [S], we
have

[H(P) ™ = H (P) = [H(P,@) ' — H(P,w") |
< [HP,0) 7 =HP,0) T+ [H(P,0) ! = H(P,w*) | (115)
— 0.

where the third line can be verified using (T13).

Next, we focus on analyzing the H(P)~!. We first provide a lower bound on #H(P)~'. Consider a
feasible sampling ratio:

(97 a15)”
wf*a<=a7, Ya € [M
(a)j (Ai*(a)j)zH [M]
a __ (0;1)2 . a a 3 116
wi_(A“)Q’H’ Va € [M],i € DY UMFU{i*(a)} (116)
a __ (U%h,)z . a a
w”h = m7 Va e [ML'L S DQ UMQ
1Jh
and wfj = 0, otherwise. Then, we can obtain that
- . 1 1 1 1 1
-1 _ 1> Zmin(—. —/—. =)= —. 11
H(P) 13252(%(73"") > 2mln(,H7 53 7_[) YEY (117)

Let I = arg minjepay e (5 (o) =47 )s then AL = pile ) — pif'.. We then prove an upper bound
on H(P)~ L.

H(P)™! = méiéﬂ(P7 w)!

= max min min (fﬁ‘(w), Vi (w), ‘73a(w))

wWEN a€[M)]
_ 1 max min min | min w? A?*(a).
9 - i*(a)j (ya 27
2 weQ ac[M] j€LS] (08 (a);)
: : (Ag)? (A ()
min min —, — ,
i€DIUME  (09)2 (0% (ay) (09)? (0% (0y)
Wist) | Wiras+n  Yis+y o Yira)ys+)

(A83,)?

: a tJh
min Wy

iepgumMg " (o )

a

< 1 . . . a Ai*(a)j

S — Inax min min mln wi*(a)jﬁ,
2 weQ ac[M] J€LS] (08 (a);)

. L (e, (A% @)* L (B
I Bty D ()T @) (g 7 i B Y (e 32

1 R N O
= —Imax min min mln wi*(a)jﬁ?

2 weQ ac[M] F€lS] (08 (a);)

- o (A7 . a
min [ -—, min Wi i

i€DFUMS UL (o)} OTD (09)2 7 jeDiumg I
_ 1

2H’

(118)
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where the last equation is obtained by solving the corresponding optimization problem.

Therefore, we conclude that 2H < H(P) < 4H, which also implies 2H < H*(P) < 4H as
A¢ —0,Ya € [M],i € Df UMY, and AY; — 0,Va € [M],i € [K],j € [S]. O

B.7 EXTENSION TO OTHER FORMULATIONS

In this section, we extend the results of Theorem|I|to a new formulation, in which the agent observes
a vector of all metrics after pulling an arm. Such performance setting was also considered in the
literature (Hunter & Pasupathy| 2013} |Camilleri et al.| [2022). However, we address a complex
multi-task BAI problem with risk constraint under the fixed-confidence setting. Let w} denote the
sampling ratio of arm i under task a in this formulation. Theorem 3 provides the lower bound on
the sample complexity E[r] and Lemma |Z outlines the optimality conditions satisfied by the static
sampling rule w.

Theorem 5. Given a fixed confidence level § € (0,1). For any problem instance P € S and any
strategy satisfying P (‘v’a € [M],i*(a) = %T(a)) >1-9,
E[r] > H*(P)kI(5,1 —9), (119)

as 6 — 0, we have

> H*(P), (120)

where H*(P)~! = maxyeq mingep min (Vi (w), Vit (w), Vi (w), Vi (w)), with

Vla( ) = min w; *(a)d( *(a)],¢)

JE[S]
Vit (w) = Iéling witd(Bg s 15 i () F Wik @) QB (0)5 BT i (a) )
a = 121
Vi(w) = minw? >, d(F7,9), (12h
JEBS(4)
Viw)=min inf wid(pi, 47) + wi o) (15 () Bi (a)) Z d(F,

i€De ae>ao,
3 M i*(a) ]GBQ( )

Lemma 7. Define Ay = {a € [M] : V*(w) > z*}, and As = {a € [M] : V*(w) = z*}. The
static optimal sampling ratio w* satisfies:

Vi (w*) > z",Va € A4
Vi(w") = V3'(w*) = V' (w") = Vj'(w") = 2" Va € [M],a € Ay
(i) d(uds 1 i+ a)) + (w?*( ))*d(,u? () Hi (o)) = 2", Va € [M],i € DY
9)

© Y d(Fg,

z*,Va € [M],i € Dg

163‘2‘(1)
(w?)*(d(ﬂ?7uzi*(a)) + Z d(F{;'y ¢)) + (w?*(a))*d(u;,‘l*(a)v/’L'ﬁi*(a)) = z",Va € [M],i € D
jeBs (i)
i (o) M z*<a>> AP (0 i i (a))
+ — n =1,Va € Ay
ZEXD:U‘ d (g, i*(a )) IGX'D:%‘ d(/iia,“iyi*(a)) + ZjeB“ i) d(Fijad))

P IEs

M]i€[K]
( 1) 2 O,Va € [M]»1 € [K]
(122)
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C ASYMPTOTICALLY OPTIMAL STRATEGY

C.1 PROOF OF LEMMAM]

Lemma Given a fixed confidence level § € (0,1) and o > 1. There exists a constant
Cla, M, K,S) such that for any sampling rule {m'},, using the stopping rule with B(t,5) =

log (S£%), then for all problem instance P € S, P (Ela € [M),ir(a) # i*(a)) <.

