MEDQUANBENCH: QUANTIZATION-AWARE ANALYSIS FOR EFFICIENT MEDICAL IMAGING MODELS

Anonymous authorsPaper under double-blind review

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

025

026

027 028 029

030

033

034

035

036

037

040

041

042

043

044

045

046

047

049

050

051

052

ABSTRACT

Quantization is a crucial technology for facilitating the deployment of medical AI models, especially on 3D radiological data. However, existing studies often lack comprehensive evaluations across diverse architectures, modalities, and quantization techniques, which limits our understanding of the real-world trade-offs among applicability, efficiency, and performance. In this work, we introduce MedQuanBench, a large-scale and diverse benchmark designed to rigorously evaluate quantization techniques for 3D medical imaging models. Our benchmark spans a wide range of modern architectures (e.g., CNNs and Transformers). We systematically evaluate representative post-training quantization strategies across model scales and dataset sizes. Additionally, we perform detailed sensitivity analyses to identify which model components are most vulnerable to quantization, including layer-wise degradation and activation distribution shifts. Our results show that 8-bit quantization consistently preserves segmentation accuracy across diverse architectures, making it a reliable choice for deployment. Furthermore, with appropriate configuration, such as selecting proper quantization granularity based on the model structure, 4-bit precision can also achieve near-lossless performance. These results show MedQuanBench as a foundation for optimizing quantization and guiding the development of deployment-ready, low-bit medical imaging models.

1 Introduction

Medical foundation models have demonstrated remarkable performance across various clinical tasks such as segmentation (Isensee et al., 2021; He et al., 2021), classification (Li et al., 2023a), and generation (Guo et al., 2025). However, growing model sizes, driven by performance demands, combined with the expanding medical imaging datasets (Wasserthal et al., 2022; Qu et al., 2023), create significant computational challenges. In clinical practice, hardware resources are typically constrained, and the computational demands lead to worse inference latency and memory consumption (Tang et al., 2022; Gao et al., 2022), which prohibits real-world deployment. Quantization provides a promising approach (Frantar et al., 2023; Xiao et al., 2023) to reduce model complexity and computational costs by representing model weights and activations with fewer bits (Dettmers et al., 2022; Lin et al., 2024), typically converting high-precision (e.g., 32-bit floating-point) parameters into lower-precision formats (e.g., 4-8 bit integers). This optimization significantly decreases memory consumption, accelerates inference speed, and enhances hardware utilization without modification of training configuration or architecture design. While large language models (LLMs) and computer vision (Li et al., 2023b; Shang et al., 2023) have been extensively studied and exploited with low-bit quantization, medical imaging models still rely on high-precision formats (e.g., FP16 and FP32) (Huang et al., 2023b; Roy et al., 2023), showing a critical gap in exploring low-bit efficiency for the medical domain. A systematic benchmark is thus essential to explore optimal quantization techniques that can quantify trade-offs between bit-width, inference speed, memory consumption, and accuracy.

Post-training quantization (PTQ) has achieved success in large language models and natural image tasks (Xiao et al., 2023; Zhang & Chung, 2024; Li et al., 2024a; Ashkboos et al., 2024). However, adoption in medical imaging remains limited, motivating five unresolved challenges. *First*, current SOTA quantization techniques, such as activation smoothing (Xiao et al., 2023), singular value decomposition (SVD) (Li et al., 2024a), and rotation (Ashkboos et al., 2024), are primarily designed and validated on transformer-based models or linear layers. While Fig. 1(a) indicates convolution blocks dominate compute in medical models. The effectiveness of these techniques on convolutional

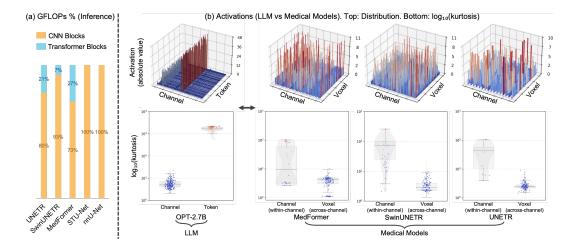


Figure 1: **Status of medical models.** (a) Inference GFLOPs composition of representative medical imaging architectures. Most compute sits in convolution blocks, while transformer blocks take a smaller share. This shows CNNs still dominate practical medical models. (b) Activation behavior in an LLM (OPT-2.7B) and in medical models. Top row shows activation distributions. For medical models, spatial voxels are flattened along the horizontal axis. Bottom row shows $\log_{10}(\text{kurtosis})$ Each dot is one unit: a channel or token for the LLM, and a channel or voxel for the medical models. Color intensity encodes magnitude, **blue** is lower and **red** is higher. Unlike LLMs, where outliers concentrate in a small set of channels and persist across tokens. Medical models exhibit the opposite pattern: outliers are spatially sparse within channels.

architectures (Liu et al., 2023; Yu et al., 2023), on diverse kernel shapes (e.g., anisotropic 3D convolutions) (Chen et al., 2021; Gao et al., 2022), and on non-GEMM operations (Gu et al., 2024) (e.g., depth-wise convolution) remains unclear. **Second**, medical imaging datasets exhibit unique activation patterns (Landman et al., 2015; Li et al., 2024b), typically characterized by spatially localized activation outliers rather than uniform channel-wise distributions (Wasserthal et al., 2022). Fig. 1(b) presents activation distributions (top) and \log_{10} kurtosis (bottom) for an LLM (OPT-2.7B) and medical models (MedFormer, SwinUNETR, UNETR). In medical models, outliers are present across many channels with uneven intensity and are spatially localized. This is the opposite of LLMs, where outliers concentrate in a small set of channels and persist across tokens. These differences further indicate that PTQ methods effective on LLMs require additional validation in the medical domain. Third, existing evaluations (Bassi et al., 2024; Huang et al., 2023a) focused on accuracy comparisons across model architectures, are ignoring hardware deployment constraints such as memory footprint, latency on edge devices. Fourth, as LLMs and vision transformers tolerate aggressive quantization (INT4/INT8) (Sui et al., 2024; Xu et al., 2023), medical models face stricter accuracy demands. Currently, no studies have systematically analyzed the trade-offs between bitwidth, task complexity, data scales, and model size. Fifth, robustness concerns encompass the sensitivity of quantized models to individual layer components, the identification of layers most susceptible to quantization, and the implications of these vulnerabilities in clinical applications (Liu et al., 2024; Hu et al., 2023).

To bridge critical knowledge gaps and address the above challenges, we present MedQuanBench, a systematic benchmark explicitly designed to evaluate quantization on CNN- and transformer-based architectures, covering representative medical imaging tasks (e.g., organ segmentation, brain segmentation), modalities (MRI, CT), and 2D/3D model variants. Specifically, we evaluate PTQ for extensive medical imaging models, demonstrating that accuracy can be substantially maintained at low precision for clinical tasks. We provide insights for clinical-relevant downstream tasks, showing how a quantized model can enable efficient real-time inference for a practical deployment scenario. The MedQuanBench explores accuracy-efficiency trade-offs, robustness to dataset/model-size and distribution shifts, and hardware performance characteristics. Our main contributions specifically address the above five critical limitations:

- 1. Systematically evaluate quantization techniques on SOTA medical models: We evaluate the efficacy of different quantization methods (e.g., smoothing, SVD, rotation) across diverse medical model architectures to identify universal and ad hoc optimization.
- 2. *Explore kernel and tensor compatibility:* We examine challenges in applying quantization algorithms originally designed for linear layers to 3D convolutional kernels, highlighting compatibility limitations.
- 3. Analyze spatial activation variance in medical imaging: We provide detailed analyses of spatial activation distributions and their impact on quantization accuracy, which identifies the model components that are most sensitive to spatially-driven quantization errors.
- 4. *Perform realistic hardware profiling:* We profile inference latency, throughput, and memory footprint across different medical imaging tasks with real hardware acceleration, offering practical insights for medical model deployment.
- 5. Evaluate across scales and tasks: We conduct the first large-scale analysis of quantization across (1) varying dataset sizes (from 100 to 10K volumes), (2) model capacities (10M to 2B parameters) (3) organ, tumor, and brain segmentation.

2 PRELIMINARIES

2.1 QUANTIZATION

Quantization compresses continuous floating-point values into discrete lower-bit integers, significantly reducing both computational complexity and memory requirements. This compression is crucial for medical imaging applications, where efficient model deployment is essential due to limited clinical hardware resources. In this work, we focus on symmetric uniform quantization at INT8 and INT4. Given an input floating-point tensor X, the quantized tensor X_q is computed by:

$$X_q = \text{round}\left(\frac{X}{S}\right), \quad S = \frac{\max(|X|)}{2^{N-1} - 1} \tag{1}$$

Here, X_q denotes the integer-quantized representation of tensor X, and S is the corresponding scaling factor computed from the tensor's maximum absolute value. For integer quantization with signed N-bit representations, the maximum quantized integer value is $2^{N-1}-1$. Specifically, INT8 quantization has a maximum quantized value of 127, whereas INT4 quantization has a maximum quantized value of 7.

Quantization granularity refers to how many elements share a scaling factor and along which dimension(s) this sharing occurs. *Per-tensor* quantization applies a single scaling factor across the entire tensor. *Per-channel* quantization assigns individual scaling factors per output channel, effectively capturing channel-level variations. *Per-voxel* quantization assigns a unique scaling factor to each voxel, addressing spatial variations. These options are illustrated in Figure 2.

2.2 QUANTIZED OPERATION ON REAL HARDWARE

To be practical, quantization methods must be feasible to be mapped to supporting hardware. In this paper, we primarily target the NVIDIA Blackwell GPU, which supports 8-bit and 4-bit Microscaling (MX) data formats (Rouhani et al., 2023) in its tensor cores. At a basic level, Blackwell can efficiently perform dot products between two scaled vectors as below:

$$Y = s^{(A)}s^{(B)}(A \cdot B) \tag{2}$$

where A and B are 4-bit or 8-bit quantized vectors of a fixed length (32), and S^A and S^B are scale factors associated with each vector. Although Blackwell GPUs are not widely available yet, we briefly discuss how to efficiently map our quantization methods above to this hardware model.

