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ABSTRACT

Unsupervised domain adaptation (UDA) aims to learn transferable representa-
tion across domains. Recently a few UDA works have successfully applied
Transformer-based methods and achieved state-of-the-art (SOTA) results. How-
ever, it remains challenging when there exists a large domain gap between the
source and target domain. Inspired by the remarkable transferability abilities of
humans, where knowledge can adapt from familiar to uncharted domains, we en-
deavor to apply universally existing brain structure and function principles, specif-
ically, the core-periphery principle and the concept of the noisy brain, to design
and enhance the Transformer, ultimately improving its performance in UDA. In
this work, we propose a novel brain-inspired robust core-periphery constrained
transformer (RCCT) for unsupervised domain adaptation, which brings a large
margin of performance improvement on various datasets. The application of
the core-periphery principle and the development of the latent feature interaction
(LFI) operation correspond to the ‘Core-periphery’ and ‘Robust’ aspects men-
tioned in the title. Specifically, in RCCT, the self-attention operation across image
patches is rescheduled by an adaptively learned weighted graph with the Core-
Periphery structure (CP graph), where the information communication and ex-
change between image patches are manipulated and controlled by the connection
strength, i.e., edge weight of the learned weighted CP graph. In addition, consid-
ering the noisy nature of data in domain adaptation tasks, we propose a latent fea-
ture interaction operation to enhance model robustness, wherein we intentionally
introduce interactions to the latent features in the latent space, ensuring the gener-
ation of robust learned weighted core-periphery graphs. We conducted extensive
evaluations on several well-established UDA benchmarks, and the experimental
results demonstrate that applying brain-inspired principles leads to promising re-
sults, surpassing the performance of existing Transformer-based methods.

1 INTRODUCTION

Deep neural networks (DNNs) made breakthroughs in various application fields due to their power-
ful automatic feature extraction capabilities. However, such impressive success usually needs great
amounts of labeled data which can not be realized in the real case because of considerable time and
expensive labor forces. Fortunately, unsupervised domain adaptation (UDA) Wilson & Cook (2020)
techniques can leverage rich labeled data from the source domain and transfer knowledge from the
source domain to the target domains with no or limited labeled examples. The key point of UDA
is to find the discriminant and domain-invariant features from the labeled source domain and the
unlabeled target domain in the common latent space. Along with more and more resources devoted
to domain adaption research, the past decades have witnessed many UDA methods proposed and
evolved Ganin & Lempitsky (2015) Liang et al. (2020) Long et al. (2018) Shu et al. (2018)Zhang
et al. (2019).

However, the existing methods are all artificial neural network (ANN) driven structures, includ-
ing variants of CNNs in conjunction with advanced techniques, such as adversarial learning, or the
newest structures of Transformers combined with effective techniques like self-refinement Sun et al.
(2022) Yang et al. (2023) Xu et al. (2022) Xu et al. (2019). More and more studies have found that
the best-performing ANNs surprisingly resemble biological neural networks (BNN), which indi-
cates that ANNs and BNNs may share common principles to achieve optimal performance in either

1



Under review as a conference paper at ICLR 2024

Core Networks 

Periphery Networks 

Core-Periphery Brain Networks

Graph

Biological Neural Network

Core-Periphery Graph

Reschedule

Core-Periphery Self-Attention 

Artificial Neural Network

(a) Core-periphery Principle Guided Reschedule of Self-Attention

Noisy Neural Signaling

(b) Latent Feature Interaction Inspired by The Noisy Brain

Latent Feature Interaction Noisy Latent Feature

Figure 1: Brain-inspired operations in model architecture and latent features. Part (a) shows the core-
periphery principle guided redesign of self-attention in Transformers. The Core-Periphery structure
broadly exists in brain networks, with a dense “core” of nodes (red) densely interconnected with
each other and a sparse “periphery” of nodes (blue) sparsely connected to the core and among each
other. Inspired by this principle of BNN, we aim to instill the Core-Periphery structure into the self-
attention mechanism and propose a new core-periphery principle-constrained Transformer model
for unsupervised domain adaptation. Part (b) illustrates the presence of noisy neural signaling in
brain neurons. Drawing an analogy to this phenomenon within the noisy brain, we introduce a latent
feature interaction operation that mimics the noisy signaling pattern.

