MULTI-TASK BEST ARM IDENTIFICATION WITH RISK CONSTRAINT

Anonymous authors

Paper under double-blind review

ABSTRACT

Best Arm Identification is a very challenging problem in sequential decisionmaking with many real-world applications. Existing works typically assume that all arms are feasible or/and deal with expectation-based constraints with strong assumptions, loose sample complexity bounds, and non-optimal algorithms. This paper introduces a multi-task best arm identification problem with risk constraint in the fixed-confidence setting, where each arm has multiple performance metrics. The agent aims to optimize one metric while ensuring that the quantiles of other metrics remain below specified thresholds for each task. We first derive a tight, instance-dependent lower bound on sample complexity. Based on this bound, we establish optimality conditions for the static optimal sampling ratio and illustrate how it balances among different tasks and constraints, while addressing the tradeoff between optimality and feasibility. We derive a Track-and-Stop strategy with asymptotically optimal sample complexity and a computationally efficient strategy that iteratively solves the optimality conditions. Finally, we extend our results to the linear bandit setting. Numerical experiments show that our algorithm performs relatively well.

025 026 027

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 029

In recent years, Best Arm Identification (BAI) has been attracting considerable attention and has been widely applied in various fields such as chemistry (Bengio & LeCun, 2007; Wang et al., 2024), prompt learning (Shi et al., 2024), recommendation systems (Zhao & Yang, 2024), and A/B/n testing (Russac et al., 2021). In this paper, we consider a multi-task BAI problem with risk constraint. In this problem, each arm has multiple performance metrics and the agent aims to optimize one of the metrics while ensuring that the quantiles of the rest metrics remain below specified thresholds for each task. At each time step t, the agent chooses a task, arm, and metric pair to sample, receiving a reward drawn from the corresponding probability distribution. In the fixed-confidence setting, the agent must assess the feasibility and optimality of each arm across all tasks, identifying the best arm for each task with a probability of at least $1 - \delta$, while minimizing the number of samples required.

The multi-task BAI problem with risk constraint has numerous real-world applications. In the con-040 text of drug discovery, for example, the experimenter must identify the most appropriate drug for 041 each disease. A drug has multiple performance metrics, including its curative effect and potential 042 side effects. The experimenter aims to identify the drug with the best average curative effect while 043 ensuring that the risk of side effects remains below a certain threshold for each disease. In such 044 an application, some drugs may be infeasible due to high side effects in rare cases, despite having strong average curative effects. The experimenter must consider both optimality and feasibility while balancing the difficulty of identifying the best drug for various diseases. Additional motivating 046 examples are provided in Appendix A.2. 047

The existing methods in the literature cannot be used directly to solve the multi-task BAI problem with risk constraint. Traditional BAI models assume that all arms are feasible (Garivier & Kaufmann, 2016; Wang et al., 2021) with primary focus on evaluating the optimality of these arms. They cannot simultaneously address both optimality and feasibility. While some works have tried to tackle the BAI problem with constraint, their formulations either impose constraints on the sampling rule (Das & Basu; Tang et al., 2024) rather than the multiple performance settings we consider here, or they focus only on expectation-based constraints with very strong assumptions, such as

linear structure (Shang et al., 2023; Wang et al., 2022) and known objective value (Lindner et al., 2022). Previous work on risk-based BAI either uses a risk-based objective for unconstrained problems (Agrawal et al., 2021) or can only address a single performance metric setting (David et al., 2018; Chang et al., 2020; Hou et al., 2022). Furthermore, the sample complexity lower bounds in these works are often very loose and the optimality remains elusive.

- The contributions of this paper are summarized as follows:
 - We propose a multi-task BAI problem with risk constraint applicable to various real-world problems. We derive a tight, instance-dependent lower bound on the sample complexity required to guarantee a high probability identification of the feasible and optimal arm for each task.
 - Based on the lower bound, we derive the optimality conditions for the static optimal sampling ratio and discuss how this ratio balances the difficulty across different tasks and constraints, illustrating the trade-off between optimality and feasibility. Additionally, we present a closed-form formula for the problem's hardness by analyzing some challenging instances.
- We derive a Track-and-Stop strategy for the multi-task BAI problem with risk constraint, achieving asymptotically optimal sample complexity and a computationally efficient strategy that iteratively solves the optimality conditions. Additionally, we extend our sample complexity results to the linear bandit setting. Numerical experiments show that the proposed algorithm performs well in comparison to several benchmarks.

Best arm identification. BAI is a widely studied problem in the bandit community (Even-Dar et al., 2006; Gabillon et al., 2012; Kaufmann & Kalyanakrishnan, 2013). Our work builds on recent research on standard BAI, which aims to derive instance-dependent sample complexity lower bounds and asymptotically optimal strategies (Kaufmann et al., 2016; Garivier & Kaufmann, 2016; Degenne et al., 2019; Degenne & Koolen, 2019; Wang et al., 2021). We extend these methods to address the more challenging multi-task formulations with risk constraint, and the results for standard BAI can be derived as a special case.

082 Constrained best arm identification. There is an extensive literature on the constrained BAI 083 problem. Some works focus on constraints related to the sampling ratio of arms, such as Fair 084 BAI (Russo & Vannella, 2024) and BAI with Knapsacks (Tran-Thanh et al., 2012; Li et al., 2023) 085 and other settings (Das & Basu; Tang et al., 2024), which differ from our formulation. Others address performance-based constraints (Faizal & Nair, 2022), such as in safety linear BAI (Camilleri 087 et al., 2022; Shang et al., 2023). However, many of these works center on linear constraints with stronger assumptions (Lindner et al., 2022) or requires that constraints be satisfied throughout the exploration phase (Shang et al., 2023; Wang et al., 2022). Unlike these works, our problem focuses on pure exploration, where the agent can choose each arm and estimate both its optimality and 090 feasibility simultaneously. Additionally, some works explore BAI with risk constraint, where formu-091 lations typically consider the single performance metric of an arm, using the mean as the objective 092 function and the corresponding risk measures, such as variance (Hou et al., 2022) or conditional value at risk (David et al., 2018), as constraints. Our formulation differs from all prior works in that 094 we consider multi-task BAI with risk constraint in the fixed-confidence setting. Our lower bound 095 is both tight and instance-dependent, while the sample complexity upper bound of our algorithm 096 matches the lower bound and is asymptotically optimal.

Multi-objective best arm identification. Our work is also related to multi-objective BAI, which considers arms with multiple performance metrics. However, different from the previous works that focus on identifying the Pareto set (Auer et al., 2016; Kone et al., 2023; 2024), we aim to optimize one performance metric while keeping the quantiles of other metrics below known thresholds. These two types of problems have different objectives, and the Pareto set identification algorithm cannot be used to solve our problem.

104

061

062

063

064

065

067

068

069

075

2 PROBLEM FORMULATION

105 106

107 In this section, we present the formulation for the multi-task BAI problem with risk constraint and define the notation used throughout the paper.

113

114

116

117

118

The agent is given M BAI tasks, each with K arms. In each task $a \in [M] = \{1, \ldots, M\}$, arm $i \in [K] = \{1, \ldots, K\}$ corresponds to a random vector $(X_i^a, Y_{i1}^a, \ldots, Y_{iS}^a) \in \mathbb{R}^{S+1}$, where each element represents a performance metric of arm i. Let $F_i^a(\cdot)$ and $F_{ij}^a(\cdot)$ denote the cumulative distribution function (CDF) of random variable X_i^a and Y_{ij}^a , respectively, with μ_i^a and μ_{ij}^a being 108 110 111 112 their means. Define the ϕ -quantile of Y_{ij}^a as

$$q(Y_{ij}^{a},\phi) = \inf\{y : F_{ij}^{a}(y) \ge \phi\}.$$
(1)

115 The agent needs to solve the following optimization problem for each task:

 $i \in$

$$\max_{i \in [K]} \mathbb{E}[X_i^a] \quad \text{s.t.} \quad q(Y_{ij}^a, \phi) \le b, \ \forall j \in [S].$$

$$\tag{2}$$

119 For notational simplicity, we let F_{ij}^a represent $F_{ij}^a(b)$ and consider a uniform quantile level ϕ and constraint threshold b, which can be easily extended to multiple quantile levels and thresholds. For 120 each task a, let $\mu^a = (\mu^a_i)_{i \in [K]}, Q^a = (q(Y^a_{ij}, \phi))_{i \in [K], j \in [S]}$. Then, a multi-task BAI problem 121 instance can be denoted as $\mathcal{P} = (\mu^a, Q^a)_{a \in [M]}$. We adopt the following widely used assumptions. 122

123 **Assumption 1.** Let S denote the set of problem instances $\tilde{\mathcal{P}}$ where a unique best arm $i^*(a, \tilde{\mathcal{P}})$ exists 124 for each task a, and all constraints are active. Assume that $\mathcal{P} \in \mathcal{S}$. 125

Assumption 2. The distribution of X_i^a belongs to the single-parameter exponential family. $F_{ii}^a(\cdot)$ 126 has a continuous density function. 127

128 Assumption 1 is widely used in the BAI problem (Garivier & Kaufmann, 2016; Camilleri et al., 129 2022), as distinguishing between two arms with identical means or determining whether quantiles 130 equal to the threshold would require an infinite number of samples. The single-parameter exponen-131 tial family (SPEF) in Assumption 2 is general and includes common distributions such as Bernoulli and Gaussian with known variance. More details about the SPEF can be found in Appendix B.3. 132

133 In the online setting, at each time step t, the agent chooses a task, arm, and metric pair π^t = 134 (a^t, i^t, j^t) to sample, where $j^t = S + 1$ indicates sampling from the objective function X_i^a . The 135 agent then observes a random sample Z_t , drawn independently across tasks, arms, and metrics, 136 corresponding to the chosen random variable. Let $\mathcal{F}_t = \sigma(\pi^1, Z_1, \ldots, \pi^t, Z_t)$ denote the sigmafield generated by the sampling decisions and observations up to time t. 137

138 **Remark 1.** In the formulation above, the agent observes only one performance metric for each 139 sample. In contrast, some works in the literature (Hunter & Pasupathy, 2013; Camilleri et al., 140 2022; Kone et al., 2023) assume the agent observes a vector of all metrics after pulling an arm. We focus on the former, as it is more challenging, and the sample complexity scales with the number of 141 constraints. An extension to the latter case is provided in Theorem 5. 142

143 **Remark 2.** In this formulation, we adopt the multi-task setting. An alternative is to solve each 144 task individually. However, the mathematical model and analysis of this setting are more general, 145 enabling extension to scenarios with linear structure across tasks (see Appendix D.4 for details).

146 A strategy for BAI is defined by three components: the sampling rule $\{\pi^t\}_t$, where π^t is \mathcal{F}_{t-1} 147 measurable; the stopping rule τ , which is a stopping time with respect to \mathcal{F}_t ; and the decision rule 148 $(i_{\tau}(a))_{a \in [M]}$, where $i_{\tau}(a)$ denotes the recommended arm for task a when the algorithm terminates. 149 Let $N_{ij}^a(t), j \in [S]$ and $N_{i(S+1)}^a(t)$ represent the number of samples of constraint j and the objective, 150 respectively, for arm i in task a up to time t. $\omega_{ij}^a(t) = N_{ij}^a(t)/t, j \in [S+1]$ denote the corresponding 151 sampling ratio up to time t. In the fixed confidence setting, given a confidence level $\delta \in (0, 1)$, the 152 agent aims to identify the best arm $i^*(a, \mathcal{P})$ for all tasks $a \in [M]$ with a probability of at least $1 - \delta$, 153 while minimizing the sample complexity $\mathbb{E}[\tau]$. To simplify notation, we omit the dependence of 154 $i^*(a, \mathcal{P})$ on \mathcal{P} when it does not cause any confusion. 155

Additional notation. Denote by $\Omega = \{ \boldsymbol{\omega} \in \mathbb{R}^{MK(S+1)}_+ : \sum_{a \in [M], i \in [K], j \in [S+1]} \omega^a_{ij} = 1 \}$. $\mathcal{D}^a_1 = \{i \in [K] : \mu^a_i < \mu^a_{i*(a)}, \forall j \in [S], q(Y^a_{ij}, \phi) \leq b\}$ is the set of all suboptimal arms, $\mathcal{D}^a_2 = \{i \in [K] : \mu^a_i < \mu^a_i$ 156 157 158 $\mu_i^a > \mu_{i^*(a)}^a, \exists j \in [S], q(Y_{ij}^a, \phi) > b\}$ is the set of all infeasible arms with better objective value, 159 and $\mathcal{D}_3^a = \{i \in [K] : \mu_i^a < \mu_{i^*(a)}^a, \exists j \in [S], q(Y_{ij}^a, \phi) > b\}$ is the set of all infeasible arms with 160 worse objective value for task a. Let $\mathcal{B}_1^a(i) = \{j \in [S] : q(Y_{ij}^a, \phi) \leq b\}$ represent the indices of 161 feasible constraints for arm i, and $\mathcal{B}_2^a(i) = [S] \setminus \mathcal{B}_1^a(i)$ represent the indices of infeasible constraints. 162 Denote $\mathcal{A}(\mathcal{P}) = \{\mathcal{P}' \in S : \exists a \in [M], i^*(a, \mathcal{P}) \neq i^*(a, \mathcal{P}')\}$ as the set of problem instances where 163 the best arm for at least one task *a* differs from that in \mathcal{P} . Define kl $(p,q) = p \log(p/q) + (1 - p) \log((1-p)/(1-q))$ for $p, q \in (0, 1)$, and d(p, q) as the Kullback–Leibler divergence between 164 two distributions in a SPEF with means *p* and *q*, respectively. A table summarizing the notation is 165 provided in Appendix A.1.

3 SAMPLE COMPLEXITY

In this section, we establish the lower bound for the sample complexity and derive the optimality conditions for the static optimal sampling ratio. Formal proofs of these results are provided in Appendix B.

173 174 175

182

183

185

187

188 189 190

191 192

193 194

196 197

167 168

169

3.1 LOWER BOUND ON THE SAMPLE COMPLEXITY

In this subsection, we derive an instance-dependent lower bound on the sample complexity $\mathbb{E}[\tau]$. This bound defines the minimum number of samples required to identify the best arm for all tasks with high probability. To exclude trivial cases, we assume that for each task *a*, there are four types of arms: the optimal arm $i^*(a)$, suboptimal arms in \mathcal{D}_1^a , infeasible arms with better objective values in \mathcal{D}_2^a , and infeasible arms with worse objective values in \mathcal{D}_3^a . Theorem 1 provides the lower bound on $\mathbb{E}[\tau]$.

Theorem 1. Given a fixed confidence level $\delta \in (0, 1)$, define $\mu_{i,i^*(a)}^a = \arg \inf_{\tilde{\mu}} \omega_{i(S+1)}^a d(\mu_i^a, \tilde{\mu}) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \tilde{\mu})$. Under Assumptions 1-2, for any problem instance $\mathcal{P} \in \mathcal{S}$ and any strategy satisfying $\mathbb{P}\left(\forall a \in [M], i^*(a) = \hat{i}_{\tau}(a)\right) \geq 1 - \delta$,

$$\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P})kl(\delta, 1-\delta),\tag{3}$$

as $\delta \to 0$, we have

$$\liminf_{\delta \to 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \ge \mathcal{H}^*(\mathcal{P}),\tag{4}$$

where $\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega}))$, with

$$V_1^a(\boldsymbol{\omega}) = \min_{j \in [S]} \omega_{i^*(a)j}^a d(F_{i^*(a)j}^a, \phi),$$

$$V_2^a(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_1^a} \omega_{i(S+1)}^a d(\mu_i^a, \mu_{i,i^*(a)}^a) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a),$$

$$V_3^a(oldsymbol{\omega}) = \min_{i \in \mathcal{D}_2^a} \sum_{j \in \mathcal{B}_2^a(i)} \omega_{ij}^a d(F_{ij}^a, \phi),$$

$$V_4^a(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_3^a} \omega_{i(S+1)}^a d(\mu_i^a, \mu_{i,i^*(a)}^a) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a) + \sum_{j \in \mathcal{B}_3^a(i)} \omega_{ij}^a d(F_{ij}^a, \phi).$$

199 200

The basic idea behind the analysis of Theorem 1 is that we can construct an alternative, indistinguishable problem instance $\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})$, which has a different best arm for some tasks. Using Lemma 1 in Kaufmann et al. (2016), we can derive the number of samples necessary to distinguish between these two instances. The main insight from Theorem 1 is that arms with varying feasibility and optimality contribute differently to the overall complexity, as explicitly derived in Proposition 1 for certain challenging instances.

Technical Novelty. Theorem 1 extends the sample complexity results of Theorem 1 in Garivier & Kaufmann (2016) to the multi-task BAI with risk constraint setting. The primary technical novelty lies in transforming the problem of comparing quantiles with a threshold into one of comparing the CDF value at a given point with the corresponding quantile level, classifying the arms for each task into four categories based on optimality and feasibility, and analyzing the sample complexity for each category. The analysis method is general and can be extended to other formulations, as discussed in Section 6 and E.2.

The lower bound on the sample complexity depends on an δ -related constant kl $(\delta, 1 - \delta)$ and the statistical complexity $\mathcal{H}^*(\mathcal{P})$. The complexity $\mathcal{H}^*(\mathcal{P})$ is defined by a multi-level optimization problem. The inner problem seeks to find a problem instance indistinguishable from \mathcal{P} in terms of KL divergence, while the outer problem tries to maximize the difference between these two instances
 by finding a static optimal sampling ratio

$${}^{\epsilon}(\mathcal{P}) = \underset{\boldsymbol{\omega}\in\Omega}{\arg\max\min} \min_{a\in[M]} \min\left(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega})\right).$$
(5)

A strategy is optimal when its sampling ratio $\omega(t)$ meets $\omega^*(\mathcal{P})$, we omit the dependence of $\omega^*(\mathcal{P})$ on \mathcal{P} whenever it is unambiguous.

3.2 STATIC OPTIMAL SAMPLING RATIO

 ω^{*}

219

222 223

224

237 238 239

241

246

247

248

249

250

251

257

In this subsection, we derive the optimality conditions for problem (5) and provide some insights into the static optimal sampling ratio ω^* . Denote $j_h(a, i) = \arg \max_{j \in \mathcal{B}_2^a(i)} d(F_{ij}^a, \phi)$ as the most distinguishable infeasible constraint of arm *i* in task *a*. We omit the dependence of $j_h(a, i)$ on (a, i)whenever it is unambiguous. Theorem 2 establishes the optimality conditions for ω^* .

Theorem 2. Let $\mathcal{M}_1^a = \{i \in \mathcal{D}_3^a : d(\mu_i^a, \mu_{i,i^*(a)}^a) > d(F_{ij_h}^a, \phi)\}$ and $\mathcal{M}_2^a = \{i \in \mathcal{D}_3^a : d(\mu_i^a, \mu_{i,i^*(a)}^a) < d(F_{ij_h}^a, \phi)\}$. Assume that $\mathcal{D}_3^a = \mathcal{M}_1^a \cup \mathcal{M}_2^a$ for each task $a \in [M]$, then the static optimal sampling ratio ω^* satisfies:

$$V_{1}^{a}(\boldsymbol{\omega}^{*}) = V_{2}^{a}(\boldsymbol{\omega}^{*}) = V_{3}^{a}(\boldsymbol{\omega}^{*}) = V_{4}^{a}(\boldsymbol{\omega}^{*}) = z^{*}, \forall a \in [M]$$
$$(\omega_{i^{*}(a)j}^{a})^{*}d(F_{i^{*}(a)j}^{a}, \phi) = z^{*}, \forall a \in [M], j \in [S]$$

$$(\omega_{i(S+1)}^{a})^{*}d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a}) + (\omega_{i^{*}(a)(S+1)}^{a})^{*}d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a}) = z^{*}, \forall a \in [M], i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}$$

$$\sum_{i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a} \frac{d(\mu_{i^*}^{*}(a), \mu_{i,i^*}^{*}(a))}{d(\mu_i^a, \mu_{i,i^*}^a(a))} = 1, \forall a \in [M]$$
$$(\omega_{ijh}^a)^* d(F_{ijh}^a, \phi) = z^*, \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a$$
$$(\omega_{ij}^a)^* = 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a, j \in [S]$$
$$(\omega_{ij}^a)^* = 0, \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a, j \neq j_h$$
$$\sum_{i \in \mathcal{D}_2^a} \sum_{i \in \mathcal{D}_2^a} (\omega_{ij}^a)^* = 1,$$

$$\sum_{a \in [M]} \sum_{i \in [K]} \sum_{j \in [S+1]} (\omega_{ij}^a)^* = 1,$$
$$(\omega_{ij}^a)^* \ge 0, \forall a \in [M], i \in [K], j \in [S+1].$$

(6)

Remark 3. \mathcal{M}_1^a includes the arms in \mathcal{D}_3^a that are easier to identify as suboptimal than infeasible, while \mathcal{M}_2^a represents the opposite case. For simplicity, we disregard the case where $d(\mu_i^a, \mu_{i,i^*(a)}^a) = d(F_{ij_h}^a, \phi)$, since the optimal solution is not unique, and the solution to equations (6) is one of the optimal solutions.

Insights and illustrative examples. Here we provide some insights on the static optimal sampling ratio ω^* . First, it aims to balance difficulty and equalize error probability across tasks, i.e., $V_1^a(\omega^*) = V_2^{a'}(\omega^*)$, for all task *a* and *a'*. Second, it seeks to equalize the error probability among the four types of arms for each task, i.e., $V_1^a(\omega^*) = \ldots = V_4^a(\omega^*)$. Third, for the best arm $i^*(a)$, the optimal sampling ratio is proportional to the difficulty of identification, i.e.,

$$(\omega_{i^*(a)j}^a)^* / (\omega_{i^*(a)j'}^a)^* = d(F_{i^*(a)j'}^a, \phi) / d(F_{i^*(a)j}^a, \phi), \forall a \in [M], j, j' \in [S])$$

Finally, for arms in \mathcal{D}_1^a and \mathcal{M}_1^a , it focuses on identifying them as suboptimal, while for arms in \mathcal{D}_2^a and \mathcal{M}_2^a , it focuses on identifying them as infeasible. Illustrative examples are provided in Appendix D.1.

Hardness of problem instance. The complexity $\mathcal{H}^*(\mathcal{P})$ quantifies the difficulty of the problem instance \mathcal{P} . However, it is defined through a multi-level optimization problem, making it challenging to identify the specific factors contributing to the problem's hardness. To make it more explicit, we examine some particularly challenging problem instances.

$$\begin{array}{ll} \begin{array}{l} \text{Lemma 1. Define } \Delta_{i}^{a} = \mu_{i^{*}(a)}^{a} - \mu_{i}^{a}, \\ \Delta_{i^{*}(a)}^{a} = \min_{l \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}}(\mu_{i^{*}(a)}^{a} - \mu_{l}^{a}), \\ \sigma_{i}^{a} = (\int x^{2}dF_{i}^{a}(x) - \mu_{i}^{a}) \\ (\mu_{i}^{a})^{2} \\ (\mu_{i}^{a})^{2} \\ \stackrel{1}{=} \in (0, \infty), \\ \text{then for each task } a \in [M], \\ \text{and arm } i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}, \\ as \\ \Delta_{i}^{a} \rightarrow 0, \\ \\ \begin{array}{c} \mu_{i}^{a} - \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a)}^{a} \\ (\mu_{i}^{a} - \mu_{i^{*}(a)}^{a}) \\ (\mu_{i}^{a} - \mu_{i^{*}(a)}^{a}) \\ \end{array} \\ \begin{array}{c} \mu_{i}^{a} - \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a)}^{a} \\ (\mu_{i}^{a} - \mu_{i^{*}(a)}^{a}) \\ \end{array} \\ \begin{array}{c} \mu_{i}^{a} - \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a)}^{a} \\ (\mu_{i}^{a} - \mu_{i^{*}(a)}^{a}) \\ \end{array} \\ \begin{array}{c} \mu_{i}^{a} - \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a)}^{a} \\ \end{array} \\ \begin{array}{c} \mu_{i}^{a} - \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a)}^{a} \\ \end{array} \\ \begin{array}{c} \mu_{i}^{a} - \mu_{i^{*}(a)}^{a} \\ \mu_{i^{*}(a$$

Lemma 2. Define $\triangle_{ij}^a = |F_{ij}^a - \phi|, \ \sigma_{ij}^a = (F_{ij}^a(1 - F_{ij}^a))^{\frac{1}{2}} \in (0, \infty)$, then for each task $a \in [M]$, arm $i \in [K]$ and constraint $j \in [S]$, as $\triangle_{ij}^a \to 0$,

$$d(F_{ij}^a, \phi) \to \frac{(F_{ij}^a - \phi)^2}{2(\sigma_{ij}^a)^2}.$$
 (8)

Lemma 1 and Lemma 2 show that as the problem instance becomes increasingly difficult, the KL divergence can be approximated using only the first two moments. Using these two lemmas, we can derive both an upper and lower bound for $\mathcal{H}^*(\mathcal{P})$ in the following proposition.

