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ABSTRACT

Quantization is a crucial technology for facilitating the deployment of medical
AI models, especially on 3D radiological data. However, existing studies often
lack comprehensive evaluations across diverse architectures, modalities, and quan-
tization techniques, which limits our understanding of the real-world trade-offs
among applicability, efficiency, and performance. In this work, we introduce
MedQuanBench, a large-scale and diverse benchmark designed to rigorously evalu-
ate quantization techniques for 3D medical imaging models. Our benchmark spans
a wide range of modern architectures (e.g., CNNs and Transformers). We system-
atically evaluate representative post-training quantization strategies across model
scales and dataset sizes. Additionally, we perform detailed sensitivity analyses to
identify which model components are most vulnerable to quantization, including
layer-wise degradation and activation distribution shifts. Our results show that 8-bit
quantization consistently preserves segmentation accuracy across diverse architec-
tures, making it a reliable choice for deployment. Furthermore, with appropriate
configuration, such as selecting proper quantization granularity based on the model
structure, 4-bit precision can also achieve near-lossless performance. These results
show MedQuanBench as a foundation for optimizing quantization and guiding the
development of deployment-ready, low-bit medical imaging models.

1 INTRODUCTION

Medical foundation models have demonstrated remarkable performance across various clinical tasks
such as segmentation (Isensee et al., 2021; He et al., 2021), classification (Li et al., 2023a), and
generation (Guo et al., 2025). However, growing model sizes, driven by performance demands,
combined with the expanding medical imaging datasets (Wasserthal et al., 2022; Qu et al., 2023),
create significant computational challenges. In clinical practice, hardware resources are typically
constrained, and the computational demands lead to worse inference latency and memory con-
sumption (Tang et al., 2022; Gao et al., 2022), which prohibits real-world deployment. Quantization
provides a promising approach (Frantar et al., 2023; Xiao et al., 2023) to reduce model complexity and
computational costs by representing model weights and activations with fewer bits (Dettmers et al.,
2022; Lin et al., 2024), typically converting high-precision (e.g., 32-bit floating-point) parameters
into lower-precision formats (e.g., 4-8 bit integers). This optimization significantly decreases memory
consumption, accelerates inference speed, and enhances hardware utilization without modification of
training configuration or architecture design. While large language models (LLMs) and computer
vision (Li et al., 2023b; Shang et al., 2023) have been extensively studied and exploited with low-bit
quantization, medical imaging models still rely on high-precision formats (e.g., FP16 and FP32)
(Huang et al., 2023b; Roy et al., 2023), showing a critical gap in exploring low-bit efficiency for the
medical domain. A systematic benchmark is thus essential to explore optimal quantization techniques
that can quantify trade-offs between bit-width, inference speed, memory consumption, and accuracy.

Post-training quantization (PTQ) has achieved success in large language models and natural image
tasks (Xiao et al., 2023; Zhang & Chung, 2024; Li et al., 2024a; Ashkboos et al., 2024). However,
adoption in medical imaging remains limited, motivating five unresolved challenges. First, current
SOTA quantization techniques, such as activation smoothing (Xiao et al., 2023), singular value
decomposition (SVD) (Li et al., 2024a), and rotation (Ashkboos et al., 2024), are primarily designed
and validated on transformer-based models or linear layers. While Fig. 1(a) indicates convolution
blocks dominate compute in medical models. The effectiveness of these techniques on convolutional
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Figure 1: Status of medical models. (a) Inference GFLOPs composition of representative medical
imaging architectures. Most compute sits in convolution blocks, while transformer blocks take a
smaller share. This shows CNNs still dominate practical medical models. (b) Activation behavior in
an LLM (OPT-2.7B) and in medical models. Top row shows activation distributions. For medical
models, spatial voxels are flattened along the horizontal axis. Bottom row shows log10(kurtosis)
Each dot is one unit: a channel or token for the LLM, and a channel or voxel for the medical models.
Color intensity encodes magnitude, blue is lower and red is higher. Unlike LLMs, where outliers
concentrate in a small set of channels and persist across tokens. Medical models exhibit the opposite
pattern: outliers are spatially sparse within channels.