Proof. By definition of the stopping rule 7 = inf{t € N : infpe 4 p)) F(P(t),P) > B(t,6)}, we
have

Elae [M], T(a)#i*(a))

PEA(P(t))

<3t€N Ja € [M],3i € [K]\ {i*(a,P)},i*(a, P(t)) =i, inf f(75(t),75)>5(t,5)>

M

IP’(~ inf S N (00, i (0) + 3 NGBS (b, 0), B >5<t,6>>

PEAP®) ,ciar]ic K] j€ls)

~
Il

1

M

P( Z Nit?s+1)(t)d(ﬂz 2 Z Fa (b,1), F5) | > B(L, 5))

a€[M],i€[K] JE[S]

) MEK(S+1)
I+ MEK(5+1) B(t,6)" logt o~ B(t:)
MK(ST1) ’

~
Il

1

M

t=1

(123)
where the last line is obtained by extending Theorem 2 of [Magureanu et al.|(2014).

Since we have 3(t,d) = log (CTta), it can be verified that if we choose the constant C' satisfy

0 MK(S-‘rl) 1 Cte 1 1/8 21 t MK(S+1)
>y ([log(Ct™) + log(1/0)] log ) <c (124)
P MK S+1 MK(S+1) e

then we can obtain P (Ha € [M],ir(a) # i*(a)) < ¢, which concludes the proof. O

C.2 PROOF OF THEOREM[3]
In this subsection, we prove the sample complexity results in Theorem[3] The proof of Theorem[3]is
more or less identical to that of|Garivier & Kaufmann|(2016)), we include it here for completeness.

Lemma 8. (Lemma 17 in |Garivier & Kaufmann (2016)) Using the tracking rule in ([I3),
we have Nf(t) > (Vt — MK(S + 1))t — 1, For any ¢ > 0 and to > 0 such that

SUD, 5, MAX(q,7,j)e (0] x [K]x [5+1] | (W) (P(t)) — (W) (P)| < €, then

— (W) (P)| < 3(MK(S +1) — 1)e. (125)

NG (1)
sup max i
!

t>t. (a,1,5) EIM]X[K]x[S+1] 13
Let B._(c) denote a ball of radius r centered at ¢ under the infinity norm. For problem instance

P = (u, F*)acm)s since w*(P) is a continuous function of P, we have Ye > 0, 3§(€) > 0, such
that VP € B (P), we have w*(P) € B, (w*(P)).

Lemma 9. For problem instance P € S, define Er(e) = ﬂtTeTwl {P(t) e Bi(f)(P)}, we have

P(£5(e)) < Ble, P) exp (fC(e,P)Tl/S) : (126)
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B exp(MK (S + 1)d(uf — &(e), ) | exp(MK(S + 1)d(ud +&(€), pf))
Ble,P) 2 | ( 1 —exp(d(pf —&(€), 1)) M- exp(d(pf +&(€), pf))

oy <exp(MK(S+1)d(ﬂ‘}—5(6)7F{§)) exp(ME (S + d(F2 + €(e), w>>>>,

a€[M],ie[K

2\ T onp(d(FS - 600 FY) T T S exp(d(FE + £(0), FL)

C(e,P) = min (min (= €0,y N\l + €(),1i)) N

a€[M] \ i€[K]

et (a7 = €000 F5) A\ 4 €(0) ”)>>'
(127)

Proof. By definition of E7(€), we have that

( U (P ¢ B )})

teT1/4

B O

teT1/4 \a€[M]i€[K J€[S]

<y (P (et ¢ B @) + 3 P (Fav.) ¢ B§§€><Fi§>)>.
a€[M]ie[K

t=T1/4 J€[S]

Let T is large enough to satisfy that N{;(t) > v/t — MK(S + 1) > 0, then we have

P (F;;.(b, 1) ¢ BEO (R )
—P ((ﬁi‘}(b, t) < Ff - é(e)) U (Fij(b, t) > Fi + g(e))) (129)
=P (FZ(b, t) < Ff — f(e)) +P (F’,Z-(b, £) < F2 4+ &(e ))

Denote FZ % 1(b) as the estimate of F; based on first | observations from Y5, then we have

P (F5(0,0) < Ff - £0)
—P (ﬁg(b, t) < F —&(e), NG () > Vi — MK(S + 1))

t
< Y P(EL0<F &)
I=Vt—MK(S+1) (130)
t

< Y exp(-lA(FE — £(e), FY))
I=Vt—MK(S+1)

_oxp (—(Vt = MK(S + 1)d(Ff; — £(e), Ff2))

- 1—exp(—d(Fi‘;—f( €),F%)

i) ’
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where the second equation is from the Chernoff inequality. Using similar argument, we can obtain

that
exp (—(Vt — MK(SH)) (Ffs +&(e), Fy))

1 —exp (—d(F% +&(e), FY))
exp (—(Vi — MEK(S + 1>>d(ui — (), 1))
1 —exp (—d(ug —&(e), 1)) ’
exp (—(Vt — MK(S +1))d(uf + &(e), ut)
1 —exp (=d(puf +&(e), uf)) '