Proposition 1. Define

$$\mathcal{H} = \sum_{a \in [M]} \left(\sum_{j \in [S]} \frac{(\sigma_{i^*(a)j}^a)^2}{(\triangle_{i^*(a)j}^a)^2} + \sum_{i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a \cup \{i^*(a)\}} \frac{(\sigma_i^a)^2}{(\triangle_i^a)^2} + \sum_{i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a} \frac{(\sigma_{ij_h}^a)^2}{(\triangle_{ij_h}^a)^2} \right).$$
(9)

For the problem instance \mathcal{P} with $\triangle_i^a \to 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$, and $\triangle_{ij}^a \to 0, \forall a \in [M], i \in [K], j \in [S]$, we have $2\mathcal{H} \leq \mathcal{H}^*(\mathcal{P}) \leq 4\mathcal{H}$.

Proposition 1 provides better insight into the magnitude of $\mathcal{H}^*(\mathcal{P})$. For the best arm $i^*(a)$, the problem's hardness depends on the feasibility gap across all constraints. For suboptimal and infeasible arms in \mathcal{D}_1^a and \mathcal{M}_1^a , it depends on the variance and optimality gap, while for infeasible arms in \mathcal{D}_2^a and \mathcal{M}_2^a , it is determined by the feasibility gap of the most distinguishable constraints. Additionally, Proposition 1 leads to a sampling ratio in Lemma 3, which is proportional to the identification difficulty.

Lemma 3. For the problem instance \mathcal{P} with $\triangle_i^a \to 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$, and $\triangle_{ij}^a \to 0, \forall a \in [M], i \in [K], j \in [S]$, consider the static sampling ratio $\tilde{\omega}$ with

299 300

301 302 303

304

306

307 308

310

277

278

279

280 281

283 284

$$\tilde{\omega}_{i^*(a)j}^a = \frac{(\sigma_{i^*(a)j}^a)^2}{\mathcal{H}(\triangle_{i^*(a)j}^a)^2}, \,\forall a \in [M], j \in [S]$$

$$\tilde{\omega}_{i(S+1)}^a = \frac{(\sigma_i^a)^2}{\mathcal{H}(\triangle_i^a)^2}, \,\forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a \cup \{i^*(a)\}$$

$$\tilde{\omega}_{i(S+1)}^a = \frac{(\sigma_{ij_h}^a)^2}{\mathcal{H}(\triangle_i^a)^2} \quad \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$$

(10)

$$\tilde{\omega}_{ij_h}^a = \frac{(\sigma_{ij_h}^a)^2}{\mathcal{H}(\triangle_{ij_h}^a)^2}, \, \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a$$

 $\tilde{\omega}_{ij}^a = 0$ otherwise. Define $\mathcal{H}(\mathcal{P}, \tilde{\omega})^{-1} = \min_{a \in [M]} \min(V_1^a(\tilde{\omega}), V_2^a(\tilde{\omega}), V_3^a(\tilde{\omega}), V_4^a(\tilde{\omega})))$, then we have $\mathcal{H}(\mathcal{P}, \tilde{\omega}) = \mathcal{O}(\mathcal{H})$, where $\mathcal{O}(\cdot)$ represents the suppression of certain constants.

Comparison to previous work. The most related work to ours is Garivier & Kaufmann (2016), which considers the unconstrained, single-task BAI problem. Their formulation is a special case of ours with M = 1, $\mathcal{D}_2^a = \mathcal{D}_3^a = \emptyset$, and the agent knows that all arms are feasible. In this case, Theorem 2 reduces to $\omega^* \in \Omega$,

$$(\omega_{i(S+1)})^* d(\mu_i, \mu_{i,i^*}) + (\omega_{i^*(S+1)})^* d(\mu_{i^*}, \mu_{i,i^*}) = z^*, \forall i \in [K] \setminus \{i^*\}$$

$$\sum_{i \in [K] \setminus \{i^*\}} \frac{d(\mu_{i^*}, \mu_{i,i^*})}{d(\mu_i, \mu_{i,i^*})} = 1,$$
(11)

recovering their main results given in Theorem 5 of Garivier & Kaufmann (2016).

318 319

4 THE OPTIMAL STRATEGY

320 321

In this section, we propose an asymptotically optimal strategy and a computationally efficient strategy for the multi-task BAI problem with risk constraint. Formal proofs for all the results in this section are provided in Appendix C.

324 4.1 TRACK-AND-STOP STRATEGY

We extend the Track-and-Stop strategy proposed in Garivier & Kaufmann (2016) for solving the unconstrained, single-task BAI problem. The main novelty lies in deriving a new sampling rule by solving the equations in (6) and a stopping rule that incorporates the influence of multiple tasks and risk constraints.

Sampling rule. From the analysis of Theorem 1, the constraint $q(Y_{ij}^a, \phi) \leq b$ is equivalent to $F_{ij}^a \geq \phi$. Therefore, a problem instance can be represented as $\mathcal{P} = (\mu^a, F^a)_{a \in [M]}$ with $F^a = (F_{ij}^a)_{i \in [K], j \in [S]}$. Define

$$\hat{\mu}_{i}^{a}(t) = \frac{1}{N_{i(S+1)}^{a}(t)} \sum_{s \le t} Z_{s} \mathbb{I}(a^{s} = a, i^{s} = i, j^{s} = S+1),$$

$$\hat{F}_{ij}^{a}(t) = \frac{1}{N_{ij}^{a}(t)} \sum_{s < t} \mathbb{I}(Z_{s} \le b) \mathbb{I}(a^{s} = a, i^{s} = i, j^{s} = j),$$
(12)

and let $\hat{\mathcal{P}}(t) = (\hat{\mu}^a(t), \hat{F}^a(t))_{a \in [M]}$ denote the empirical problem instance. The static optimal sampling rule $\omega^*(\mathcal{P})$ is not implementable because it depends on the unknown parameters \mathcal{P} . A natural approach is to plug in the estimate $\hat{\mathcal{P}}(t)$ and track the empirical optimal sampling ratio $\omega^*(\hat{\mathcal{P}}(t))$. The sampling rule can be defined as

$$\pi^{t+1} = \begin{cases} \arg\min_{(a,i,j)\in U_t} N_{ij}^a(t) \text{ if } U_t \neq \emptyset \\ \arg\max_{(a,i,j)\in [M]\times[K]\times[S+1]} t(\omega_{ij}^a)^*(\hat{\mathcal{P}}(t)) - N_{ij}^a(t) \end{cases}$$
(13)

with $U_t = \{(a, i, j) : N_{ij}^a(t) < \sqrt{t} - MK(S+1)/2\}$. Since the computation of $\omega^*(\hat{\mathcal{P}}(t))$ depends on the empirical sets $\{i^*(a, \hat{\mathcal{P}}(t))\}$ and $\hat{\mathcal{D}}_1^a(t)$, the algorithm will, for simplicity, apply an equal sampling rule when either of these sets is empty for some task a.

The sampling rule chooses each (a, i, j) pair at least $\Omega(\sqrt{t})$ times overall. Asymptotically, $\hat{\mathcal{P}}(t)$ converges to \mathcal{P}^* and $\omega^*(\hat{\mathcal{P}}(t))$ converges to $\omega^*(\mathcal{P})$.

Algorithm 1 Track-and-Stop Strategy

1: Initialization. Pull each $(a, i, j) \in [M] \times [K] \times [S + 1] n_0$ times. 2: Set $t \leftarrow n_0 MK(S + 1)$, and update $\hat{\mathcal{P}}(t), \omega^*(\hat{\mathcal{P}}(t)), U_t, N^a_{i(S+1)}(t), N^a_{ij}(t)$. 3: while $\inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}}(t))} f(\hat{\mathcal{P}}(t), \tilde{\mathcal{P}}) \leq \beta(t, \delta)$ do 4: $\pi^{t+1} = \begin{cases} \arg\min_{(a,i,j)} N^a_{ij}(t) \text{ if } U_t \neq \emptyset \text{ or } \exists a \in [M], \{i^*(a, \hat{\mathcal{P}}(t))\} = \emptyset \text{ or } \hat{\mathcal{D}}^a_1(t) = \emptyset \\ \arg\max_{(a,i,j)} t(\omega^a_{ij})^*(\hat{\mathcal{P}}(t)) - N^a_{ij}(t) \end{cases}$ 5: Sample the π^{t+1} and obtain one observation Z_{t+1} .

5. Sumple lie *x* = and obtain one observation *Z*_{t+1}.
6: Set *t* ← *t* + 1, and update *P*(*t*), *ω*^{*}(*P*(*t*)), *U*_t, *N*^a_{i(S+1)}(*t*), *N*^a_{ij}(*t*).
7: end while
8: Output. Select *î*_τ(*a*) = arg max_{i∈[K]} *µ*^a_i(τ) s.t. *F*^a_{ij}(τ) ≥ φ, ∀*j* ∈ [*S*], as the best arm for each task *a* ∈ [*M*].

Stopping rule and decision rule. We derive the stopping rule using the generalized likelihood ratio test method. Define

$$f(\hat{\mathcal{P}}(t),\tilde{\mathcal{P}}) = \sum_{a \in [M], i \in [K]} \left(N^a_{i(S+1)}(t) d(\hat{\mu}^a_i(t), \tilde{\mu}^a_i) + \sum_{j \in [S]} N^a_{ij}(t) d(\hat{F}^a_{ij}(t), \tilde{F}^a_{ij}) \right),$$
(14)

and let $\tau = \inf\{t \in \mathbb{N} : \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}}(t))} f(\hat{\mathcal{P}}(t), \tilde{\mathcal{P}}) > \beta(t, \delta)\}$. The algorithm stops only if the GLS statistic exceeds the threshold $\beta(t, \delta)$. Lemma 4 establishes the statistical validity of the stopping rule. For the decision rule, we use $\hat{\mathcal{P}}(t)$ to determine the best arm for each task $a \in [M]$.

378 **Lemma 4.** Given a fixed confidence level $\delta \in (0,1)$ and $\alpha > 1$. There exists a constant 379 $C(\alpha, M, K, S)$ such that for any sampling rule $\{\pi^t\}_t$, using the stopping rule with $\beta(t, \delta) =$ 380 $\log\left(\frac{Ct^{\alpha}}{\delta}\right)$, then for all problem instance $\mathcal{P} \in \mathcal{S}$, $\mathbb{P}\left(\exists a \in [M], \hat{i}_{\tau}(a) \neq i^{*}(a)\right) \leq \delta$. 381

Sample complexity. The following theorem establishes the sample complexity upper bound for Algorithm 1. Combined with Theorem 1, this allows us to conclude that Algorithm 1 is asymptotically optimal.

Theorem 3. Under Assumptions 1-2, for problem instance $\mathcal{P} \in \mathcal{S}$, Algorithm 1 satisfies

$$\limsup_{\delta \to 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \le \mathcal{H}^*(\mathcal{P}).$$
(15)

388 389 390

391

392

393 394

395

397

398

399

400 401

403 404

407

410

411

417

418

419

420 421

422

382

384

386 387

> **Remark 4.** The intuition behind Theorem 3 is that as $\delta \to 0$, the exploration step ensures each metric is sampled infinitely often, while the sample complexity required to eliminate randomness becomes negligible. Meanwhile, the tracking procedure ensures the empirical sampling ratio converges to the static optimal ratio, making the upper bound asymptotically matching the lower bound.

4.2 AN EFFICIENT STRATEGY

While the Track-and-Stop strategy is asymptotically optimal, it incurs high computational costs due to the need to solve an optimization problem at every iteration. To address this, we propose a more computationally efficient strategy based on the optimality conditions outlined in Theorem 2.

Sampling rule. For each task $a \in [M]$, define

The optimality conditions in Theorem 2 aim to equalize $s_{a,i,j}(\mathcal{P},t)$, which is non-decreasing with 408 respect to the corresponding sampling ratio. Consequently, a natural strategy can be derived by iteratively solving these conditions. Define 409

$$(a^{t}, i^{t}, j^{t}) = \operatorname*{arg\,min}_{(a,i,j)\in[M]\times[K]\times[S+1]} s_{a,i,j}(\mathcal{P}, \boldsymbol{\omega}(t)).$$
(17)

412 The sampling rule is to choose (a^t, i^t, j^t) if $i^t \in \mathcal{D}_2^a \cup \mathcal{M}_2^a \cup \{i^*(a)\}$ or $i^t \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$ with

$$\frac{N_{i^*(a)j^t}^{a^t}(t)}{N_{i^*(a)j^t}^{a^t}(t) + N_{i^tj^t}^{a^t}(t)} > \frac{(\omega_{i^*(a)j^t}^{a^t})^*(\mathcal{P})}{(\omega_{i^*(a)j^t}^{a^t})^*(\mathcal{P}) + (\omega_{i^tj^t}^{a^t})^*(\mathcal{P})},$$
(18)

and choose $(a^t, i^*(a), j^t)$ otherwise. In its implementation, we can use $\mathcal{P}(t)$ to estimate \mathcal{P} and adaptively update the sampling ratio. This strategy is similar to the BestChallenger method in Garivier & Kaufmann (2016), with an extension to the multi-task and risk-constrained setting based on the results in Theorem 2.

5 NUMERICAL EXPERIMENT

423 In this section, we conduct numerical experiments to evaluate the performance of the proposed 424 algorithms. Additional experimental results and further details are provided in Appendix D. 425

Two experiments with different configurations are considered. The first experiment involves a Gaus-426 sian bandit, and the second involves a Bernoulli bandit. Each experiment consists of 2 tasks, 4 arms, 427 and 1 constraint. Arm 1 is the best, while arms 2, 3, and 4 are suboptimal and infeasible with a 428 better mean, and infeasible with a worse mean, respectively. The detailed parameters of the problem 429 instances are summarized in Appendix D.2. 430

Since no existing methods can directly be applied to solve our problem, we propose the following 431 benchmarks for comparison:

Figure 1: Empirical sample complexity for 1000 runs with $\delta = 0.1$ and $n_0 = 10$ for Gaussian bandit (left) and Bernoulli bandit (right).

Figure 2: Change in empirical sampling ratio for ESR strategy in Gaussian bandit.

- Equal Sampling Rule (USR): sampling each task, arm, and constraint/objective pair equally.
- Approximate Sampling Rule (ASR): using the sampling ratio proposed in Lemma 3, which is proportional to the difficulty of identification.
- Frank-Wolf Sampling Rule (FWSR): extending the state-of-art strategy for unconstrained, single task BAI (Wang et al., 2021) to the multi-task BAI with risk constraint setting.

The pseudo-code for all strategies, along with the derivation of the Frank-Wolfe strategy, can be found in Appendix D.3. We refer to the Track-and-Stop strategy as the Exact Sampling Rule (ESR) and the efficient strategy in Section 4.2 as the Sequential Sampling Rule (SEQSR).

Figure 1 illustrates the empirical sample complexity for 1000 independent runs of various strategies across two experiments, with $\delta = 0.1$ and $n_0 = 10$. For all experiments, we use the same stopping rule with $\beta(t, \delta) = \log(\log(t) + 1)/\delta$, which is suggested in Garivier & Kaufmann (2016), and is also used in Degenne et al. (2020) and (Wang et al., 2021). The SEQSR and ESR outperform or are comparable to other benchmarks. Figure 2 shows the change of empirical sampling ratio relative to the total sample size for ESR strategy in Gaussian bandit. As the total sample size increase, the empirical sampling ratio converges to the static optimal ratio, confirming the asymptotic optimality of the ESR sampling ratio. The conclusion remains consistent across different hyperparameters n_0 (D.5), confidence levels δ (D.6), and on a larger example (D.8). The computational efficiency of ASR, FWSR, SEQSR, and USR is comparable and significantly higher than that of ESR (D.7).

EXTENSION TO LINEAR BANDIT

In this section, we address the multi-task linear BAI problem with constraint and show that Theo-rem 1 extends naturally to the linear bandit setting.

In the linear bandit setting, arm *i* corresponds to a vector $x_i \in \mathbb{R}^d$. For each task $a \in [M]$, arm *i* has multiple performance metrics $(X_i^a, Y_{i1}^a, \dots, Y_{iS}^a) \in \mathbb{R}^{S+1}$ that exhibit a linear structure. Another formulation that incorporates the linear structural information across tasks is provided in Theorem 6 of Appendix E.2.

The agent needs to solve the following optimization problem for each task

$$\max_{i \in [K]} x_i^T \theta_{S+1}^a \quad \text{s.t.} \ x_i^T \theta_j^a \le b, \ \forall j \in [S].$$

$$\tag{19}$$

Theorem 4 extends Theorem 1 to the linear setting, providing a lower bound on the sample complexity $\mathbb{E}[\tau]$.

Theorem 4. Given a fixed confidence level $\delta \in (0,1)$. Under Assumption 3, for any linear BAI problem instance $\mathcal{P} \in \mathcal{S}$ and any strategy satisfying $\mathbb{P}\left(\forall a \in [M], i^*(a) = \hat{i}_{\tau}(a)\right) \geq 1 - \delta$,

$$\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P})kl(\delta, 1-\delta),\tag{20}$$

where $\Lambda_j^a = \sum_{i \in [K]} \omega_{ij}^a \frac{x_i x_i^T}{(\sigma_{ij}^a)^2}, \Lambda_{S+1}^a = \sum_{i \in [K]} \omega_{i(S+1)}^a \frac{x_i x_i^T}{(\sigma_i^a)^2},$

$$\mathcal{H}^{*}(\mathcal{P})^{-1} = \frac{1}{2} \sup_{\omega \in \Omega} \min_{a \in [M]} \min\left(\min_{j \in [S]} \frac{(b - x_{i^{*}(a)}^{T} \theta_{j}^{a})^{2}}{x_{i^{*}(a)}^{T} (\Lambda_{j}^{a})^{-1} x_{i^{*}(a)}}, \min_{i \in \mathcal{D}_{1}^{a}} \frac{((x_{i} - x_{i^{*}(a)})^{T} \theta_{S+1}^{a})^{2}}{\|x_{i} - x_{i^{*}(a)}\|_{(\Lambda_{S+1}^{a})^{-1}}^{2}}, \dots \right)$$

$$(21)$$

494

495 496 497

500

505 506 507

$$\min_{i \in \mathcal{D}_{2}^{a}} \sum_{j \in \mathcal{B}_{2}^{a}(x_{i})} \frac{(b - x_{i}^{T}\theta_{j}^{a})^{2}}{x_{i}^{T}(\Lambda_{j}^{a})^{-1}x_{i}}, \min_{i \in \mathcal{D}_{3}^{a}} \left[\frac{((x_{i} - x_{i^{*}(a)})^{T}\theta_{S+1}^{a})^{2}}{\|x_{i} - x_{i^{*}(a)}\|_{(\Lambda_{S+1}^{a})^{-1}}^{2}} + \sum_{j \in \mathcal{B}_{2}^{a}(x_{i})} \frac{(b - x_{i}^{T}\theta_{j}^{a})^{2}}{x_{i}^{T}(\Lambda_{j}^{a})^{-1}x_{i}} \right] \right).$$
(21)

512 513 514

526

530

531

532

533

534

7 CONCLUSION

515 We study the multi-task BAI problem with risk constraint in the fixed-confidence setting. We pro-516 vide a lower bound on sample complexity, derive the optimality conditions for the optimal sampling 517 ratio, extend the Track-and-Stop strategy with an upper bound asymptotically matching the lower 518 bound, and derive an computationally efficient strategy. Numerical experiments demonstrate that 519 our algorithm outperforms relatively well. Some potential future research directions include: 1) to 520 derive the optimal strategy in the fixed-budget setting or to design efficient algorithms to address 521 the optimization problem associated with the sample complexity lower bound; 2) to consider per-522 formance constraints on the arms as well as constraints on the sampling ratio, such as fairness and 523 resource constraints. 524

References

- Shubhada Agrawal, Wouter M Koolen, and Sandeep Juneja. Optimal best-arm identification meth ods for tail-risk measures. *Advances in Neural Information Processing Systems*, 34:25578–25590, 2021.
 - Peter Auer, Chao-Kai Chiang, Ronald Ortner, and Madalina Drugan. Pareto front identification from stochastic bandit feedback. In *Artificial intelligence and statistics*, pp. 939–947. PMLR, 2016.
 - Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel Machines*. MIT Press, 2007.
- Romain Camilleri, Andrew Wagenmaker, Jamie H Morgenstern, Lalit Jain, and Kevin G Jamieson.
 Active learning with safety constraints. *Advances in Neural Information Processing Systems*, 35: 33201–33214, 2022.
- Joel QL Chang, Qiuyu Zhu, and Vincent YF Tan. Risk-constrained thompson sampling for cvar bandits. *arXiv preprint arXiv:2011.08046*, 2020.

540 541 542	Udvas Das and Debabrota Basu. Learning to explore with lagrangians for bandits under unknown constraints. In <i>ICML 2024 Workshop: Foundations of Reinforcement Learning and Control-Connections and Perspectives</i> .
543 545	Yahel David, Balázs Szörényi, Mohammad Ghavamzadeh, Shie Mannor, and Nahum Shimkin. Pac bandits with risk constraints. In <i>ISAIM</i> , 2018.
546 547	Rémy Degenne and Wouter M Koolen. Pure exploration with multiple correct answers. <i>Advances in Neural Information Processing Systems</i> , 32, 2019.
548 549 550	Rémy Degenne, Wouter M Koolen, and Pierre Ménard. Non-asymptotic pure exploration by solving games. <i>Advances in Neural Information Processing Systems</i> , 32, 2019.
551 552 553	Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. Gamification of pure explo- ration for linear bandits. In <i>International Conference on Machine Learning</i> , pp. 2432–2442. PMLR, 2020.
554 555	Amir Dembo. Large deviations techniques and applications. Springer, 2009.
556 557 558	Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. <i>Journal of machine learning research</i> , 7(6), 2006.
559 560	Fathima Zarin Faizal and Jayakrishnan Nair. Constrained pure exploration multi-armed bandits with a fixed budget. <i>arXiv preprint arXiv:2211.14768</i> , 2022.
562 563 564	Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identification: A uni- fied approach to fixed budget and fixed confidence. <i>Advances in Neural Information Processing</i> <i>Systems</i> , 25, 2012.
565 566	Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In <i>Conference on Learning Theory</i> , pp. 998–1027. PMLR, 2016.
568 569	Yunlong Hou, Vincent YF Tan, and Zixin Zhong. Almost optimal variance-constrained best arm identification. <i>IEEE Transactions on Information Theory</i> , 69(4):2603–2634, 2022.
570 571	Susan R Hunter and Raghu Pasupathy. Optimal sampling laws for stochastically constrained simulation optimization on finite sets. <i>INFORMS Journal on Computing</i> , 25(3):527–542, 2013.
572 573 574	Sandeep Juneja and Subhashini Krishnasamy. Sample complexity of partition identification using multi-armed bandits. In <i>Conference on Learning Theory</i> , pp. 1824–1852. PMLR, 2019.
575 576	Emilie Kaufmann and Shivaram Kalyanakrishnan. Information complexity in bandit subset selection. In <i>Conference on Learning Theory</i> , pp. 228–251. PMLR, 2013.
577 578 579 580	Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identifi- cation in multi-armed bandit models. <i>The Journal of Machine Learning Research</i> , 17(1):1–42, 2016.
581 582	Cyrille Kone, Emilie Kaufmann, and Laura Richert. Adaptive algorithms for relaxed pareto set identification. <i>Advances in Neural Information Processing Systems</i> , 36:35190–35201, 2023.
583 584 585 586	Cyrille Kone, Emilie Kaufmann, and Laura Richert. Bandit pareto set identification: the fixed budget setting. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 2548–2556. PMLR, 2024.
587 588	Shaoang Li, Lan Zhang, Yingqi Yu, and Xiangyang Li. Optimal arms identification with knapsacks. In <i>International Conference on Machine Learning</i> , pp. 20529–20555. PMLR, 2023.
589 590 591 592	David Lindner, Sebastian Tschiatschek, Katja Hofmann, and Andreas Krause. Interactively learning preference constraints in linear bandits. In <i>International Conference on Machine Learning</i> , pp. 13505–13527. PMLR, 2022.
593	Stefan Magureanu, Richard Combes, and Alexandre Proutiere. Lipschitz bandits: Regret lower bound and optimal algorithms. In <i>Conference on Learning Theory</i> , pp. 975–999. PMLR, 2014.