architectures (Liu et al., 2023; Yu et al., 2023), on diverse kernel shapes (e.g., anisotropic 3D
convolutions) (Chen et al., 2021; Gao et al., 2022), and on non-GEMM operations (Gu et al., 2024)
(e.g., depth-wise convolution) remains unclear. Second, medical imaging datasets exhibit unique
activation patterns (Landman et al., 2015; Li et al., 2024b), typically characterized by spatially
localized activation outliers rather than uniform channel-wise distributions (Wasserthal et al., 2022).
Fig. 1(b) presents activation distributions (top) and log10 kurtosis (bottom) for an LLM (OPT-2.7B)
and medical models (MedFormer, SwinUNETR, UNETR). In medical models, outliers are present
across many channels with uneven intensity and are spatially localized. This is the opposite of LLMs,
where outliers concentrate in a small set of channels and persist across tokens. These differences
further indicate that PTQ methods effective on LLMs require additional validation in the medical
domain. Third, existing evaluations (Bassi et al., 2024; Huang et al., 2023a) focused on accuracy
comparisons across model architectures, are ignoring hardware deployment constraints such as
memory footprint, latency on edge devices. Fourth, as LLMs and vision transformers tolerate
aggressive quantization (INT4/INT8) (Sui et al., 2024; Xu et al., 2023), medical models face stricter
accuracy demands. Currently, no studies have systematically analyzed the trade-offs between bit-
width, task complexity, data scales, and model size. Fifth, robustness concerns encompass the
sensitivity of quantized models to individual layer components, the identification of layers most
susceptible to quantization, and the implications of these vulnerabilities in clinical applications (Liu
et al., 2024; Hu et al., 2023).

To bridge critical knowledge gaps and address the above challenges, we present MedQuanBench,
a systematic benchmark explicitly designed to evaluate quantization on CNN- and transformer-
based architectures, covering representative medical imaging tasks (e.g., organ segmentation, brain
segmentation), modalities (MRI, CT), and 2D/3D model variants. Specifically, we evaluate PTQ for
extensive medical imaging models, demonstrating that accuracy can be substantially maintained at
low precision for clinical tasks. We provide insights for clinical-relevant downstream tasks, showing
how a quantized model can enable efficient real-time inference for a practical deployment scenario.
The MedQuanBench explores accuracy-efficiency trade-offs, robustness to dataset/model-size and
distribution shifts, and hardware performance characteristics. Our main contributions specifically
address the above five critical limitations:
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1. Systematically evaluate quantization techniques on SOTA medical models: We evaluate the
efficacy of different quantization methods (e.g., smoothing, SVD, rotation) across diverse
medical model architectures to identify universal and ad hoc optimization.

2. Explore kernel and tensor compatibility: We examine challenges in applying quantization
algorithms originally designed for linear layers to 3D convolutional kernels, highlighting
compatibility limitations.

3. Analyze spatial activation variance in medical imaging: We provide detailed analyses of
spatial activation distributions and their impact on quantization accuracy, which identifies
the model components that are most sensitive to spatially-driven quantization errors.

4. Perform realistic hardware profiling: We profile inference latency, throughput, and memory
footprint across different medical imaging tasks with real hardware acceleration, offering
practical insights for medical model deployment.

5. Evaluate across scales and tasks: We conduct the first large-scale analysis of quantization
across (1) varying dataset sizes (from 100 to 10K volumes), (2) model capacities (10M to
2B parameters) (3) organ, tumor, and brain segmentation.