For *per-tensor* quantization, the entire convolution can be done using quantized dot products and the scaling applied afterwards.

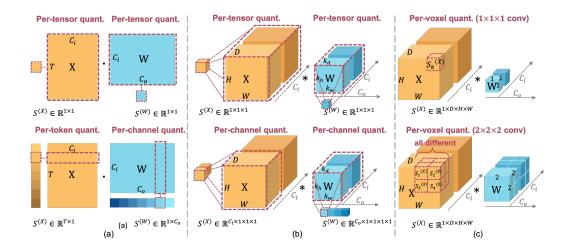


Figure 2: Quantization granularity. (a) Quantization schemes for linear layers: activation per-tensor and weight per-tensor quantization (top), activation per-token and weight per-channel quantization (bottom). Vector-wise quantization schemes (per-token, per-channel) efficiently utilize low-bit kernels when scaling factors align with outer tensor dimensions (token dimension T and output channel dimension C_o). (b) Quantization schemes for convolutional layers: activation per-tensor and weight per-tensor quantization (top), activation per-channel and weight per-channel quantization (bottom). Outer tensor dimension alignment (output channel dimension C_o facilitates efficient low-bit convolutional implementations. (c) Quantization schemes for spatial dimension: per-voxel quantization assigns unique scaling factors for each voxel. For kernel size = 1 (top), one scaling factor per voxel is sufficient; for larger kernels (bottom, shown as $2 \times 2 \times 2$), each position within the kernel uses a separate scaling factor.

For *per-channel* quantization, the convolution can be broken down into scaled dot products within each channel. For a single output voxel Y_o in output channel o:

$$Y_o = \sum_{i=1}^{C_{in}} \left(S_i^{(X)} S_i^{(W)} \sum_{k=1}^K X_{i,k} W_{i,o,k} \right)$$
 (3)

The above expresses the convolution as an outer summation over channels (indexed by i) and a scaled inner dot product across all spatial dims 1 (indexed by k over the convolution window). $S_i^{(X)}$ and $S_i^{(W)}$ are the scale factors for channel i for the input activations and the weights. Because activations are typically laid out with spatial dims last, the scaled dot product operates over contiguous data.

For per-voxel quantization, the convolution must be rearranged. For a single output Y_o in output o:

$$Y_{o,k} = \sum_{k=1}^{K} \left(S_k^{(X)} S_k^{(W)} \sum_{i=1}^{C_{in}} X_{i,k} W_{i,o,k} \right)$$
 (4)

Now the outer summation is over spatial dims in the conv window, and the scaled dot product is across the input channels. Note that for efficiency, the activations and weights must be laid out *channels-last*, which is typical. Appendix G contains run time measurements comparing activations channels-first and channels-last.

From Equation 4, we see that per-voxel quantization is not practical for depthwise convolutions, whose C_{in} is effectively 1. This would map to quantized dot products with length 1, which is not efficient. In this paper, we use per-channel quantization for depthwise convolutions.

¹The spatial dims for 3D convolutions common in medical imaging are depth, height, and width.

3 MEDQUANBENCH PROTOCOL

3.1 Datasets and Quantization Methods

Datasets. MedQuanBench covers four representative datasets to probe quantization under different clinical conditions. BTCV (Landman et al., 2015) offers abdominal CT for multi-organ segmentation and serves as a standard robustness target. TotalSegmentator V2 (Wasserthal et al., 2023) provides whole-body CT with 117 structures for broad anatomical coverage. AbdomenAtlas 1.1 (Li et al., 2025) scales to thousands of abdominal CT volumes for dataset-size analysis. Whole Brain (Huo et al., 2019; Yu et al., 2023) contributes T1-weighted MRI with fine-grained neuroanatomy to stress small-structure segmentation. Model specifics, data splits, preprocessing, and augmentation are documented in the Appendix A.

Quantization Methods. Core results compare three granularity schemes across models and bit widths: per-tensor (one scale per layer), per channel/token (convolutions per-channel, linears pertoken, weights per-channel), and adaptive stratification (per-voxel on $1 \times 1 \times 1$ convolutions, per-channel elsewhere). To examine method gains beyond granularity, activation smoothing (Xiao et al., 2023), SVD-based quantization (Li et al., 2024a), and rotation-based quantization (Ashkboos et al., 2024) are applied to the most sensitive layer identified in Sec. 4.3. Detailed configurations are provided in the Appendix B.

3.2 EVALUATION PROTOCOLS – ARCHITECTURES, FRAMEWORKS, METRICS

In MedQuanBench, a *backbone* denotes the high-level family (CNN or Hybrid), an *architecture* refers to the specific design and structure of a segmentation model, while a *framework* denotes a shared codebase or implementation environment supporting multiple model architectures. We evaluate representative segmentation architectures—including nnUNet (Isensee et al., 2021) and STU-Net (Huang et al., 2023b) within the nnUNet framework; UNesT (Yu et al., 2023), SwinUNETR (Tang et al., 2022), and UNETR (Hatamizadeh et al., 2022) implemented via the MONAI framework; and MedFormer (Gao et al., 2022). Segmentation performance is assessed through two widely used evaluation metrics: the Dice Similarity Coefficient (DSC), which measures overall segmentation accuracy, and the Normalized Surface Distance (NSD), which evaluates boundary alignment precision. This evaluation protocol provides consistent comparisons across models and frameworks.

3.3 SCALING PROTOCOLS – MODEL AND DATASET SIZE

In this study, we investigate the impact of model scale on quantization sensitivity and segmentation performance, covering a parameter range from 10M to 2B. The proposed MedQuantBench includes lightweight architectures such as nnUNet (Isensee et al., 2024) and ST-UNet-small (Huang et al., 2023b), a hybrid mid-sized model MedFormer (Gao et al., 2022), as well as multiple scales of SwinUNETR (Tang et al., 2022). This evaluation focuses on how quantization affects model capacity, particularly analyzing the trade-offs between accuracy and scaling-related factors. Overall, this work provides insights of model scale, dataset size, and robustness to low-precision weights and activations.

4 Core Results

4.1 BENCHMARK RESULTS ACROSS BACKBONES AND QUANTIZATION GRANULARITIES

Table 1 summarizes quantization results across backbone and quantization granularity in MedQuan-Bench on BTCV. We compare FP32, W8A8, and W4A4 under three granularities: per-channel/token (conv: per-channel, linear: per-token, weights: per-channel), per-tensor (activations and weights share one scale per layer), and adaptive stratification (per-voxel for $1 \times 1 \times 1$ conv, per-channel elsewhere). INT8 remains close to FP32 for both CNN and Hybrid backbones, while INT4 depends on the different backbone and on the chosen granularity. Additional architectures see Appendix E.1

CNNs Are Inherently More Quantization-Robust Than Hybrids: Hybrid models such as Med-Former and UNETR are highly sensitive to low-bit quantization. Under per-tensor INT4, these models show catastrophic degradation, with MedFormer's DSC dropping from 0.882 (FP32) to 0.000

Table 1: Quantization results across backbones and granularities in MedQuanBench on BTCV We evaluate multiple 3D medical segmentation models under FP32, INT8, and INT4 post-training quantization. INT8 quantization consistently preserves full-precision accuracy. In contrast, INT4 performance varies depending on model backbones and quantization granularity: hybrid models are particularly sensitive under per-tensor quantization, while CNNs degrade more gradually. Reported DSC and NSD values are shown along with relative drop ($\downarrow \Delta$ %) from the FP32 baseline, highlighting the impact of precision and granularity choices.

Backbone	Architectures	Precision	Quant-Granularity	$\mathrm{DSC}(\downarrow\!\Delta\%)$	$\operatorname{NSD}\left(\downarrow\Delta\%\right)$
		FP32	_	0.872 (-)	0.888 (-)
			Per-channel	0.870 (0.2%)	0.887 (0.1%)
		INT W8A8	Per-tensor	0.870 (0.2%)	0.888(0)
	nnU-Net (2021)		Adaptive stratification	0.870 (0.2%)	0.887 (0.1%)
			Per-channel	0.387 (55.6%)	0.354 (60.1%)
		INT W4A4	Per-tensor	0.170 (80.5%)	0.169 (80.9%)
CNN			Adaptive stratification	0.393 (54.9%)	0.358 (59.7%)
CININ		FP32	-	0.881 (-)	0.903 (-)
		INT W8A8	Per-channel	0.881 (0)	0.901 (0.2%)
	STU-Net-B (2023b)		Per-tensor	0.881(0)	0.902 (0.1%)
			Adaptive stratification	0.881 (0)	0.902 (0.1%)
			Per-channel	0.647 (26.6%)	0.619 (31.5%)
		INT W4A4	Per-tensor	0.654 (25.8%)	0.636 (29.6%)
			Adaptive stratification	0.829 (5.9%)	0.833 (7.8%)
		FP32	-	0.824 (-)	0.714 (-)
		INT W8A8	Per-channel/token	0.824 (0)	0.714(0)
			Per-tensor	0.802 (2.7%)	0.669 (6.3%)
	UNETR (2022)		Adaptive stratification	0.809 (1.8%)	0.676 (5.3%)
			Per-channel/token	0.553 (35.3%)	0.366 (48.7%)
		INT W4A4	Per-tensor	0.004 (99.5%)	0.004 (94.4%)
Hybrid			Adaptive stratification	0.590 (28.4%)	0.386 (45.9%)
Tiyond		FP32	-	0.882 (-)	0.826 (-)
			Per-channel/token	0.882 (0)	0.826(0)
		INT W8A8	Per-tensor	0.880 (0.2%)	0.823 (0.3%)
	MedFormer (2022)		Adaptive stratification	0.882 (0)	0.826(0)
			Per-channel/token	0.654 (25.9%)	0.462 (44.1%)
		INT W4A4	Per-tensor	0.000 (100%)	0.000 (100%)
			Adaptive stratification	0.719 (18.5%)	0.610 (26.3%)

and NSD approaching zero. In contrast, architectures with a CNN backbone, such as nnU-Net and STU-Net degrade more gradually under the same conditions. This difference likely stems from the reliance of hybrid models on linear attention and normalization layers, whose activations have high spatial variance and are difficult to capture with a single global scale.