P (F5(t) < Fy+€(0) <

P (i (t) < pif = &(e)) <

P (i (t) < pif +&(e)) <

Therefore, we conclude that

T
P(Ex(e) < Y Ble,P)exp(—ViC(e,P)) < B, P)exp( C’(gP)Tl/S) .

t=T1/4
Theorem[3| For problem instance P € S, the Algorithm|[I|satisfies that

. E[r] .
- < .
P fog(1/a) < 1 ()

Proof. Let Q = (v, ®%),¢[ar) denote an problem instance. Define

g(’ﬁa(‘b) = inf~ Z ( 7(S+1)d(/t“)d :u’l7 i Z d F‘z(}(ba b)))
QAP qelmlielK] jels)

ZX(P) = _inf g(P,@).
PeBL) (P)
&Engwa(Sﬁ»l)—l)e(w*(»P))
According to Lemma Ve > 0, 3T, > 0, such that VI' > T, on event E(¢), we have
NG (t)
t

su

p max i
15y T (@) EMIX KX [S+1]

— (w )*(P)‘ <3(MK(S+1) -1

Note that, the stopping rule is

r=inf{t e N: inf  f(P(t),P) > B(t0)}
PeA(P(t))
—inf{te N: inf tg(P(t),w*(P(t))) > B(t,0)}
PeA(P(t))
B(t,0)

= inf{t € N: g(P(t),w*(P(t))) > )

Therefore, VT > T, and on Er(€), we have

(131)

(132)

(133)

(134)

(135)

(136)

(137)

- ; ; B(t,9)
min(r,T) < VT + Z (r>t) <VT+ ) H<g(73(t),w*( (1) < =7
t=VT t=vT
T
§ﬁ+t2\;?]1 <Z€*(P) < 5(?@) S\/T-i-ﬁ(tt’d)'
Following Garivier & Kaufmann| (2016, we have
. B(t,9) 1
To(6) = inf{T € N: VT + <T}= % 0P) O(log(1/6)) + O(loglog(1/6)) |,

which means VT' > max(7T,(0),T¢), on Er(e), we have 7 < T
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Optimal static sampling ratio under different settings
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Figure 3: Optimal static sampling ratio w* under different Fiy; (b)

Finally, we conclude that

E[r] = Z P(r >1t)
T=1
max(To(6),Te) 00
= > Pr=+ > P(Er(e))P(T = t|€r(e)) + P(EF(€))P(T = t|ET(€))
T=1 T=max(Ty(5),Tc)

ST+ T+ S PEO)

T=1
1 oo
< Z ) <O(log(1/6)) + O(log log(l/é))) + T, + Z B(e, P) exp (—C(G,P)Tl/S) .
€ T=1
(138)
Furthermore, we have
lim su 7] L (139)
50" log(1/8) ~ Z2(P)
Let ¢ — 0, we have ]
Elr
li ——— < H*(P). 140
o fogtizgy < 7 (P) o
O

D NUMERICAL EXPERIMENT

D.1 ILLUSTRATIVE EXAMPLES

In this subsection, we provide illustrative examples to demonstrate how the static optimal sampling
ratio balances identification difficulty across different tasks and constraints, managing the trade-off
between optimality and feasibility.

Single task example. In this example, there is 1 task, 4 arms and 1 constraint. The X; are
Gaussian random variables with means p = (1.0,0.8,1.2,0.6) and standard deviations o =
(1.0,0.8,1.0,1.0). The Y;; are Gaussian random variables with F = (0.95,0.95,0.80,0.82). The
threshold parameter is ¢ = 0.9. Arm 1 is optimal, arm 2 is suboptimal, arm 3 is infeasible but has
a better objective value, and arm 4 is infeasible with a worse objective value.

Figure|3|illustrates the change in the static optimal sampling ratio w* for different values of Fy; (D).
When Fy1(b) is much less than ¢, identifying arm 4 as infeasible is easier than identifying it as sub-
optimal, therefore, wia = 0. In contrast, when Fy1 () is close to ¢, identifying arm 4 as suboptimal
becomes easier, then wy; = 0. When both cases are equally difficult, there are multiple solutions,
and Figure[3|shows one of them, verifying the results in Theorem|2]
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Optimal allocation ratio under different settings Optimal allocation ratio under different settings
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Figure 4: Optimal static sampling ratio w* Figure 5: Optimal static sampling ratio w*
under different o under different F3;(b)

Figuresand illustrate how the w* changes with po and F31(b). As pe approaches ., distin-
guishing between arms 1 and 2 becomes more difficult, and the w* shifts focus toward verifying the
optimality of these arms, causing w12 and was to increase gradually. However, as F31(b) approaches
¢, the w* shifts to focus on the feasibility of arm 3, leading to a gradual increase in ws;.

Multiple tasks example. This example involves 2 tasks, 3 arms, and 1 constraint. The X are
Gaussian random variables with means p* = (1.00,0.90,1.10), p? = (1.00,0.99,1.10), and
standard deviations o' = (1.0,0.6,1.0), 0> = (1.0,0.6,1.0) . The Y} are Gaussian random
variables with F* = (0.91,0.91,0.89) and F? = (0.91,0.91,0.89). The threshold parameter is
¢ = 0.9. Arm 1 is optimal, arm 2 is suboptimal, and arm 3 is infeasible with a better objective
value.