2 PRELIMINARIES

2.1 QUANTIZATION

Quantization compresses continuous floating-point values into discrete lower-bit integers, signif-
icantly reducing both computational complexity and memory requirements. This compression is
crucial for medical imaging applications, where efficient model deployment is essential due to limited
clinical hardware resources. In this work, we focus on symmetric uniform quantization at INT8 and
INT4. Given an input floating-point tensor X , the quantized tensor Xq is computed by:

Xq = round
(
X

S

)
, S =

max(|X|)
2N−1 − 1

(1)

Here, Xq denotes the integer-quantized representation of tensor X , and S is the corresponding
scaling factor computed from the tensor’s maximum absolute value. For integer quantization with
signed N -bit representations, the maximum quantized integer value is 2N−1 − 1. Specifically, INT8
quantization has a maximum quantized value of 127, whereas INT4 quantization has a maximum
quantized value of 7.

Quantization granularity refers to how many elements share a scaling factor and along which
dimension(s) this sharing occurs. Per-tensor quantization applies a single scaling factor across
the entire tensor. Per-channel quantization assigns individual scaling factors per output channel,
effectively capturing channel-level variations. Per-voxel quantization assigns a unique scaling factor
to each voxel, addressing spatial variations. These options are illustrated in Figure 2.

2.2 QUANTIZED OPERATION ON REAL HARDWARE

To be practical, quantization methods must be feasible to be mapped to supporting hardware. In this
paper, we primarily target the NVIDIA Blackwell GPU, which supports 8-bit and 4-bit Microscaling
(MX) data formats (Rouhani et al., 2023) in its tensor cores. At a basic level, Blackwell can efficiently
perform dot products between two scaled vectors as below:

Y = s(A)s(B)(A ·B) (2)

where A and B are 4-bit or 8-bit quantized vectors of a fixed length (32), and SA and SB are scale
factors associated with each vector. Although Blackwell GPUs are not widely available yet, we
briefly discuss how to efficiently map our quantization methods above to this hardware model.

For per-tensor quantization, the entire convolution can be done using quantized dot products and the
scaling applied afterwards.
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Figure 2: Quantization granularity. (a) Quantization schemes for linear layers: activation
per-tensor and weight per-tensor quantization (top), activation per-token and weight per-channel
quantization (bottom). Vector-wise quantization schemes (per-token, per-channel) efficiently utilize
low-bit kernels when scaling factors align with outer tensor dimensions (token dimension T and
output channel dimension Co). (b) Quantization schemes for convolutional layers: activation
per-tensor and weight per-tensor quantization (top), activation per-channel and weight per-channel
quantization (bottom). Outer tensor dimension alignment (output channel dimension Co facilitates
efficient low-bit convolutional implementations. (c) Quantization schemes for spatial dimension:
per-voxel quantization assigns unique scaling factors for each voxel. For kernel size = 1 (top), one
scaling factor per voxel is sufficient; for larger kernels (bottom, shown as 2× 2× 2), each position
within the kernel uses a separate scaling factor.

For per-channel quantization, the convolution can be broken down into scaled dot products within
each channel. For a single output voxel Yo in output channel o:

Yo =

Cin∑
i=1

(
S
(X)
i S

(W )
i

K∑
k=1

Xi,kWi,o,k

)
(3)

The above expresses the convolution as an outer summation over channels (indexed by i) and a scaled
inner dot product across all spatial dims 1 (indexed by k over the convolution window). S(X)

i and
S
(W )
i are the scale factors for channel i for the input activations and the weights. Because activations

are typically laid out with spatial dims last, the scaled dot product operates over contiguous data.

For per-voxel quantization, the convolution must be rearranged. For a single output Yo in output o:

Yo,k =

K∑
k=1

(
S
(X)
k S

(W )
k

Cin∑
i=1

Xi,kWi,o,k

)
(4)

Now the outer summation is over spatial dims in the conv window, and the scaled dot product is
across the input channels. Note that for efficiency, the activations and weights must be laid out
channels-last, which is typical. Appendix G contains run time measurements comparing activations
channels-first and channels-last.