Finer granularity significantly improves INT4 performance. Quantization granularity has a substantial impact on segmentation accuracy. Moving from per-tensor to per-channel or per-token scaling consistently mitigates performance loss under W4A4. For example, architecture UNETR recover more than 20% DSC with per-token scaling. Applying per-voxel scaling to $1 \times 1 \times 1$ convolutions and per-channel elsewhere further enhances robustness. With this strategy, architecture MedFormer reaches 0.719 DSC and architecture UNETR reaches 0.590. These results show that finer granularity is essential for maintaining segmentation quality under low-bit settings.

4.2 BENCHMARK RESULTS ACROSS MODEL SCALES AND DATASET SCALES

Table 2 shows MedQuanBench results on BTCV with SwinUNETR models of increasing size. The degradation observed with W4A4 quantization does not follow a clear monotonic relationship with parameter count. More detailed analyses, including results from CNN backbones, are provided in the Appendix E.2. Table 3 summarizes MedQuanBench results on BTCV and AbdomenAtlas 1.1, two abdominal CT datasets with different dataset sizes and label complexities. BTCV includes 50 scans with 13 annotated abdominal structures, while AbdomenAtlas 1.1 contains over 9,000 scans and 25 labels.

Architecture	Param	Precision	Quant-Granularity	$\mathrm{DSC}(\downarrow\!\Delta\%)$	$NSD(\downarrow \Delta\%)$
		FP32	-	0.684 (-)	0.586 (-)
			Per-channel/token	0.682 (0.3%)	0.583 (0.5%)
		INT W8A8	Per-tensor	0.679 (0.7%)	0.578 (1.4%)
SwinUNETR-T (2022)	4.1 M		Adaptive stratification	0.683 (0.1%)	0.584 (0.3%)
, ,			Per-channel/token	0.328 (52.0%)	0.154 (73.7%)
		INT W4A4	Per-tensor	0.019 (97.2%)	0.010 (98.3%)
			Adaptive stratification	0.347 (49.2%)	0.169 (71.2%)
SwinUNETR-S (2022)		FP32	-	0.788 (-)	0.713 (-)
	15.7 M	INT W8A8	Per-channel/token	0.787 (0.1%)	0.712 (0.1%)
			Per-tensor	0.783 (0.6%)	0.704 (1.2%)
			Adaptive stratification	0.787 (0.1%)	0.713(0)
		INT W4A4	Per-channel/token	0.450 (42.9%)	0.324 (54.5%)
			Per-tensor	0.012 (98.5%)	0.011 (98.4%)
			Adaptive stratification	0.494 (37.3%)	0.371 (48.0%)
		FP32	-	0.804 (-)	0.746 (-)
			Per-channel/token	0.803 (0.1%)	0.744 (0.3%)
		INT W8A8	Per-tensor	0.802 (0.2%)	0.740 (0.8%)
SwinUNETR-B (2022)	62.2 M		Adaptive stratification	0.804 (0)	0.745 (0.1%)
			Per-channel/token	0.380 (52.7%)	0.286 (61.7%)
		INT W4A4	Per-tensor	0.002 (99.8%)	0.004 (99.5%)
			Adaptive stratification	0.378 (53.0%)	0.289 (61.2%)

Larger datasets increase sensitivity to INT4 quantization. SwinUNETR shows a 52.7% DSC drop on BTCV under per-channel quantization, which increases to 77.1% on AbdomenAtlas 1.1. This trend indicates that larger-scale and more fine-grained segmentation tasks amplify quantization errors, likely due to higher activation variability and tighter numerical precision requirements. Despite these challenges, W8A8 quantization consistently maintains near full-precision accuracy across datasets, demonstrating its reliability for clinical deployment. Additional experiments on other imaging modalities (e.g., MRI) and larger-scale segmentation tasks (e.g., WholeBrain with 133 anatomical structures) are provided in the Appendix E.3.

4.3 LAYER-WISE QUANTIZATION SENSITIVITY

Quantization sensitivity varies widely across layers, and identifying the most vulnerable components is essential for reliable low-bit deployment. MedFormer was selected as the primary achitecture for the sensitivity analysis in MedQuanBench to identify the components most susceptible to quantization. This choice is motivated by MedFormer's hybrid design, which integrates convolutional kernels of sizes $1 \times 3 \times 3$ and $1 \times 1 \times 1$, along with transformer blocks employing bi-directional attention enhanced by depth-wise convolutional kernels. Its strong out-of-distribution performance on the JHH dataset reported by the Touchstone benchmark (Bassi et al., 2024) further supports its representativeness. Additional layer-wise sensitivity analysis is provided in Appendix F.

Identifying Sensitive Layers. Starting from a standard per-channel (convolution) and per-token (linear) quantization granularity, we gradually remove quantization from different layer types. As shown in Figure 3, dequantizing $1 \times 3 \times 3$ convolutions leads to the largest accuracy recovery (mDSC: $0.65 \rightarrow 0.82$), indicating their high sensitivity. Further layer-by-layer analysis reveals that the second $1 \times 3 \times 3$ convolution is the primary bottleneck, with the most significant performance improvement after dequantization. This sensitivity can be explained by its structural position and functional role. This layer lies at a crucial junction between local convolutional features and global Transformer attention, making it particularly vulnerable to INT4 quantization. Its activations often show high dynamic range around organ boundaries, which low-bit precision struggles to represent accurately. The anisotropic $1 \times 3 \times 3$ kernel also lacks depth context, allowing quantization noise to

Table 3: **Quantization results across dataset scales in MedQuanBench.** We evaluate Swin-UNETR's quantization robustness across datasets with different sizes and label complexities. BTCV includes 50 CT volumes with 13 annotated abdominal structures, while AbdomenAtlas 1.1 contains 9,262 CT volumes with 25 anatomical labels. As dataset size and structural diversity increase, the model becomes more sensitive to INT4 quantization. For instance, the DSC drop under per-channel quantization rises from 52.7% on BTCV to 77.1% on AbdomenAtlas 1.1. These results demonstrate that scaling dataset size and label granularity introduce additional challenges for low-bit deployment.

Architecture	Dataset	Precision	Quant-Granularity	$\mathrm{DSC}(\downarrow\!\Delta\%)$	$\mathrm{NSD}(\downarrow\!\Delta\%)$
		FP32	-	0.780 (-)	0.742 (-)
			Per-channel/token	0.779 (0.1%)	0.741 (0.1%)
		INT W8A8	Per-tensor	0.773 (0.9%)	0.731 (1.5%)
	AbdomenAtlas 1.1		Adaptive stratification	0.779 (0.1%)	0.741 (0.1%)
		-	Per-channel/token	0.179 (77.1%)	0.112 (84.9%)
		INT W4A4	Per-tensor	0.006 (99.2%)	0.004 (99.5%)
SwinUNETR (2022			Adaptive stratification	0.194 (75.1%)	0.119 (83.9%)
SWIIIUNETR (2022	5)	FP32	_	0.804 (-)	0.746 (-)
			Per-channel/token	0.803 (0.1%)	0.744 (0.3%)
		INT W8A8	Per-tensor	0.802 (0.2%)	0.740 (0.8%)
	BTCV		Adaptive stratification	0.804(0)	0.745 (0.1%)
			Per-channel/token	0.380 (52.7%)	0.286 (61.7%)
		INT W4A4	Per-tensor	0.002 (99.8%)	0.004 (99.5%)
			Adaptive stratification	0.378 (53.0%)	0.289 (61.2%)

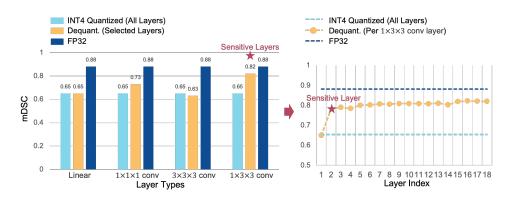


Figure 3: Layer-wise sensitivity analysis via incremental dequantization. Starting with all layers quantized to INT4, we sequentially remove quantization by layer type. Dequantizing $1\times 3\times 3$ convolutions recovers most of the mDSC, identifying them as highly sensitive. Further per-layer analysis reveals that the $second\ 1\times 3\times 3$ convolution is the most critical layer, yielding the largest performance gain when dequantized.

persist. Because its outputs directly feed the attention blocks, even small errors can distort attention weights and propagate through the network, degrading segmentation quality.

Limited Effect of Existing Methods. Applying advanced PTQ methods such as activation smoothing, SVD-based, and rotation quantization yields only marginal improvements, as summarized in Table 4. This limited gain reflects a mismatch between medical activation characteristics and the assumptions of existing methods, which are built around LLM-style activation patterns where outliers cluster in a few channels and remain stable across tokens. (See activation after smoothing in Appendix B).

Architecture-Level Optimization. To address the identified bottleneck, we replace the most sensitive $1\times3\times3$ convolution with a $1\times1\times1$ layer, which allows finer-grained quantization. This lightweight modification preserves FP32 accuracy and improves INT4 performance from 0.654 to 0.721 under standard granularity, and up to 0.847 with adaptive stratification, approaching full-precision accuracy while remaining compatible with deployment pipelines. In addition, the $1\times1\times1$ design can be directly mapped to efficient GEMM kernels, whereas optimized 4-bit 3D convolution kernels are still limited. This makes the redesigned architecture not only more quantization-friendly but also more practical for real-world deployment.

Table 4: **Quantization performance on sensitive layers.** We compare advanced quantization methods applied to a hybrid model with sensitive layers. Methods like activation smoothing, SVD, and rotation show limited gains under INT4. To improve robustness, we re-design the architecture by replacing the sensitive $1 \times 3 \times 3$ convolution with a $1 \times 1 \times 1$ layer, enabling finer granularity (e.g., per-voxel). This modification preserves FP32 accuracy and significantly improves INT4 performance.