Yoan Russac, Christina Katsimerou, Dennis Bohle, Olivier Cappé, Aurélien Garivier, and Wouter M 595 Koolen. A/b/n testing with control in the presence of subpopulations. Advances in Neural Infor-596 mation Processing Systems, 34:25100–25110, 2021. 597 Alessio Russo and Filippo Vannella. Fair best arm identification with fixed confidence. arXiv 598 preprint arXiv:2408.17313, 2024. 600 Xuedong Shang, Igor Colin, Merwan Barlier, and Hamza Cherkaoui. Price of safety in linear best arm identification. arXiv preprint arXiv:2309.08709, 2023. 602 Chengshuai Shi, Kun Yang, Jing Yang, and Cong Shen. Best arm identification for prompt learning 603 under a limited budget. arXiv preprint arXiv:2402.09723, 2024. 604 Dongwook Shin, Mark Broadie, and Assaf Zeevi. Tractable sampling strategies for ordinal opti-605 mization. Operations Research, 66(6):1693–1712, 2018. 606 Dengwang Tang, Rahul Jain, Ashutosh Nayyar, and Pierluigi Nuzzo. Pure exploration for con-607 608 strained best mixed arm identification with a fixed budget. arXiv preprint arXiv:2405.15090, 2024. 609 610 Long Tran-Thanh, Archie Chapman, Alex Rogers, and Nicholas Jennings. Knapsack based optimal 611 policies for budget-limited multi-armed bandits. In Proceedings of the AAAI Conference on 612 Artificial Intelligence, volume 26, pp. 1134–1140, 2012. 613 Jason Y Wang, Jason M Stevens, Stavros K Kariofillis, Mai-Jan Tom, Dung L Golden, Jun Li, Jose E 614 Tabora, Marvin Parasram, Benjamin J Shields, David N Primer, et al. Identifying general reaction 615 conditions by bandit optimization. Nature, 626(8001):1025-1033, 2024. 616 Po-An Wang, Ruo-Chun Tzeng, and Alexandre Proutiere. Fast pure exploration via frank-wolfe. 617 Advances in Neural Information Processing Systems, 34:5810–5821, 2021. 618 619 Zhenlin Wang, Andrew J Wagenmaker, and Kevin Jamieson. Best arm identification with safety 620 constraints. In International Conference on Artificial Intelligence and Statistics, pp. 9114–9146. 621 PMLR, 2022. 622 Yafei Zhao and Long Yang. Constrained contextual bandit algorithm for limited-budget recommen-623 dation system. Engineering Applications of Artificial Intelligence, 128:107558, 2024. 624 625 NOTATION AND MOTIVATING EXAMPLES 626 А 627 A.1 TABLE OF NOTATION 628 629 Table 1 summarizes the notations and their meanings used throughout the paper. 630 631 A.2 MOTIVATING EXAMPLES 632 633 In this subsection, we present motivating examples for our problem formulation. 634 • Drug discovery. In drug discovery, each drug (arm) has multiple metrics, like efficacy and 635 side effects. The experimenter can choose one metric to evaluate via clinical experiments 636 in each iteration. The goal is to identify the drug with the highest mean efficacy while 637 ensuring side effect risk (quantile-based) stays below a threshold for each disease (task). 638 • Supply chain management. In supply chain management, each supplier (arm) has multi-639 ple metrics, such as total cost, delivery reliability, and product quality. Since monitoring a 640 metric incurs additional costs, companies can evaluate one metric per iteration. The goal is 641 to identify the supplier with the lowest mean total cost while ensuring the risk of significant 642 delays or quality issues (quantile-based) stays below a threshold for each product (task). 643 • Financial risk management. In financial risk management, each investment strategy (arm) 644 has multiple metrics, such as return, volatility, and drawdown. The decision-maker can 645 evaluate one metric per iteration. The goal is to identify the strategy with the highest mean 646 return while ensuring risk metrics (quantile-based) remain below a threshold under each 647 market condition (task).

	Table 1: Notation
Notation	Meaning
M, K, S	Number of tasks, arms, and constraints, respectively
X_i^a Va	Random performance in the objective function of arm i under task a
Y_{ij}^{α} $E^{a}() = E^{a}()$	Random performance in the <i>j</i> -th constraint of arm <i>i</i> under task <i>a</i>
$F^{\alpha}(\cdot), F^{\alpha}_{ij}(\cdot)$	Cumulative distribution function of X_i^{a} and Y_{ij}^{a} , respectively
$\mu_i^{\omega}, \mu_{ij}^{\omega}$	Expectation of X_i^{a} and Y_{ij}^{a} , respectively
$q(Y_{ij}^{\alpha},\phi)$	The ϕ -quantile of Y_{ij}^{ω} , with $\phi \in (0, 1)$
τ	Stopping time of the algorithm
$i_{\tau}(a)$	Arm identified as the best for task <i>a</i> upon algorithm termination
$N_{ij}^a(t)$	Number of samples of constraint j for arm i in task a up to time t
$N^{u}_{i(S+1)}(t)$	Number of samples of the objective for arm i in task a up to time t
$\omega_{ij}^a(t)$	Sampling ratio up to time t
δ	The confidence level $\delta \in (0, 1)$
\mathcal{D}_1^a	Set of all suboptimal arms for task a
\mathcal{D}_2^a	Set of all infeasible arms with better objective value for task a
\mathcal{D}_3^a	Set of all infeasible arms with worse objective value for task a
$\mathcal{B}_{1}(i)$ $\mathcal{B}^{a}(i)$	Indices of reasible constraints for arm <i>i</i> in task <i>a</i>
$D_2(i)$ d(n, q)	KI divergence between two distributions with means n and q
$\mathcal{D}^{(p,q)}$	A BAI problem instance $\mathcal{P} = (\mu^a \ \Omega^a)$ and η^a
$i^*(a \mathcal{P})$	Best arm under task <i>a</i> in problem instance \mathcal{P} often denoted by $i^*(a)$
$\mathcal{A}(\mathcal{P})$	Set of alternative problem instances of \mathcal{P}
$j_h(a,i)$	The most distinguishable infeasible constraint of arm i in task a
$\omega^*(\mathcal{P})$	The static optimal sampling rule for problem instance \mathcal{P}
$\hat{\mu}^{a}(t)$	Empirical estimate of $\mu^a = (\mu^a_i)_{i \in [K]}$ at time t
$\hat{F}^{a}(t)$	Empirical estimate of $F^a = \{F^a_{ij}\}_{i \in [K], j \in [S]}$ at time t
$\hat{\mathcal{P}}(t)$	Empirical estimate of instance \mathcal{P} at time t , $\hat{\mathcal{P}}(t) = (\hat{\boldsymbol{\mu}}^a(t), \hat{\boldsymbol{F}}^a(t))_{a \in \mathcal{I}M}$
$\hat{\mathcal{D}}^a_{a}(t) \ \hat{\mathcal{D}}^a_{a}(t) \ \hat{\mathcal{D}}^a_{a}(t)$	Empirical estimate of sets \mathcal{D}_{a}^{a} \mathcal{D}_{a}^{b} \mathcal{D}_{a}^{b} at time t
$\nu_1(v), \nu_2(v), \nu_3(v)$	$\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ if the <i>v</i>

B SAMPLE COMPLEXITY ANALYSIS

B.1 PROOF OF THEOREM 1

Theorem 1. Given a fixed confidence level $\delta \in (0, 1)$, define $\mu_{i,i^*(a)}^a = \arg \inf_{\tilde{\mu}} \omega_{i(S+1)}^a d(\mu_i^a, \tilde{\mu}) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \tilde{\mu})$. Under Assumptions 1-2, for any problem instance $\mathcal{P} \in \mathcal{S}$ and any strategy satisfying $\mathbb{P}\left(\forall a \in [M], i^*(a) = \hat{i}_{\tau}(a)\right) \geq 1 - \delta$,

$$\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P})kl(\delta, 1-\delta), \tag{22}$$

as $\delta \rightarrow 0$, we have

$$\liminf_{\delta \to 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \ge \mathcal{H}^*(\mathcal{P}),\tag{23}$$

where $\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min (V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega}))$, with

$$\begin{split} V_1^a(\boldsymbol{\omega}) &= \min_{j \in [S]} \omega_{i^*(a)j}^a d(F_{i^*(a)j}^a, \phi), \\ V_2^a(\boldsymbol{\omega}) &= \min_{i \in \mathcal{D}_1^a} \omega_{i(S+1)}^a d(\mu_i^a, \mu_{i,i^*(a)}^a) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a), \\ V_3^a(\boldsymbol{\omega}) &= \min_{i \in \mathcal{D}_2^a} \sum_{j \in \mathcal{B}_2^a(i)} \omega_{ij}^a d(F_{ij}^a, \phi), \\ V_4^a(\boldsymbol{\omega}) &= \min_{i \in \mathcal{D}_3^a} \omega_{i(S+1)}^a d(\mu_i^a, \mu_{i,i^*(a)}^a) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a) + \sum_{j \in \mathcal{B}_2^a(i)} \omega_{ij}^a d(F_{ij}^a, \phi). \end{split}$$

702 *Proof.* Consider the original optimization problem in (2), 703 $\max_{i \in [K]} \mathbb{E}[X_i^a] \quad \text{s.t.} \ q(Y_{ij}^a, \phi) \le b, \ \forall j \in [S].$ (24)704 705 According to Assumption 2, the CDF $F_{ii}^{a}(\cdot)$ has a continuous density function, then by definition, 706 we have $q(Y_{ij}^{a}, \phi) = (F_{ij}^{a})^{-1}(\phi)$. 707 708 Therefore, the constraints are equivalent to 709 $(F_{ij}^a)^{-1}(\phi) \leq b, \ \forall j \in [S],$ 710 (25)711 which is also equivalent to 712 $F_{ii}^a(b) \ge \phi, \ \forall j \in [S].$ (26)713 By the definition of CDF, we have $F_{ij}^a(b) = \mathbb{E}[\mathbb{I}(Y_{ij}^a \leq b)]$, and the original optimization problem is 714 equivalent to 715 $\max_{i \in [K]} \mathbb{E}[X_i^a] \text{ s.t. } \mathbb{E}[\mathbb{I}(Y_{ij}^a \le b)] \ge \phi, \ \forall j \in [S],$ (27)716 717 where $\mathbb{I}(\cdot)$ is the indicator function, it takes on the value 1 if \cdot is true, and 0 otherwise. For notational 718 simplicity, we let F_{ij}^a represent $F_{ij}^a(b)$. 719 Let $\mathcal{P} = (\mu^a, F^a)_{a \in [M]}$ represent a problem instance, $\mathcal{A}(\mathcal{P}) = \{\mathcal{P}' \in \mathcal{S} : \exists a \in [M], i^*(a, \mathcal{P}) \neq a \in [M]\}$ 720 $i^*(a, \mathcal{P}')\}.$ 721 722 In the fixed confidence setting, for a problem instance $\mathcal{P} \in \mathcal{S}$, the algorithm needs to satisfy that, 723 $\mathbb{P}(\exists a \in [M], \hat{i}_{\tau}(a) \neq i^*(a, \mathcal{P})) < \delta,$ (28)724 725 and for any problem instance $\tilde{\mathcal{P}} \in \mathcal{S}$, 726 727 $\mathbb{P}(\exists a \in [M], \hat{i}_{\tau}(a) \neq i^*(a, \mathcal{P})) > 1 - \delta.$ (29)728 Define 729 $f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}}) = \sum_{a \in [M]} \sum_{i \in [K]} \left(\omega_{i(S+1)}^a d(\mu_i^a, \tilde{\mu}_i^a) + \sum_{i \in [S]} \omega_{ij}^a d(F_{ij}^a, \tilde{F}_{ij}^a) \right).$ 730 (30)731 732 733 Then, we can obtain that 734 $\sum_{a \in [M]} \sum_{i \in [K]} \left(\mathbb{E}[N^a_{i(S+1)}(\tau)] d(\mu^a_i, \tilde{\mu}^a_i) + \sum_{i \in [S]} \mathbb{E}[N^a_{ij}(\tau)] d(F^a_{ij}, \tilde{F}^a_{ij}) \right)$ 735 736 $= \mathbb{E}[\tau] \sum_{a \in [M]} \sum_{i \in [K]} \left(\omega_{i(S+1)}^a d(\mu_i^a, \tilde{\mu}_i^a) + \sum_{i \in [S]} \omega_{ij}^a d(F_{ij}^a, \tilde{F}_{ij}^a) \right)$ (31)

742 743

744 745

747 748 749

According to the Lemma 1 of Kaufmann et al. (2016), we have

 $= \mathbb{E}[\tau] f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}}).$

$$\mathbb{E}[\tau]f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}}) \ge \mathrm{kl}(\delta, 1 - \delta), \forall \tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P}).$$
(32)

746 Then we can obtain that

$$kl(\delta, 1-\delta) \leq \mathbb{E}[\tau] \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}}) \leq \mathbb{E}[\tau] \sup_{\boldsymbol{\omega} \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}}).$$
(33)

According to (31), we have

$$\mathbb{E}[\tau] \sup_{\boldsymbol{\omega} \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \sum_{a \in [M]} \sum_{i \in [K]} \left(\omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \sum_{j \in [S]} \omega_{ij}^{a} d(F_{ij}^{a}, \tilde{F}_{ij}^{a}) \right) \geq \mathrm{kl}(\delta, 1 - \delta).$$
(34)

Therefore, we conclude that 755

$$\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P}) \mathrm{kl}(\delta, 1 - \delta), \tag{35}$$

where

$$\mathcal{H}^{*}(\mathcal{P})^{-1} = \sup_{\boldsymbol{\omega}\in\Omega} \inf_{\tilde{\mathcal{P}}\in\mathcal{A}(\mathcal{P})} \sum_{a\in[M]} \sum_{i\in[K]} \left(\omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \sum_{j\in[S]} \omega_{ij}^{a} d(F_{ij}^{a}, \tilde{F}_{ij}^{a}) \right).$$
(36)

Next, we provide a detailed analysis on $\mathcal{H}^*(\mathcal{P})$. For each task $a \in [M]$ and constraint $j \in [S]$, define

$$\mathcal{C}^a_{i^*(a,\mathcal{P})j} = \{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : \tilde{F}^a_{i^*(a,\mathcal{P})j} < \phi \}.$$
(37)

For each task $a \in [M]$ and arm $i \in [K] \setminus \{i^*(a, \mathcal{P})\}$, define

$$\mathcal{C}_{i}^{a} = \{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : \tilde{\boldsymbol{\mu}}_{i}^{a} \ge \tilde{\boldsymbol{\mu}}_{i^{*}(a,\mathcal{P})}^{a}, \tilde{F}_{ij}^{a} \ge \phi, \forall j \in [S] \},$$
(38)

where $(\tilde{\mu}, \tilde{F}) = (\tilde{\mu}^a, \tilde{F}^a)_{a \in [M]} = \tilde{\mathcal{P}}$ denote the problem instance $\tilde{\mathcal{P}}$. Then we can represent $\mathcal{A}(\mathcal{P})$ as the intersection of some subsets.

$$\mathcal{A}(\mathcal{P}) = \left\{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : \exists a \in [M], i^*(a, \mathcal{P}) \neq i^*(a, \tilde{\mathcal{P}}) \right\}$$

$$= \bigcup_{a \in [M]} \left\{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : i^*(a, \mathcal{P}) \neq i^*(a, \tilde{\mathcal{P}}) \right\}$$

$$= \bigcup_{a \in [M]} \left(\left\{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : \exists j \in [S], \tilde{F}^a_{i^*(a, \mathcal{P})j} < \phi \right\} \bigcup \left\{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : \frac{\exists i \in [K] \setminus \{i^*(a, \mathcal{P})\},}{\tilde{\mu}^a_i \geq \tilde{\mu}^a_{i^*(a, \mathcal{P})}, \tilde{F}^a_{ij} \geq \phi, \forall j \in [S]} \right\} \right)$$

$$= \bigcup_{a \in [M]} \left(\left(\bigcup_{j \in [S]} \mathcal{C}^a_{i^*(a, \mathcal{P})j} \right) \bigcup \left(\bigcup_{i \in [K] \setminus \{i^*(a, \mathcal{P})\}} \mathcal{C}^a_i \right) \right).$$
(39)

Define $\mathcal{G}(\boldsymbol{\omega}, \mathcal{P}) = \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}})$, according to (39), we have

$$\mathcal{G}(\boldsymbol{\omega}, \mathcal{P}) = \min_{a \in [M]} \min\left(\min_{j \in [S]} f^a_{i^*(a, \mathcal{P})j}(\boldsymbol{\omega}, \mathcal{P}), \min_{i \in [K] \setminus \{i^*(a, \mathcal{P})\}} f^a_i(\boldsymbol{\omega}, \mathcal{P})\right),$$
(40)

where $f^a_{i^*(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P}) = \inf_{\tilde{\mathcal{P}}\in\mathcal{C}^a_{i^*(a,\mathcal{P})j}} f(\boldsymbol{\omega},\mathcal{P},\tilde{\mathcal{P}}), f^a_i(\boldsymbol{\omega},\mathcal{P}) = \inf_{\tilde{\mathcal{P}}\in\mathcal{C}^a_i} f(\boldsymbol{\omega},\mathcal{P},\tilde{\mathcal{P}}).$

By the definition of $C^a_{i^*(a,\mathcal{P})j}$ and C^a_i , we have

$$f^{a}_{i^{*}(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P}) = \inf_{\tilde{\mathcal{P}}\in\mathcal{C}^{a}_{i^{*}(a,\mathcal{P})j}} f(\boldsymbol{\omega},\mathcal{P},\tilde{\mathcal{P}}) = \omega^{a}_{i^{*}(a,\mathcal{P})j} d(F^{a}_{i^{*}(a,\mathcal{P})j},\phi),$$
(41)

, where the last equality is from the Lemma 5.

Then, we conclude that

$$\mathcal{G}(\boldsymbol{\omega}, \mathcal{P}) = \min_{a \in [M]} \min\left(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega})\right),$$
(43)

and

$$\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min\left(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega})\right).$$
(44)

B.2 PROOF OF THEOREM 2

Lemma 5. Define $g(\boldsymbol{\omega}) = \inf_{\tilde{\mu}_{i}^{a} > \tilde{\mu}_{i^{*}(a)}^{a}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a})$, and $\mu_{i,i^{*}(a)}^{a} = \arg \inf_{\tilde{\mu}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu})$, then we have

$$g(\boldsymbol{\omega}) = \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \mu_{i,i^{*}(a)}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \mu_{i,i^{*}(a)}^{a}),$$

$$\frac{\partial}{\partial \omega_{i(S+1)}^{a}} g(\boldsymbol{\omega}) = d(\mu_{i}^{a}, \mu_{i,i^{*}(a)}^{a}), \quad \frac{\partial}{\partial \omega_{i^{*}(a)(S+1)}^{a}} g(\boldsymbol{\omega}) = d(\mu_{i^{*}(a)}^{a}, \mu_{i,i^{*}(a)}^{a}).$$
(45)

Proof. Since both $d(\mu_i^a, \tilde{\mu})$ and $d(\mu_{i^*(a)}^a, \tilde{\mu})$ are decreasing in $(-\infty, \mu_i^a)$, and are increasing in $(\mu_{i^*(a)}^a, +\infty)$, then it is sufficient to search the infimum in the interval $[\mu_i^a, \mu_{i^*(a)}^a]$. Therefore, we have

$$g(\boldsymbol{\omega}) = \inf_{\tilde{\mu}_{i}^{a} > \tilde{\mu}_{i^{*}(a)}^{a}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a})$$

$$= \inf_{\tilde{\mu} \in [\mu_{i}^{a}, \mu_{i^{*}(a)}^{a}]} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu})$$

$$= \inf_{\tilde{\mu}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu})$$
(46)

$$= \inf_{\tilde{\mu}} \omega_{il}^a$$

$$=\omega^a_{i(S+1)}d(\mu^a_i,\mu^a_{i,i^*(a)})+\omega^a_{i^*(a)(S+1)}d(\mu^a_{i^*(a)},\mu^a_{i,i^*(a)}).$$

In our analysis, we assume that $d(\mu_i^a, \tilde{\mu})$ is strictly convex function of $\tilde{\mu}, \forall a \in [M], i \in [K]$, which is satisfied by many distributions in SPEF such as Bernoulli, Gaussian with known variance and Gamma with known shape parameter (Juneja & Krishnasamy, 2019). Therefore, $\mu_{i,i^*(a)}^a$ is the unique solution of

$$\omega_{i(S+1)}^{a} \frac{\partial d(\mu_{i}^{a}, \mu_{i,i^{*}(a)}^{a})}{\partial \mu_{i,i^{*}(a)}^{a}} + \omega_{i^{*}(a)(S+1)}^{a} \frac{\partial d(\mu_{i^{*}(a)}^{a}, \mu_{i,i^{*}(a)}^{a})}{\partial \mu_{i,i^{*}(a)}^{a}} = 0.$$
(47)

Then we can obtain

$$\frac{\partial}{\partial \omega_{i(S+1)}^{a}} g(\boldsymbol{\omega})
= d(\mu_{i}^{a}, \mu_{i,i^{*}(a)}^{a}) + (\omega_{i(S+1)}^{a} \frac{\partial d(\mu_{i}^{a}, \mu_{i,i^{*}(a)}^{a})}{\partial \mu_{i,i^{*}(a)}^{a}} + \omega_{i^{*}(a)(S+1)}^{a} \frac{\partial d(\mu_{i^{*}(a)}^{a}, \mu_{i,i^{*}(a)}^{a})}{\partial \mu_{i,i^{*}(a)}^{a}}) \frac{\partial \mu_{i,i^{*}(a)}^{a}}{\partial \omega_{i(S+1)}^{a}} (48)
= d(\mu_{i}^{a}, \mu_{i,i^{*}(a)}^{a}).$$

We can also obtain
$$\frac{\partial}{\partial \omega_{i^*(a)(S+1)}^a} g(\boldsymbol{\omega}) = d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a)$$
, which concludes the proof. \Box

Lemma 6. The optimization problem

$$\max_{\boldsymbol{\omega}\in\Omega}\min_{a\in[M]}\min\left(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega})\right),\tag{49}$$

is a convex optimization problem.

Proof. According to the proof of Theorem 1, we have

ai

$$\mathcal{H}^{*}(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega}\in\Omega} \mathcal{G}(\boldsymbol{\omega}, \mathcal{P})$$

$$= \max_{\boldsymbol{\omega}\in\Omega} \min_{a\in[M]} \min\left(\min_{j\in[S]} f^{a}_{i^{*}(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P}), \min_{i\in[K]\setminus\{i^{*}(a,\mathcal{P})\}} f^{a}_{i}(\boldsymbol{\omega},\mathcal{P})\right)$$

$$= \max_{\boldsymbol{\omega}\in\Omega} \min_{a\in[M]} \min\left(\min_{j\in[S]} \inf_{\tilde{\mathcal{P}}\in\mathcal{C}^{a}_{i^{*}(a,\mathcal{P})j}} f(\boldsymbol{\omega},\mathcal{P},\tilde{\mathcal{P}}), \inf_{\tilde{\mathcal{P}}\in\mathcal{C}^{a}_{i}} f(\boldsymbol{\omega},\mathcal{P},\tilde{\mathcal{P}})\right),$$
(50)

where

$$\mathcal{C}^{a}_{i^{*}(a,\mathcal{P})j} = \{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : \tilde{F}^{a}_{i^{*}(a,\mathcal{P})j} < \phi \}, \ \mathcal{C}^{a}_{i} = \{ (\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{F}}) : \tilde{\mu}^{a}_{i} \ge \tilde{\mu}^{a}_{i^{*}(a,\mathcal{P})}, \tilde{F}^{a}_{ij} \ge \phi, \forall j \in [S] \}$$
(51)

and

$$f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}}) = \sum_{a \in [M]} \sum_{i \in [K]} \left(\omega_{i(S+1)}^a d(\mu_i^a, \tilde{\mu}_i^a) + \sum_{j \in [S]} \omega_{ij}^a d(F_{ij}^a, \tilde{F}_{ij}^a) \right)$$
(52)

For each $\tilde{\mathcal{P}}$, $f(\omega, \mathcal{P}, \tilde{\mathcal{P}})$ is a concave function of ω . Since $\mathcal{G}(\omega, \mathcal{P})$ is the infimum of concave functions, it is also concave. Ω is a convex set, consequently, the corresponding maximization problem is a convex optimization problem.