Optimal allocation ratio with ESR policy Optimal allocation ratio with ASR policy
0.6
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Figure 6: Optimal static sampling ratio w* Figure 7: Approximate sampling ratio in
under different 1} Lemma under different 1}

Figures @ and @ illustrate how the w* and & in Lemma 3| changes with 3. As u} approaches i,
both sampling rules focus on assessing the optimality of arms 1 and 2 in task 1, causing wi, and
Wiy to gradually increase. When u} reaches 0.99, both tasks become equally difficult, resulting in
an equal sampling ratio across the two tasks.

D.2 EXPERIMENT CONFIGURATIONS

In Experiment 1, all random variables are Gaussian, with their mean and variance parameters
summarized in Table[2|and[3} Other parameters are set as b = 2.04 and ¢ = 0.9.

In Experiment 2, the objective-related random variables are Bernoulli, with their mean and variance
parameters summarized in Table The constraint-related random variables are Gaussian, with
their mean and variance parameters summarized in Table[3] Other parameters are set as b = 2.0
and ¢ = 0.9.
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Table 2: Objective-related random variable parameters in experiment 1
TASK1 TASK2

Mean Variance Mean Variance
X7 1.000 1.000 1.000 1.000
Xo 0.800 1.000 0.800 1.000
X3 1.200 1.000 1.200 1.000
X4 0.900 1.000 0.900 1.000

Table 3: Constraint-related random variable parameters in experiment 1
TASK1 TASK2

Mean Variance Quantile Mean Variance Quantile
Y11 0.400 1.000 1.682 0.400 1.000 1.682
Yo1  0.400 1.000 1.682 0.400 1.000 1.682
Y31 1.203 1.000 2.485 1.203 1.000 2.485
Yy 2.045 1.000 3.326 2.045 1.000 3.326

D.3 PSEUDO-CODE OF ALL STRATEGIES

This subsection summarizes the pseudo-code for all strategies used in numerical experiments.

USR. The USR strategy in Algorithm|2|samples each task, arm, and metric pair equally.

Algorithm 2 USR Algorithm
1: Initialization. Pull each (a, i, j) € [M] x [K] x [S + 1] ng times.
2: Sett  ngMK(S + 1), and update P(t), w*(P(t)), N%o_ (), N&(t).

/ R > 2 i(S+1) i
3: while infs_ 45, f(P(t), P) < B(t,6) do
4:

aitl = arg min NE(t)

(ai,) E[M] x [K] X[S+1]
Sample the ¢+ and obtain one observation Z; 1.
Set ¢ « ¢+ 1, and update P(t), w*(P(1)), Nifg, 1) (t), N (b).
end while A .
Output. Select i, (a) = argmax;c g 47 (7) st. Fj(1) > ¢, Vj € [S], as the best arm for
each task a € [M].

AN

ASR. The ASR strategy in Algorithm 3| utilizes the static sampling rule in along with the em-
pirical estimate 75(2?) and updates the sampling rule adaptively. Note that, for simplicity, we set
D§ = M5 in implementation to avoid solving the optimization problem required to differentiate
between M$§ and M$. We then use the approximate sampling rule, which does not significantly
impact the performance of the algorithm in our example.
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Al

gorithm 3 ASR Algorithm

1

: Initialization. Pull each (a, 14, j) € [M] x [K] x [S + 1] ng times.
2:
3:

Sett < ngM K (S + 1), and update P(t
while inf s, 5.,y f(P(t),P) < B(t, 5

,@(P(t)) (according to ), Up Nigop)(t), NE(2).

)
) do

4:

_er1_ ] argmin N () if Uy # 0 or Ja € [M], {i*(a, P(t))} = D or D{(t) = 0
arg max tdzfj(’P(t)) - N2 (t)

Sample the 7'*! and obtain one observation Z;_ 1.

Set t + ¢+ 1, and update P(t), &(P(t)), U, Niig, 1, (8), N (D).
end while
Output. Select i,(a) = arg max;cg) A5 (1) s.t. FZ‘;(T) > ¢, Vj € [95], as the best arm for
each task a € [M].

Al

gorithm 4 SEQSR Algorithm

1

2
3
4:
5.

LR

: Initialization. Pull each (a, i, j) € [M] x [K] x [S + 1] ng times.
: Sett ¢ ngMK (S + 1), and update P(t), w(t), Us, Nfg ) (t), NG (2).
: while inf 54 54, [(P(1), P) < B(t,6) do

(a',4", §') = argming, ; ) epar)x (K] x[S+1) Sarin (P(1), w(t))

argmin N7 (t) if Uy # 0 or 3a € [M], {i*(a,P(t))} = 0 or D¢(t) = 0
it =<3 (at,it, j') if Condition 1
(al,i*(a, P(t)), j') if Condition 2

Sample the 7**! and obtain one observation Z; 1.