Method	Precision	Quant-Granularity	DSC	NSD
Baseline	FP32	–	0.882	0.826
INT4 Quantized (All layers)	INT W4A4	per-channel/token	0.654	0.462
Activation Smoothing	INT W4A4	per-channel/token	0.648	0.448
Activation Smoothing+SVD	INT W4A4	per-channel/token	0.569	0.358
Rotation	INT W4A4	per-channel/token	0.621	0.395
Architecture Re-design	FP32	–	0.881	0.820
	INT W4A4	per-channel/token	0.721	0.579
	INT W4A4	Adaptive stratification	0.847	0.732

4.4 HARDWARE PROFILING

While MedQuanBench primarily focuses on benchmarking low-bit quantization performance, it also provides practical deployment insights by profiling representative models on modern GPUs. Table 5 summarizes real INT8 deployment results on NVIDIA Ada architecture using TensorRT. Across different datasets and architectures, INT8 quantization consistently reduces model size by roughly $3.2\sim3.8\times$ and accelerates inference by about $2.1\sim2.7\times$, while maintaining segmentation performance nearly identical to FP32. These results confirm that 8-bit quantization is a stable and deployment-ready solution for medical imaging models in clinical settings. As medical segmentation models and datasets continue to grow in size and complexity, reducing model size and latency becomes increasingly important for mitigating memory and throughput bottlenecks in clinical deployment.

Table 5: **Quantization results on modern GPUs.** INT8 deployment performance of representative medical segmentation models on NVIDIA Ada GPUs using TensorRT. Compared with FP32, INT8 consistently reduces model size by up to 3.8× and accelerates inference by up to 2.7× while maintaining accuracy, demonstrating its readiness for clinical deployment. As model and dataset scales increase, such compression is crucial for practical applications. Emerging platforms such as NVIDIA Blackwell, which provide native sub-8-bit support (e.g., 4 bit), enable efficiency gains.

_		Mode	el Size (MB)	Latency (ms)	
Dataset	Architecture —	FP32	INT W8A8 (Reduction Ratio)	FP32	INT W8A8 (Latency Gain)
BTCV	U-Net (2015) TransUNet (2021)	23.11 351.85	6.61 (3.50×) 91.90 (3.83×)	2.62 4.09	1.05 (2.50×) 1.74 (2.35×)
Whole Brain	UNesT (2023)	349.41	96.72 (3.61×)	5.59	2.72 (2.06×)
TotalSegmentator V2	STU-Net-S (2023b) STU-Net-H (2023b) nnU-Net (2021) SwinUNETR (2021) SegResNet (2019) VISTA3D (2024)	55.7 5,559.4 107.84 247.96 170.44 264.57	20.5 (2.72×) 1,519.8 (3.66×) 33.97 (3.17×) 70.18 (3.53×) 50.29 (3.39×) 71.18 (3.72×)	2.6 98.5 2.99 9.85 5.14 4.59	1.0 (2.60×) 30.2 (3.26×) 1.25 (2.39×) 3.59 (2.74×) 2.06 (2.49×) 1.93 (2.38×)

5 CONCLUSION

Quantization presents a promising path for improving the deployment of medical AI models in resource-constrained clinical environments, such as edge GPUs, hospital CPUs, and remote healthcare systems. By reducing memory footprint and enhancing computational efficiency, quantized models facilitate time-sensitive medical tasks. MedQuanBench reveals that while 8-bit quantization is generally robust and 4-bit precision demands careful granularity control to preserve accuracy. Our sensitivity analysis further identifies architectural components most vulnerable to quantization, providing actionable insights for balancing precision, efficiency, and reliability in deployment.

ETHICS STATEMENT

All authors of this work have read and commit to adhering to the ICLR Code of Ethics. We provide the potential impact and limitations on clinical applications below.

Impact and Limitation on Clinical Application. In real-world clinical settings, efficient and reliable AI inference is critical. Beyond edge devices, the quantization techniques have broader impacts on remote healthcare environments (e.g., cloud services, telesurgery) where infrastructure and communication capabilities are further limited. However, quantization methods inevitably involve trade-offs with accuracy, reliability, and robustness. Our benchmark results reveal the varying influences of quantization across different model components and layer choices. These insights can enable practitioners to make informed decisions: whether to prioritize accuracy, maximize efficiency, or make a balance between the two, depends on specific clinical requirements and deployment.

7 Reproducibility

To ensure reproducibility, we will provide a full open-source model and code shown in the manuscript.

REFERENCES

- Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Bennett A Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M Summers, Bram van Ginneken, et al. The medical segmentation decathlon. *arXiv preprint arXiv:2106.05735*, 2021.
- Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.
- Pedro Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Holger Roth, Daguang Xu, Alan Yuille, and Zongwei Zhou. The touchstone benchmark: Are we on the right way for evaluating ai algorithms for medical segmentation? *Conference on Neural Information Processing Systems*, 2024.
- Patrick Bilic, Patrick Ferdinand Christ, Eugene Vorontsov, Grzegorz Chlebus, Hao Chen, Qi Dou, Chi-Wing Fu, Xiao Han, Pheng-Ann Heng, Jürgen Hesser, et al. The liver tumor segmentation benchmark (lits). *arXiv* preprint arXiv:1901.04056, 2019.
- Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306, 2021.
- Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, and John Mongan. Rsna 2023 abdominal trauma detection, 2023. URL https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection.
- Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale. *Advances in neural information processing systems*, 35:30318–30332, 2022.
- Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan-Adrian Alistarh. Optq: Accurate post-training quantization for generative pre-trained transformers. In 11th International Conference on Learning Representations, 2023.
- Yunhe Gao, Mu Zhou, Di Liu, Zhennan Yan, Shaoting Zhang, and Dimitris N Metaxas. A data-scalable transformer for medical image segmentation: architecture, model efficiency, and benchmark. *arXiv preprint arXiv:2203.00131*, 2022.
- Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of quantization methods for efficient neural network inference. In *Low-power computer vision*, pp. 291–326. Chapman and Hall/CRC, 2022.
- Hanxue Gu, Haoyu Dong, Jichen Yang, and Maciej A Mazurowski. How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with segment anything model. arXiv preprint arXiv:2404.09957, 2024.

Pengfei Guo, Can Zhao, Dong Yang, Ziyue Xu, Vishwesh Nath, Yucheng Tang, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, et al. Maisi: Medical ai for synthetic imaging. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 4430–4441. IEEE, 2025.

- Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger R Roth, and Daguang Xu. Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In *International MICCAI Brainlesion Workshop*, pp. 272–284. Springer, 2021.
- Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman, Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 574–584, 2022.
- Yufan He, Dong Yang, Holger Roth, Can Zhao, and Daguang Xu. Dints: Differentiable neural network topology search for 3d medical image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5841–5850, 2021.
- Yufan He, Pengfei Guo, Yucheng Tang, Andriy Myronenko, Vishwesh Nath, Ziyue Xu, Dong Yang, Can Zhao, Benjamin Simon, Mason Belue, et al. Vista3d: Versatile imaging segmentation and annotation model for 3d computed tomography. *arXiv preprint arXiv:2406.05285*, 2024.
- Nicholas Heller, Sean McSweeney, Matthew Thomas Peterson, Sarah Peterson, Jack Rickman, Bethany Stai, Resha Tejpaul, Makinna Oestreich, Paul Blake, Joel Rosenberg, et al. An international challenge to use artificial intelligence to define the state-of-the-art in kidney and kidney tumor segmentation in ct imaging., 2020
- Qixin Hu, Yixiong Chen, Junfei Xiao, Shuwen Sun, Jieneng Chen, Alan L Yuille, and Zongwei Zhou. Label-free liver tumor segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7422–7432, 2023.
- Ziyan Huang, Zhongying Deng, Jin Ye, Haoyu Wang, Yanzhou Su, Tianbin Li, Hui Sun, Junlong Cheng, Jianpin Chen, Junjun He, et al. A-eval: A benchmark for cross-dataset evaluation of abdominal multi-organ segmentation. *arXiv preprint arXiv:2309.03906*, 2023a.
- Ziyan Huang, Haoyu Wang, Zhongying Deng, Jin Ye, Yanzhou Su, Hui Sun, Junjun He, Yun Gu, Lixu Gu, Shaoting Zhang, et al. Stu-net: Scalable and transferable medical image segmentation models empowered by large-scale supervised pre-training. *arXiv preprint arXiv:2304.06716*, 2023b.
- Yuankai Huo, Zhoubing Xu, Yunxi Xiong, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M Resnick, Laurie E Cutting, and Bennett A Landman. 3d whole brain segmentation using spatially localized atlas network tiles. *NeuroImage*, 194:105–119, 2019.
- Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. *Nature Methods*, 18(2):203–211, 2021.
- Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus Maier-Hein, and Paul F Jaeger. nnu-net revisited: A call for rigorous validation in 3d medical image segmentation. *arXiv* preprint arXiv:2404.09556, 2024.
- Yuanfeng Ji, Haotian Bai, Jie Yang, Chongjian Ge, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan Zhang, Wanling Ma, Xiang Wan, et al. Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation. *arXiv* preprint arXiv:2206.08023, 2022.
- Bennett Landman, Zhoubing Xu, J Igelsias, Martin Styner, T Langerak, and Arno Klein. Miccai multi-atlas labeling beyond the cranial vault–workshop and challenge. In *Proc. MICCAI Multi-Atlas Labeling Beyond Cranial VaultâĂŤWorkshop Challenge*, volume 5, pp. 12, 2015.
- Jun Li, Junyu Chen, Yucheng Tang, Ce Wang, Bennett A Landman, and S Kevin Zhou. Transforming medical imaging with transformers? a comparative review of key properties, current progresses, and future perspectives. *Medical image analysis*, 85:102762, 2023a.
- Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng, Jun-Yan Zhu, and Song Han. Svdqunat: Absorbing outliers by low-rank components for 4-bit diffusion models. *arXiv* preprint arXiv:2411.05007, 2024a.
- Wenxuan Li, Chongyu Qu, Xiaoxi Chen, Pedro RAS Bassi, Yijia Shi, Yuxiang Lai, Qian Yu, Huimin Xue, Yixiong Chen, Xiaorui Lin, et al. Abdomenatlas: A large-scale, detailed-annotated, & multi-center dataset for efficient transfer learning and open algorithmic benchmarking. *Medical Image Analysis*, pp. 103285, 2024b. URL https://github.com/MrGiovanni/AbdomenAtlas.