Theorem 2. Let $\mathcal{M}_1^a = \{i \in \mathcal{D}_3^a : d(\mu_i^a, \mu_{i,i^*(a)}^a) > d(F_{ij_h}^a, \phi)\}$ and $\mathcal{M}_2^a = \{i \in \mathcal{D}_3^a : d(\mu_i^a, \mu_{i,i^*(a)}^a) < d(F_{ij_h}^a, \phi)\}$. Assume that $\mathcal{D}_3^a = \mathcal{M}_1^a \cup \mathcal{M}_2^a$ for each task $a \in [M]$, then the

918 static optimal sampling ratio ω^* satisfies:

$$V_1^a(\boldsymbol{\omega}^*) = V_2^a(\boldsymbol{\omega}^*) = V_3^a(\boldsymbol{\omega}^*) = V_4^a(\boldsymbol{\omega}^*) = z^*, \forall a \in [M] \\ (\omega_{i^*(a)j}^a)^* d(F_{i^*(a)j}^a, \phi) = z^*, \forall a \in [M], j \in [S]$$

 $\sum_{a\in [M]}\sum_{i\in [K]}\sum_{j\in [S+1]}(\omega_{ij}^a)^*=1,$

$$(\omega_{i(S+1)}^{a})^{*}d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a}) + (\omega_{i^{*}(a)(S+1)}^{a})^{*}d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a}) = z^{*}, \forall a \in [M], i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}$$
$$\sum_{i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}} \frac{d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a})}{d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a})} = 1, \forall a \in [M]$$

Proof. The static optimal ratio can be obtained by solving the following optimization problem

$$\max_{\boldsymbol{\omega}\in\Omega}\min_{a\in[M]}\min\left(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega})\right),\tag{54}$$

 $(\omega_{ij_h}^a)^* d(F_{ij_h}^a, \phi) = z^*, \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a$

 $(\omega_{ij}^a)^* = 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a, j \in [S]$

 $(\omega_{ij}^a)^* = 0, \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a, j \neq j_h$

 $(\omega_{ij}^a)^* \ge 0, \forall a \in [M], i \in [K], j \in [S+1].$

(53)

which is equivalent to

 $\max z$

s.t.
$$\omega_{i^{*}(a)j}^{a}d(F_{i^{*}(a)j}^{a},\phi) \geq z, \ \forall a \in [M], j \in [S] \ (\lambda_{i^{*}(a)j}^{a})$$

$$\omega_{i(S+1)}^{a}d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a}) + \omega_{i^{*}(a)(S+1)}^{a}d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a}) \geq z, \ \forall a \in [M], i \in \mathcal{D}_{1}^{a} \ (\lambda_{i}^{a})$$

$$\sum_{j \in \mathcal{B}_{2}^{a}(i)} \omega_{ij}^{a}d(F_{ij}^{a},\phi) \geq z, \ \forall a \in [M], i \in \mathcal{D}_{2}^{a} \ (\lambda_{i}^{a})$$

$$\omega_{i(S+1)}^{a}d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a}) + \omega_{i^{*}(a)(S+1)}^{a}d(\mu_{i^{*}}^{a}(a),\mu_{i,i^{*}(a)}^{a}) + \sum_{j \in \mathcal{B}_{2}^{a}(i)} \omega_{ij}^{a}d(F_{ij}^{a},\phi) \geq z, \qquad (55)$$

$$\forall a \in [M], i \in \mathcal{D}_{3}^{a} \ (\lambda_{i}^{a})$$

$$\sum_{a \in [M]} \sum_{i \in [K]} \sum_{j \in [S+1]} \omega_{ij}^{a} = 1, \ (\nu)$$

$$\omega_{ij}^a \ge 0, \forall a \in [M], i \in [K], j \in [S+1] \ (\rho_{ij}^a).$$

The KKT condition of this problem includes the following four part:

• The stationary condition:

$$\sum_{a \in [M]} \sum_{j \in [S]} \lambda_{i^*(a)j}^a + \sum_{a \in [M]} \sum_{i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a \cup \mathcal{D}_3^a} \lambda_i^a = 1$$
(56)

$$\lambda_{i^{*}(a)j}^{a}d(F_{i^{*}(a)j}^{a},\phi) + \rho_{i^{*}(a)j}^{a} = \nu, \quad \forall a \in [M], j \in [S]$$
(57)

$$\lambda_i^a d(\mu_i^a, \mu_{i,i^*(a)}^a) + \rho_{i(S+1)}^a = \nu, \quad \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_3^a$$
(58)

$$\sum_{i \in \mathcal{D}_1^a \cup \mathcal{D}_3^a} \lambda_i^a d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a) + \rho_{i^*(a)(S+1)}^a = \nu, \quad \forall a \in [M]$$
(59)

969
970
970
971
971
969

$$\lambda_i^a d(F_{ij}^a, \phi) + \rho_{ij}^a = \nu, \quad \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{D}_3^a, j \in \mathcal{B}_2^a(i)$$
(60)

• The complementary slackness condition:

 $\lambda_{i^{*}(a)j}^{a}\left(\omega_{i^{*}(a)j}^{a}d(F_{i^{*}(a)j}^{a},\phi)-z\right) = 0, \ \forall a \in [M], j \in [S]$ (61)

$$\lambda_i^a \left(\omega_{i(S+1)}^a d(\mu_i^a, \mu_{i,i^*(a)}^a) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a) - z \right) = 0, \tag{62}$$

$$\forall a \in [M], i \in \mathcal{D}_1^a \tag{63}$$

$$\lambda_i^a \left(\sum_{j \in \mathcal{B}_2^a(i)} \omega_{ij}^a d(F_{ij}^a, \phi) - z \right) = 0, \ \forall a \in [M], i \in \mathcal{D}_2^a$$
(64)

$$\lambda_i^a \Big(\omega_{i(S+1)}^a d(\mu_i^a, \mu_{i,i^*(a)}^a) + \omega_{i^*(a)(S+1)}^a d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a) \Big)$$

$$+\sum_{j\in\mathcal{B}_2^a(i)}\omega_{ij}^ad(F_{ij}^a,\phi)-z\Big)=0, \ \forall a\in[M], i\in\mathcal{D}_3^a$$
(65)

$$\rho_{ij}^a \omega_{ij}^a = 0, \ \forall a \in [M], i \in [K], j \in [S+1]$$
(66)

• The feasibility of dual problem:

$$\lambda_{i^*(a)j}^a \ge 0, \ \forall a \in [M], j \in [S]$$

$$(67)$$

$$\lambda_i^a \ge 0, \ \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a \cup \mathcal{D}_3^a \tag{68}$$

$$\rho_{ij}^a \ge 0, \ \forall a \in [M], i \in [K], j \in [S+1].$$
(69)

We can derive the optimality equations in Theorem 2 by solving the KKT condition.

First, for each task $a \in [M]$, it is easy to observe that

$$\begin{aligned} (\omega_{ij}^{a})^{*} &= 0, \forall i \in \mathcal{D}_{1}^{a}, j \in [S] \\ (\omega_{ij}^{a})^{*} &= 0, \forall i \in \mathcal{D}_{2}^{a} \cup \mathcal{D}_{3}^{a}, j \in \mathcal{B}_{1}^{a}(i) \\ (\omega_{i(S+1))}^{a})^{*} &= 0, \forall i \in \mathcal{D}_{2}^{a}. \end{aligned}$$

$$\tag{70}$$

Since we can find a feasible solution $\omega_{ij}^a = 1/MK(S+1)$ and the corresponding objective value z > 0. Then any solution with z = 0 is not optimal.

According to the constraints in problem (55), we have z = 0 if $\exists a \in [M], j \in [S], \omega_{i^*(a)j}^a = 0$, or $\exists a \in [M], i \in \mathcal{D}_1^a, \omega_{i(S+1)}^a = 0$ or $\omega_{i^*(a)(S+1)}^a = 0$. Therefore, we have $(\omega_{i^*(a)j}^a)^* > 0, \forall a \in [M], j \in [S]$ and $(\omega_{i(S+1)}^a)^* > 0, (\omega_{i^*(a)(S+1)}^a)^* > 0, \forall a \in [M], i \in \mathcal{D}_1^a$. According to (66), we have $\rho_{i^*(a)j}^a = 0, \forall a \in [M], j \in [S]$ and $\rho_{i(S+1)}^a = 0, \rho_{i^*(a)(S+1)}^a = 0, \forall a \in [M], i \in \mathcal{D}_1^a$.

Consider the arm $i \in \mathcal{D}_2^a \cup \mathcal{D}_3^a$, according to (60), we have

$$\lambda_i^a d(F_{ij}^a, \phi) + \rho_{ij}^a = \nu, \quad \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{D}_3^a, j \in \mathcal{B}_2^a(i).$$
(71)

1015 Since $j_h = \arg \max_{i \in \mathcal{B}_2^a(i)} d(F_{ij}^a, \phi)$, then in order to satisfy (60), we have

$$\rho_{ij}^a > 0, \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{D}_3^a, j \in \mathcal{B}_2^a(i), j \neq j_h.$$

$$\tag{72}$$

1018 According to (66), we have

$$(\omega_{ij}^a)^* = 0, \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{D}_3^a, j \in \mathcal{B}_2^a(i) \setminus \{j_h\}.$$
(73)

1022 By combining (70) and (73), we can obtain that

$$(\omega_{ij}^a)^* = 0, \forall i \in \mathcal{D}_2^a, j \neq j_h.$$

$$(74)$$

Now, we prove that $\lambda_{i^*(a)j}^a > 0, \forall a \in [M], j \in [S]$, and $\lambda_i^a > 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a \cup \mathcal{D}_3^a$.

1026	• $\lambda_{i^*(a),i}^a > 0, \forall a \in [M], j \in [S]$:
1027	
1028	Since we know that $(\omega_{i^*(a)j}^a)^* > 0$ and $\rho_{i^*(a)j}^a = 0$, assume that $\exists a \in [M], j \in$
1029	$[S], \lambda^a_{i^*(a)j} = 0$, then according to (57), we have $\nu = 0$, which will lead to $\lambda^a_{i^*(a)j} =$
1030	$0, \forall a \in [M], j \in [S]$ and $\lambda_i^a = 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a \cup \mathcal{D}_3^a$ in order to satisfy
1031	(57)-(60). This contradicts (56), and we conclude that $\lambda_{i^*(a)j}^a > 0, \forall a \in [M], j \in [S]$.
1032	$\mathbf{M} = \mathbf{M} + $
1033	• $\lambda_i^a > 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a$:
1034	For $i \in \mathcal{D}_1^a$, since we know that $(\omega_{i(S+1)}^a)^* > 0$ and $\rho_{i(S+1)}^a = 0$, assume that $\exists a \in$
1035	$[M], i \in \mathcal{D}_1^a, \lambda_i^a = 0$, then according to (58), we have $\nu = 0$, which will lead to $\lambda_{i*(\nu)}^a$
1036	$0 \forall a \in [M] i \in [S] \text{ and } \lambda^a = 0 \forall a \in [M] i \in \mathcal{D}^a_t \cup \mathcal{D}^a_0 \cup \mathcal{D}^a_0 \text{ in order to satisfy (57)-(60)}$
1037	This contradicts (56), and we conclude that $\lambda_i^a > 0, \forall a \in [M], i \in \mathcal{D}_1^a$. For $i \in \mathcal{D}_2^a$, the
1038	analysis is the same, hence we omit it.
1039	• $\lambda^a > 0 \ \forall a \in [M] \ i \in \mathcal{D}^a$.
1040	$\lambda_i > 0, \forall u \in [M], v \in \mathcal{D}_3.$
10/12	It is easy to see that $(\omega_{i(S+1)}^a)^* > 0, (\omega_{i^*(a)(S+1)}^a)^* > 0$ or $(\omega_{ij_h}^a)^* > 0$, otherwise, we will
1042	have $z = 0$, which will not be the optimal solution. Assume that $\exists a \in [M], i \in \mathcal{D}_3^a, \lambda_i^a =$
1043	0, then for the first case $(\omega_{i(S+1)}^{a})^{*} > 0, (\omega_{i^{*}(a)(S+1)}^{a})^{*} > 0$, according to (66), we have
1044	$\rho_{i(S+1)}^a = 0$. According to (58), we have $\nu = 0$, which will lead to $\lambda_{i^*(a)i}^a = 0, \forall a \in \mathcal{A}_i$
1045	$[M], j \in [S]$ and $\lambda_i^a = 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a \cup \mathcal{D}_3^a$ in order to satisfy (57)-(60). This
1040	contradicts (56). For the second case $(\omega_{ij_h}^a)^* > 0$, according to (66), we have $\rho_{ij_h}^a = 0$
1047	Then using (60), we can obtain $v = 0$, which will lead to $\lambda_{i^*(a)i}^a = 0, \forall a \in [M], j \in [S]$
10/10	and $\lambda_i^a = 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a \cup \mathcal{D}_3^a$ in order to satisfy (57)-(60). This contradicts (56)
1049	And we conclude that $\lambda_i^a > 0, \forall a \in [M], i \in \mathcal{D}_3^a$.
1050	
1052	Since $\lambda_{i^*(a)i}^a > 0, \forall a \in [M], j \in [S]$, and $\lambda_i^a > 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{D}_2^a \cup \mathcal{D}_3^a$, according to the
1052	complementary slackness condition, we have
1054	$\omega_{i^{*}(a)i}^{a}d(F_{i^{*}(a)i}^{a},\phi) = z, \ \forall a \in [M], j \in [S] $ (75)
1055	$\omega^{a}_{(a+1)}d(\mu^{a},\mu^{a}_{(a+1)}) + \omega^{a}_{(a+1)}d(\mu^{a}_{(a+1)},\mu^{a}_{(a+1)}) = z. $ (76)
1056	$ = \sum_{i(S+1)} (r_i, r_i, r_i(a)) + (r_i, r_i(a), r_i, r_i(a)) + (r_i, r_i(a), r_i, r_i(a)) $
1057	$\forall a \in [M], i \in \mathcal{D}_1 \tag{77}$
1058	$\omega_{ij_h}^a d(F_{ij_h}^a, \phi) = z, \forall a \in [M], i \in \mathcal{D}_2^a $ $\tag{78}$
1059	$\omega^{a}_{i(S+1)}d(\mu^{a}_{i},\mu^{a}_{i,i^{*}(a)}) + \omega^{a}_{i^{*}(a)(S+1)}d(\mu^{a}_{i^{*}(a)},\mu^{a}_{i,i^{*}(a)})$
1060	$+\omega_{ii}^a, d(F_{ii}^a, \phi) = z, \ \forall a \in [M], i \in \mathcal{D}_3^a $ $\tag{79}$
1061	
1062	For each task $a \in [M]$, consider arm $i \in \mathcal{D}_3^a$, they need to satisfy
1064	$\lambda_i^a d(\mu_i^a, \mu_{i,i*(a)}^a) + \rho_{i(S+1)}^a = \nu, \forall a \in [M], i \in \mathcal{D}_2^a$
1065	$\lambda^{a} d(F^{a} \phi) + \gamma^{a} = \mu \forall a \in [M] \ i \in \mathcal{D}^{a} $ (80)
1066	$\lambda_i u(\Gamma_{ijh}, \psi) + \rho_{ijh} - \nu, \forall u \in [1N], i \in \mathcal{D}_3$
1067	For $i \in \mathcal{M}_1^a$ with $d(\mu_i^a, \mu_{i,i^*(a)}^a) > d(F_{ij_h}^a, \phi)$, then using (80), we have $\rho_{ij_h}^a > 0$. According to
1068	(66), we have $(\omega_{ij_h}^a)^* = 0$. Then $(\omega_{i(S+1)}^a)^* > 0$, and $(\omega_{i^*(a)(S+1)}^a)^* > 0$. In this case, (79) is
1069	equivalent to
1070	$\omega_{i(S+1)}^{a}d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a}) + \omega_{i^{*}(a)(S+1)}^{a}d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a}) = z, \forall a \in [M], i \in \mathcal{M}_{1}^{a}. $ (81)
1071	In this case, we have
1073	In this case, we have $(a, b, a) = (a, b) = (a,$
1074	$\lambda_i^{\tilde{"}} a(\mu_i^{\tilde{"}}, \mu_{i,i^*(a)}^{\tilde{"}}) = \nu, \forall a \in [M], i \in \mathcal{D}_1^{\tilde{"}} \cup \mathcal{M}_1^{\tilde{"}}$
1075	$\sum \lambda_i^a d(\mu_{i^*(a)}^a, \mu_{i^{*}(a)}^a) = \nu, \forall a \in [M] $ (82)
1076	$i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$
1077	which can be simplified to

which can be simplified to

1078
1079
$$\sum_{i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a} \frac{d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a)}{d(\mu_i^a, \mu_{i,i^*(a)}^a)} = 1.$$
(83)

1080 For $i \in \mathcal{M}_2^a$ with $d(\mu_i^a, \mu_{i,i^*(a)}^a) < d(F_{ij_h}^a, \phi)$, then using (80), we have $\rho_{i(S+1)}^a > 0$. According to (66), we have $(\omega_{i(S+1)}^a)^* = 0$. Then $(\omega_{ij_h}^a)^* > 0$, and (79) is equivalent to

$$\omega_{ijh}^a d(F_{ijh}^a, \phi) = z, \forall a \in [M], i \in \mathcal{M}_2^a.$$
(84)

According to Lemma 6 and the fact that the KKT conditions are sufficient for a global optimal solution of a convex optimization problem, we conclude the proof of Theorem 2. \Box

1088 B.3 SINGLE-PARAMETER EXPONENTIAL FAMILY

1090 The single-parameter exponential family can be defined as

$$\Gamma = \left\{ \left(p_{\eta} \right)_{\eta \in \mathcal{K}} : dp_{\eta}(x) = \exp(\eta x - \Lambda(\eta)) d\rho(x) \right\},\tag{85}$$

where ρ denote the reference measure on \mathbb{R} , $\Lambda(\eta) = \log \int_{x \in \mathbb{R}} \exp(\eta x) d\rho(x)$, $\mathcal{K} = \{\eta : \Lambda(\eta) < \infty\} \subset \mathbb{R}$. According to Dembo (2009), $\Lambda(\cdot) : \mathcal{K} \to \mathbb{R}$ is convex and \mathcal{C}^{∞} in \mathcal{K}° . Proposition 2 provides some useful properties:

Proposition 2. Define $\Lambda^*(\theta) = \sup_{\eta \in \mathcal{K}} (\eta \theta - \Lambda(\eta))$, and let $\mu = \int x dp_{\eta}, \nu = \int x dp_{\gamma}$ denote the mean of distribution p_{η} and p_{γ} , respectively, $KL(\cdot, \cdot)$ denote the Kullback-Leibler divergence between two distributions, then

(1)
$$\mu = \Lambda'(\eta), \, \forall \eta \in \mathcal{K}^\circ$$

(2)
$$\eta = \Lambda^{*'}(\mu)$$
 and $\Lambda^{*}(\mu) + \Lambda(\eta) = \mu \eta$.

1104 (3) $\forall \eta, \gamma \in \mathcal{K}^{\circ}$,

$$d(\mu,\nu) = KL(p_{\eta},p_{\gamma}) = \Lambda(\gamma) - \Lambda(\eta) - \mu(\gamma-\eta) = \Lambda^{*}(\mu) - \Lambda^{*}(\nu) - \gamma(\mu-\nu).$$
(86)

(4)
$$\frac{\partial d(\mu,\nu)}{\partial \nu}\Big|_{\nu=\mu} = 0, \frac{\partial^2 d(\mu,\nu)}{\partial^2 \nu}\Big|_{\nu=\mu} = \frac{1}{\sigma^2}, \text{ where } \sigma^2 \text{ is the variance of distribution } p_\eta.$$

Proof. (1) By definition, we have

$$\Lambda'(\eta) = \frac{\int_{x \in \mathbb{R}} x \exp(\eta x) \rho(x) dx}{\int_{x \in \mathbb{R}} \exp(\eta x) \rho(x) dx} = \int_{x \in \mathbb{R}} x \exp(\eta x - \Lambda(\eta)) \rho(x) dx = \mu.$$
(87)

(2) Since

$$\Lambda^*(\theta) = \sup_{\eta \in \mathcal{K}} (\eta \theta - \Lambda(\eta)) = \eta^* \theta - \Lambda(\eta^*), \tag{88}$$

where η^* satisfy that $\theta = \Lambda'(\eta^*)$. Let $\theta = \mu$, we have $\mu = \Lambda'(\eta^*) = \Lambda'(\eta)$ according to (1). Then $\Lambda^{*\prime}(\mu) = \eta$ and $\Lambda^*(\mu) + \Lambda(\eta) = \mu\eta$.

(3) By definition of the KL divergence, we have

$$d(\mu,\nu) = KL(p_{\eta}, p_{\gamma}) = \mathbb{E}_{p_{\eta}} \left[\log \left(\frac{dp_{\eta}(x)}{dp_{\gamma}(x)} \right) \right]$$
$$= \mathbb{E}_{p_{\eta}} \left[\log \left(\frac{\exp(\eta x - \Lambda(\eta))}{\exp(\gamma x - \Lambda(\gamma))} \right) \right]$$
$$= \mathbb{E}_{p_{\eta}} \left[(\eta - \gamma) x + \Lambda(\gamma) - \Lambda(\eta) \right]$$
$$= \Lambda(\gamma) - \Lambda(\eta) - \mu(\gamma - \eta).$$
(89)

Notice that, $\mu = \Lambda'(\eta)$, $\nu = \Lambda'(\gamma)$, $\eta = \Lambda^{*'}(\mu)$, $\gamma = \Lambda^{*'}(\nu)$, then it is straight to see that $d(\mu, \nu) = \Lambda^{*}(\mu) - \Lambda^{*}(\nu) - \gamma(\mu - \nu)$.