Set t « t + 1, and update P(t), &(P(1)), U, Niig ) (1), N (t).
end while A A
: Output. Select i-(a) = argmax;cx) 45 (1) s.t. Ff5(7) > ¢, Vj € [S], as the best arm for
each task a € [M].
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Table 4: Objective-related random variable parameters in experiment 2
TASK1 TASK2

Mean Variance Mean Variance
X7 0.800 0.160 0.800 0.160
Xo  0.600 0.240 0.600 0.240
X3 0.900 0.090 0.900 0.090
X4 0400 0.240 0.400 0.240

Table 5: Constraint-related random variable parameters in experiment 2
TASK1 TASK2

Mean Variance Quantile Mean Variance Quantile
Y11 0350 1.000 1.632  0.350 1.000 1.632
Y1 0.450 1.000 1.732  0.450 1.000 1.732
Y31 1.500 1.000 2.782 1.500 1.000 2.782
Y, 1.800 1.000 3.082 1.800 1.000 3.082

SEQSR. The SEQSR strategy in Algorithm | utilizes the sampling rule in (I6)- along with the
empirical estimate P(t) and update the sampling rule adaptively. In the Algorithm|d| condition 1 is:

(it € DL(t) UML(t) U {i*(aﬁ(t)}) U

t t

(f e By(t) UKt (0), o) a2 P )
’ at at at # (P at \s (P ’
Ni*(a,ﬁ(t))jt(t) + Nitjf(t) (wi*(a"ﬁ(t))jt) (P(t)) + (wj,ijt) (P())
the condition 2 is:
+ P o N (@ piepy V) W @pe;) (P®)
it € DY () UMI(t), —= = < - ~ - A .
Ni*(aﬂs(t))j‘ (t) + Nitjt (t) (wf* (a,ﬁ(t))Jt)*(Ip(t)) + (w?tjt)*(lp(t))
Note that, for simplicity, we set D§ = M$ in implementation to avoid solving the optimization

problem required to differentiate between M$ and M$. We then use the approximate sampling
rule, which does not significantly impact the performance of the algorithm in our example.

FWSR. The FWSR strategy in Algorithm [3 extends the algorithm in |Wang et al)| (2021) for the
standard BAI problem.

According to Lemma6] we know that

aP == i i i '(1 J VP ’
G(w,P) arél[ll\l}] min <]Ié1[lb{1] fivap)j (@, P)

fﬂ(w,P)) L a4

min
i€[K\{i* (a,P)}
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is a non-smooth concave function and
[y (@, P) = Wik (4 py; A(F (0 )0 ©),

infﬂg>ﬂ§*(a)m (W?(5+1) dpf, i) + w;l*(a,P)(S—&-l) d(u?*(a), ﬁ?*(a))) , ifieDy

9% (w, P) = ZjeBg(i) wi; d(F, ¢), ifi € D3
infze>ae. , o (W?(SH) s 1F) + Wi 0Py (s41) UK (a,p): ﬂ?*(a)))
+Zj€B‘21( wiy d(F, @), ifi € Dy

P60, ) = min (i g7 o0, P), i 05 (. P 0y o (7))

(142)
Then, we can compute that
Off (@ P) _ [d(F2 p);8)  ifi=i"(a,P),j € [S]
Wy 0 otherwise
A 15 i (0, 7)) fieDyUDs, j=5+1 (143)
89?(@)"])) — d(ug*(a’P)nu?/’i*(a”P)) lfZ = Z*(G,P> Z € Da U DS?j - S + 1
wij d(Ff, ¢) ifi € D3UDg,j € By(i)
0 otherwise

Using (143), we can compute foi(ap)j(w, P),Vg&(w,P) and define the r-sub-differential sub-
space in|Wang et al.|(2021) with r € (0,1):

Hgw,p)(w, ) —COV{Vf “(a,p); (W, P), Vi (w,P) [a e [Mic[K]jelS],  (144)

i api (@,P) < G(w, P) + 7, (@, P) < G(w, P) + }

where cov{Z} denotes the convex hull of the set I. Next, we apply the Frank-Wolfe algorithm to
adaptively update the sampling rule, as outlined in Algorithm[3] In the numerical experiment, we
setry =709 /MK (S + 1), consistent with the setting used in (Wang et al., 2021).

D.4 MOTIVATION FOR THE MULTI-TASK SETTING

For the multi-task BAI problem we consider, another natural approach is to solve each task indi-
vidually. In this subsection, we discuss the motivation behind and the benefits of solving the tasks
simultaneously.

First, we compare the numerical performance of the two methods across different numbers of tasks
M. Each task consists of 4 arms with a single constraint. All tasks are homogeneous, sharing the
same parameters as outlined in Tables[2}{3]

We represent the methods that use SEQSR strategy and solves each task individually as Single-
SEQSR, to achieve the performance guarantee P(Va € [M],i*(a) = i-(a)) > 1 — 0, we control the
error probability for each task to be less than § /M.

We refer to our methods that use the SEQSR strategy and solve all tasks simultaneously as Multi-
SEQSR. To estimate the sample complexity, we conduct 1000 independent replications, with the
results summarized in Table [6]

The results show that Multi-SEQSR requires fewer samples to achieve the same statistical guaran-
tees. For example, when M = 8, Single-SEQSR incurs an additional sample cost of 18.94%, which
may be attributed to the statistical conservatism inherent in the stopping rule.