machine learning or cognitive tasks You et al. (2020). Inspired by the studies in information com-
munication, exchange, and processing in brain networks, in this work, we aim to proactively take
advantage of the noisy neuro signaling to design a latent feature interaction operation and instill
the organizational principle of Core-Periphery structure in BNNs to improve the domain adaptation
ability of ANNs. The concepts of the Core-Periphery brain network and noisy brain are illustrated
in Figure 1, where part (a) shows the connections between cores are much denser and stronger than
the counterparts between peripheries, and part (b) shows the noisy nature of neuron signaling.

Aiming to bring brain-inspired priors into the ANNs, in this work, we propose a novel robust core-
periphery constrained transformer (RCCT) for unsupervised domain adaptation. RCCT takes a
vision transformer as the backbone and manipulates the strength of self-attention under the core-
periphery constraints so that the information communication and exchange among the core patches
are more effective and efficient while weakening the unimportant information flows among the pe-
riphery patches. Furthermore, by leveraging the concept of the noisy brain, we have designed a
latent feature interaction operation to emulate this phenomenon. Specifically, RCCT has two key
components that lead to its excellent performance, one is the core-periphery principle guided self-
attention, and the other is the robust adaptive core-periphery graph generation realized by latent
feature interaction.

We conclude the two key brain-inspired components:

• We have developed a novel Unsupervised Domain Adaptation (UDA) solution RCCT, which proac-
tively incorporates the brain-inspired core-periphery principle to modulate the connection strength
of self-attention in the vision transformer. This enhancement aims to bolster its ability to provide
strong, transferable feature representations.
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• We harness the concept of the noisy brain to design a Latent Feature Interaction (LFI) operation
in tandem with the core-periphery constrained Transformer layer. This LFI operation functions in
both the source and target domains, aiding in the creation of a robust core-periphery graph. The LFI
empowers the model to adaptively learn domain-invariant core patches as well as domain-specific
periphery patches.

2 RELATED WORKS

2.1 CORE-PERIPHERY STRUCTURE

The Core-Periphery structure is a fundamental network signature that is composed of two quali-
tatively distinct components: a dense “core” of nodes strongly interconnected with one another,
allowing for integrative information processing to facilitate the rapid transmission of messages, and
a sparse “periphery” of nodes sparsely connected to the core and among each other Gallagher et al.
(2021). The Core-Periphery pattern has helped explain a broad range of phenomena in network-
related domains, including online amplificationBarberá et al. (2015), cognitive learning processes
Bassett et al. (2013), technological infrastructure organization Alvarez-Hamelin et al. (2005); Carmi
et al. (2007), and critical disease-spreading conduits Kitsak et al. (2010). All these phenomena
suggest that the Core-Periphery pattern may play a critical role in ensuring the effectiveness and
efficiency of information exchange within the network.

2.2 THE NOISY BRAIN

Studies show that the human brain is noisy, generating electrical activity that includes random fluc-
tuations, noise, and stored knowledge patterns Rolls & Deco (2010) Rolls & Deco (2013). This
noise is often referred to as neural noise or neuronal variability, and it arises from the intrinsic prop-
erties of neurons and the complex interactions between them Hancock et al. (2017). Neural noise
is a fundamental aspect of brain function and is not necessarily negative Faisal et al. (2008) Ferster
(1996). In fact, it can play a role in various cognitive processes. For example, some studies sug-
gest that neural noise may contribute to decision-making processes, creativity, and the brain’s ability
to explore different solutions to problems Haken (2006). Researchers in neuroscience and related
fields continue to study neural noise to better understand its functional significance in brain function
Averbeck et al. (2006). Encouraged by research on the noisy brain, we have designed a latent feature
interaction (LFI) operation entangled with the core-periphery layer to fully transfer the knowledge
learned from the human brain.