(4) According to (3), we have $d(\mu, \nu) = \Lambda^*(\mu) - \Lambda^*(\nu) - \gamma(\mu - \nu)$, then by definition

$$\frac{\partial d(\mu,\nu)}{\partial\nu} = -\Lambda^{*\prime}(\nu) - \frac{\partial\gamma}{\partial\nu}(\mu-\nu) + \gamma$$

$$= -\Lambda^{*\prime}(\nu) - \frac{\partial\gamma}{\partial\nu}(\mu-\nu) + \Lambda^{*\prime}(\nu)$$

$$= \frac{\partial\gamma}{\partial\nu}(\nu-\mu),$$
(90)

and we have $\frac{\partial d(\mu,\nu)}{\partial \nu}\Big|_{\nu=\mu} = 0$. Furthermore,

$$\frac{\partial^2 d(\mu,\nu)}{\partial^2 \nu} = \frac{\partial^2 \gamma}{\partial^2 \nu} (\nu - \mu) + \frac{\partial \gamma}{\partial \nu}.$$
(91)

Since $\gamma = \Lambda^{*'}(\nu)$, using the Danskin's Theorem, we have

$$\frac{\partial \gamma}{\partial \nu} = \Lambda^{*\prime\prime}(\nu). \tag{92}$$

Therefore, we have

$$\frac{\partial^2 d(\mu, \nu)}{\partial^2 \nu} \bigg|_{\nu = \mu} = \Lambda^{*''}(\mu)$$

$$= \int_{x \in \mathbb{R}} x \exp(\eta x - \Lambda(\eta))(x - \Lambda'(\eta))\rho(x)dx$$

$$= \int_{x \in \mathbb{R}} x^2 \exp(\eta x - \Lambda(\eta))\rho(x)dx - \mu \int_{x \in \mathbb{R}} x \exp(\eta x - \Lambda(\eta))\rho(x)dx$$

$$= \mathbb{E}_{p_\eta}[X^2] - \mu^2$$

$$= \frac{1}{\sigma^2}.$$
(93)

B.4 Proof of Lemma 1

 $\begin{array}{ll} \text{1168} & \textbf{Lemma 1. Define } \triangle_{i}^{a} = \mu_{i^{*}(a)}^{a} - \mu_{i}^{a}, \\ \triangle_{i^{*}(a)}^{a} = \min_{l \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}} (\mu_{i^{*}(a)}^{a} - \mu_{l}^{a}), \\ \sigma_{i}^{a} = (\int x^{2} dF_{i}^{a}(x) - (\mu_{i^{*}}^{a})^{2})^{\frac{1}{2}} \in (0, \infty), \\ (\mu_{i}^{a})^{2})^{\frac{1}{2}} \in (0, \infty), \\ \text{then for each task } a \in [M], \\ \text{and arm } i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}, \\ a \otimes \Delta_{i}^{a} \to 0, \\ \\ \text{1171} \\ \\ \text{inf} \\ \mu_{i}^{a} > \mu_{i^{*}(a)}^{a} \\ \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a}) \\ \rightarrow \frac{(\mu_{i}^{a} - \mu_{i^{*}(a)}^{a})^{2}}{2(\frac{(\sigma_{i}^{a})^{2}}{\omega_{i^{*}(a)}^{a})^{2}}}, \\ \end{array}$

Proof. The proof is motivated by the Theorem 2 of Shin et al. (2018). Define

$$g(\boldsymbol{\omega}) = \inf_{\tilde{\mu}_{i}^{a} > \tilde{\mu}_{i^{*}(a)}^{a}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a}),$$
(95)

According to Lemma 5, we have

$$g(\boldsymbol{\omega}) = \inf_{\tilde{\mu} \in [\mu_{i}^{a}, \mu_{i^{*}(a)}^{a}]} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu})$$
(96)

1183 Applying the second order Taylor Extension for $d(\mu_i^a, \tilde{\mu})$ at $\tilde{\mu} = \mu_i^a$, we can obtain that

$$\begin{aligned} & \frac{1185}{1186} \\ & 1186 \\ 1187 \end{aligned} \qquad d(\mu_i^a, \tilde{\mu}) = d(\mu_i^a, \mu_i^a) + (\tilde{\mu} - \mu_i^a) \frac{\partial d(\mu_i^a, \tilde{\mu})}{\partial \tilde{\mu}} \bigg|_{\tilde{\mu} = \mu_i^a} + \frac{(\tilde{\mu} - \mu_i^a)^2}{2} \frac{\partial^2 d(\mu_i^a, \tilde{\mu})}{\partial^2 \tilde{\mu}} \bigg|_{\tilde{\mu} = \mu_i^a} + o((\tilde{\mu} - \mu_i^a)^2) \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

According to Proposition 2, we have

$$d(\mu_i^a, \tilde{\mu}) = \frac{(\tilde{\mu} - \mu_i^a)^2}{2(\sigma_i^a)^2} + o((\tilde{\mu} - \mu_i^a)^2),$$
(98)

1192 By the same argument, we can obtain

$$d(\mu_{i^*(a)}^a, \tilde{\mu}) = \frac{(\tilde{\mu} - \mu_{i^*(a)}^a)^2}{2(\sigma_{i^*(a)}^a)^2} + o((\tilde{\mu} - \mu_{i^*(a)}^a)^2),$$
(99)

1196 Define

$$f(\boldsymbol{\omega},\tilde{\mu}) = \omega_{i(S+1)}^{a} d(\mu_{i}^{a},\tilde{\mu}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a},\tilde{\mu}),$$

$$\zeta(\boldsymbol{\omega},\tilde{\mu}) = \omega_{i(S+1)}^{a} \frac{(\tilde{\mu} - \mu_{i}^{a})^{2}}{2(\sigma_{i}^{a})^{2}} + \omega_{i^{*}(a)(S+1)}^{a} \frac{(\tilde{\mu} - \mu_{i^{*}(a)}^{a})^{2}}{2(\sigma_{i^{*}(a)}^{a})^{2}},$$

$$(100)$$

$$h(\boldsymbol{\omega}) = \inf_{\tilde{\mu} \in [\mu_i^a, \mu_{i^*(a)}^a]} \zeta(\boldsymbol{\omega}, \tilde{\mu}) = \frac{(\mu_i - \mu_{i^*(a)})}{2(\frac{(\sigma_i^a)^2}{\omega_{i(S+1)}^a} + \frac{(\sigma_{i^*(a)}^a)^2}{\omega_{i^*(a)(S+1)}^a})}$$

1204 Since $\tilde{\mu} \in [\mu_i^a, \mu_{i^*(a)}^a]$, we can obtain that

$$f(\boldsymbol{\omega}, \tilde{\boldsymbol{\mu}}) = \zeta(\boldsymbol{\omega}, \tilde{\boldsymbol{\mu}}) + o((\mu_{i^*(a)}^a - \mu_i^a)^2)$$
(101)

1207 Let $\tilde{\mu}_1 = \operatorname{arg\,inf}_{\tilde{\mu} \in [\mu_i^a, \mu_{i^*(a)}^a]} f(\boldsymbol{\omega}, \tilde{\mu}), \quad \tilde{\mu}_2 = \operatorname{arg\,inf}_{\tilde{\mu} \in [\mu_i^a, \mu_{i^*(a)}^a]} \zeta(\boldsymbol{\omega}, \tilde{\mu}).$ Then, we have $g(\boldsymbol{\omega}) = f(\boldsymbol{\omega}, \tilde{\mu}_1), \quad h(\boldsymbol{\omega}) = \zeta(\boldsymbol{\omega}, \tilde{\mu}_2).$ Therefore, we can obtain 1209 $|g(\boldsymbol{\omega}) - h(\boldsymbol{\omega})| = |f(\boldsymbol{\omega}, \tilde{\mu}_1) - \zeta(\boldsymbol{\omega}, \tilde{\mu}_2)|$

$$|g(\boldsymbol{\omega}) - h(\boldsymbol{\omega})| = |f(\boldsymbol{\omega}, \tilde{\mu}_1) - \zeta(\boldsymbol{\omega}, \tilde{\mu}_2)|$$

$$\leq |f(\boldsymbol{\omega}, \tilde{\mu}_1) - \zeta(\boldsymbol{\omega}, \tilde{\mu}_1)| + |\zeta(\boldsymbol{\omega}, \tilde{\mu}_1) - \zeta(\boldsymbol{\omega}, \tilde{\mu}_2)|$$

$$= o((\mu_{i^*(a)}^a - \mu_i^a)^2) + \left| (\tilde{\mu}_1 - \tilde{\mu}_2) \frac{\partial \zeta(\boldsymbol{\omega}, \tilde{\mu}_1)}{\partial \tilde{\mu}_1} \right|_{\tilde{\mu}_1 = \tilde{\mu}_2} + o((\tilde{\mu}_1 - \tilde{\mu}_2)) \right|$$
(102)

1215 $= o((\mu^a_{i^*(a)} - \mu^a_i)^2).$

1216 Therefore, we conclude that, as $\triangle_i^a \to 0$,

$$g(\boldsymbol{\omega}) \to h(\boldsymbol{\omega}),$$
 (103)

1219 which means

$$\inf_{\tilde{\mu}_{i}^{a} > \tilde{\mu}_{i^{*}(a)}^{a}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a})) \to \frac{(\mu_{i}^{a} - \mu_{i^{*}(a)}^{a})^{2}}{2(\frac{(\sigma_{i}^{a})^{2}}{\omega_{i(S+1)}^{a}} + \frac{(\sigma_{i^{*}(a)}^{a})^{2}}{\omega_{i^{*}(a)(S+1)}^{a}})}.$$
 (104)

1225 B.5 PROOF OF LEMMA 2

1228 Lemma 2. Define $\triangle_{ij}^a = |F_{ij}^a - \phi|, \ \sigma_{ij}^a = (F_{ij}^a(1 - F_{ij}^a))^{\frac{1}{2}} \in (0, \infty)$, then for each task $a \in [M]$, 1228 arm $i \in [K]$ and constraint $j \in [S]$, as $\triangle_{ij}^a \to 0$,

$$d(F_{ij}^a, \phi) \to \frac{(F_{ij}^a - \phi)^2}{2(\sigma_{ij}^a)^2}.$$
 (105)

1233 Proof. Applying the second order Taylor Extension for $d(F_{ij}^a, \phi)$ at $\phi = F_{ij}^a$, we can obtain that

$$d(F_{ij}^{a},\phi) = d(F_{ij}^{a},F_{ij}^{a}) + (\phi - F_{ij}^{a}) \frac{\partial(F_{ij}^{a},\phi)}{\partial\phi} \bigg|_{\phi = F_{ij}^{a}} + \frac{(\phi - F_{ij}^{a})^{2}}{2} \frac{\partial^{2} d(F_{ij}^{a},\phi)}{\partial\phi} \bigg|_{\phi = F_{ij}^{a}} + o((\phi - F_{ij}^{a})^{2})$$
(106)
$$(F_{ij}^{a} - \phi)^{2} + o((\phi - F_{ij}^{a})^{2})$$

1242
1243 as
$$\triangle_{ij}^a \to 0$$
, we have $d(F_{ij}^a, \phi) \to \frac{(F_{ij}^a - \phi)^2}{2(\sigma_{ij}^a)^2}$.

1245 B.6 PROOF OF PROPOSITION 1

Proposition 1. Define

$$\mathcal{H} = \sum_{a \in [M]} \left(\sum_{j \in [S]} \frac{(\sigma_{i^*(a)j}^a)^2}{(\triangle_{i^*(a)j}^a)^2} + \sum_{i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a \cup \{i^*(a)\}} \frac{(\sigma_i^a)^2}{(\triangle_i^a)^2} + \sum_{i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a} \frac{(\sigma_{ij_h}^a)^2}{(\triangle_{ij_h}^a)^2} \right).$$
(107)

1252 For the problem instance \mathcal{P} with $\triangle_i^a \to 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$, and $\triangle_{ij}^a \to 0, \forall a \in [M], i \in [K], j \in [S]$, we have $2\mathcal{H} \leq \mathcal{H}^*(\mathcal{P}) \leq 4\mathcal{H}$.

Proof. Combining the results of Theorem 1 and 2, we have

$$\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min\left(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega})\right),$$
(108)

1258 with

$$V_{1}^{a}(\boldsymbol{\omega}) = \min_{j \in [S]} \omega_{i^{*}(a)j}^{a} d(F_{i^{*}(a)j}^{a}, \phi),$$

$$V_{2}^{a}(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}} \inf_{\mu_{i}^{a} > \tilde{\mu}_{i^{*}(a)}^{a}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a}), \qquad (109)$$

$$V_{3}^{a}(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{3}^{a}} \omega_{ijh}^{a} d(F_{ijh}^{a}, \phi).$$

1265 According to Lemma 2, we have as $\triangle_{ij}^a \to 0, \forall a \in [M], i \in [K], j \in [S],$

$$d(F^{a}_{i^{*}(a)j},\phi) \to \frac{(F^{a}_{i^{*}(a)j}-\phi)^{2}}{2(\sigma^{a}_{i^{*}(a)j})^{2}}, \ d(F^{a}_{ij_{h}},\phi) \to \frac{(F^{a}_{ij_{h}}-\phi)^{2}}{2(\sigma^{a}_{ij_{h}})^{2}}.$$
(110)

According to Lemma 1, we have as $\triangle_i^a \to 0, \forall a \in [M], i \in [K], i \in [K], i \in [K]$

$$\inf_{\tilde{\mu}_{i}^{a} > \tilde{\mu}_{i^{*}(a)}^{a}} \omega_{i(S+1)}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)(S+1)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a}) \to \frac{(\mu_{i}^{a} - \mu_{i^{*}(a)}^{a})^{2}}{2(\frac{(\sigma_{i}^{a})^{2}}{\omega_{i(S+1)}^{a}} + \frac{(\sigma_{i^{*}(a)}^{a})^{2}}{\omega_{i^{*}(a)(S+1)}^{a}})}.$$
 (111)

Define

$$\tilde{V}_{1}^{a}(\boldsymbol{\omega}) = \min_{j \in [S]} \omega_{i^{*}(a)j}^{a} \frac{(F_{i^{*}(a)j}^{a} - \phi)^{2}}{2(\sigma_{i^{*}(a)j}^{a})^{2}},$$
$$\tilde{V}_{2}^{a}(\boldsymbol{\omega}) = \min_{i \in [M]} \frac{(\mu_{i}^{a} - \mu_{i^{*}(a)}^{a})^{2}}{(\sigma_{i^{*}(a)j}^{a})^{2}},$$

$$P_{2}^{a}(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}} \frac{(r_{i} - r_{i}^{*}(a))}{2(\frac{(\sigma_{i}^{a})^{2}}{\omega_{i(S+1)}^{a}} + \frac{(\sigma_{i}^{*}(a))^{2}}{\omega_{i^{*}(a)(S+1)}^{a}})}$$

$$\tilde{V}_{3}^{a}(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_{2}^{a} \cup \mathcal{M}_{2}^{a}} \frac{(F_{ijh}^{a} - \phi)^{2}}{2(\sigma_{ijh}^{a})^{2}},$$

$$\tilde{\mathcal{H}}(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \tilde{\mathcal{H}}(\mathcal{P}, \boldsymbol{\omega})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min\left(\tilde{V}_{1}^{a}(\boldsymbol{\omega}), \tilde{V}_{2}^{a}(\boldsymbol{\omega}), \tilde{V}_{3}^{a}(\boldsymbol{\omega})\right),$$
(112)

$$\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \mathcal{H}(\mathcal{P}, \boldsymbol{\omega})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min\left(V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega})\right).$$

1289 Then, it is straightforward to check that as $\triangle_i^a \to 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a, \text{ and } \triangle_{ij}^a \to 0, \forall a \in [M], i \in [K], j \in [S],$ 1291 $\mathcal{H}(\mathcal{P}_i, i)^{-1} \to \tilde{\mathcal{H}}(\mathcal{P}_i, i)$ (113)

$$\mathcal{H}(\mathcal{P}, \boldsymbol{\omega})^{-1} \to \tilde{\mathcal{H}}(\mathcal{P}, \boldsymbol{\omega}).$$
 (113)

Let

$$\omega^{*} = \underset{\omega \in \Omega}{\operatorname{arg\,max}} \min_{a \in [M]} \min \left(V_{1}^{a}(\omega), V_{2}^{a}(\omega), V_{3}^{a}(\omega) \right),$$

$$\tilde{\omega} = \underset{\omega \in \Omega}{\operatorname{arg\,max}} \min_{a \in [M]} \min \left(\tilde{V}_{1}^{a}(\omega), \tilde{V}_{2}^{a}(\omega), \tilde{V}_{3}^{a}(\omega) \right),$$
(114)

then we have $\mathcal{H}^*(\mathcal{P})^{-1} = \mathcal{H}(\mathcal{P}, \omega^*)^{-1}$ and $\tilde{\mathcal{H}}(\mathcal{P})^{-1} = \tilde{\mathcal{H}}(\mathcal{P}, \tilde{\omega})^{-1}$. Furthermore, as $\triangle_i^a \to 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$, and $\triangle_{ij}^a \to 0, \forall a \in [M], i \in [K], j \in [S]$, we have $|\tilde{\mathcal{H}}(\mathcal{P})^{-1} - \mathcal{H}^*(\mathcal{P})^{-1}| = |\tilde{\mathcal{H}}(\mathcal{P}, \tilde{\omega})^{-1} - \mathcal{H}(\mathcal{P}, \omega^*)^{-1}|$ $\leq |\tilde{\mathcal{H}}(\mathcal{P},\tilde{\boldsymbol{\omega}})^{-1} - \mathcal{H}(\mathcal{P},\tilde{\boldsymbol{\omega}})^{-1}| + |\mathcal{H}(\mathcal{P},\tilde{\boldsymbol{\omega}})^{-1} - \mathcal{H}(\mathcal{P},\boldsymbol{\omega}^*)^{-1}|$ (115) $\rightarrow 0.$ where the third line can be verified using (113). Next, we focus on analyzing the $\tilde{\mathcal{H}}(\mathcal{P})^{-1}$. We first provide a lower bound on $\tilde{\mathcal{H}}(\mathcal{P})^{-1}$. Consider a feasible sampling ratio:

$$\omega_{i^*(a)j}^a = \frac{(\sigma_{i^*(a)j}^a)^2}{(\triangle_{i^*(a)j}^a)^2 \mathcal{H}}, \quad \forall a \in [M]$$

$$\omega_i^a = \frac{(\sigma_i^a)^2}{(\triangle_i^a)^2 \mathcal{H}}, \quad \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a \cup \{i^*(a)\}$$

$$\omega_{ij_h}^a = \frac{(\sigma_{ij_h}^a)^2}{(\triangle_{ij_h}^a)^2 \mathcal{H}}, \quad \forall a \in [M], i \in \mathcal{D}_2^a \cup \mathcal{M}_2^a$$
(116)

1316 and
$$\omega_{ij}^a = 0$$
, otherwise. Then, we can obtain that 1317

$$\tilde{\mathcal{H}}(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega}\in\Omega} \tilde{\mathcal{H}}(\mathcal{P},\boldsymbol{\omega})^{-1} \ge \frac{1}{2}\min(\frac{1}{\mathcal{H}},\frac{1}{2\mathcal{H}},\frac{1}{\mathcal{H}}) = \frac{1}{4\mathcal{H}}.$$
(117)

1321 Let $l^* = \arg\min_{l \in \mathcal{D}_1^a \cup \mathcal{M}_1^a} (\mu_{i^*(a)}^a - \mu_l^a)$, then $\triangle_{i^*(a)}^a = \mu_{i^*(a)}^a - \mu_{l^*}^a$. We then prove an upper bound 1322 on $\tilde{\mathcal{H}}(\mathcal{P})^{-1}$.

$$\tilde{\mathcal{H}}(\mathcal{P})^{-1} = \max_{\omega \in \Omega} \tilde{\mathcal{H}}(\mathcal{P}, \omega)^{-1} \\
= \max_{\omega \in \Omega} \min_{a \in [M]} \min\left(\tilde{V}_{1}^{a}(\omega), \tilde{V}_{2}^{a}(\omega), \tilde{V}_{3}^{a}(\omega)\right) \\
= \frac{1}{2} \max_{\omega \in \Omega} \min_{a \in [M]} \min\left(\min_{j \in [S]} \omega_{i^{*}(a)j}^{a}(\omega_{j})_{j}^{2}(\omega_{i^{*}(a)j})^{2}, \\
1329 \\
= \frac{1}{2} \max_{\omega \in \Omega} \min_{a \in [M]} \min\left(\max_{j \in [S]} (\frac{(\Delta_{i}^{a})^{2}}{\omega_{i^{*}(a+1)}^{a})}, \frac{(\Delta_{i^{*}(a)j}^{a})^{2}}{(\omega_{i^{*}(a+1)}^{a})^{2}}, \\
\frac{(\Delta_{i^{*}(a)j}^{a})^{2}}{(\omega_{i^{*}(a)j}^{a})^{2}}, \\
\frac{($$

where the last equation is obtained by solving the corresponding optimization problem.

Therefore, we conclude that $2\mathcal{H} \leq \tilde{\mathcal{H}}(\mathcal{P}) \leq 4\mathcal{H}$, which also implies $2\mathcal{H} \leq \mathcal{H}^*(\mathcal{P}) \leq 4\mathcal{H}$ as $\Delta_i^a \to 0, \forall a \in [M], i \in \mathcal{D}_1^a \cup \mathcal{M}_1^a, \text{ and } \Delta_{ij}^a \to 0, \forall a \in [M], i \in [K], j \in [S].$

B.7 EXTENSION TO OTHER FORMULATIONS

In this section, we extend the results of Theorem 1 to a new formulation, in which the agent observes a vector of all metrics after pulling an arm. Such performance setting was also considered in the literature (Hunter & Pasupathy, 2013; Camilleri et al., 2022). However, we address a complex multi-task BAI problem with risk constraint under the fixed-confidence setting. Let ω_i^a denote the sampling ratio of arm i under task a in this formulation. Theorem 5 provides the lower bound on the sample complexity $\mathbb{E}[\tau]$ and Lemma 7 outlines the optimality conditions satisfied by the static sampling rule ω .

Theorem 5. Given a fixed confidence level $\delta \in (0, 1)$. For any problem instance $\mathcal{P} \in \mathcal{S}$ and any strategy satisfying $\mathbb{P}\left(\forall a \in [M], i^*(a) = \hat{i}_{\tau}(a)\right) \ge 1 - \delta$,

$$\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P})kl(\delta, 1-\delta),\tag{119}$$

as $\delta \rightarrow 0$, we have

$$\liminf_{\delta \to 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \ge \mathcal{H}^*(\mathcal{P}),\tag{120}$$

where $\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\boldsymbol{\omega} \in \Omega} \min_{a \in \lceil M \rceil} \min (V_1^a(\boldsymbol{\omega}), V_2^a(\boldsymbol{\omega}), V_3^a(\boldsymbol{\omega}), V_4^a(\boldsymbol{\omega}))$, with

$$\begin{array}{ll} 1375 & V_{1}^{a}(\boldsymbol{\omega}) = \min_{j \in [S]} \omega_{i^{*}(a)}^{a} d(F_{i^{*}(a)j}^{a}, \phi), \\ 1376 & V_{2}^{a}(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_{1}^{a}} \omega_{i}^{a} d(\mu_{i}^{a}, \mu_{i,i^{*}(a)}^{a}) + \omega_{i^{*}(a)}^{a} d(\mu_{i^{*}(a)}^{a}, \mu_{i,i^{*}(a)}^{a}), \\ 1378 & V_{3}^{a}(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_{2}^{a}} \omega_{i}^{a} \sum_{j \in \mathcal{B}_{2}^{a}(i)} d(F_{ij}^{a}, \phi), \\ 1380 & V_{4}^{a}(\boldsymbol{\omega}) = \min_{i \in \mathcal{D}_{3}^{a}} \inf_{\mu_{i}^{a} > \tilde{\mu}_{i^{*}(a)}^{a}} \omega_{i}^{a} d(\mu_{i}^{a}, \tilde{\mu}_{i}^{a}) + \omega_{i^{*}(a)}^{a} d(\mu_{i^{*}(a)}^{a}, \tilde{\mu}_{i^{*}(a)}^{a}) + \omega_{i}^{a} \sum_{j \in \mathcal{B}_{2}^{a}(i)} d(F_{ij}^{a}, \phi). \end{array}$$

$$\begin{array}{c} (121) \\ 1382 \\ 1382 \\ 1382 \end{array}$$

Lemma 7. Define $A_1 = \{a \in [M] : V_1^a(\omega) \ge z^*\}$, and $A_2 = \{a \in [M] : V_1^a(\omega) = z^*\}$. The static optimal sampling ratio ω^* satisfies:

$$\begin{array}{c} 1388 & V_1^a(\boldsymbol{\omega}^*) \geq z^*, \forall a \in \mathcal{A}_1 \\ 1389 & V_1^{\tilde{a}}(\boldsymbol{\omega}^*) = V_2^a(\boldsymbol{\omega}^*) = V_3^a(\boldsymbol{\omega}^*) = V_4^a(\boldsymbol{\omega}^*) = z^*, \forall a \in [M], \tilde{a} \in \mathcal{A}_2 \\ 1390 & (\boldsymbol{\omega}_i^a)^* d(\mu_i^a, \mu_{i,i^*(a)}^a) + (\boldsymbol{\omega}_{i^*(a)}^a)^* d(\mu_{i^*(a)}^a, \mu_{i,i^*(a)}^a) = z^*, \forall a \in [M], i \in \mathcal{D}_1^a \\ 1392 & (\boldsymbol{\omega}_i^a)^* \sum_{j \in \mathcal{B}_2^a(i)} d(F_{ij}^a, \phi) = z^*, \forall a \in [M], i \in \mathcal{D}_2^a \\ 1393 & (\boldsymbol{\omega}_i^a)^* \sum_{j \in \mathcal{B}_2^a(i)} d(F_{ij}^a, \phi) = z^*, \forall a \in [M], i \in \mathcal{D}_2^a \\ 1394 & (\boldsymbol{\omega}_i^a)^* \sum_{j \in \mathcal{B}_2^a(i)} d(F_{ij}^a, \phi) = z^*, \forall a \in [M], i \in \mathcal{D}_2^a \\ \end{array}$$

$$(\boldsymbol{\omega}_{i}^{a})^{*}(d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a}) + \sum_{j\in\mathcal{B}_{2}^{a}(i)} d(F_{ij}^{a},\phi)) + (\boldsymbol{\omega}_{i^{*}(a)}^{a})^{*}d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a}) = z^{*}, \forall a \in [M], i \in \mathcal{D}_{3}^{a}$$

$$\sum_{i\in\mathcal{D}_{1}^{a}} \frac{d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a})}{d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a})} + \sum_{i\in\mathcal{D}_{3}^{a}} \frac{d(\mu_{i^{*}(a)}^{a},\mu_{i,i^{*}(a)}^{a})}{d(\mu_{i}^{a},\mu_{i,i^{*}(a)}^{a}) + \sum_{j\in\mathcal{B}_{2}^{a}(i)} d(F_{ij}^{a},\phi)} = 1, \forall a \in \mathcal{A}_{1}$$

$$\sum_{i\in\mathcal{D}_{1}^{a}} \sum_{i\in\mathcal{D}_{1}^{a}} \sum_{i\in\mathcal{D}_{3}^{a}} \sum_{i\in\mathcal{D}_{3}$$

1401

$$a \in [M] \ i \in [K]$$

 1402
 $(\boldsymbol{\omega}_i^a)^* \ge 0, \forall a \in [M], i \in [K].$

 1403
 (122)

1404 C ASYMPTOTICALLY OPTIMAL STRATEGY

1407 С.1 Ркооf of Lemma 4

Proof. By definition of the stopping rule $\tau = \inf\{t \in \mathbb{N} : \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}}(t))} f(\hat{\mathcal{P}}(t), \tilde{\mathcal{P}}) > \beta(t, \delta)\},$ we have

where the last line is obtained by extending Theorem 2 of Magureanu et al. (2014).