Wenxuan Li, Alan Yuille, and Zongwei Zhou. How well do supervised 3d models transfer to medical imaging tasks? *arXiv preprint arXiv:2501.11253*, 2025.

- Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 17535–17545, 2023b.
- Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. *arXiv preprint arXiv:2102.05426*, 2021.
- Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. *arXiv preprint arXiv:2405.04532*, 2024.
- Jie Liu, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A Landman, Yixuan Yuan, Alan Yuille, Yucheng Tang, and Zongwei Zhou. Clip-driven universal model for organ segmentation and tumor detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 21152–21164, 2023. URL https://github.com/ljwztc/CLIP-Driven-Universal-Model.
- Jie Liu, Yixiao Zhang, Kang Wang, Mehmet Can Yavuz, Xiaoxi Chen, Yixuan Yuan, Haoliang Li, Yang Yang, Alan Yuille, Yucheng Tang, et al. Universal and extensible language-vision models for organ segmentation and tumor detection from abdominal computed tomography. *Medical Image Analysis*, pp. 103226, 2024. URL https://github.com/ljwztc/CLIP-Driven-Universal-Model.
- Xiangde Luo, Wenjun Liao, Jianghong Xiao, Tao Song, Xiaofan Zhang, Kang Li, Guotai Wang, and Shaoting Zhang. Word: Revisiting organs segmentation in the whole abdominal region. *arXiv preprint arXiv:2111.02403*, 2021.
- Chengtao Lv, Hong Chen, Jinyang Guo, Yifu Ding, and Xianglong Liu. Ptq4sam: Post-training quantization for segment anything. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15941–15951, 2024.
- Jun Ma, Yao Zhang, Song Gu, Cheng Zhu, Cheng Ge, Yichi Zhang, Xingle An, Congcong Wang, Qiyuan Wang, Xin Liu, et al. Abdomenct-1k: Is abdominal organ segmentation a solved problem. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.
- Jun Ma, Zongxin Yang, Sumin Kim, Bihui Chen, Mohammed Baharoon, Adibvafa Fallahpour, Reza Asakereh, Hongwei Lyu, and Bo Wang. Medsam2: Segment anything in 3d medical images and videos. arXiv preprint arXiv:2504.03600, 2025.
- Andriy Myronenko. 3d mri brain tumor segmentation using autoencoder regularization. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4, pp. 311–320. Springer, 2019.
- Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down? adaptive rounding for post-training quantization. In *International conference on machine learning*, pp. 7197–7206. PMLR, 2020.
- Shehan Perera, Pouyan Navard, and Alper Yilmaz. Segformer3d: an efficient transformer for 3d medical image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4981–4988, 2024.
- W Nicholson Price and I Glenn Cohen. Privacy in the age of medical big data. *Nature medicine*, 25(1):37–43, 2019.
- Chongyu Qu, Tiezheng Zhang, Hualin Qiao, Jie Liu, Yucheng Tang, Alan Yuille, and Zongwei Zhou. Abdomenatlas-8k: Annotating 8,000 abdominal ct volumes for multi-organ segmentation in three weeks. In *Conference on Neural Information Processing Systems*, volume 21, 2023. URL https://github.com/MrGiovanni/AbdomenAtlas.
- Blaine Rister, Darvin Yi, Kaushik Shivakumar, Tomomi Nobashi, and Daniel L Rubin. Ct-org, a new dataset for multiple organ segmentation in computed tomography. *Scientific Data*, 7(1):1–9, 2020.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 234–241. Springer, 2015.

Holger R Roth, Le Lu, Amal Farag, Hoo-Chang Shin, Jiamin Liu, Evrim B Turkbey, and Ronald M Summers. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In *International conference on medical image computing and computer-assisted intervention*, pp. 556–564. Springer, 2015.

- Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data formats for deep learning. arXiv preprint arXiv:2310.10537, 2023.
- Saikat Roy, Gregor Koehler, Constantin Ulrich, Michael Baumgartner, Jens Petersen, Fabian Isensee, Paul F Jaeger, and Klaus H Maier-Hein. Mednext: transformer-driven scaling of convnets for medical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 405–415. Springer, 2023.
- Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1972–1981, 2023.
- Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao, Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey Tulyakov, and Jian Ren. Bitsfusion: 1.99 bits weight quantization of diffusion model. *arXiv preprint arXiv:2406.04333*, 2024.
- Yucheng Tang, Riqiang Gao, Ho Hin Lee, Shizhong Han, Yunqiang Chen, Dashan Gao, Vishwesh Nath, Camilo Bermudez, Michael R Savona, Richard G Abramson, et al. High-resolution 3d abdominal segmentation with random patch network fusion. *Medical image analysis*, 69:101894, 2021.
- Yucheng Tang, Dong Yang, Wenqi Li, Holger R Roth, Bennett Landman, Daguang Xu, Vishwesh Nath, and Ali Hatamizadeh. Self-supervised pre-training of swin transformers for 3d medical image analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20730–20740, 2022.
- Vanya V Valindria, Nick Pawlowski, Martin Rajchl, Ioannis Lavdas, Eric O Aboagye, Andrea G Rockall, Daniel Rueckert, and Ben Glocker. Multi-modal learning from unpaired images: Application to multi-organ segmentation in ct and mri. In 2018 IEEE winter conference on applications of computer vision (WACV), pp. 547–556. IEEE, 2018.
- Jakob Wasserthal, Manfred Meyer, Hanns-Christian Breit, Joshy Cyriac, Shan Yang, and Martin Segeroth. Totalsegmentator: robust segmentation of 104 anatomical structures in ct images. arXiv preprint arXiv:2208.05868, 2022.
- Jakob Wasserthal, Hanns-Christian Breit, Manfred T Meyer, Maurice Pradella, Daniel Hinck, Alexander W Sauter, Tobias Heye, Daniel T Boll, Joshy Cyriac, Shan Yang, et al. Totalsegmentator: robust segmentation of 104 anatomic structures in ct images. *Radiology: Artificial Intelligence*, 5(5):e230024, 2023.
- Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In *International Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023.
- Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language models. arXiv preprint arXiv:2309.14717, 2023.
- Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Understanding straight-through estimator in training activation quantized neural nets. *arXiv preprint arXiv:1903.05662*, 2019.
- Xin Yu, Qi Yang, Yinchi Zhou, Leon Y Cai, Riqiang Gao, Ho Hin Lee, Thomas Li, Shunxing Bao, Zhoubing Xu, Thomas A Lasko, et al. Unest: local spatial representation learning with hierarchical transformer for efficient medical segmentation. *Medical Image Analysis*, 90:102939, 2023.
- Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training quantization for vision transformers with twin uniform quantization. In *European conference on computer vision*, pp. 191–207. Springer, 2022.
- Rongzhao Zhang and Albert CS Chung. Efficientq: An efficient and accurate post-training neural network quantization method for medical image segmentation. *Medical Image Analysis*, 97:103277, 2024.
- Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. *arXiv preprint arXiv:1606.06160*, 2016.

Appendix

A DATASET DESCRIPTIONS

MedQuanBench incorporates four carefully selected datasets, consisting of diverse imaging modalities, anatomical regions, and annotation granularities, to evaluate quantization techniques across realistic medical scenarios.

AbdomenAtlas 1.1(Li et al., 2025) comprises 9,262 abdominal CT scans collected globally from 238 hospitals, annotated at voxel-level for 25 abdominal organs. It is used as a dataset scaling analysis resource, ensuring quantization technology efficacy on diverse clinical settings. (see Table 6)

BTCV (Beyond the Cranial Vault) (Landman et al., 2015; Tang et al., 2021) includes 50 abdominal CT volumes annotated for 13 key organ and vessel structures. 30 scans are exploited for model training and validation, while the remaining 20 scans serve as testing cases in MedQuanBench. The dataset originates from clinical research studies at Vanderbilt University Medical Center on healthy anatomies, providing a high-quality dataset to test model performance on a well-defined segmentation task.

TotalSegmentator V2 (Wasserthal et al., 2022) provides extensive anatomical coverage with 1,228 full-body CT scans annotated for 117 anatomical structures (brain, organs, bones, vessels). Scans originate from multiple institutes within the University Hospital Basel network. MedQuanBench utilizes a distinct subset (743 scans) exclusively for evaluation, representing a rigorous test of model robustness and generalization to unseen clinical populations and imaging conditions.

Whole Brain Segmentation Dataset (Huo et al., 2019; Yu et al., 2023) consists of MRI T1-weighted volumes acquired from multiple institutions, structured specifically for detailed neuroanatomical segmentation. It includes a primary manually annotated training set (50 MRI scans from the OASIS dataset, labeled with 133 brain regions) and two distinct evaluation sets: the high-resolution Colin27 scan (labeled with 130 regions) and 13 pediatric scans from the CANDI dataset (ages 5-15, labeled with 130 regions). Additionally, MedQuanBench incorporates an auxiliary dataset of 4,859 MRI scans automatically segmented using multi-atlas techniques for large-scale pretraining before fine-tuning with manually labeled OASIS data. This design enables assessment across age groups, resolutions, and labeling granularities, testing quantization robustness in fine-grained neuro-imaging tasks. (see Table 7)

Table 6: **Public Datasets Comprising AbdomenAtlas 1.1.** Constructed from 17 publicly available datasets (items 1-17), it comprises 9,262 abdominal CT volumes with 25 annotated classes per volume. Due to overlapping volumes among sources, the total count does not equal the sum of individual datasets. Its diversity–spanning 88 centers across 9 countries–makes it ideal for evaluating quantization robustness in varied clinical settings.