Another advantage of the multi-task setting is the generality of its mathematical models, which can
include the single-task problem as a special case. More importantly, the formulation and analysis
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Algorithm 5 FWSR Algorithm
1: Initialization. Pull each (a, i, j) € [M] x [K] x [S + 1] ng times.
2: Sett < ngMK (S + 1), and update P(t), w(t), z(t) « (1/MK(S+1),...,1/MK(S+1)),
Niiss1) (), Ni5 (). ) ~
3: whileinfs_ 45, f(P(t),P) < B(t,0) do
& it /I/ME(S+1)] € NorJae [M], ({i*(a, ()} =D UDL(t) = 0) then
5 2(t+1) — (1/MK(S+1),...,1/MK(S + 1))
6 else
7: z(t+1) < argmax, .o mingec g
8.
9
0
1

G(w(t), Bty (& (t);Te) <z-z(t),h>

ot +1) « 75x(t) + g7zt +1)

it = arg max M

(asij)eMIx[K]x[S+1  @(t)
12: end if
13: Sample the selected arm 7'*! and obtain observation Z; , ;.
14: Increment ¢ < ¢ + 1, and update P(t), w(t), N g ) (t), Nij(1).
15: end while
16: Output: For each task a € [M], select the best arm:

ir(a) = argmax i%(7) s.t. FZ(T) > ¢, VjeS]
i€[K]

Table 6: Comparison of Single-SEQSR and Multi-SEQSR under different numbers of tasks
M ) Single-SEQSR  Multi-SEQSR  Ratio  Additional Cost

2 0.1 2984.01 2745.81 1.09 8.67%
4 0.2 5943.42 5292.85 1.12 12.29%
6 024 9411.51 8053.55 1.17 16.86%
8 024 13428.68 11290.69 1.19 18.94%

methods can be extended to scenarios where there is linear structure across tasks, as demonstrated
in Section[E2)

D.5 EFFECT OF HYPER-PARAMETERS ng

Figure 8 and Table [D.5| summarize the empirical sample complexity for 1000 independent runs of
various strategies across different ng values for the Gaussian bandit. The results are consistent with
those in Figure[l) ESR and SEQSR outperform the other benchmarks.

Table 7: Empirical sample complexity for 1000 runs times with § = 0.1 and different ng for Gaus-
sian bandit

no USR ASR FWSR  SEQSR ESR

10 | 10179.68 4807.64 5692.85 2745.81 3792.85
20 | 10216.50 4751.39 5893.63 2806.00 3814.50
30 | 10293.07 4853.74 5956.22 2816.83 3848.68
40 | 10262.33 479475 5887.34 2943.61 3829.84
50 | 10114.14 491275 6024.18 3437.72 4100.23
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¢
30000 : 30000
*+
4
25000 25000 ‘
o ”
o °
=3 =
£ 20000 $ & 20000 $
o 2]
3 ot
5 5
= 2
%5 15000 5 15000
3 3
] 8
5 5
Z 10000 . Z 10000 .
5000 ; 5000 ‘
0 0
ASR ESR FWSR SEQSR USR ASR ESR FWSR SEQSR USR

Figure 8: Empirical sample complexity for 1000 runs times with § = 0.1 and ny = 30 (left) and
no = 50 (right) for Gaussian bandit.
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Figure 9: Empirical sample complexity for 1000 runs times with ng = 10 and § = 0.05 (left) and
0 = 0.01 (right) for Gaussian bandit.
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Comparison of Computational Efficiency Across Strategies
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Figure 10: Average time per run (seconds) for different strategies in Gaussian and Bernoulli Bandit
with ng = 10.

D.6 EFFECT OF CONFIDENCE LEVEL §

Figure|9| presents the empirical sample complexity for 1000 independent runs of various strategies
across different values of & for the Gaussian bandit. The results align with those in Figure[l] As
0 decreases, all algorithms require more samples, with ESR and SEQSR outperforming the other
benchmarks.

D.7 COMPUTATIONAL EFFICIENCY

Figure [I0|shows the average time per run (in seconds) for various strategies in both Gaussian and
Bernoulli bandits, each using the same fixed sample size: 3000. The computational efficiency of
USR, ASR, FWSR, and SEQSR is comparable and significantly higher than that of the ESR strategy.

In the Gaussian bandit example, SEQSR is much more efficient than in the Bernoulli bandit. This is
because, in Bernoulli bandit, SEQSR uses the sampling rules in (I6)-(I8), which require solving an

optimization problem to obtain w* (P (t)) in some iterations. However, in Gaussian bandit case, the
optimal condition

d H’fil* a ’M?i* a
> (d errtiewn) g g ey (145)
i€DIUMS (g ’“iﬂ'*(a?))
is equivalent to
a * a ((wg(s+1))*(7)))2
(Wi (a,p)(541)) " (P) = 01 (0 py(511) > BC N (146)
i€DFUMG i(S+1)
Define
(a',i, ") = arg min Saij(P,w(t)). (147)

(a,i,j)E[M]X[K]x[S+1]

A more efficient sampling rule is to choose (a',i*, j*) if it € DUMSU{i*(a, P)} orit € DIUMY
with

o . (Wiis41)(0))?
Wit (@, p)(s+1) (1) > i (0 Py (s+1) Z NN (148)
i€DIUMS i(S+1)

and choose (a',i*(a, P), j*) otherwise. Since this sampling rule does not require solving an opti-
mization problem, it is much more efficient.
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Figure 11: Empirical sample complexity for 1000 runs time with ng = 10 and § = 0.1 for Gaussian
bandit with more arms.