Since we have $\beta(t, \delta) = \log\left(\frac{Ct^{\alpha}}{\delta}\right)$, it can be verified that if we choose the constant C satisfy

$$\sum_{t=1}^{\infty} \frac{e^{MK(S+1)}}{MK(S+1)^{MK(S+1)}} \frac{\left([\log(Ct^{\alpha}) + \log(1/\delta)]^2 \log t \right)^{MK(S+1)}}{t^{\alpha}} \le C,$$
(124)

then we can obtain $\mathbb{P}\left(\exists a \in [M], \hat{i}_{\tau}(a) \neq i^*(a)\right) \leq \delta$, which concludes the proof.

C.2 PROOF OF THEOREM 3

In this subsection, we prove the sample complexity results in Theorem 3. The proof of Theorem 3 is more or less identical to that of Garivier & Kaufmann (2016), we include it here for completeness.

$$\sup_{t \ge t_{\epsilon}} \max_{(a,i,j) \in [M] \times [K] \times [S+1]} \left| \frac{N_{ij}^a(t)}{t} - (\boldsymbol{\omega}_{ij}^a)^*(\mathcal{P}) \right| \le 3(MK(S+1) - 1)\epsilon.$$
(125)

1452 Let $\mathcal{B}_{\infty}^{r}(c)$ denote a ball of radius r centered at c under the infinity norm. For problem instance 1453 $\mathcal{P} = (\mu^{a}, F^{a})_{a \in [M]}$, since $\omega^{*}(\mathcal{P})$ is a continuous function of \mathcal{P} , we have $\forall \epsilon > 0$, $\exists \xi(\epsilon) > 0$, such 1454 that $\forall \tilde{\mathcal{P}} \in \mathcal{B}_{\infty}^{\xi(\epsilon)}(\mathcal{P})$, we have $\omega^{*}(\tilde{\mathcal{P}}) \in \mathcal{B}_{\infty}^{\epsilon}(\omega^{*}(\mathcal{P}))$.

Lemma 9. For problem instance $\mathcal{P} \in \mathcal{S}$, define $\mathcal{E}_T(\epsilon) = \bigcap_{t \in T^{1/4}}^T \{\hat{\mathcal{P}}(t) \in \mathcal{B}_{\infty}^{\xi(\epsilon)}(\mathcal{P})\}$, we have

$$\mathbb{P}(\mathcal{E}_T^c(\epsilon)) \le B(\epsilon, \mathcal{P}) \exp\left(-C(\epsilon, \mathcal{P})T^{1/8}\right),\tag{126}$$

 $C(\epsilon, \mathcal{P}) = \min_{a \in [M]} \left(\min_{i \in [K]} \left(d(\mu_i^a - \xi(\epsilon), \mu_i^a) \bigwedge d(\mu_i^a + \xi(\epsilon), \mu_i^a) \right) \bigwedge \right)$

 $\min_{i \in [K], j \in [S]} \left(d(F_{ij}^a - \xi(\epsilon), F_{ij}^a) \bigwedge d(F_{ij}^a + \xi(\epsilon), F_{ij}^a) \right) \right).$

where

Proof. By definition of $\mathcal{E}_T(\epsilon)$, we have that

 $B(\epsilon, \mathcal{P}) = \sum_{a \in [M], i \in [K]} \left(\frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a + \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a + \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))} + \frac{\exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}{1 - \exp(MK(S+1)d(\mu_i^a - \xi(\epsilon), \mu_i^a))}$

 $+\sum_{j\in[S]}\left(\frac{\exp(MK(S+1)d(F_{ij}^{a}-\xi(\epsilon),F_{ij}^{a}))}{1-\exp(d(F_{ij}^{a}-\xi(\epsilon),F_{ij}^{a}))}+\frac{\exp(MK(S+1)d(F_{ij}^{a}+\xi(\epsilon),F_{ij}^{a}))}{1-\exp(d(F_{ij}^{a}+\xi(\epsilon),F_{ij}^{a}))}\right)\right),$

(127)

1490 Let T is large enough to satisfy that $N^a_{ij}(t) \ge \sqrt{t} - MK(S+1) \ge 0$, then we have

$$\mathbb{P}\left(\hat{F}_{ij}^{a}(b,t) \notin \mathcal{B}_{\infty}^{\xi(\epsilon)}(F_{ij}^{a})\right) \\
= \mathbb{P}\left(\left(\hat{F}_{ij}^{a}(b,t) \leq F_{ij}^{a} - \xi(\epsilon)\right) \bigcup \left(\hat{F}_{ij}^{a}(b,t) \geq F_{ij}^{a} + \xi(\epsilon)\right)\right) \\
= \mathbb{P}\left(\hat{F}_{ij}^{a}(b,t) \leq F_{ij}^{a} - \xi(\epsilon)\right) + \mathbb{P}\left(\hat{F}_{ij}^{a}(b,t) \leq F_{ij}^{a} + \xi(\epsilon)\right),$$
(129)

Denote $\hat{F}^a_{ij,l}(b)$ as the estimate of F^a_{ij} based on first l observations from Y^a_{ij} , then we have

$$\begin{split} & 1500 \\ & 1501 \\ & \mathbb{P}\left(\hat{F}_{ij}^{a}(b,t) \leq F_{ij}^{a} - \xi(\epsilon)\right) \\ & 1502 \\ & 1503 \\ & 1503 \\ & 1504 \\ & 1505 \\ & 1506 \\ & 1506 \\ & 1506 \\ & 1506 \\ & 1507 \\ & 1508 \\ & 1509 \\ & 1509 \\ & 1509 \\ & 1509 \\ & 1510 \\ & 1511 \\ & \leq \frac{\exp\left(-(\sqrt{t} - MK(S+1))d(F_{ij}^{a} - \xi(\epsilon), F_{ij}^{a})\right)}{1 - \exp\left(-d(F_{ij}^{a} - \xi(\epsilon), F_{ij}^{a})\right)}, \end{split}$$
(130)

where the second equation is from the Chernoff inequality. Using similar argument, we can obtain that $\exp\left(-(\sqrt{t} - MK(S+1))d(F_{i}^{a} + \xi(\epsilon), F_{i}^{a})\right)$

 $\mathbb{P}\left(\hat{F}_{ij}^{a}(t) \leq F_{ij}^{a} + \xi(\epsilon)\right) \leq \frac{\exp\left(-(\sqrt{t} - MK(S+1))d(F_{ij}^{a} + \xi(\epsilon), F_{ij}^{a})\right)}{1 - \exp\left(-d(F_{ij}^{a} + \xi(\epsilon), F_{ij}^{a})\right)},$

$$\mathbb{P}\left(\hat{\mu}_{i}^{a}(t) \leq \mu_{i}^{a} - \xi(\epsilon)\right) \leq \frac{\exp\left(-(\sqrt{t} - MK(S+1))d(\mu_{i}^{a} - \xi(\epsilon), \mu_{i}^{a})\right)}{1 - \exp\left(-d(\mu_{i}^{a} - \xi(\epsilon), \mu_{i}^{a})\right)}, \qquad (1)$$

$$\mathbb{P}\left(\hat{\mu}_{i}^{a}(t) \leq \mu_{i}^{a} + \xi(\epsilon)\right) \leq \frac{\exp\left(-(\sqrt{t} - MK(S+1))d(\mu_{i}^{a} + \xi(\epsilon), \mu_{i}^{a})\right)}{1 - \exp\left(-d(\mu_{i}^{a} + \xi(\epsilon), \mu_{i}^{a})\right)}.$$

Therefore, we conclude that

$$\mathbb{P}\left(\mathcal{E}_{T}^{c}(\epsilon)\right) \leq \sum_{t=T^{1/4}}^{T} B(\epsilon, \mathcal{P}) \exp\left(-\sqrt{t}C(\epsilon, \mathcal{P})\right) \leq B(\epsilon, \mathcal{P}) \exp\left(-C(\epsilon, \mathcal{P})T^{1/8}\right).$$
(132)

Theorem 3. For problem instance $\mathcal{P} \in \mathcal{S}$, the Algorithm 1 satisfies that

$$\limsup_{\delta \to 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \le \mathcal{H}^*(\mathcal{P}).$$
(133)

(131)

Proof. Let $\mathcal{Q} = (\boldsymbol{\nu}^a, \boldsymbol{\Phi}^a)_{a \in [M]}$ denote an problem instance. Define

$$g(\tilde{\mathcal{P}}, \tilde{\omega}) = \inf_{\mathcal{Q} \in \mathcal{A}(\tilde{P})} \sum_{a \in [M], i \in [K]} \left(\tilde{\omega}_{i(S+1)d(\tilde{\mu}_{i}^{a})}^{a} d(\tilde{\mu}_{i}^{a}, \nu_{i}^{a}) + \sum_{j \in [S]} \tilde{\omega}_{ij}^{a} d(\tilde{F}_{ij}^{a}, \Phi_{ij}^{a}(b)) \right).$$

$$\mathcal{Z}^{*}(\mathcal{D}) = \inf_{a \in [M], i \in [K]} \left(\tilde{\mathcal{D}}_{i(S+1)d(\tilde{\mu}_{i}^{a})}^{a} d(\tilde{\mu}_{i}^{a}, \nu_{i}^{a}) + \sum_{j \in [S]} \tilde{\omega}_{ij}^{a} d(\tilde{F}_{ij}^{a}, \Phi_{ij}^{a}(b)) \right).$$
(134)

$$\mathcal{Z}_{\epsilon}^{*}(\mathcal{P}) = \inf_{\substack{\tilde{\mathcal{P}} \in \mathcal{B}_{\infty}^{\xi(\epsilon)}(\mathcal{P})\\ \tilde{\boldsymbol{\omega}} \in \mathcal{B}_{\infty}^{3(MK(S+1)-1)\epsilon}(\boldsymbol{\omega}^{*}(\mathcal{P}))}} g(\tilde{\mathcal{P}}, \tilde{\boldsymbol{\omega}}).$$

According to Lemma 8, $\forall \epsilon > 0$, $\exists T_{\epsilon} > 0$, such that $\forall T \ge T_{\epsilon}$, on event $\mathcal{E}_{T}(\epsilon)$, we have

$$\sup_{t \ge \sqrt{T}} \max_{(a,i,j) \in [M] \times [K] \times [S+1]} \left| \frac{N_{ij}^a(t)}{t} - (\omega_{ij}^a)^*(\mathcal{P}) \right| \le 3(MK(S+1) - 1)\epsilon.$$
(135)

1545 Note that, the stopping rule is

$$\tau = \inf\{t \in \mathbb{N} : \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}}(t))} f(\hat{\mathcal{P}}(t), \tilde{\mathcal{P}}) > \beta(t, \delta)\}$$

$$= \inf\{t \in \mathbb{N} : \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}}(t))} tg(\hat{\mathcal{P}}(t), \boldsymbol{\omega}^*(\hat{\mathcal{P}}(t))) > \beta(t, \delta)\}$$

$$= \inf\{t \in \mathbb{N} : g(\hat{\mathcal{P}}(t), \boldsymbol{\omega}^*(\hat{\mathcal{P}}(t))) > \frac{\beta(t, \delta)}{t}\}.$$
(136)

Therefore, $\forall T > T_{\epsilon}$ and on $\mathcal{E}_T(\epsilon)$, we have

$$\min(\tau, T) \leq \sqrt{T} + \sum_{t=\sqrt{T}}^{T} \mathbb{I}(\tau > t) \leq \sqrt{T} + \sum_{t=\sqrt{T}}^{T} \mathbb{I}\left(g(\hat{\mathcal{P}}(t), \boldsymbol{\omega}^{*}(\hat{\mathcal{P}}(t))) \leq \frac{\beta(t, \delta)}{t}\right)$$

$$\leq \sqrt{T} + \sum_{t=\sqrt{T}}^{T} \mathbb{I}\left(\mathcal{Z}_{\epsilon}^{*}(\mathcal{P}) \leq \frac{\beta(t, \delta)}{t}\right) \leq \sqrt{T} + \frac{\beta(t, \delta)}{t}.$$
(137)

¹⁵⁶¹ Following Garivier & Kaufmann (2016), we have

$$T_0(\delta) = \inf\{T \in \mathbb{N} : \sqrt{T} + \frac{\beta(t,\delta)}{t} < T\} = \frac{1}{\mathcal{Z}^*_{\epsilon}(\mathcal{P})} \bigg(\mathcal{O}(\log(1/\delta)) + \mathcal{O}(\log\log(1/\delta)) \bigg),$$

which means $\forall T > \max(T_0(\delta), T_{\epsilon})$, on $\mathcal{E}_T(\epsilon)$, we have $\tau < T$.

Let $\epsilon \to 0$, we have

1599

1604

$$\limsup_{\delta \to 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \le \mathcal{H}^*(\mathcal{P}).$$
(140)

D NUMERICAL EXPERIMENT

D.1 Illustrative Examples

In this subsection, we provide illustrative examples to demonstrate how the static optimal sampling
 ratio balances identification difficulty across different tasks and constraints, managing the trade-off
 between optimality and feasibility.

Single task example. In this example, there is 1 task, 4 arms and 1 constraint. The X_i are Gaussian random variables with means $\mu = (1.0, 0.8, 1.2, 0.6)$ and standard deviations $\sigma =$ (1.0, 0.8, 1.0, 1.0). The Y_{ij} are Gaussian random variables with F = (0.95, 0.95, 0.80, 0.82). The threshold parameter is $\phi = 0.9$. Arm 1 is optimal, arm 2 is suboptimal, arm 3 is infeasible but has a better objective value, and arm 4 is infeasible with a worse objective value.

1616 Figure 3 illustrates the change in the static optimal sampling ratio ω^* for different values of $F_{41}(b)$. 1617 When $F_{41}(b)$ is much less than ϕ , identifying arm 4 as infeasible is easier than identifying it as sub-1618 optimal, therefore, $\omega_{42} = 0$. In contrast, when $F_{41}(b)$ is close to ϕ , identifying arm 4 as suboptimal 1619 becomes easier, then $\omega_{41} = 0$. When both cases are equally difficult, there are multiple solutions, and Figure 3 shows one of them, verifying the results in Theorem 2.

1634 1635

1659

1666

1668

Optimal allocation ratio under different settings

Figure 5: Optimal static sampling ratio ω^* under different $F_{31}(b)$

Figures 4 and 5 illustrate how the ω^* changes with μ_2 and $F_{31}(b)$. As μ_2 approaches μ_1 , distinguishing between arms 1 and 2 becomes more difficult, and the ω^* shifts focus toward verifying the optimality of these arms, causing ω_{12} and ω_{22} to increase gradually. However, as $F_{31}(b)$ approaches ϕ , the ω^* shifts to focus on the feasibility of arm 3, leading to a gradual increase in ω_{31} .

1640 Multiple tasks example. This example involves 2 tasks, 3 arms, and 1 constraint. The X_i^a are 1641 Gaussian random variables with means $\mu^1 = (1.00, 0.90, 1.10)$, $\mu^2 = (1.00, 0.99, 1.10)$, and 1642 standard deviations $\sigma^1 = (1.0, 0.6, 1.0)$, $\sigma^2 = (1.0, 0.6, 1.0)$. The Y_{ij}^a are Gaussian random 1643 variables with $F^1 = (0.91, 0.91, 0.89)$ and $F^2 = (0.91, 0.91, 0.89)$. The threshold parameter is 1644 $\phi = 0.9$. Arm 1 is optimal, arm 2 is suboptimal, and arm 3 is infeasible with a better objective 1645 value.

Figure 6: Optimal static sampling ratio ω^* under different μ_2^1

Figure 7: Approximate sampling ratio in Lemma 3 under different μ_2^1

Figures 6 and 7 illustrate how the ω^* and $\tilde{\omega}$ in Lemma 3 changes with μ_2^1 . As μ_2^1 approaches μ_1^1 , both sampling rules focus on assessing the optimality of arms 1 and 2 in task 1, causing ω_{12}^1 and ω_{22}^1 to gradually increase. When μ_2^1 reaches 0.99, both tasks become equally difficult, resulting in an equal sampling ratio across the two tasks.

1667 D.2 EXPERIMENT CONFIGURATIONS

In Experiment 1, all random variables are Gaussian, with their mean and variance parameters summarized in Table 2 and 3. Other parameters are set as b = 2.04 and $\phi = 0.9$.

1671 In Experiment 2, the objective-related random variables are Bernoulli, with their mean and variance 1672 parameters summarized in Table 4. The constraint-related random variables are Gaussian, with 1673 their mean and variance parameters summarized in Table 5. Other parameters are set as b = 2.0and $\phi = 0.9$.

	Table	2: Objecti	Ive-related	random var	lable para	ameters in e	xperiment I	
			TA	ASK1	TA	ASK2		
			Mean	Variance	Mean	Variance		
		X_{i}	1.000	1.000	1.000	1.000		
		X_{2}	2 0.800	1.000	0.800	1.000		
		X_{z}	3 1.200	1.000	1.200	1.000		
		X_{z}	4 0.900	1.000	0.900	1.000		
	Table 3	3: Constra	int-related	random var	iable par	ameters in e	experiment 1	
			TASK1			TASK2		
		Maan	Variance	Quantila	Maan	Variance	Quantila	
	V_{11}	0400	1 000	1 682	0400	1 000	1 682	
	Y_{21}^{11}	0.400	1.000	1.682	0.400	1.000	1.682	
	Y_{31}^{21}	1.203	1.000	2.485	1.203	1.000	2.485	
	Y_{41}	2.045	1.000	3.326	2.045	1.000	3.326	
D 3 PSI	EUDO-COF	DE OF ALI	STRATEG	IES				
210 10	1020 002							
	ection sum	marizes tl	ne nseudo-c	ode for all	strategies	s used in nu	morical ornori	monts
This subs		manizes in	ie pseudo-c	oue jor un	siraiegies	, ,		menus.
This subse	• 1/SR strat	egy in Alg	orithm 2 so	imples each	task, ari	n, and metr	ic pair equally	
This subsector USR. The	o on on ar	0. 0						
This subse USR. The	o bit situr	0, 0						
This subse USR. The	o sit sit w							
This subset USR. The Algorithm	n 2 USR A	lgorithm						
This subset USR. The Algorithm 1: Initia	n 2 USR A	Algorithm Pull each ($[a,i,j) \in [a,i,j]$	$M] \times [K] \times$	$\overline{\langle [S+1] \rangle}$	n_0 times.		
This subset USR. The Algorithm 1: Initia 2: Set t	n 2 USR A lization. F $\leftarrow n_0 MK$	Algorithm Pull each ($(S+1), z$	$a, i, j) \in [a, a, j]$	$\overline{\hat{\mathcal{M}}] imes [K] imes} \ \hat{\mathcal{P}}(t), oldsymbol{\omega}^*(\hat{\mathcal{P}})$	(S+1) $(S(t)), N_{ii}^a$	n_0 times. $n_{S+1}(t), N_i$	$\frac{a}{dt}(t).$	
This subset USR. The Algorithm 1: Initia 2: Set t 3: while	n 2 USR A lization. F $\leftarrow n_0 M K$	Algorithm Pull each ($f(S+1), a$	$a, i, j) \in [a, a, i, j]$ and update $(a, \tilde{\mathcal{P}}) < \beta(a, j)$	$\overline{M}] imes [K] imes$ $\hat{\mathcal{P}}(t), \boldsymbol{\omega}^{*}(\hat{\mathcal{P}}_{t})$ \mathbf{t}, δ) do	(S = [S + 1]) $(S = (S + 1)), N_{i(t)}^{a}$	n_0 times. $n_{S+1)}(t), N_i$	$a_{jj}^{a}(t).$	
This subso USR. The Algorithm 1: Initia 2: Set t 3: while 4:	n 2 USR A lization. F $\leftarrow n_0 M K$ $\inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}})}$	Algorithm Pull each ($f(S+1), a$ $f(\hat{\mathcal{P}}(t))$	$\overline{(a,i,j)} \in [.]$ and update $(\hat{\mathcal{F}}), \tilde{\mathcal{P}}) < \beta(.]$	$M] \times [K] \times \hat{\mathcal{P}}(t), \boldsymbol{\omega}^*(\hat{\mathcal{P}}(t), \boldsymbol{\omega}^*(\hat{\mathcal{P}}(t), \boldsymbol{\delta}) \mathbf{do})$	$\frac{1}{2} \frac{[S+1]}{\hat{P}(t)}, N^a_{i(t)}$	$\overline{n_0 \text{ times.}}_{S+1)}(t), N_i$	$a_{j}(t).$	
This subset USR. The Algorithm 1: Initia 2: Set t 3: while 4:	n 2 USR A lization. F $\leftarrow n_0 M K$ $\inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}})}$	Algorithm Pull each ($f(S+1), a$ $h_{(t)}, f(\hat{\mathcal{P}}(t))$	$a, i, j) \in [a, a, i, j]$ and update $(\tilde{x}), \tilde{\mathcal{P}}) < \beta(a)$ $\pi^{t+1} = 0$	M] imes [K] imes $\hat{\mathcal{P}}(t), \boldsymbol{\omega}^*(\hat{\mathcal{P}}(t, \delta))$ do	$\frac{S[S+1]}{P(t)}, N^a_{i(t)}$	n_0 times. $T_{S+1}(t), N_i^a$ $N_{ij}^a(t)$	$\frac{a}{j}(t).$	
This subset USR. The Algorithm 1: Initia 2: Set t 3: while 4:	$\frac{\mathbf{n} \ 2 \ \text{USR A}}{\mathbf{lization. F}}$ $\leftarrow n_0 M K$ $= \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}})}$	Algorithm Pull each ($(S+1), a_{P(t)}$) $f(\hat{\mathcal{P}}(t))$	$a, i, j) \in [a, a, i, j]$ and update $(\tilde{x}), \tilde{\mathcal{P}}) < \beta(a, j)$ $\pi^{t+1} = 0$	$ \frac{M] \times [K] \times}{\hat{\mathcal{P}}(t), \boldsymbol{\omega}^* (\hat{\mathcal{P}}(t), \boldsymbol{\omega}^* (\hat{\mathcal{P}}(t), \boldsymbol{\delta}) \mathbf{d} \mathbf{o}) + (a, i, j) \in [M]} $	$\frac{[S+1]}{\hat{O}(t)), N_{i(t)}^{a}}$ $\min_{x \in [K] \times [S+1]}$	$\overline{n_0 \text{ times.}}$ $T_{S+1)}(t), N_i$ $N_{ij}^a(t)$	$\frac{a}{jj}(t).$	
This subsetUSR. TheAlgorithm1: Initia2: Set t3: while4:5: Sa	n 2 USR A lization. F $\leftarrow n_0 M K$ $e \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}})}$ ample the τ	Algorithm Pull each ($F(S+1), a$ $F_{(t)}, f(\hat{\mathcal{P}}(t))$	$\overline{a, i, j} \in [a, a, i, j] \in [a, a, i]$ and update $\overline{a, i} \in \mathcal{P} = \beta(a, i)$ $\pi^{t+1} = \beta(a, i)$	$\overline{\mathcal{M}} \times [K] \times [\mathcal{K}] \times \widehat{\mathcal{P}}(t), \boldsymbol{\omega}^* (\widehat{\mathcal{P}}(t), \boldsymbol{\omega}^* (\widehat{\mathcal{P}}(t), \boldsymbol{\omega}^*)) $ $\overline{\mathcal{L}}(t, \delta) \mathbf{do}$ $\overline{\mathcal{L}}(t, \delta) = [M] \times \widehat{\mathcal{L}}(t, \delta)$ $\widehat{\mathcal{L}}(t, \delta) = [M] \times \widehat{\mathcal{L}}(t, \delta)$	$\frac{[S+1]}{\hat{P}(t)}, N_{i(t)}^{a}$ $\min_{\substack{\times [K] \times [S+t]}} Z_{t+1}.$	$\overline{n_0 \text{ times.}}$ $\overline{n_{S+1)}(t), N_i^a$ $N_{ij}^a(t)$	$a_{jj}(t).$	
Algorithm1:Initia2:Set t3:while4:5:<	n 2 USR A lization. F $\leftarrow n_0 M K$ $\Rightarrow \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}})}$ ample the n $\Rightarrow t t \leftarrow t + t$	Algorithm Pull each (f(S+1), a $f(\hat{\mathcal{P}}(t)) f(\hat{\mathcal{P}}(t))$ π^{t+1} and $f(t)$ 1, and upon	$\overline{a, i, j} \in [.$ and update $(\hat{z}), \tilde{\mathcal{P}}) < \beta($ $\pi^{t+1} =$ obtain one of date $\hat{\mathcal{P}}(t), \phi$	$ \frac{M] \times [K] \times \hat{\mathcal{P}}(t), \boldsymbol{\omega}^*(\hat{\mathcal{P}}(t), \boldsymbol{\omega}^*(\hat{\mathcal{P}}(t), \boldsymbol{\delta}) \mathbf{do} \\ \xrightarrow{args}_{(a,i,j) \in [M] \times \mathbf{do}} \\ \xrightarrow{args}_{(a,i,j) \in [$	$\frac{\overline{\langle [S+1] \rangle}}{\sum_{i \in [K] \times [S+1]} (I_{i})} N_{i}^{a}$ $\sum_{i \in [K] \times [S+1]} (I_{i}) N_{i}^{a}$ $\sum_{i \in [S+1]} (I_{i}) N_{i}^{a}$	$\overline{n_0 \text{ times.}}_{(S+1)}(t), N_i^a$ $N_{ij}^a(t)$ $N_{ij}^a(t)$	$a_{jj}(t).$	
Algorithm 1: Initia 2: Set t 3: while 4: 5: Sa 6: Sa 7: end y	n 2 USR A lization. F $\leftarrow n_0 M K$ $\Rightarrow \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}})}$ ample the τ $\Rightarrow t \leftarrow t +$ vhile	Algorithm Pull each (f(S+1), a $r_{(t)}$ $f(\hat{\mathcal{P}}(t)$ π^{t+1} and q 1, and up $\hat{r}_{(t)}$	$\overline{a, i, j} \in [a, i, j] \in [a, i]$ and update $\widehat{\mathcal{E}}(i), \widehat{\mathcal{P}}) < \beta(i)$ $\pi^{t+1} = 0$ botain one of date $\widehat{\mathcal{P}}(t), i$	$\overline{M} \times [K] \times \widehat{\mathcal{P}}(t), \boldsymbol{\omega}^{*}(\widehat{\mathcal{P}}(t), \boldsymbol{\omega}^{*}(\widehat{\mathcal{P}}(t), \boldsymbol{\omega}^{*}(\widehat{\mathcal{P}}(t), \boldsymbol{\omega}^{*}(\widehat{\mathcal{P}}(t)), I)$	$\overline{Z(S+1)}$ $\overline{Z(t)}, N_{i(l)}^{a}$ $\overline{Z(K)} \times [S+1]$ $\overline{Z(K)} \times [S+1]$ $\overline{Z(K)} \times [S+1]$ $\overline{Z(K)} \times [S+1]$	$\overline{n_0 \text{ times.}}$ $(s_{S+1)}(t), N_i^a$ $(s_{S+1})^{n_i}(t)$ $(s_{S+1})^{n_i}(t).$	$\frac{a}{jj}(t).$	
Algorithm 1: Initia 2: Set t 3: while 4: 5: Sa 6: Sa 7: end v 8: Outp	n 2 USR A lization. F $\leftarrow n_0 M K$ $\inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\hat{\mathcal{P}})}$ ample the r $\det t \leftarrow t +$ vhile ut. Select	Algorithm Pull each (f(S+1), a $h_{(t)}$) $f(\hat{\mathcal{P}}(t))$ π^{t+1} and ϕ 1, and up $\hat{i}_{\tau}(a) = a$	$a, i, j) \in [.$ and update $\hat{x}), \tilde{\mathcal{P}}) < \beta($ $\pi^{t+1} =$ obtain one of date $\hat{\mathcal{P}}(t), \phi$	$\overline{M} \times [K] \times [K] \times \widehat{\mathcal{P}}(t), \boldsymbol{\omega}^* (\widehat{\mathcal{P}}(t), \boldsymbol{\omega}^* (\widehat{\mathcal{P}}(t), \boldsymbol{\omega}^* (\widehat{\mathcal{P}}(t)), \boldsymbol{\omega}^* (\widehat{\mathcal{P}}(t)), \mathbb{N})$ observation $\boldsymbol{\omega}^* (\widehat{\mathcal{P}}(t)), \mathbb{N}$ $K_{I} \widehat{\mu}_{i}^{a}(\tau) \text{s.}$	$\frac{\sum_{i=1}^{3} [S+1]}{\hat{P}(t)}, N_{i(i)}^{a}$ $\times [K] \times [S+1] $	$\begin{array}{l} \hline n_0 \text{ times.} \\ \hline n_{S+1)}(t), N_i^a \\ \hline n_{ij}(t) \\ \hline n_{ij}(t) \\ \hline n_{ij}(t), N_{ij}^a(t). \\ \hline n_{ij}(t). \\ \hline n_{ij}(t) \\ \hline n_{ij}(t). \end{array}$	$\widehat{f}_{j}^{a}(t).$ $\in [S], ext{ as the } 1$	best ar