3 METHODS

3.1 PRELIMINARIES

In UDA, the images set in the labeled source domain are represented as Ds {(xs
i , y

s
i )}

ns

i=1, where xs
i

are the images from the source domain, ysi are the corresponding labels, and ns are the number of
samples. The target domain is represented as Dt {(xt

i)}
nt

j=1 with nt samples and no labels. Unsu-
pervised domain adaptation solutions aim to learn domain-invariant and domain-specific features to
minimize domain discrepancies and achieve the desired prediction performance on unlabeled target
data. In the introduction of our proposed RCCT, we will use ‘core features’ and ‘periphery features’
to describe domain-invariant and domain-specific characteristics, respectively.

The common practice is to design an objective function that jointly learns feature embeddings and a
classifier. The objective function is formulated as

min{LCE {xs, ys}+ αLdis {xs, xt}} (1)

where LCE is the standard cross-entropy loss supervised in the source domain, Ldis is a transfer
loss that incorporates various solutions, including the commonly used domain adversarial loss that
promotes a domain-invariant feature space by employing a domain discriminator, and α is used to
control the balance of Ldis.
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Figure 2: The overview of the proposed RCCT framework. In RCCT, source and target images are
divided into non-overlapping fixed-size patches which are linearly projected into the latent space
and concatenated with positional information. A class token is prepended to the image patches. The
image patches and class token are delivered into a transformer encoder whose last layer is leveraged
by a robust core-periphery aware layer, and the self-attention in previous layers is rescheduled by
the adaptively core-periphery graph learned in the last layer. The core-periphery graphs are robustly
learned through the process of latent feature interaction. Domain-invariant/Domain-specific feature
learning is therefore contained in core patches/periphery patches. Adversarial domain adaptation is
accomplished by patch-level and global-level discriminators.

3.2 METHODOLOGY

We aim to manipulate the strength of self-attention among dominant-invariant (core) and dominant-
specific (periphery) patches by adaptively learning robust core-periphery graphs with latent feature
interaction operation on both the source and target domains. Figure 2 illustrates the whole frame-
work of the proposed RCCT. The RCCT network comprises a vision transformer backbone, a do-
main discriminator for the class token, a patch discriminator for patch tokens, a head classifier, a
self-clustering module, and a core-periphery graph generation module, where the latent feature in-
teraction operation is incorporated in the CP graph generation module. For images of each domain,
the Patch Embedding layer linearly mapped them into a token sequence including a special class
token and image tokens.

3.3 ROBUST CORE-PERIPHERY AWARE TRANSFORMER LAYER

As shown in Figure 2, we introduce the Robust Core-Periphery Aware Transformer Layer that takes
advantage of the intrinsic merits of ViT, i.e., self-attention mechanisms and sequential patch tokens.
Moreover, we leverage the self-attention mechanism with the CP principle and the noisy brain con-
cept through the core-periphery aware module and latent feature interaction operation, separately.

3.3.1 CORE-PERIPHERY AWARE MODULE

The patch tokens correspond to partial regions of the image and capture visual features as fine-
grained local representations. Existing work Yang et al. (2023) shows that the patch tokens are
of different semantic importance, in this work, we define the coreness of the core-periphery prin-
ciple to index the importance of patches, higher coreness patches are more likely to correspond
to the domain-invariant patches, whereas lower coreness patches corresponding to domain-specific
patches. Core-periphery aware layer aims at learning different coreness indices to those patch tokens
for two purposes. First, to encourage the global image representation, i.e., the class token in the last
layer, to attend to core tokens. Second, to strengthen the information communications among the
core tokens and weaken the information among periphery tokens by rescheduling the self-attention
under the guidance of the core-periphery graphs generated via the coreness of each patch token.
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To obtain the coreness of patch tokens, we adopt a patch-level domain discriminator Dl to evaluate
the local features by optimizing:

Lpat

(
xs, xt

)
= − 1

nP

∑
xi∈D

P∑
p=1

LCE

(
Dl

(
Gf

(
x∗
ip

))
, ydip

)
(2)

where P is the number of patches, D = Ds∪Dt, Gf is the encoder for feature learning, implemented
as ViT, n = ns + nt, is the total number of images of the source and target domain, the superscript
∗ denotes a patch from either source or target domain, x∗

ip represents the pth of the ith image, ydip
denotes the domain label of the pth token of the ith image, i.e., ydip = 1 means source domain, else
the target domain. D (fip) gives the probability of the patch belonging to the source domain. During
the training process, Dl tries to discriminate the patches correctly, assigning 1 to patches from the
source domain and 0 to those from the target domain, while Gf combats such circumstances.