Dataset	# of classes	# of volumes	# of centers	source countries	license
1. Pancreas-CT (2015)	1	42	1	US	CC BY 3.0
2. LiTS (2019)	1	131	7	DE, NL, CA, FR, IL	CC BY-SA 4.0
3. KiTS (2020)	1	489	1	US	CC BY-NC-SA 4.0
4. AbdomenCT-1K (2021)	4	1,050	12	DE, NL, CA, FR, IL, US, CN	CC BY-NC-SA
5. CT-ORG (2020)	5	140	8	DE, NL, CA, FR, IL, US	CC BY 3.0
6. CHAOS (2018)	4	20	1	TR	CC BY-SA 4.0
7-12. MSD CT Tasks (2021)	9	945	1	US	CC BY-SA 4.0
13. BTCV (2015)	12	50	1	US	CC BY 4.0
14. AMOS22 (2022)	15	200	2	CN	CC BY-NC-SA
15. WORD (2021)	16	120	1	CN	GNU GPL 3.0
16. FLARE'23	13	4,100	30	-	CC BY-NC-ND 4.0
17. Abdominal Trauma Det (2023)	0	4714	23	-	-
18. AbdomenAtlas 1.1 (2025)	25	9,262	88	US, DE, NL, FR, IL, CN, CA, TR, CH	-

US: United States DE: Germany NL: Netherlands CA: Canada FR: France IL: Israel CN: China TR: Turkey CH: Switzerland

Table 7: **Public Neuroimaging Datasets Comprising WholeBrain.** WholeBrain aggregates 4,859 brain MRI volumes from eight publicly available, multi-center datasets. By capturing diverse neuroanatomical segmentation scenarios, it complements abdominal CT benchmarks and strengthens quantization evaluation across distinct clinical modalities.

Study Name	Website	# of Volumes
Attention Deficit Hyperactivity Disorder (ADHD200)	fcon_1000.projects.nitrc.org/indi/adhd200	950
Autism Brain Imaging Data Exchange (ABIDE)	fcon_1000.projects.nitrc.org/indi/abide	563
Baltimore Longitudinal Study of Aging (BLSA)	www.blsa.nih.gov	614
Cutting Pediatrics	vkc.mc.vanderbilt.edu/ebrl	586
Information Extraction from Images (IXI)	www.nitrc.org/projects/ixi_dataset	541
Nathan Kline Institute Rockland (NKI_rockland)	fcon_1000.projects.nitrc.org/indi/enhanced	141
Open Access Series of Imaging Studies (OASIS)	www.oasis-brains.org	312
1000 Functional Connectome (fcon_1000)	fcon_1000.projects.nitrc.org	1102
WholeBrain (Total)	_	4859

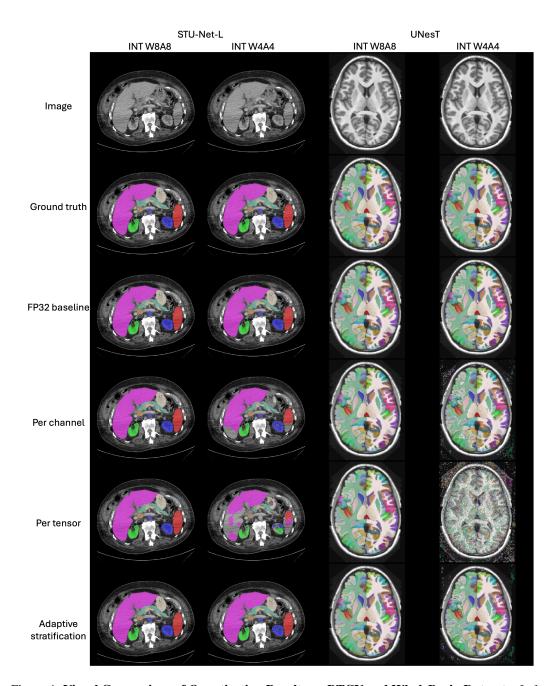


Figure 4: **Visual Comparison of Quantization Results on BTCV and WholeBrain Datasets.** *Left two columns:* STU-Net-L segmentation results on BTCV dataset at different precision levels (INT W8A8 and INT W4A4) and quantization granularities (per-channel, per-tensor, adaptive stratification). *Right two columns:* UNesT segmentation predictions on WholeBrain dataset under the same quantization settings. 8-bit quantization results closely align with the FP32 baseline, demonstrating minimal accuracy loss. However, 4-bit quantization shows a notable variation in performance, with higher quantization granularity (e.g., adaptive stratification) yielding better segmentation quality compared to lower granularity methods (e.g., per-tensor).

B QUANTIZATION METHODS

MedQuanBench evaluates three representative quantization methods–smoothing, SVD-based decomposition, and rotation–each targeting distinct quantization challenges through different approaches.

Smoothing (Xiao et al., 2023) addresses the challenge of activation outliers, which can hinder quantization by distorting numeric ranges. This method redistributes activation magnitudes between activations and weights using complementary scaling factors. Specifically, extreme values are scaled downward, while corresponding weights are scaled upward, preserving the original model computation. By balancing activation distributions, smoothing reduces quantization errors caused by outliers.

SVD-based Low-Rank Decomposition (Li et al., 2024a) targets outlier values within weight matrices. The method factorizes weights into low-rank approximations, separating significant outlier components from the rest. A small set of high-magnitude components is retained at higher precision or handled separately, while the remaining weights are quantized directly. This decomposition isolates problematic weight values, making the overall weight quantization more uniform and less error-prone.

Rotation-based Transform (Ashkboos et al., 2024) focuses on balancing uneven value distributions in activations or weights. It applies an orthogonal transformation (rotation) to redistribute values across multiple dimensions. The rotated representation facilitates efficient low-bit quantization by spreading large outliers more evenly. After quantization, an inverse rotation restores the original computational form, ensuring mathematical equivalence to the original model computation.

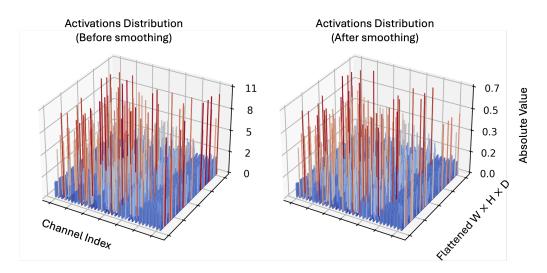


Figure 5: Activation distribution before and after smoothing on a representative medical segmentation model layer. The two subplots visualize the absolute value of input activations to a quantization-sensitive layer, arranged by channel (x-axis) and spatial position (y-axis). The left plot shows the distribution before smoothing, characterized by sharp outliers within many channels. The right plot shows the result after smoothing using $\alpha=0.5$, where activation magnitudes are reduced. While prior works show that outliers persistently dominate specific channels (Xiao et al., 2023), medical models display a different pattern: outliers are unevenly distributed within each channel, rather than fixed across all spatial positions or tokens. This structural discrepancy suggests that channel-wise smoothing alone is insufficient for handling activation outliers in medical models. Instead, outliers frequently manifest across channels at specific spatial sites, limiting the effectiveness of conventional smoothing and highlighting the need for finer-grained or cross-channel quantization strategies.

C KURTOSIS AND OUTLIERS

Kurtosis (κ) is the standardized fourth central moment of a distribution, defined mathematically as

$$\kappa = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right],\tag{5}$$

where X is a random variable, μ is its mean, and σ its standard deviation. This metric quantifies the *tailedness* of a distribution, indicating how heavy or light the tails are compared to a normal distribution (which has $\kappa=3$). High kurtosis values show the presence of extreme outliers within the distribution. Empirical observations in medical imaging models show greater kurtosis within channels than across channels. This suggests that extreme activation outliers occur within individual channels rather than uniformly across channels. This result highlights potential limitations of channel-wise normalization or per-channel quantization strategies for medical models. On the contrary, across-channel kurtosis tends to be lower, which indicates more stable distributions across the channel dimension at each spatial location. This observation motivates the use of per-voxel quantization, which assigns a single scaling factor to all channels at each spatial position. Thus, it can better align with the observed activation distributions. However, this approach can introduce large computational overhead due to the large number of required scaling factors, especially given that the spatial dimensions in medical imaging models are typically larger than the number of channels. As a result, the choice between per-channel and per-voxel quantization strategies involves a fundamental trade-off between preserving accuracy and maintaining computational efficiency.

D QUANTIZATION: RELATED WORKS

Model quantization is an emerging technique for accelerating and deploying AI models on certain hardware, particularly in LLM, computer vision, and recently, medical imaging domains. Quantization methods are broadly categorized into Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ). QAT includes a low-precision or mix-precision simulation during training, which enables models to align quantization-induced bias via methods like Straight-Through Estimators (STE) (Yin et al., 2019) or differentiable quantization algorithm (Zhou et al., 2016). While effective, QAT demands access to full training datasets, which is often limited and unexplored in medical imaging due to data challenges (Price & Cohen, 2019) and the scale of datasets like huge volumes set AbdomenAtlas (Qu et al., 2023). In addition, PTQ, requires no retraining or uses minimal unlabeled calibration data to adjust pre-trained models, making it more capable for clinical practice. Recent works like AdaRound (Nagel et al., 2020) and BRECQ (Li et al., 2021) have PTQ for certain layers by optimizing weight rounding and layer-wise dependencies, while methods such as PTQ4ViT (Yuan et al., 2022) can address challenges in quantizing vision transformers (ViTs), such as post-softmax distribution skew and activation outliers. However, existing PTQ approaches are only fake quantization, which simulates low-precision computation during inference but maintains high-precision weights and activations in memory, yielding no real reductions in model size or latency (Gholami et al., 2022).