ASR. The ASR strategy in Algorithm 3 utilizes the static sampling rule in (10) along with the empirical estimate $\hat{\mathcal{P}}(t)$ and updates the sampling rule adaptively. Note that, for simplicity, we set $\mathcal{D}_3^a = \mathcal{M}_2^a$ in implementation to avoid solving the optimization problem required to differentiate between \mathcal{M}_1^a and \mathcal{M}_2^a . We then use the approximate sampling rule, which does not significantly impact the performance of the algorithm in our example.

Algorithm 3 ASR Algorithm 1: Initialization. Pull each $(a, i, j) \in [M] \times [K] \times [S+1] n_0$ times. 2: Set $t \leftarrow n_0 MK(S+1)$, and update $\hat{\mathcal{P}}(t)$, $\tilde{\omega}(\hat{\mathcal{P}}(t))$ (according to (10)), U_t , $N^a_{i(S+1)}(t)$, $N^a_{ij}(t)$. 3: while $\inf_{\tilde{\mathcal{P}}\in\mathcal{A}(\hat{\mathcal{P}}(t))} f(\hat{\mathcal{P}}(t),\tilde{\mathcal{P}}) < \beta(t,\delta)$ do 4: $\pi^{t+1} = \begin{cases} \arg\min N_{ij}^a(t) \text{ if } U_t \neq \emptyset \text{ or } \exists a \in [M], \{i^*(a, \hat{\mathcal{P}}(t))\} = \emptyset \text{ or } \hat{\mathcal{D}}_1^a(t) = \emptyset \\ \arg\max t \tilde{\omega}_{ij}^a(\hat{\mathcal{P}}(t)) - N_{ij}^a(t) \end{cases}$ Sample the π^{t+1} and obtain one observation Z_{t+1} . 5: Set $t \leftarrow t+1$, and update $\hat{\mathcal{P}}(t)$, $\tilde{\boldsymbol{\omega}}(\hat{\mathcal{P}}(t))$, U_t , $N^a_{i(S+1)}(t)$, $N^a_{ii}(t)$. 6: 7: end while 8: Output. Select $\hat{i}_{\tau}(a) = \arg \max_{i \in [K]} \hat{\mu}_i^a(\tau)$ s.t. $\hat{F}_{ij}^a(\tau) \ge \phi, \ \forall j \in [S]$, as the best arm for each task $a \in [M]$. Algorithm 4 SEQSR Algorithm 1: Initialization. Pull each $(a, i, j) \in [M] \times [K] \times [S+1] n_0$ times. 2: Set $t \leftarrow n_0 MK(S+1)$, and update $\hat{\mathcal{P}}(t)$, $\boldsymbol{\omega}(t)$, U_t , $N^a_{i(S+1)}(t)$, $N^a_{ij}(t)$. 3: while $\inf_{\tilde{\mathcal{P}}\in\mathcal{A}(\hat{\mathcal{P}}(t))} f(\hat{\mathcal{P}}(t),\tilde{\mathcal{P}}) < \beta(t,\delta)$ do $(a^t, i^t, j^t) = \arg\min_{(a,i,j) \in [M] \times [K] \times [S+1]} s_{a,i,j}(\hat{\mathcal{P}}(t), \boldsymbol{\omega}(t))$ 4: 5: $\pi^{t+1} = \begin{cases} \arg\min N_{ij}^a(t) \text{ if } U_t \neq \emptyset \text{ or } \exists a \in [M], \{i^*(a, \hat{\mathcal{P}}(t))\} = \emptyset \text{ or } \hat{\mathcal{D}}_1^a(t) = \emptyset \\ (a^t, i^t, j^t) \text{ if Condition 1} \\ (a^t, i^*(a, \hat{\mathcal{P}}(t)), j^t) \text{ if Condition 2} \end{cases}$ Sample the π^{t+1} and obtain one observation Z_{t+1} . 6: Set $t \leftarrow t+1$, and update $\hat{\mathcal{P}}(t)$, $\tilde{\boldsymbol{\omega}}(\hat{\mathcal{P}}(t))$, U_t , $N_{i(S+1)}^a(t)$, $N_{ij}^a(t)$. 7: 8: end while 9: **Output.** Select $\hat{i}_{\tau}(a) = \arg \max_{i \in [K]} \hat{\mu}_i^a(\tau)$ s.t. $\hat{F}_{ij}^a(\tau) \ge \phi, \forall j \in [S]$, as the best arm for each task $a \in [M]$.

		TA	ASK1	TA	ASK2	
		Mean	Variance	Mean	Variance	
	X	0.800	0.160	0.800	0.160	
	X_{2}	$\frac{1}{2}$ 0.600	0.240	0.600	0.240	
	X_{2}	₃ 0.900	0.090	0.900	0.090	
	X	4 0.400	0.240	0.400	0.240	
ble 5	5: Constra	int-related	random var	iable par	ameters in e	experimen
able 5	i: Constra	aint-related TASK1	random var	iable par	ameters in e TASK2	experimen
able 5	: Constra Mean	aint-related TASK1 Variance	random var	iable par	ameters in e TASK2 Variance	experimen Quantile
ble 5	5: Constra Mean 0.350	aint-related TASK1 Variance 1.000	random var Quantile 1.632	iable par Mean 0.350	ameters in e TASK2 Variance 1.000	experimen Quantile 1.632
$\frac{Y_{11}}{Y_{21}}$	5: Constra Mean 0.350 0.450	aint-related TASK1 Variance 1.000 1.000	random var Quantile 1.632 1.732	iable par Mean 0.350 0.450	TASK2 Variance 1.000 1.000	Quantile 1.632 1.732
ole 5	5: Constra Mean 0.350 0.450 1.500	Aint-related TASK1 Variance 1.000 1.000 1.000	random var Quantile 1.632 1.732 2.782	iable par Mean 0.350 0.450 1.500	TASK2 Variance 1.000 1.000 1.000	Quantile 1.632 1.732 2.782

Table 4: Objective-related random variable parameters in experiment 2

SEQSR. The SEQSR strategy in Algorithm 4 utilizes the sampling rule in (16)-(18) along with the empirical estimate $\hat{P}(t)$ and update the sampling rule adaptively. In the Algorithm 4, condition 1 is:

$$\begin{pmatrix} i^{t} \in \hat{\mathcal{D}}_{2}^{a}(t) \cup \hat{\mathcal{M}}_{2}^{a}(t) \cup \{i^{*}(a, \hat{\mathcal{P}}(t)\} \end{pmatrix} \bigcup \\ \left(i^{t} \in \hat{\mathcal{D}}_{1}^{a}(t) \cup \hat{\mathcal{M}}_{1}^{a}(t), \frac{N_{i^{*}(a, \hat{\mathcal{P}}(t))j^{t}}^{a^{t}}(t)}{N_{i^{*}(a, \hat{\mathcal{P}}(t))j^{t}}^{a^{t}}(t) + N_{i^{t}j^{t}}^{a^{t}}(t)} > \frac{(\omega_{i^{*}(a, \hat{\mathcal{P}}(t))j^{t}}^{a^{t}})^{*}(\hat{\mathcal{P}}(t))}{(\omega_{i^{*}(a, \hat{\mathcal{P}}(t))j^{t}}^{a^{t}})^{*}(\hat{\mathcal{P}}(t)) + (\omega_{i^{t}j^{t}}^{a^{t}})^{*}(\hat{\mathcal{P}}(t))} \end{pmatrix},$$

the condition 2 is:

$$\left(i^{t} \in \hat{\mathcal{D}}_{1}^{a}(t) \cup \hat{\mathcal{M}}_{1}^{a}(t), \frac{N_{i^{*}(a,\hat{\mathcal{P}}(t))j^{t}}^{a^{t}}(t)}{N_{i^{*}(a,\hat{\mathcal{P}}(t))j^{t}}^{a^{t}}(t) + N_{i^{t}j^{t}}^{a^{t}}(t)} \le \frac{(\omega_{i^{*}(a,\hat{\mathcal{P}}(t))j^{t}}^{a^{t}})^{*}(\hat{\mathcal{P}}(t))}{(\omega_{i^{*}(a,\hat{\mathcal{P}}(t))j^{t}}^{a^{t}})^{*}(\hat{\mathcal{P}}(t)) + (\omega_{i^{t}j^{t}}^{a^{t}})^{*}(\hat{\mathcal{P}}(t))}}\right).$$

Note that, for simplicity, we set $\mathcal{D}_3^a = \mathcal{M}_2^a$ in implementation to avoid solving the optimization problem required to differentiate between \mathcal{M}_1^a and \mathcal{M}_2^a . We then use the approximate sampling rule, which does not significantly impact the performance of the algorithm in our example.

FWSR. The FWSR strategy in Algorithm 5 extends the algorithm in Wang et al. (2021) for the standard BAI problem.

1832 According to Lemma 6, we know that

$$\mathcal{G}(\boldsymbol{\omega}, \mathcal{P}) = \min_{a \in [M]} \min\left(\min_{j \in [S]} f^a_{i^*(a, \mathcal{P})j}(\boldsymbol{\omega}, \mathcal{P}), \min_{i \in [K] \setminus \{i^*(a, \mathcal{P})\}} f^a_i(\boldsymbol{\omega}, \mathcal{P})\right),$$
(141)

is a non-smooth concave function and

$$f^a_{i^*(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P}) = \omega^a_{i^*(a,\mathcal{P})j} d(F^a_{i^*(a,\mathcal{P})j},\phi),$$

$$\left(+ \sum_{j \in \mathcal{B}_2^a(i)} \hat{\omega}_{ij}^a d(F_{ij}^a, \phi) \right)$$

$$\begin{aligned}
& \text{1845} \\
& \text{1846} \\
& \text{1846} \\
& \text{1847}
\end{aligned}
\qquad f_i^a(\boldsymbol{\omega}, \mathcal{P}) = \min\left(\min_{i \in \mathcal{D}_1^a} g_1^a(\boldsymbol{\omega}, \mathcal{P}), \min_{i \in \mathcal{D}_2^a} g_2^a(\boldsymbol{\omega}, \mathcal{P}), \min_{i \in \mathcal{D}_3^a} g_3^a(\boldsymbol{\omega}, \mathcal{P})\right). \\
& \text{(142)}
\end{aligned}$$

if $i \in \mathcal{D}_3^a$

Then, we can compute that

$$\frac{\partial f^a_{i^*(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P})}{\omega^a_{ij}} = \begin{cases} d(F^a_{i^*(a,\mathcal{P})j},\phi) & \text{if } i = i^*(a,\mathcal{P}), j \in [S] \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\partial g^a_i(\boldsymbol{\omega},\mathcal{P})}{\omega^a_{ij}} = \begin{cases} d(\mu^a_i,\mu^a_{i,i^*(a,\mathcal{P})}) & \text{if } i \in \mathcal{D}^a_1 \cup \mathcal{D}^a_3, j = S + 1 \\ d(\mu^a_{i^*(a,\mathcal{P})},\mu^a_{i',i^*(a,\mathcal{P})}) & \text{if } i = i^*(a,\mathcal{P}), i' \in \mathcal{D}^a_1 \cup \mathcal{D}^a_3, j = S + 1 \\ d(F^a_{ij},\phi) & \text{if } i \in \mathcal{D}^a_2 \cup \mathcal{D}^a_3, j \in \mathcal{B}^a_2(i) \\ 0 & \text{otherwise} \end{cases} \tag{143}$$

Using (143), we can compute $\nabla f^a_{i^*(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P}), \nabla g^a_i(\boldsymbol{\omega},\mathcal{P})$ and define the r-sub-differential subspace in Wang et al. (2021) with $r \in (0, 1)$:

$$H_{\mathcal{G}(\boldsymbol{\omega},\mathcal{P})}(\boldsymbol{\omega},r) = cov \left\{ \nabla f^{a}_{i^{*}(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P}), \nabla g^{a}_{i}(\boldsymbol{\omega},\mathcal{P}) \mid a \in [M], i \in [K], j \in [S], \qquad (144)$$
$$f^{a}_{i^{*}(a,\mathcal{P})j}(\boldsymbol{\omega},\mathcal{P}) < \mathcal{G}(\boldsymbol{\omega},\mathcal{P}) + r, g^{a}_{i}(\boldsymbol{\omega},\mathcal{P}) < \mathcal{G}(\boldsymbol{\omega},\mathcal{P}) + r \right\},$$

where $cov{\mathcal{I}}$ denotes the convex hull of the set \mathcal{I} . Next, we apply the Frank-Wolfe algorithm to adaptively update the sampling rule, as outlined in Algorithm 5. In the numerical experiment, we set $r_t = t^{-0.9}/MK(S+1)$, consistent with the setting used in (Wang et al., 2021).

D.4 MOTIVATION FOR THE MULTI-TASK SETTING

For the multi-task BAI problem we consider, another natural approach is to solve each task indi-vidually. In this subsection, we discuss the motivation behind and the benefits of solving the tasks simultaneously.

First, we compare the numerical performance of the two methods across different numbers of tasks M. Each task consists of 4 arms with a single constraint. All tasks are homogeneous, sharing the same parameters as outlined in Tables 2-3.

We represent the methods that use SEQSR strategy and solves each task individually as Single-SEQSR, to achieve the performance guarantee $\mathbb{P}(\forall a \in [M], i^*(a) = \hat{i}_{\tau}(a)) \geq 1 - \delta$, we control the *error probability for each task to be less than* δ/M *.*

We refer to our methods that use the SEQSR strategy and solve all tasks simultaneously as Multi-SEQSR. To estimate the sample complexity, we conduct 1000 independent replications, with the results summarized in Table 6.

The results show that Multi-SEQSR requires fewer samples to achieve the same statistical guaran-tees. For example, when M = 8, Single-SEQSR incurs an additional sample cost of 18.94%, which may be attributed to the statistical conservatism inherent in the stopping rule.

Another advantage of the multi-task setting is the generality of its mathematical models, which can include the single-task problem as a special case. More importantly, the formulation and analysis

	orithm	5 FW	SR Alg	orithm					
1:	Initiali	zatio	n. Pull	each $(a, i, j) \in$	$[M] \times [$	$\overline{[K]} \times [S +$	1] n_0 time	s.	
2:	Set $t \leftarrow$	$-n_0 M$	IK(S -	+1), and update	te $\hat{\mathcal{P}}(t), \hat{c}$	$\boldsymbol{\omega}(t), \boldsymbol{x}(t)$.	$\leftarrow (1/MK)$	$(S+1), \ldots, 1/MK$	(S+1))
	$N^a_{i(S+1)}$	(t), 1	$N^a_{ij}(t).$						(//
3:	while in	nf _{<i>P</i>∈.}	$\mathcal{A}(\hat{\mathcal{P}}(t))$	$f(\hat{\mathcal{P}}(t), \tilde{\mathcal{P}}) <$	$\beta(t,\delta)$ d	0			
4:	if $_{ m V}$	$/\lfloor t/\Lambda$	MK(S)	$\overline{(+1)} \in \mathbb{N} \text{ or } =$	$\exists a \in [M]$	$, \left(\{i^*(a, \hat{\mathcal{P}}) a \in \mathcal{A}\}\right) $	$\hat{\mathcal{P}}(t))\} = \emptyset$	$\cup \hat{\mathcal{D}}_1^a(t) = \emptyset \Big)$ then	
5:		$\boldsymbol{z}(t +$	$(-1) \leftarrow$	(1/MK(S+1))	$1), \ldots, 1$	$/\dot{M}K(S +$	1))	,	
6:	else	•						() -	
7:		$\boldsymbol{z}(t +$	$(-1) \leftarrow$	$\operatorname{argmax}_{\boldsymbol{z}\in\Omega} n$	$ \min_{h \in H_{\mathcal{G}}(h)} $	$\boldsymbol{\omega}^{(t),\hat{\mathcal{P}}(t))}(\boldsymbol{x}^{(t)})$	$_{(t),r_t)} < z$ -	- $oldsymbol{x}(t), h >$	
8:		m(t)	1)	t = t = t	$\mathbf{r}(t+1)$)			
9: 10·		$x(\iota \dashv$	- 1) ←	$\frac{1}{t+1}x(t) + \frac{1}{t+1}$	$\frac{1}{1}$ ² (l + 1)			
11:									
						ramov	$oldsymbol{x}(t+1)$.)	
				77 -	$(a,i,j) \in a$	$[M] \times [K] \times [S]$	$_{+1]} \overline{\boldsymbol{\omega}(t)}$	_	
12:	end	if			- /				
13:	San	nple ti	he seled	ted arm π^{t+1}	and obtai	n observati	ion Z_{t+1} .		
14:	Inci	remen	In t $\leftarrow t$	+1, and upda	tte $\hat{\mathcal{P}}(t)$,	$\boldsymbol{\omega}(t), N^a_{i\ell \mathbf{G}}$	$(t), N_{ii}^{a}$	(t).	
15:	end wh	ile				() 1(3	± 1 () · · · · · · · · · · · · · · · · · ·		
16:	Output	t: For	each ta	sk $a \in [M]$, se	elect the	best arm:			
				^ ()	^ <i>a.(</i>) , î	a() > 1	$\lambda : = [0]$	
				$i_{\tau}(a) = \arg \prod_{i \in [I]}$	$\max_{i \in I} \mu_i^{\alpha}(\tau)$) s.t. F_i	$\phi_j(\tau) \ge \phi,$	$\forall j \in [S]$	
		$\frac{M}{2}$	$\frac{\delta}{0.1}$	Single-SEQ 2984.01 5943.42	SR Mu	llti-SEQSR 2745.81 5292.85	Ratio 1.09 1.12	Additional Cost 8.67% 12.29%	
		6	0.24	9411.51		8053.55	1.17	16.86%	
		8	0.24	13428.68		1290.69	1 10		
							1.17	10.9476	
met in S	hods can Section E	n be e 2.2.	extended	l to scenarios	where th	ere is linea	r structure	across tasks, as den	nonstrated
met in S	hods can Section E	n be e 5.2.	extended	l to scenarios	where th	ere is linea.	r structure	across tasks, as den	nonstrated
met in S D.5	hods can Section E 5 EFFE	n be е 5.2. ССТ О	extended F Hype	l to scenarios ER-PARAMETE	where the $ m RS~n_0$	ere is linea.	r structure	across tasks, as den	nonstrated
met in S D.5	hods can Section E 5 EFFE	n be e 2.2. CT O	extended F HYPE	l to scenarios ER-PARAMETE	where the RS n_0	ere is linea.	r structure	across tasks, as den	nonstrated
met in S D.5 Figu	hods can Section E 5 EFFE ure 8 an	n be e 2.2. CCT O ad Tal	extended F Hype Ple D.5	l to scenarios R-PARAMETE summarize the	where the $RS n_0$ of the second sec	ere is linea al sample o the Gaussi	r structure	for 1000 independe	nonstrated ent runs o
met in S D.5 Figu vari	hods can Section E S EFFE ure 8 an ious stra se in Fio	n be e 2.2. CCT O od Tal utegies ure 1	extended F HYPE ble D.5 s across - ESR a	l to scenarios R-PARAMETE summarize the different n ₀ v nd SEOSR out	where the RS n ₀ e empiric alues for perform	ere is linea al sample o the Gaussi the other b	r structure complexity an bandit.	across tasks, as den for 1000 independe The results are cons	nonstrated ent runs o istent with
met in S D.5 Figu vari thos	hods can Section E S Effe ure 8 an ious stra se in Fig	n be e 5.2. CCT O ad Tal utegies utegies	extended F Hype ble D.5 s across . ESR a	l to scenarios ER-PARAMETE summarize the different n ₀ v nd SEQSR out	where the RS n ₀ e empiric alues for perform	ere is linea al sample o the Gaussi the other b	complexity an bandit.	across tasks, as den for 1000 independe The results are cons	nonstrated ent runs o istent with
met in S D.5 Figu vari thos	hods can Section E S EFFE ure 8 an ious stra se in Fig	n be e 2.2. CT O ad Tab utegies vure 1	extended F Hype ble D.5 s across . ESR a	to scenarios R-PARAMETE summarize the different n_0 vi nd SEQSR out	where the RS n ₀ e empiric alues for perform	ere is linea al sample o the Gaussi the other by	complexity an bandit.	across tasks, as den for 1000 independe The results are cons	nonstrated ent runs o istent with
met in S D.5 Fig. vari thos Tab	hods can Section E S EFFE ure 8 an ious stra se in Fig le 7: En	n be e 5.2. CCT O ad Tab tregies fure 1 apiric	Extended F HYPE Dle D.5 S across . ESR a al same	to scenarios R-PARAMETE summarize the different n_0 vi nd SEQSR out ple complexity	where the RS n ₀ e empiric alues for perform for 1000	ere is linea al sample o the Gaussi the other bo runs times	r structure complexity an bandit. β enchmarks.	across tasks, as den for 1000 independe The results are cons	nonstrated ent runs o istent with for Gauss
met in S D.5 Fig var thos Tab	hods can Section E 5 EFFE ure 8 an ious stra se in Fig le 7: En 1 bandit	n be e 5.2. CCT O ad Tab utegies ure 1 npiric	Extended F HYPE Dle D.5 s across . ESR a al samp	to scenarios R-PARAMETE summarize the different n_0 v. nd SEQSR out ble complexity	where the RS n ₀ e empiric alues for perform for 1000	ere is linea al sample o the Gaussi the other bo runs times	r structure complexity an bandit. enchmarks.	across tasks, as den for 1000 independe The results are cons 0.1 and different n_0	nonstrated ent runs o istent with for Gaus
met in S D.5 Fig. vari thos Tab	hods can Section E S EFFE ure 8 an ious stra se in Fig le 7: En bandit	n be e 5.2. CT O ed Tab tregies trure 1	Extended F HYPE ble D.5 s across . ESR a al samp n_0	l to scenarios R-PARAMETE summarize the different n ₀ v nd SEQSR out ole complexity USR	where the RS n ₀ e empiric alues for perform for 1000 ASR	ere is linea al sample the Gaussi the other b runs times FWSR	r structure complexity an bandit. enchmarks.	10.9+n across tasks, as den for 1000 independe The results are cons 0.1 and different n_0 ESR	nonstrated ent runs o istent with for Gaus
met in S D.5 Fig vari thos Tab	chods can Section E EFFE ure 8 an ious stra se in Fig le 7: En bandit	n be e 5.2. CCT O ad Tal stegies sure I npiric	Extended F HYPE ble D.5 s across . ESR a al samp $\frac{n_0}{10}$	to scenarios CR-PARAMETE summarize the different n_0 v. nd SEQSR out ble complexity USR 10179.68	where the RS n ₀ e empiric alues for perform for 1000 ASR 1807.64	ere is linea al sample the Gaussi the other b runs times FWSR 5692.85	r structure complexity an bandit. enchmarks. s with $\delta = 0$ SEQSR 2745.81	10.94% across tasks, as dem for 1000 independe The results are cons 0.1 and different n_0 ESR 3792.85	nonstrated ent runs o istent with
met in S D.5 Fig. vari thos Tab	hods can Section E S EFFE ure 8 an ious stra se in Fig le 7: En bandit	n be e 5.2. CT O ad Tal utegies ure 1 npiric	Extended F HYPE ble D.5 s across . ESR a al samp $\frac{n_0}{10}$	to scenarios R-PARAMETE summarize the different n_0 vi- nd SEQSR out R o	where the RS n_0 re empirical alues for the perform for 1000 ASR 1807.64 1751.39	ere is linea al sample the Gaussi the other b runs times FWSR 5692.85 5893.63	r structure complexity an bandit. enchmarks. with $\delta = 0$ SEQSR 2745.81 2806.00 2816.02	$\frac{10.94\%}{1000}$ across tasks, as dem for 1000 independe The results are cons 0.1 and different n_0 $\frac{ESR}{3792.85}$ 3814.50 2946 69	nonstrated ent runs o istent with
met in S D.5 Fig var thos Fab	hods can Section E S EFFE ure 8 an ious stra se in Fig le 7: En h bandit	n be e 2.2. CT O od Tab utegies ure 1 npiric	Extended F HYPE ble D.5 s across . ESR a al samp $\frac{n_0}{10}$ 20 30	to scenarios R-PARAMETE summarize the different n ₀ vi nd SEQSR out ble complexity USR 10179.68 4 10216.50 4 10293.07 4	where the RS n ₀ e empiric alues for perform for 1000 ASR 4807.64 4751.39 4853.74	ere is linea al sample of the Gaussi the other bo runs times FWSR 5692.85 5893.63 5956.22	r structure complexity an bandit. enchmarks. with $\delta = 0$ SEQSR 2745.81 2806.00 2816.83 2042 (1)	$\frac{10.94 \text{ k}}{2020}$ across tasks, as dem for 1000 independe The results are cons 0.1 and different n_0 $\frac{\text{ESR}}{3792.85}$ 3814.50 3848.68 2220.84	nonstrated ent runs o istent with