Empirically, patches that can easily deceive the patch dominator (e.g., Dl is around 0.5) is more
likely to be domain-invariant across domains and should be given a higher coreness. Therefore, we
use C (fip) = H (Dl (fip)) ∈ [0, 1] to measure the coreness of rth token of ith image, where H (·)
is the standard entropy function. The explanation for the coreness is that by assigning an index to
different patches, the model separates an image into domain-invariant representations and domain-
specific representations, and the information communication from domain-specific features is softly
suppressed. The generated core-periphery graph is then formulated as:

Mcp =
1

BH

H∑
h=1

B∑
b=1

[
[C (fip)]

T
C (fip)

]
×

(3)

Mcp (i, j) =

{
sqrt(M (i, j)) if M (i, j) ≥ 0.5

square(M (i, j)) if M (i, j) < 0.5
(4)

where T means transpose of the matrix, B is the batch size, H is the number of heads, [·]× means no
gradients back-propagation for the adjacency matrix of the generated core-periphery graph, sqrt(·)
and square(·) are the square root and square operations, respectively. The sqrt(·) and square(·)
operations make the core-periphery property more apparent in the CP graph. The mask matrix Mcp

is the adjacency matrix of the core-periphery graph, and it defines the connection strength of the
patch pairs. The connection strength among those patches with higher coreness is strengthened, and
vice versa.

The vanilla MSA in the last layer can be redesigned by adopting the coreness of the patches, i.e.,
injecting the learned corners into the self-attention weights of the class token. As a result, the
coreness aware self-attention (CSA) in the last transformer layer is defined as:

CSA(q,K, V ) = softmax(
qKT

√
d
)⊙ [1;C (Kpatch)]V (5)

where q is the query of the class token, Kpatch is the key of the patch tokens, ⊙ is the dot product,
and [; ] is the concatenation operation. Obviously, the CSA means that the class token takes more in-
formation from dominant-invariant patches with high coreness and hinders information from patches
with low coreness. The coreness aware multi-head self-attention is therefore defined as:

C-MSA(q,K, V ) = Concat(head1, ..., headk)W
O (6)

where headi = CSA
(
qW q

i ,KWK
i , V WV

i

)
. Taken them together, the operations in the last trans-

former layer are formulated as:

ẑl = C-MSA
(
LN

(
zl−1

))
+ zl−1

zl = MLP
(
LN

(
ẑl
))

+ ẑl
(7)

In this way, the core-periphery aware transformer layer focuses on fine-grained features that are
dominant-invariant and are discriminative for classification. Here l = L, L is the number of trans-
former layers in ViT architecture.
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3.3.2 LATENT FEATURE INTERACTION (LFI) ON DUAL-DOMAIN

Evidence from neuroscience shows that the signal-processing process in the human brain is noisy,
and influenced by potential noise or perturbations. More and more evidence also shows that noisy
procedure in deep learning enhances model robustness Sun et al. (2022) Pereira et al. (2021). Draw-
ing inspiration from the concept of the noisy brain in neuroscience that suggests that human brain
signal processing is inherently noisy and susceptible to perturbations, and considering the growing
body of evidence supporting the idea that adding noise to deep learning procedures enhances model
robustness, we propose a Latent Feature Interaction (LFI) operation. This operation involves adding
linearly transformed latent features to the core-periphery aware transformer layer. The LFI aims to
enhance the stability and robustness of the generated CP graphs and make the model resistant to
noisy perturbations. Actually, adding LFI to the core-periphery aware transformer layer imposes a
regularization on multiple layers simultaneously.