In medical imaging, where 3D segmentation models such as U-Net (Ronneberger et al., 2015), Swin-UNETR (Hatamizadeh et al., 2021), and STU-Net (Huang et al., 2023b) demand high computational resources, the gap between simulated and real quantization efficiency becomes critical. Prior efforts have been made to balance accuracy preservation with actual deployment gains. For instance, fake quantization of ViTs in PTQ4SAM (Lv et al., 2024) improved attention map quantization but failed to reduce memory footprint. This limitation is even intense by the growing scale of medical datasets (e.g., TotalSegmentator V2 (Wasserthal et al., 2023) with 117 labels) and models, where large-scale architectures like VISTA3D (He et al., 2024) require efficient inference speed and memory footprint. Recent frameworks like TensorRT offer promise by enabling hardware-accelerated real quantization, converting models to INT8 precision with true memory and latency savings. However, systematic exploration of real PTQ applicability to diverse medical segmentation architectures remains limited, which leaves a critical need for frameworks that bridge the divide between theoretical quantization benefits and clinical utility.

In this work, we explore three representative quantization techniques—activation smoothing (Xiao et al., 2023), singular value decomposition (SVD)-based quantization (Li et al., 2024a), and rotation

quantization (Ashkboos et al., 2024)—as initial attempts to quantify their effectiveness on medical models, particularly focusing on layers identified as sensitive to quantization-induced errors. Specifically, we adopt an activation smoothing factor of $\alpha=0.5$ to balance the redistribution of extreme activations between activations and weights. For SVD-based quantization, we utilize a low-rank approximation with rank set to 4, isolating significant weight outliers to enhance quantization stability. Additionally, rotation quantization is implemented via a Hadamard matrix of order 32, matching the input channel dimension of the quantization-sensitive layer.

E ADDITIONAL ANALYSIS OF BENCHMARK EXPERIMENTS

E.1 QUANTIZATION RESULTS OF DIFFERENT BACKBONES

Table 8: Quantization results across backbones and granularities in MedQuanBench on BTCV FP32, INT8, and INT4 evaluated under per-tensor, per-channel/token, and adaptive stratification INT8 is close to FP32 across models. INT4 varies with backbone and granularity, CNNs degrade more gradually than Hybrids, and finer granularity improves robustness. Cells report DSC/NSD with relative drop ($\downarrow \Delta$ %) vs FP32.

Backbone	Architectures	Precision	Quant-Granularity	$DSC(\downarrow \Delta\%)$	$NSD(\downarrow \Delta\%)$
Backbone		FP32	_	0.872 (-)	0.888 (-)
	nnU-Net (2021)	INT W8A8	Per-channel Per-tensor Adaptive stratification	0.870 (0.2%) 0.870 (0.2%) 0.870 (0.2%)	0.887 (0.1%) 0.888 (0) 0.887 (0.1%)
		INT W4A4	Per-channel Per-tensor Adaptive stratification	0.387 (55.6%) 0.170 (80.5%) 0.393 (54.9%)	0.354 (60.1%) 0.169 (80.9%) 0.358 (59.7%)
CNN		FP32		0.881 (-)	0.903 (-)
	STU-Net-B (2023b)	INT W8A8	Per-channel Per-tensor Adaptive stratification	0.881 (0) 0.881 (0) 0.881 (0)	0.901 (0.2%) 0.902 (0.1%) 0.902 (0.1%)
		INT W4A4	Per-channel Per-tensor Adaptive stratification	0.647 (26.6%) 0.654 (25.8%) 0.829 (5.9%)	0.619 (31.5%) 0.636 (29.6%) 0.833 (7.8%)
	SwinUNETR (2022)	FP32	_	0.849 (-)	0.760 (-)
		INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.849 (0) 0.849 (0) 0.849 (0)	0.761 (1% ↑) 0.761 (1% ↑) 0.761 (1% ↑)
		INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.565 (33.5%) 0.059 (93.1%) 0.571 (32.7%)	0.446 (41.3%) 0.054 (92.9%) 0.447 (41.2%)
	UNETR (2022)	FP32	_	0.824 (-)	0.714 (-)
		INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.824 (0) 0.802 (2.7%) 0.809 (1.8%)	0.714 (0) 0.669 (6.3%) 0.676 (5.3%)
Hybrid		INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.553 (35.3%) 0.004 (99.5%) 0.590 (28.4%)	0.366 (48.7%) 0.004 (94.4%) 0.386 (45.9%)
,		FP32	_	0.882 (-)	0.826 (-)
	MedFormer (2022)	INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.882 (0) 0.880 (0.2%) 0.882 (0)	0.826 (0) 0.823 (0.3%) 0.826 (0)
		INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.654 (25.9%) 0.000 (100%) 0.719 (18.5%)	0.462 (44.1%) 0.000 (100%) 0.610 (26.3%)
		FP32	=	0.928 (-)	0.886 (-)
	MedSam2 (2025)	INT W8A8	Per-channel/token Adaptive stratification Per-tensor	0.926 (0.2%) 0.924 (0.4%) 0.921 (0.8%)	0.877 (1.0%) 0.873 (1.5%) 0.867 (2.1%)
		INT W4A4	Per-channel/token Adaptive stratification Per-tensor	0.011 (98.8%) 0.010 (98.9%) 0.026 (97.2%)	0.003 (99.7%) 0.003 (99.7%) 0.067 (92.4%)

E.2 QUANTIZATION RESULTS UNDER MODEL SCALING

Table 9: Quantization results across model scales on BTCV. We evaluate STU-Net (Base/Large/Huge) and SwinUNETR (Tiny/Small/Base) models with increasing parameter sizes to assess whether model scale influences quantization robustness. Across all models, INT8 quantization maintains segmentation performance nearly identical to the FP32 baseline. However, the sensitivity to INT4 quantization does not show a consistent trend with model size: larger models are not strictly more or less robust. Instead, quantization granularity emerges as a more reliable factor, as adaptive stratification consistently improves performance over lower-granularity schemes, highlighting its importance in achieving accurate low-bit deployment in medical imaging.

Framework	Architecture	Backbone	Param	Precision	Quant-Granularity	$\mathrm{DSC}(\downarrow\!\Delta\%)$	$\operatorname{NSD}\left(\downarrow\Delta\%\right)$
			58.3 M	FP32	_	0.881 (-)	0.903 (-)
	STU-Net-B (2023b)	CNN		INT W8A8	Per-channel Per-tensor Adaptive stratification	0.881 (0) 0.881 (0) 0.881 (0)	0.901 (0.2%)) 0.902 (0.1%) 0.902 (0.1%)
	, ,			INT W4A4	Per-channel Per-tensor Adaptive stratification	0.647 (26.6%) 0.654 (25.8%) 0.829 (5.9%)	0.619 (31.5%) 0.636 (29.6%) 0.833 (7.8%)
				FP32	_	0.880 (-)	0.903 (-)
nnUNet	STU-Net-L (2023b)	CNN	440.3 M	INT W8A8	Per-channel Per-tensor Adaptive stratification	0.880 (0) 0.880 (0) 0.880 (0)	0.902 (0.1%) 0.903 (0) 0.902 (0.1%)
nnunet	, ,	CNIV		INT W4A4	Per-channel Per-tensor Adaptive stratification	0.701 (20.3%) 0.466 (47.0%) 0.857 (2.6%)	0.695 (23.0%) 0.460 (49.1%) 0.870 (3.7%)
			1,457.3 M	FP32	_	0.873 (-)	0.889 (-)
	STU-Net-H (2023b)	CNN		INT W8A8	Per-channel Per-tensor Adaptive stratification	0.873 (0) 0.872 (0.1%) 0.872 (0.1%)	0.889 (0) 0.889 (0) 0.889 (0)
				INT W4A4	Per-channel Per-tensor Adaptive stratification	0.700 (19.8%) 0.734 (15.9%) 0.840 (3.8%)	0.681 (23.4%) 0.716 (19.5%) 0.848 (4.6%)
	SwinUNETR-T (2022)hybrid		rid 4.1 M	FP32	-	0.684 (-)	0.586 (-)
				INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.682 (0.3%) 0.679 (0.7%) 0.683 (0.1%)	0.583 (0.5%)) 0.578 (1.4%) 0.584 (0.3%)
	·			INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.328 (52.0%) 0.019 (97.2%) 0.347 (49.2%)	0.154 (73.7%) 0.010 (98.3%) 0.169 (71.2%)
				FP32	-	0.788 (-)	0.713 (-)
MONAI	SwinUNETR-S (202	SwinUNETR-S (2022)hybrid		INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.787 (0.1%) 0.783 (0.6%) 0.787 (0.1%)	0.712 (0.1%) 0.704 (1.2%) 0.713 (0)
MONAI	· 			INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.450 (42.9%) 0.012 (98.5%) 0.494 (37.3%)	0.324 (54.5%) 0.011 (98.4%) 0.371 (48.0%)
				FP32	-	0.804 (-)	0.746 (-)
	SwinUNETR-B (202	22)hybrid	62.2 M	INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.803 (0.1%) 0.802 (0.2%) 0.804 (0)	0.744 (0.3%) 0.740 (0.8%) 0.745 (0.1%)
	`	-		INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.380 (52.7%) 0.002 (99.8%) 0.378 (53.0%)	0.286 (61.7%) 0.004 (99.5%) 0.289 (61.2%)

E.3 QUANTIZATION RESULTS ACROSS DIFFERENT MODALITY AND DATASETS

Table 10: **Quantization results across modalities and dataset scales.** This table evaluates the quantization robustness of UNesT and SwinUNETR across datasets varying in imaging modality, class numbers, and scale. BTCV and AbdomenAtlas 1.1 are both abdominal CT segmentation datasets, while WholeBrain involves brain MRI. The datasets also vary significantly in size and complexity: BTCV includes 50 CT volumes with 13 labeled abdominal structures, AbdomenAtlas 1.1 contains 9,262 CT volumes with 25 anatomical labels, and WholeBrain comprises 4,859 MRI volumes covering 133 fine-grained brain regions. As the dataset size and class number increase, models show greater sensitivity to 4 bit quantization. For instance, under Per-channel/token quantization granularity, UNesT shows a minor DSC drop of 8.6% on BTCV, but a more substantial 21.9% drop on WholeBrain. Similarly, SwinUNETR's DSC drops 52.7% on BTCV, compared to 77.1% on AbdomenAtlas. These findings highlight the increasing challenge of low-bit quantization under high-resolution, large-scale conditions, and underscore the importance of employing finer granularity or more adaptive quantization strategies in such settings.