6024.18

3437.72

4100.23

4912.75

50

1942 1943 10114.14

Figure 9: Empirical sample complexity for 1000 runs times with $n_0 = 10$ and $\delta = 0.05$ (left) and $\delta = 0.01$ (right) for Gaussian bandit.

Figure 10: Average time per run (seconds) for different strategies in Gaussian and Bernoulli Bandit with $n_0 = 10$.

D.6 EFFECT OF CONFIDENCE LEVEL δ

Figure 9 presents the empirical sample complexity for 1000 independent runs of various strategies across different values of δ for the Gaussian bandit. The results align with those in Figure 1. As δ decreases, all algorithms require more samples, with ESR and SEQSR outperforming the other benchmarks.

D.7 COMPUTATIONAL EFFICIENCY

Figure 10 shows the average time per run (in seconds) for various strategies in both Gaussian and Bernoulli bandits, each using the same fixed sample size: 3000. The computational efficiency of USR, ASR, FWSR, and SEQSR is comparable and significantly higher than that of the ESR strategy.

In the Gaussian bandit example, SEQSR is much more efficient than in the Bernoulli bandit. This is because, in Bernoulli bandit, SEQSR uses the sampling rules in (16)-(18), which require solving an optimization problem to obtain $\omega^*(\hat{\mathcal{P}}(t))$ in some iterations. However, in Gaussian bandit case, the optimal condition

$$\sum_{i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}} \frac{d(\mu_{i^{*}(a,\mathcal{P})}^{a}, \mu_{i,i^{*}(a,\mathcal{P})}^{a})}{d(\mu_{i}^{a}, \mu_{i,i^{*}(a,\mathcal{P})}^{a})} = 1, \forall a \in [M]$$
(145)

is equivalent to

$$(\omega_{i^*(a,\mathcal{P})(S+1)}^a)^*(\mathcal{P}) = \sigma_{i^*(a,\mathcal{P})(S+1)}^a \sqrt{\sum_{i\in\mathcal{D}_1^a\cup\mathcal{M}_1^a} \frac{((\omega_{i(S+1)}^a)^*(\mathcal{P}))^2}{(\sigma_{i(S+1)}^a)^2}},$$
(146)

Define

$$(a^t, i^t, j^t) = \operatorname*{arg\,min}_{(a,i,j)\in[M]\times[K]\times[S+1]} s_{a,i,j}(\mathcal{P}, \boldsymbol{\omega}(t)).$$
(147)

A more efficient sampling rule is to choose (a^t, i^t, j^t) if $i^t \in \mathcal{D}_2^a \cup \mathcal{M}_2^a \cup \{i^*(a, \mathcal{P})\}$ or $i^t \in \mathcal{D}_1^a \cup \mathcal{M}_1^a$ with

$$\omega_{i^{*}(a,\mathcal{P})(S+1)}^{a}(t) > \sigma_{i^{*}(a,\mathcal{P})(S+1)}^{a} \sqrt{\sum_{i \in \mathcal{D}_{1}^{a} \cup \mathcal{M}_{1}^{a}} \frac{(\omega_{i(S+1)}^{a}(t))^{2}}{(\sigma_{i(S+1)}^{a})^{2}}}.$$
(148)

and choose $(a^t, i^*(a, \mathcal{P}), j^t)$ otherwise. Since this sampling rule does not require solving an opti-mization problem, it is much more efficient.

Figure 11: Empirical sample complexity for 1000 runs time with $n_0 = 10$ and $\delta = 0.1$ for Gaussian bandit with more arms.

Table 8: Objective-related random variable parameters in Gaussian bandit example with more arms

	TA	ASK1	TASK2		
	Mean	Variance	Mean	Variance	
X_1	1.000	1.000	1.000	1.000	
X_2	0.700	1.000	0.700	1.000	
X_3	0.600	1.000	0.600	1.000	
X_4	1.300	1.000	1.300	1.000	
X_5	1.400	1.000	1.400	1.000	
X_6	0.700	1.000	0.700	1.000	
X_7	0.800	1.000	0.800	1.000	

2086 D.8 GAUSSIAN BANDIT EXAMPLE WITH MORE ARMS

In this subsection, we consider a larger Gaussian bandit example with 2 tasks, 7 arms, and 1 constraint. The mean and variance parameters of the corresponding random variables are summarized in Table 8 and 9. Other parameters are set as b = 2.0 and $\phi = 0.9$.

Figure 11 presents the empirical sample complexity for 1,000 runs of this example. The results
indicate that SEQSR, with an average sample complexity of 2074.71, performs relatively better than
the other strategies. FWSR, with an average sample complexity of 2862.06, and ESR, with ,3103.25
show comparable performance.

E EXTENSION TO LINEAR BANDIT

2100 E.1 PROOF OF THEOREM 4

Theorem 4. Given a fixed confidence level $\delta \in (0, 1)$. Under Assumption 3, for any linear BAI problem instance $\mathcal{P} \in S$ and any strategy satisfying $\mathbb{P}\left(\forall a \in [M], i^*(a) = \hat{i}_{\tau}(a)\right) \geq 1 - \delta$,

$$\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P})kl(\delta, 1 - \delta),\tag{149}$$

	Mean	Variance	Ouantile	Mean	Variance	Ouantile
Y_{11}	0.350	1.000	1.632	0.350	1.000	1.632
Y_{21}	0.450	1.000	1.732	0.450	1.000	1.732
Y_{31}	0.450	1.000	1.732	0.450	1.000	1.732
Y_{41}	1.650	1.000	2.932	1.650	1.000	2.932
Y_{51}	1.650	1.000	2.932	1.650	1.000	2.932
Y_{61}	1.750	1.000	3.032	1.750	1.000	3.032
Y_{71}	1.750	1.000	3.032	1.750	1.000	3.032

TASK1

Table 9: Constraint-related random variable parameters in Gaussian bandit with more arms

2118 2119 2120

2132 2133

2106

2107 2108

where
$$\Lambda_{j}^{a} = \sum_{i \in [K]} \omega_{ij}^{a} \frac{x_{i} x_{i}^{T}}{(\sigma_{ij}^{a})^{2}}, \Lambda_{S+1}^{a} = \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{(\sigma_{i}^{a})^{2}},$$

 $\mathcal{H}^{*}(\mathcal{P})^{-1} = \frac{1}{2} \sup_{\omega \in \Omega} \min_{a \in [M]} \min\left(\min_{j \in [S]} \frac{(b - x_{i^{*}(a)}^{T} \theta_{j}^{a})^{2}}{x_{i^{*}(a)}^{T} (\Lambda_{j}^{a})^{-1} x_{i^{*}(a)}}, \min_{i \in \mathcal{D}_{1}^{a}} \frac{((x_{i} - x_{i^{*}(a)})^{T} \theta_{S+1}^{a})^{2}}{\|x_{i} - x_{i^{*}(a)}\|_{(\Lambda_{S+1}^{a})^{-1}}^{2}},$
 $\min_{i \in \mathcal{D}_{2}^{a}} \sum_{j \in \mathcal{B}_{2}^{a}(x_{i})} \frac{(b - x_{i}^{T} \theta_{j}^{a})^{2}}{x_{i}^{T} (\Lambda_{j}^{a})^{-1} x_{i}}, \min_{i \in \mathcal{D}_{3}^{a}} \left[\frac{((x_{i} - x_{i^{*}(a)})^{T} \theta_{S+1}^{a})^{2}}{\|x_{i} - x_{i^{*}(a)}\|_{(\Lambda_{S+1}^{a})^{-1}}^{2}} + \sum_{j \in \mathcal{B}_{2}^{a}(x_{i})} \frac{(b - x_{i}^{T} \theta_{j}^{a})^{2}}{x_{i}^{T} (\Lambda_{j}^{a})^{-1} x_{i}} \right] \right).$
(150)

Proof. The analysis follows the same approach as in the Theorem 1 and we initiate the analysis forthe linear bandit starting from (35)

$$\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P}) \mathrm{kl}(\delta, 1 - \delta), \tag{151}$$

TASK2

2134 where

$$\mathcal{H}^{*}(\mathcal{P})^{-1} = \sup_{\boldsymbol{\omega}\in\Omega} \inf_{\tilde{\mathcal{P}}\in\mathcal{A}(\mathcal{P})} \sum_{a\in[M]} \sum_{i\in[K]} \left(\omega^{a}_{i(S+1)} d(x^{T}_{i}\theta^{a}_{S+1}, x^{T}_{i}\tilde{\theta}^{a}_{S+1}) + \sum_{j\in[S]} \omega^{a}_{ij} d(x^{T}_{i}\theta^{a}_{j}, x^{T}_{i}\tilde{\theta}^{a}_{j}) \right).$$

$$(152)$$

2139 For each task $a \in [M]$ and constraint $j \in [S]$, define

$$\mathcal{C}^a_{i^*(a,\mathcal{P})j} = \{ \tilde{\boldsymbol{\theta}} : x^T_{i^*(a,\mathcal{P})} \tilde{\theta}^a_j > b \}.$$
(153)

(157)

2142 For each task $a \in [M]$ and arm $i \in [K] \setminus \{i^*(a, \mathcal{P})\}$, define

2140

2141

$$\mathcal{C}_{i}^{a} = \{ \tilde{\boldsymbol{\theta}} : (x_{i} - x_{i^{*}(a,\mathcal{P})})^{T} \tilde{\boldsymbol{\theta}}_{S+1}^{a} \ge 0, x_{i}^{T} \tilde{\boldsymbol{\theta}}_{j}^{a} \le b, \forall j \in [S] \},$$
(154)

where $\tilde{\boldsymbol{\theta}} = (\tilde{\theta}_j^a)_{a \in [M], j \in [S+1]} = \tilde{\mathcal{P}}$ denote the problem instance $\tilde{\mathcal{P}}$.

According to (39), we have

$$\mathcal{A}(\mathcal{P}) = \bigcup_{a \in [M]} \left(\left(\bigcup_{j \in [S]} \mathcal{C}^a_{i^*(a,\mathcal{P})j} \right) \bigcup \left(\bigcup_{i \in [K] \setminus \{i^*(a,\mathcal{P})\}} \mathcal{C}^a_i \right) \right),$$
(155)

2152 Define 2153

$$f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}}) = \sum_{a \in [M]} \sum_{i \in [K]} \left(\omega_{i(S+1)}^a d(x_i^T \theta_{S+1}^a, x_i^T \tilde{\theta}_{S+1}^a) + \sum_{j \in [S]} \omega_{ij}^a d(x_i^T \theta_j^a, x_i^T \tilde{\theta}_j^a) \right), \quad (156)$$

and $\mathcal{G}(\boldsymbol{\omega}, \mathcal{P}) = \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} f(\boldsymbol{\omega}, \mathcal{P}, \tilde{\mathcal{P}})$. Then, according to (155), we have

2158 2159

$$\mathcal{G}(\boldsymbol{\omega}, \mathcal{P}) = \min_{a \in [M]} \min\left(\min_{j \in [S]} f^a_{i^*(a, \mathcal{P})j}(\boldsymbol{\omega}, \mathcal{P}), \min_{i \in [K] \setminus \{i^*(a, \mathcal{P})\}} f^a_i(\boldsymbol{\omega}, \mathcal{P})\right),$$

2211 Next, we analyze $\min_{i \in [K] \setminus \{i^*(a, \mathcal{P})\}} f_i^a(\omega, \mathcal{P})$, notice that

$$\min_{i \in [K] \setminus \{i^*(a,\mathcal{P})\}} f_i^a(\boldsymbol{\omega},\mathcal{P}) = \min\left(\min_{i \in \mathcal{D}_1^a} f_i^a(\boldsymbol{\omega},\mathcal{P}), \min_{i \in \mathcal{D}_2^a} f_i^a(\boldsymbol{\omega},\mathcal{P}), \min_{i \in \mathcal{D}_3^a} f_i^a(\boldsymbol{\omega},\mathcal{P})\right), \quad (167)$$

and we have that

$$\min_{i \in \mathcal{D}_{1}^{a}} f_{i}^{a}(\omega, \mathcal{P}) = \min_{i \in \mathcal{D}_{1}^{a}} \inf_{\tilde{\mathcal{P}} \in \mathcal{C}_{i}^{a}} f(\omega, \mathcal{P}, \tilde{\mathcal{P}})$$

$$= \min_{i \in \mathcal{D}_{1}^{a}} \inf_{\tilde{\mathcal{P}} \in \mathcal{C}_{i}^{a}} \sum_{a \in [M]} \sum_{i \in [K]} \left(\omega_{i(S+1)}^{a} d(x_{i}^{T} \theta_{S+1}^{a}, x_{i}^{T} \tilde{\theta}_{S+1}^{a}) + \sum_{j \in [S]} \omega_{ij}^{a} d(x_{i}^{T} \theta_{j}^{a}, x_{i}^{T} \tilde{\theta}_{j}^{a}) \right)$$

$$= \min_{i \in \mathcal{D}_{1}^{a}} \inf_{(x_{i} - x_{i^{*}(a, \mathcal{P}))^{T} \tilde{\theta}_{S+1}^{a} \ge 0} \sum_{i \in [K]} \omega_{i(S+1)}^{a} d(x_{i}^{T} \theta_{S+1}^{a}) + \sum_{j \in [S]} \omega_{ij}^{a} d(x_{i}^{T} \theta_{j}^{a}, x_{i}^{T} \tilde{\theta}_{j}^{a}) \right)$$

$$= \min_{i \in \mathcal{D}_{1}^{a}} \inf_{(x_{i} - x_{i^{*}(a, \mathcal{P}))^{T} \tilde{\theta}_{S+1}^{a} \ge 0} \sum_{i \in [K]} \omega_{i(S+1)}^{a} d(x_{i}^{T} \theta_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+1}^{a}) + \sum_{i \in [K]} \omega_{i(S+1)}^{a} \frac{x_{i} x_{i}^{T}}{2(\sigma_{i}^{a})^{2}} (\theta_{S+1}^{a} - \tilde{\theta}_{S+$$

2229 where $\Lambda_{S+1}^a = \sum_{i \in [K]} \omega_{i(S+1)}^a \frac{x_i x_i^T}{(\sigma_i^a)^2}$.

2231 By solving the optimization problem

$$\inf_{(x_i - x_{i^*(a,\mathcal{P})})^T \tilde{\theta}^a_{S+1} \ge 0} (\theta^a_{S+1} - \tilde{\theta}^a_{S+1})^T \Lambda^a_{S+1} (\theta^a_{S+1} - \tilde{\theta}^a_{S+1}),$$
(169)

we have the optimal value as

$$\min_{i \in \mathcal{P}_1^a} \frac{((x_i - x_{i^*(a,\mathcal{P})})^T \theta_j^a)^2}{\|x_i - x_{i^*(a,\mathcal{P})}\|_{(\Lambda_{S+1}^a)^{-1}}^2}.$$
(170)

The analysis for $\min_{i \in \mathcal{D}_2^a} f_i^a(\boldsymbol{\omega}, \mathcal{P})$ and $\min_{i \in \mathcal{D}_3^a} f_i^a(\boldsymbol{\omega}, \mathcal{P})$ are similar.

2240 Finally, we conclude that

$$\mathcal{H}^{*}(\mathcal{P})^{-1} = \frac{1}{2} \sup_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min\left(\min_{j \in [S]} \frac{(b - x_{i^{*}(a)}^{T} \theta_{j}^{a})^{2}}{x_{i^{*}(a)}^{T} (\Lambda_{j}^{a})^{-1} x_{i^{*}(a)}}, \min_{i \in \mathcal{D}_{1}^{a}} \frac{((x_{i} - x_{i^{*}(a)})^{T} \theta_{S+1}^{a})^{2}}{\|x_{i} - x_{i^{*}(a)}\|_{(\Lambda_{S+1}^{a})^{-1}}^{2}}, \min_{i \in \mathcal{D}_{2}^{a}} \frac{(b - x_{i}^{T} \theta_{j}^{a})^{2}}{x_{i}^{T} (\Lambda_{j}^{a})^{-1} x_{i}}, \min_{i \in \mathcal{D}_{3}^{a}} \left[\frac{((x_{i} - x_{i^{*}(a)})^{T} \theta_{S+1}^{a})^{2}}{\|x_{i} - x_{i^{*}(a)}\|_{(\Lambda_{S+1}^{a})^{-1}}^{2}} + \sum_{j \in \mathcal{B}_{2}^{a}(x_{i})} \frac{(b - x_{i}^{T} \theta_{j}^{a})^{2}}{x_{i}^{T} (\Lambda_{j}^{a})^{-1} x_{i}} \right] \right).$$

$$(171)$$

E.2 LINEAR STRUCTURES ACROSS TASKS

In this subsection, we introduce a new multi-task BAI problem with constraints, incorporating linear structural information among tasks. In personalized medicine, the agent aims to identify the best drug for each patient, represented by a feature vector capturing demographics and physical conditions. Patients with similar features are likely to experience similar efficacy and side effects. Thus, observations from one patient can inform others, enabling the agent to improve sampling efficiency by utilizing structural information across patients.

2257 Consider that each task a is associated with a feature vector $c^a \in \mathbb{R}^d$. For simplicity, we assume that 2258 each arm *i* has two performance metrics $(X_i^a, Y_i^a) \in \mathbb{R}^2$ (S = 2), represented as linear functions 2259 of the features $c^a, a \in [M]$. The results can be extended to settings with multiple constraints using 2260 our previous method.

2261

2233

2235 2236

2237

2250

Assumption 4. There exist unknown parameter $\beta_i, \gamma_i, i \in [K]$ such that $X_i^a = \beta_i^T c^a + \epsilon$ and $Y_i^a = \gamma_i^T c^a + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$, $\|c^a\|_2 \leq 1, \forall a \in [M]$, and $\|\beta_i^T\|_2 \leq 1, \|\gamma_i\|_2 \leq 1, \forall i \in [K]$. The agent needs to solve the following optimization problem for each task $\max_{i \in [K]} \beta_i^T c^a \text{ s.t. } \gamma_i^T c^a \leq b.$ (172) **Theorem 6.** Given a fixed confidence level $\delta \in (0, 1)$. Under Assumption 4, for any linear BAI problem instance $\mathcal{P} \in \mathcal{S}$ and any strategy satisfying $\mathbb{P}\left(\forall a \in [M], i^*(a) = \hat{i}_{\tau}(a)\right) \geq 1 - \delta$,

 $\mathbb{E}[\tau] \ge \mathcal{H}^*(\mathcal{P})kl(\delta, 1 - \delta), \tag{173}$

2273 where $\Lambda_i = \sum_{a \in [M]} \frac{\omega_{i1}^a}{\sigma^2} c^a (c^a)^T, \Theta_i = \sum_{a \in [M]} \frac{\omega_{i2}^a}{\sigma^2} c^a (c^a)^T,$

$$\mathcal{H}^{*}(\mathcal{P})^{-1} = \frac{1}{2} \sup_{\boldsymbol{\omega} \in \Omega} \min_{a \in [M]} \min\left(\frac{(b - \gamma_{i^{*}(a)}^{T}c^{a})^{2}}{(c^{a})^{T}\Lambda_{i^{*}(a)}^{-1}c^{a}}, \min_{i \in \mathcal{D}_{1}^{a}} \frac{((\beta_{i^{*}(a)} - \beta_{i})^{T}c^{a})^{2}}{(c^{a})^{T}(\Theta_{i}^{-1} + \Theta_{i^{*}(a)}^{-1})c^{a}},$$
(174)

$$\min_{i \in \mathcal{D}_2^a} \frac{(b - \gamma_i^T c^a)^2}{(c^a)^T \Lambda_i^{-1} c^a}, \min_{i \in \mathcal{D}_3^a} \left[\frac{((\beta_{i^*(a)} - \beta_i)^T c^a)^2}{(c^a)^T (\Theta_i^{-1} + \Theta_{i^*(a)}^{-1}) c^a} + \frac{(b - \gamma_i^T c^a)^2}{(c^a)^T \Lambda_i^{-1} c^a} \right] \right).$$