Given an image xi either in the source domain or target domain, let bxi be its input token sequence
at the core-periphery aware transformer layer. bxi is viewed as a representation of xi in the latent
space. It is not effective to interact with latent features arbitrarily; instead, it is more beneficial
to follow the pattern of noisy neuron signaling. Thus we use the token sequence bxj

of another
sequentially chosen image xj from the same domain to add an offset. The LFI operation of bxi

can
be formulated as:

b̃xi
= (1− µ)bxi

+ µ
[
bxj

]
× , i ̸= j (8)

where µ is a scalar, controlling the feature interaction ratio, and [·]× means no gradient backpropa-
gation. The LFI operation helps generate robust CP graphs.

3.4 CORE-PERIPHERY GUIDED TRANSFORMER LAYER

With the representation paradigm, an unweighted complete graph can represent the self-attention
of the vanilla ViT, and similarly, the core-periphery constraints can be effectively and conveniently
infused into the ViT architecture by upgrading the complete graph with the generated weighted CP
graphs, which is illustrated in the right part of Figure 2. Remember the generation process of the CP
graph in the previous section, with the guidance of the CP graph, the first L − 1 transformer layer
will focus on the likely core patches, i.e., dominant-invariant features, and suppress the information
flow among periphery patches.

A CP graph can be represented by G = (V, E), with nodes set V = {ν1, ..., νn}, edges set E ⊆
{(νi, νj)|νi, νj ∈ V}, and adjacency matrix Mcp. The CP graph guided self-attention for a specific
patch i at r-th layer of RCCT is defined as:

x
(r+1)
i = σ(r)({(

q
(r)
i (K

(r)
j )T

√
dk

)V
(r)
j ,∀j ∈ N(i)}) (9)

where σ(·) is the activation function, which is usually the softmax function in ViTs, q(r)i is the query
of patches in the i-th node in G, N(i) = {i|i∨ (i, j) ∈ E} are the neighborhood nodes of node i, dk
is the dimension of queries and keys, and K

(r)
j and V

(r)
j are the key and value of patches in node j.

Therefore, the CP graph guided self-attention that is conducted at the patch level can be formulated
as:

Attention(Q,K, V,Mcp) = softmax(
QKT ⊙Mcp√

dk
V ) (10)

where queries, keys, and values of all patches are packed into matrices Q, K, and V , respectively,
Mcp is the adjacency matrix provided by the last transformer layer. Similar to the multi-head atten-
tion in transformers, our proposed CP-guided multi-head attention is formulated as:

MSA(Q,K, V,Mcp) = Concat(head1, ..., headh)W
o (11)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ,Mcp) where the parameter matrices WQ

i , WK
i ,

WV
i and WO are the projections. Multi-head attention helps the model to jointly aggregate infor-

mation from different representation subspaces at various positions. In this work, we apply the CP
constraints to each representation subspace.
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Table 1: Comparison with SOTA methods on Office-Home. The best performance is marked in red.

Method Ar→ClAr→PrAr→ReCl→ArCl→PrCl→RePr→ArPr→ClPr→ReRe→ArRe→ClRe→PrAvg.
ResNet-50 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4

MinEnt 51.0 71.9 77.1 61.2 69.1 70.1 59.3 48.7 77.0 70.4 53.0 81.0 65.8
SAFN 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

CDAN+E 54.6 74.1 78.1 63.0 72.2 74.1 61.6 52.3 79.1 72.3 57.3 82.8 68.5
DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
BNM 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1
SHOT 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

ATDOC-NA 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
ViT-B 54.7 83.0 87.2 77.3 83.4 85.6 74.4 50.9 87.2 79.6 54.8 88.8 75.5
TVT-B 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

CDTrans-B 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT-B 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4
CCT-B 77.6 89.6 90.7 85.0 89.3 89.7 84.4 74.6 91.9 86.6 77.0 91.8 85.7

RCCT-B 80.1 91.4 92.9 87.9 92.2 92.2 86.3 79.5 93.1 88.9 81.0 93.8 88.3

3.5 OVERALL OBJECTIVE FUNCTION

Since our proposed RCCT has a classifier, a self-clustering module, a patch discriminator, and a
global discriminator, there are four terms in the overall objective function. The classification loss
term is formulated as:

Lclc (x
s, ys) =

1

ns

∑
xi∈Ds

LCE (Gc (Gf (x
s
i )) , y

s
i ) (12)

where Gc is the classifier.