Architecture	Backbone	Param	Dataset	Precision	Quant-Granularity	$\mathrm{DSC}(\downarrow\!\Delta\%)$	$\operatorname{NSD}\left(\downarrow\Delta\%\right)$
				FP32	_	0.783 (-)	0.704 (-)
			BTCV	INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.783 (0) 0.783 (0) 0.783 (0)	0.704 (0) 0.702 (0.3%) 0.704 (0)
				INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.716 (8.6%) 0.111 (85.8%) 0.721 (7.9%)	0.615 (12.6%) 0.064 (90.9%) 0.618 (12.2%)
UNesT	Hybrid	87.3 M	WholeBrain	FP32	-	0.893 (-)	0.961 (-)
				INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.893 (0) 0.887 (0.6%) 0.893 (0)	0.961 (0)) 0.959 (0.2%) 0.961 (0)
				INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.697 (21.9%) 0.019 (97.8%) 0.753 (15.7%)	0.664 (30.9%) 0.034 (96.5%) 0.741 (22.9%)
			AbdomenAtlas 1.1	FP32	-	0.780 (-)	0.742 (-)
				INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.779 (0.1%) 0.773 (0.9%) 0.779 (0.1%)	0.741 (0.1%) 0.731 (1.5%) 0.741 (0.1%)
				INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.179 (77.1%) 0.006 (99.2%) 0.194 (75.1%)	0.112 (84.9% 0.004 (99.5% 0.119 (83.9%
SwinUNETR	Hybrid	62.2 M		FP32	-	0.804 (-)	0.746 (-)
			BTCV	INT W8A8	Per-channel/token Per-tensor Adaptive stratification	0.803 (0.1%) 0.802 (0.2%) 0.804 (0)	0.744 (0.3%) 0.740 (0.8%) 0.745 (0.1%)
				INT W4A4	Per-channel/token Per-tensor Adaptive stratification	0.380 (52.7%) 0.002 (99.8%) 0.378 (53.0%)	0.286 (61.7%) 0.004 (99.5%) 0.289 (61.2%)

F ADDITIONAL LAYER-WISE QUANTIZATION SENSITIVITY

We further provide supplementary analyses on SegFormer3D (Perera et al., 2024) to validate the layer-wise sensitivity findings in Sec. 4.3. Table 11 presents an incremental dequantization experiment, while Table 12 benchmarks common PTQ methods applied specifically to the most sensitive layer.

Table 11: Incremental dequantization analysis on SegFormer3D. We incrementally remove INT4 quantization from individual $3 \times 3 \times 3$ convolution layers to assess their relative contribution to overall accuracy degradation. The fourth convolution layer shows the largest recovery in DSC and NSD, indicating it as the most quantization-sensitive component.

Incremental Dequantization	DSC	NSD
FP32 Baseline	0.815	0.782
INT4 Quantized (All layers)	0.767	0.708
INT4 Quantized exclude 1st 3×3×3 conv	0.765	0.706
INT4 Quantized exclude 2nd 3×3×3 conv	0.766	0.709
INT4 Quantized exclude 3rd 3×3×3 conv	0.768	0.716
INT4 Quantized exclude 4th $3\times3\times3$ conv	0.778	0.718

Table 12: **Quantization performance on sensitive layers of SegFormer3D.** We apply advanced PTQ methods to the most sensitive layer identified in Table 11. Activation smoothing and SVD-based decomposition yield marginal gains, highlighting the challenge of quantizing activation distributions in medical segmentation.

Method	Precision	Quant-Granularity	DSC	NSD
Baseline	FP32	_	0.815	0.782
INT4 Quantized (All layers)	INT W4A4	per-channel/token	0.767	0.708
Activation Smoothing	INT W4A4	per-channel/token	0.771	0.711
Activation Smoothing + SVD	INT W4A4	per-channel/token	0.769	0.698

Table 13: Latency comparison under different memory layouts. This table compares inference latency of the MedFormer model using channel-first (default in most deep learning frameworks for convolutional operations) and channel-last layouts, under a fixed input patch size of $32 \times 128 \times 128$. Although low-bit quantization schemes such as per-voxel scaling benefit from channel-last layouts due to more contiguous memory access across spatial dimensions, most convolutional backends (e.g., cuDNN) remain optimized for channel-first formats. However, we observe minimal latency differences between the two layouts in our setting.

	Patch size	Latency (ms)			
Architecture		$\begin{array}{c} \text{Channel-first} \\ [\text{B} \times \text{C} \times \text{D} \times \text{H} \times \text{W}] \end{array}$	$\begin{array}{c} Channel\text{-last} \\ [B \times D \times H \times W \times C] \end{array}$		
Medformer	$[32 \times 128 \times 128]$	85.3	86.6		

H ADDITIONAL TASK

Table 14: Generation task on MASI (Guo et al., 2025): quantization results across datasets. FID \downarrow is reported on MSD, LIDC, and COVID, with COVID runtime metrics. INT8 matches the FP16 baseline on FID (all gaps ≤ 0.2) while improving throughput, latency, and memory, consistent with our core result that 8-bit quantization is near lossless. INT4 shows a clear FID degradation across datasets.

Precision	FID ↓			COVID runtime metrics		
	MSD	LIDC	COVID	Throughput (samples/s)	Latency (s)	Memory (GB)
FP16	4.35	6.20	8.35	1.0	1.2	3.2
INT8	4.42	6.35	8.52	1.8	0.7	1.6
INT4	5.82	6.90	10.40	-	-	0.8

I INSIGHTS OF EFFICIENT MEDICAL MODEL ARCHITECTURES

Efficient Model Architectures for Medical Vision. The need of quantization-friendly medical vision architectures reveals a critical gap between architectural complexity and computational efficiency. Current state-of-the-art models, such as nnU-Net or MONAI frameworks, heavily rely on spatial convolution operations (e.g., 3D convolutions) to capture intricate anatomical structures in volumetric samples. While these operations perform well in spatial representation learning, they can introduce significant bottlenecks for applying quantization. Spatial convolutions often require a designed scale factor grouping across channels, tensors, or layers to maintain numerical stability during low-precision inference. This is a process that becomes increasingly error-prone with larger networks. In addition, the irregular memory access pattern inherent to 3D convolutions amplifies conversion overhead when converting models into optimized TensorRT or other engines, which will limit the practical gains of quantization.

On the other hand, transformer-based architectures, which have advantages for global context modeling, also show their challenges in quantization. Hybrid designs are still incorporating $3 \times 3 \times 3$ convolutional layers, such as those in SwinUNETR, and MedFormer inherit the quantization difficulties of both CNNs and attention mechanisms. For instance, the dynamic range of attention maps in ViTs often requires specialized quantization (adaptive stratification) to avoid information collapse during INT4 conversion. Meanwhile, hybrid conv layers disrupt the uniformity necessary for effective smoothing or singular value decomposition (SVD)-based quantization, which further complicates deployment. These architectural complexities underscore the need for a paradigm shift toward models explicitly designed for quantization efficiency, rather than relying on quantization onto existing architectures optimized solely for accuracy.

Toward Quantization-Aware Architectural. To address the above challenges, future medical vision architectures can target quantization-aware design principles without sacrificing spatial representation

robustness. One promising direction is the development of lightweight, hardware-aligned operators that can balance performance with low-precision robustness. For example, depthwise convolutions or Fourier-based spatial filters could reduce parameter redundancy while maintaining compatibility with INT8 optimizations. Similarly, attention mechanisms designed for medical imaging, such as sparse attention, could reduce the computational burden of full self-attention maps, which are notoriously sensitive to noise during quantization.

Another frontier is in designing medical models with emerging hardware. As platforms such as NVIDIA Blackwell and Rubin architectures provide support for sub-8-bit precision (e.g., FP6, INT4), medical AI models will need to evolve benchmarks that evaluate not only accuracy but also hardware-aware efficiency metrics such as energy-delay product (EDP) and memory utilization. For instance, architectures with regular computation, like hierarchical vision transformers with fixed patch sizes, may better exploit tensor core parallelism on later GPUs. Furthermore, generative models such as diffusion-based architectures (e.g., MAISI (Guo et al., 2025)) could benefit from quantization-friendly U-Net backbones that maintain high-resolution spatial modeling while enabling real-time synthesis on edge devices. By using quantization in architectural search pipelines and leveraging tools like model optimizer, researchers can flexibly identify optimal designs that can harmonize accuracy, efficiency, cost, and deployability.

Finally, the milestones to practical medical AI deployment hinge on closing the gap between simulation advancements and real-world constraints. Frameworks like MedQuanBench provide a critical foundation for evaluating quantization robustness. But the benchmark will require cross-disciplinary collaboration among researchers, hardware engineers, and clinicians to ensure that efficiency gains translate into real clinical workflows.

J POTENTIAL NEGATIVE SOCIETAL IMPACTS

 The deployment of quantized medical imaging models may inadvertently amplify existing inequities in healthcare systems by prioritizing computational efficiency over diagnostic precision. Quantization-induced accuracy decreases could mismatch the effect of underrepresented populations if calibration datasets lack demographic diversity, which will lead to biased performance in critical tasks like tumor segmentation or anomaly detection. Furthermore, reliance on optimization frameworks risks creating technological bias and may lock resource-limited institutions into costly hardware. Overemphasis on benchmark metrics (e.g., Dice Score) without rigorous clinical validation might also obscure real-world trade-offs, such as delayed diagnoses or false negatives in time-sensitive scenarios. These risks highlight the ethical imperative to balance efficiency gains with equitable, transparent, and rigorously audited deployment practices to prevent harm to vulnerable patient populations.

K DECLARATION OF LLM TOOL USAGE

During the preparation of this manuscript, we used AI model for minor word selection, fixing grammar issues, and smoothing of the writing. The LLM tool was not used for generating original content, conducting data analysis, or formulating core scientific ideas. All conceptual development, experimentation, and interpretation were conducted independently without reliance on LLM tools. The other points involving the use of LLMs have already been highlighted in the paper.