Table 8: Objective-related random variable parameters in Gaussian bandit example with more arms
TASK1 TASK2

Mean Variance | Mean Variance
X7 1.000 1.000 1.000 1.000
X  0.700 1.000 0.700 1.000
X3  0.600 1.000 0.600 1.000
X4 1.300 1.000 1.300 1.000
X5 1.400 1.000 1.400 1.000
Xe 0.700 1.000 0.700 1.000
X7 0.800 1.000 0.800 1.000

D.8 GAUSSIAN BANDIT EXAMPLE WITH MORE ARMS

In this subsection, we consider a larger Gaussian bandit example with 2 tasks, 7 arms, and I con-
straint. The mean and variance parameters of the corresponding random variables are summarized
in Table[Sland [9) Other parameters are set as b = 2.0 and ¢ = 0.9.

Figure [T]] presents the empirical sample complexity for 1,000 runs of this example. The results
indicate that SEQSR, with an average sample complexity of 2074.71, performs relatively better than
the other strategies. FWSR, with an average sample complexity of 2862.06, and ESR, with ,3103.25
show comparable performance.

E EXTENSION TO LINEAR BANDIT

E.1 PROOF OF THEOREM [

Theorem Given a fixed confidence level 6 € (0,1). Under Assumption (3| for any linear BAI
problem instance P € S and any strategy satisfying P (Va € [M],i*(a) = L(a)) >1-4,

E[7] > H*(P)ki(6,1 — 6), (149)

39



Under review as a conference paper at ICLR 2025

Table 9: Constraint-related random variable parameters in Gaussian bandit with more arms
TASK1 TASK2

Mean Variance Quantile | Mean Variance Quantile
Y11 0350 1.000 1.632 | 0.350 1.000 1.632
Y1 0.450 1.000 1.732 | 0.450 1.000 1.732
Y31 0.450 1.000 1.732 | 0.450 1.000 1.732
Yy 1.650 1.000 2.932 1.650 1.000 2.932
Y51 1.650 1.000 2.932 1.650 1.000 2.932
Ys1 1.750 1.000 3.032 1.750 1.000 3.032
Y;1 1750 1.000 3.032 1.750 1.000 3.032

T

T
a __ a TiT; a _ a TiT;
where Aj =37, e wi; [CEAER Ay =ik Wi(S+1) 09)2

1 b— .’17 9(1 i — Ti*(a Tea 2
H*(P)™' = = sup min min [ min ( 1 y , min (@i = 2ing ))2 5+1) ,
2 weq ac[M] jels] :r (A“) Tix(q) 1€DY |lzi — xi*(a)H(Ag )

bt ) STon (150)
. b—z; Ga . (( xz*(a)) GS+1) b ea
D et B e - 3 e )

jEBI(z;) e “)”<A“+1) b jeBi(w)

Proof. The analysis follows the same approach as in the Theorem [I]and we initiate the analysis for
the linear bandit starting from (35))

E[r] > H*(P)k1(5,1 — 4), (151)
where

H*(P)~' = sup _inf d(zFee, =70 wed(zTee, T 6e
(P) uelgzﬁ'eA(P) Z Z z(s+1) S+1 S11) Z J j )

a€[M]i€[K] JE[S]
(152)
For each task a € [M] and constraint j € [S], define
Cia*(a,”P)j = {é : mz;(a’p)é? > b} (153)
For each task a € [M] and arm ¢ € [K] \ {i*(a, P)}, define
Cl =10 (i — Ti=(a,p) 0%, > 0,27 02 < b,Vj € [S]}, (154)

where 6 = (é}l)ae[M],je[S—s-l] = P denote the problem instance P.

According to (39), we have

AP = | U ¢ ewrm; | U U ¢l (155)

a€[M] j€ls] ie[K\{i*(a,P)}

Define

w P 73 Z Z z(S+1)d T 95+1,I1 05-{-1 Z wzjd T0;7 zTe;I) ) (156)
a€[M]i€[K] JE[S]

and §(w, P) = infpc 4(p) f(w, P, P). Then, according to 1) we have

G(w,P) = mi < a P i i ,P), 157
(w,P) = min min Inlnf “apy (@i P), [K]{r{lgga’P)}f (w,P) (157)

ac[M] Jjels]
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where fiL , p);(w,P) =infpcca f(w,P,P), fi(w,P) = nfpeca f(w,P,P).

i*(a,P)j

We first consider fi%, 5 (w,P),
fi(i(a,'l))j(wap) - inf f(wap775)

PeC;‘*(a,mj

inf~ Z Z w?(S+1)d(x?9g+l7xfég+l Zwud ?9;13 ?9_;!)