The domain discriminator takes the class token and tries to discriminate the class token, i.e., the
representation of the entire image, to the source or target domain. The domain adversarial loss term
is formulated as:

Ldis

(
xs, xt

)
= − 1

n

∑
xi∈D

Lce

(
Dg

(
Gf (x

∗
i ) , y

d
i

))
(13)

where Dg is the domain discriminator, and ydi is the the domain label ((i.e., ydi = 1 means source
domain, ydi = 0 is target).

The self-clustering module (SCM) is inspired by the cluster assumption Chapelle & Zien (2005)
and the probability pt = softmax (Gc (Gf (x

t))) of target image xt is optimized to maximize the
mutual information with xt Yang et al. (2023). The self-clustering loss term is formulated as:

I
(
pt;xt

)
= H

(
p̄t
)
− 1

nt

nt∑
i=1

H
(
pti
)

(14)

where pti = softmax (Gc (Gf (x
t
i))) and p̄t = E [pt]. The self-clustering loss encourages the

model to learn clustered target features

Take classification loss (Eq. 12), domain adversarial loss (Eq. 13), patch adversarial loss (Eq. 2),
and self-clustering loss (Eq. 14) together, the overall objective function is therefore formulated as:

Lclc (x
s, ys) + αLdis

(
xs, xt

)
+ βLpat

(
xs, xt

)
− γI

(
pt;xt

)
(15)

where α, β, and γ are the hyperparameters that control the influence of subterms on the overall
function.

4 EXPERIMENTS

We evaluate our proposed RCCT on the most widely used UDA benchmarks, including Office-
31 Saenko et al. (2010), Office-Home Venkateswara et al. (2017), VisDA2017 Peng et al. (2017),
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Table 2: Comparison with SOTA methods on Visda2017. The best performance is marked in red.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
ResNet-50 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MinEnt 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0
SAFN 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

CDAN+E 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BNM 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4

CGDM 93.7 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
SHOT 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
ViT-B 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
TVT-B 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9

CDTrans-B 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
CCT-B 97.1 92.9 78.0 64.1 97.5 96.5 90.6 78.0 91.2 95.6 93.8 65.6 86.7

RCCT-B 98.4 95.9 87.7 77.3 98.9 96.7 95.8 82.6 96.4 97.9 97.8 62.8 90.7

and DomainNet Peng et al. (2019). We use the ViT-base with a 16 × 16 patch size (ViT-B/16)
Dosovitskiy et al. (2020) Steiner et al. (2021), pre-trained on ImageNet-21k Russakovsky et al.
(2015), as our vision transformer backbone. Details of datasets and settings are provided in the
supplementary.

Table 3: Comparison with SOTA methods on DomainNet. The best performance is marked in red.

ResNet101 clp inf pnt qdr rel skt Avg.
clp - 19.3 37.5 11.1 52.2 41.1 32.2
inf 30.2 - 31.2 3.6 44.0 27.9 27.4
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3
rel 48.4 22.2 49.4 6.4 - 38.8 33.0
skt 46.9 15.4 37.0 10.9 47.0 - 31.4

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6

MIM clp inf pnt qdr rel skt Avg.
clp - 15.1 35.6 10.7 51.5 43.1 31.2
inf 32.1 - 31.0 2.9 48.5 31.0 29.1
pnt 40.1 14.7 - 4.2 55.4 36.8 30.2
qdr 18.8 3.1 5.0 - 16.0 13.8 11.3
rel 48.5 19.0 47.6 5.8 - 39.4 22.1
skt 51.7 16.5 40.3 12.3 53.5 - 34.9

Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1

CGDM clp inf pnt qdr rel skt Avg.
clp - 16.9 35.3 10.8 53.5 36.9 30.7
inf 27.8 - 28.2 4.4 48.2 22.5 26.2
pnt 37.7 14.5 - 4.6 59.4 33.5 30.0
qdr 14.9 1.5 6.2 - 10.9 10.2 8.7
rel 49.4 20.8 47.2 4.8 - 38.2 32.0
skt 50.1 16.5 43.7 11.1 55.6 - 35.4

Avg. 36.0 14.0 32.1 7.1 45.5 28.3 27.2
MDD clp inf pnt qdr rel skt Avg.

clp - 20.4 43.3 15.2 59.3 46.5 36.9
inf 32.7 - 34.5 6.3 47.6 29.2 30.1
pnt 46.4 19.9 - 8.1 58.8 42.9 35.2
qdr 31.1 6.6 18.0 - 28.8 22.0 21.3
rel 55.5 23.7 52.9 9.5 - 45.2 37.4
skt 55.8 20.1 46.5 15.0 56.7 - 38.8

Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3

ViT clp inf pnt qdr rel skt Avg.
clp - 27.2 53.1 13.2 71.2 53.3 43.6
inf 51.4 - 49.3 4.0 66.3 41.1 42.4
pnt 53.1 25.6 - 4.8 70.0 41.8 39.1
qdr 30.5 4.5 16.0 - 27.0 19.3 19.5
rel 58.4 29.0 60.0 6.0 - 45.8 39.9
skt 63.9 23.8 52.3 14.4 67.4 - 44.4

Avg. 51.5 22.0 46.1 8.5 60.4 40.3 38.1

CDTrans clp inf pnt qdr rel skt Avg.
clp - 29.4 57.2 26.0 72.6 58.1 48.7
inf 57.0 - 54.4 12.8 69.5 48.4 48.4
pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
rel 66.2 31.0 61.5 16.2 - 52.9 45.6
skt 69.0 29.6 59.0 27.2 72.5 - 51.5

Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2
SSRT clp inf pnt qdr rel skt Avg.

clp - 33.8 60.2 19.4 75.8 59.8 49.8
inf 55.5 - 54.0 9.0 68.2 44.7 46.3
pnt 61.7 28.5 - 8.4 71.4 55.2 45.0
qdr 42.5 8.8 24.2 - 37.6 33.6 29.3
rel 69.9 37.1 66.0 10.1 - 58.9 48.4
skt 70.6 32.8 62.2 21.7 73.2 - 52.1

Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2

CCT clp inf pnt qdr rel skt Avg.
clp - 30.6 56.9 17.8 69.8 58.0 46.6
inf 53.9 - 47.6 9.3 69.2 45.0 45.0
pnt 52.5 26.2 - 8.4 70.0 48.0 41.0
qdr 37.6 10.5 19.6 - 29.3 26.9 24.8
rel 63.9 32.4 61.7 11.6 - 53.4 44.6
skt 67.3 28.9 60.0 20.5 71.5 - 49.6

Avg. 55.0 25.7 49.2 13.5 62.0 46.3 42.0

RCCT clp inf pnt qdr rel skt Avg.
clp - 32.4 60.2 21.1 78.5 63.2 51.1
inf 57.5 - 55.8 9.7 71.6 47.8 48.5
pnt 63.5 29.4 - 9.4 72.5 54.9 45.9
qdr 42.2 12.4 23.6 - 33.8 30.6 28.5
rel 70.4 34.3 67.3 12.9 - 57.8 48.5
skt 72.6 31.9 64.1 22.1 75.4 - 53.2

Avg. 61.2 28.1 54.2 15.0 66.4 50.9 46.0

4.1 RESULTS

Table 1 presents evaluation results on the dataset Office-Home. The “-B” indicates results using ViT-
base backbones. RCCT means robust core-periphery constrained transformer, whereas CCT means
omitting LFI operation. The methods above the black line are based on CNN architecture, while
those under the black line are developed from the Transformer architecture. Table 2 shows results
on the dataset VisDA2017. The experimental results on the large dataset DomainNet are shown
in Table 3. The core-periphery principle enables the model to outperform the ViT baseline, while
the LFI operation enhances the model’s performance compared to the most advanced methods. The
RCCT also achieved the SOTA results on Office-31, as shown in Table 4. From the comparisons, the
transformer-based methods gain much better results than CNN-based models thanks to their strong
transferable feature representations. Compared with other methods, our RCCT-B performs the best
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Table 4: Comparison with SOTA methods on Office-31. The best performance is marked in red.

Method A→W D→W W→D A→D D→A W→A Avg.
ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DANN 82.0 96.9 99.1 79.7 68.2 67.4 82.2
rRGrad+CAT 94.4 98.0 100.0 90.8 72.2 70.2 87.6
SAFN+ENT 90.1 98.6 99.8 90.7 73.0 70.2 87.1
CDAN+TN 95.7 98.7 100.0 94.0 73.4 74.2 89.3

TAT 92.5 99.3 100.0 93.2 73.1 72.1 88.4
SHOT 90.1 98.4 99.9 94.0 74.7 74.3 88.6

MDD+SCDA 95.3 99.0 100.0 95.4 77.2 75.9 90.5
ViT-B 91.2 99.2 100.0 93.6 80.7 80.7 91.1
TVT-B 96.4 99.4 100.0 96.4 84.9 86.1 93.9

CDTrans-B 96.7 99.0 100.0 97.0 81.1 81.9 92.6
SSRT-B 97.7 99.2 100.0 98.6 83.5 82.2 93.5

CCT 96.0 99.5 100.0 94.4 84.5 85.1 93.3
RCCT 97.4 99.5 100.0 96.4 88.1 88.7 95.0

on Office-Home, Office-31, DomainNet, and VisDA2017. Even the weaker version of CCT-B can
surpass most methods on these datasets.

Figure 3: The influence of LFI ratio µ on ac-
curacy. The ratio ranges from [0.0, 0.9].

Table 5: Ablation study of each module. The baseline
is the ViT-base, SCM is the self-clustering module, LFI
is the latent feature interaction operation, and CP is the
core-periphery constraint.

MethodsOffice-31Office-HomeVisDA-2017DomainNetAvg.
Baseline 91.1 75.5 67.1 38.1 68.0
+SCM 93.0 84.9 85.5 39.6 75.8
+CP 93.3 85.7 86.7 42.0 76.9
+LFI 95.0 88.3 90.7 46.0 80.0

4.2 ABLATION STUDIES

We conduct ablation studies on the LFI ratio µ. Figure 3 plots the influence of the LFI ratio µ on
classification accuracy. Note when the coefficient ratio is 0, which means there is no LFI operation,
the RCCT is degraded to CCT. From Figure 3, we can observe that RCCT can gain prediction im-
provements on a wide range of LFI ratios. We further evaluate the influence of different ingredients,
including CP constraints, LFI operations, and SCM modules, on the domain adaptation tasks. The
results are shown in Table 5. As shown in the table, all the ingredients contribute to the state-of-
the-art (SOTA) results achieved by the proposed RCCT. Based on the results in Table 5, we observe
that the brain-inspired principles, including the concept of the noisy brain (LFI) and core-periphery
organization (CP), lead to significant performance improvements of the Transformer compared to
the existing baseline.

5 CONCLUSION

In this paper, we propose a novel brain-inspired approach, named RCCT for unsupervised domain
adaptation. It practically instills the core-periphery constraint into the self-attention in the Trans-
former architecture, along with a latent feature interaction (LFI) operation inspired by the concept of
the noisy brain. The RCCT can adaptively learn core-periphery graphs by measuring the coreness of
patches via a patch discriminator. At the same time, deliberate LFI operations are added to force the
model to learn robust CP graphs. We use the learned CP graphs to manipulate self-attention weights
to strengthen the information communication among higher coreness patches while suppressing that
among low coreness patches. Our RCCT achieves promising results on four popular UDA datasets,
demonstrating that brain-inspired ANNs hold significant potential in the field of UDA.
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