i (a2 9> et iglK] FELS]
T pa T a
= wad (w; 05, x; 05)
171(" p)9;>b i€[K] j€[S]
= min Z wiid(z ZTG;‘, ZTO?)
JE[S] 27, i* (a P) J G[K]
(158)
According to Assumption 3] we have
— 09 a2l (09 — 69)
T a T a J J
Z wijd(e; 05,27 05) = Z ww 2(0@,)2
i€[K) i€[K] ij
T
_ a na\T a il a na 159
= (67 — 65) Z Wij g(g@,)z(aj - 07) (159)
i€[K] v
1 a na a(pa na
= 5(9]‘ - Hj)TAj (9j - oj)a
where A% =37, Wi (ix)
Consider the optimization problem
1
inf  —(07 — 09)TAL(09 — 67). (160)
zT, *(a, 7,)9“>b 2
The KKT condition can be derived as
A2 = 09) + Az (a,p) = 0, (161)
ol (008 =0. (162)
According to (T6T)), we have )
09 =0+ AAD) 'z (0,p). (163)
Plug (I63) into (I62), we have
b—x, 0
A= Cam (164)
i (a,p) (AF) 1 Tix (a,p)
Then we have -
b—x! 04
na a i*(a,P)"y a\—1
05 =07 + (A) " Tix(a,p) (165)
! ! xﬁ(a,p)(A?)flxi*(a,P) ! (@?)
with the optimal value as
1 (b—zk 5092
1 wr)%) . (166)

2 *(a P) (Aa)ilmi*(afp)

Next, we analyze min;c(x)\ (i (a,p)} fi' (w, P), notice that

min fi(w,P) = min <min fi(w,P), min f(w,P), min f(w,P ) , (167)
i€[K\{i*(a,P)} ( ) i€D§ ( ) 1€DY ( ) i€Dg ( )
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and we have that
min f*(w,P) = min inf f(w,P,P)
i€Dd

€Dy Pecy

T pa T a . Tpa
= min lnf IL' 0a X, 0 w; d 0 xX; 9
ieD? peca E : E : 1(S+1 S+10+%4 S+1 E i YRR ])

i a€[M]i€[K] JES]
_ . . a T pa T pa
= nin inf Y wigynd@] 08, 2] 0%,)
v (11_137*(@ ‘P)) 05+120 ZG[K]
~ T ~
_ . . a a a
= mgl me (0541 — ‘93+1 Z wL(S+1)2 ) 5 (051 —05,1)
i€ (Ti =T (a,P)) OS+1>O i€[K]
1 ~ ~
— 3 : a a TAa a a
=5 05 inf (9s+1 = 0541)" A5 (0541 — 0544),
1€DY (mi— % (a,p)) T 0%, 1 >0

(168)

zizl

where Ag, | = ZiE[K] w?(SH)w:T)lZ'
By solving the optimization problem

inf _ (9%+1 - ég+1)TAg*+1(0g'+1 - ~g‘+1)a (169)

(@i=x (a,7))T 054,20

we have the optimal value as

Ti — Tij*(q Tea 2
min @P) ¥5)" (170)
i€D; |z — Tin(a,p) 1T (A2, )1

The analysis for min;epg f{*(w,P) and min;epg f{'(w,P) are similar.

Finally, we conclude that

1 b— i*(a 02 i — Ti*(a T9a 2
H*(P)~' = = sup min min ( min T( Bl )1 i) , min (@i — @i ))2 $41) 7
2weqaelM] \ Jels) @ (o) (AF) 710 (@) i€P1 (|20 = Tiv(@)llag, )
T pa)2 T 9 T e (71)
b—x; 07 i — Tix(a))" 05 b— a0
min Z ( e Jl)  min (i — w42 ))2 $11) " Z (A% )
o 7E€B5 (w: ) ( )7hws e |l = Ii*(a)”(/\asH)_l JjeBg (x:) T
O

E.2 LINEAR STRUCTURES ACROSS TASKS

In this subsection, we introduce a new multi-task BAI problem with constraints, incorporating linear
structural information among tasks. In personalized medicine, the agent aims to identify the best
drug for each patient, represented by a feature vector capturing demographics and physical condi-
tions. Patients with similar features are likely to experience similar efficacy and side effects. Thus,
observations from one patient can inform others, enabling the agent to improve sampling efficiency
by utilizing structural information across patients.

Consider that each task a is associated with a feature vector ¢ € R%. For simplicity, we assume that
each arm i has two performance metrics (X&,Y;*) € R? (S = 2), represented as linear functions
of the features c*,a € [M]. The results can be extended to settings with multiple constraints using
our previous method.

Assumption 4. There exist unknown parameter (3;,7;,i € [K] such that X! = SLc* + € and
Y2 =~Fc® + ¢ where e ~ N(0,02), < 1,VYa € [M],and ||BT |2 < 1, |vill2 < 1,Vi € [K].

The agent needs to solve the following optimization problem for each task

maxﬁ c® s.t. fch“<b (172)
i€[K]
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Theorem 6. Given a fixed confidence level 6 € (0,1). Under Assumption {4} for any linear BAI
problem instance P € S and any strategy satisfying P (Va € [M],i*(a) = %T(a)) >1-9,

Elr] > H*(P)ki(6,1 — §), (173)

where \; = Zae[M} “;Zl ()", 0; = Zae[M] Ufzz c(e)T,

1 b—’Y;aCGZ () — AT .a)\2
H*(P)~! = = sup min min ( (_1) ) , min (5 ()_1 IBZ)_(i ) ,
2 weqa€[M] ()AL (et i€PE () T(07 + 65 () e (174)
(b —~fc")? i ((Bi(a) — Bi)Te™)? (b—~lc)?
€5 (c)TA; e ieng | (e)T(0; 1+ O, )et  (e)TA e | )
Proof. The proof follows the same approach as that of Theorem @] and is therefore omitted. O
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