From Equation 4, we see that per-voxel quantization is not practical for depthwise convolutions,
whose Cin is effectively 1. This would map to quantized dot products with length 1, which is not
efficient. In this paper, we use per-channel quantization for depthwise convolutions.

1The spatial dims for 3D convolutions common in medical imaging are depth, height, and width.
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3 MEDQUANBENCH PROTOCOL

3.1 DATASETS AND QUANTIZATION METHODS

Datasets. MedQuanBench covers four representative datasets to probe quantization under different
clinical conditions. BTCV (Landman et al., 2015) offers abdominal CT for multi-organ segmentation
and serves as a standard robustness target. TotalSegmentator V2 (Wasserthal et al., 2023) provides
whole-body CT with 117 structures for broad anatomical coverage. AbdomenAtlas 1.1 (Li et al.,
2025) scales to thousands of abdominal CT volumes for dataset-size analysis. Whole Brain (Huo
et al., 2019; Yu et al., 2023) contributes T1-weighted MRI with fine-grained neuroanatomy to stress
small-structure segmentation. Model specifics, data splits, preprocessing, and augmentation are
documented in the Appendix A.

Quantization Methods. Core results compare three granularity schemes across models and bit
widths: per-tensor (one scale per layer), per channel/token (convolutions per-channel, linears per-
token, weights per-channel), and adaptive stratification (per-voxel on 1 × 1 × 1 convolutions,
per-channel elsewhere). To examine method gains beyond granularity, activation smoothing (Xiao
et al., 2023), SVD-based quantization (Li et al., 2024a), and rotation-based quantization (Ashkboos
et al., 2024) are applied to the most sensitive layer identified in Sec. 4.3. Detailed configurations are
provided in the Appendix B.

3.2 EVALUATION PROTOCOLS – ARCHITECTURES, FRAMEWORKS, METRICS

In MedQuanBench, a backbone denotes the high-level family (CNN or Hybrid), an architecture refers
to the specific design and structure of a segmentation model, while a framework denotes a shared
codebase or implementation environment supporting multiple model architectures. We evaluate
representative segmentation architectures–including nnUNet (Isensee et al., 2021) and STU-Net
(Huang et al., 2023b) within the nnUNet framework; UNesT (Yu et al., 2023), SwinUNETR (Tang
et al., 2022), and UNETR (Hatamizadeh et al., 2022) implemented via the MONAI framework; and
MedFormer (Gao et al., 2022). Segmentation performance is assessed through two widely used
evaluation metrics: the Dice Similarity Coefficient (DSC), which measures overall segmentation
accuracy, and the Normalized Surface Distance (NSD), which evaluates boundary alignment precision.
This evaluation protocol provides consistent comparisons across models and frameworks.

3.3 SCALING PROTOCOLS – MODEL AND DATASET SIZE

In this study, we investigate the impact of model scale on quantization sensitivity and segmentation
performance, covering a parameter range from 10M to 2B. The proposed MedQuantBench includes
lightweight architectures such as nnUNet (Isensee et al., 2024) and ST-UNet-small (Huang et al.,
2023b), a hybrid mid-sized model MedFormer (Gao et al., 2022), as well as multiple scales of
SwinUNETR (Tang et al., 2022). This evaluation focuses on how quantization affects model capacity,
particularly analyzing the trade-offs between accuracy and scaling-related factors. Overall, this work
provides insights of model scale, dataset size, and robustness to low-precision weights and activations.

4 CORE RESULTS

4.1 BENCHMARK RESULTS ACROSS BACKBONES AND QUANTIZATION GRANULARITIES

Table 1 summarizes quantization results across backbone and quantization granularity in MedQuan-
Bench on BTCV. We compare FP32, W8A8, and W4A4 under three granularities: per-channel/token
(conv: per-channel, linear: per-token, weights: per-channel), per-tensor (activations and weights
share one scale per layer), and adaptive stratification (per-voxel for 1 × 1 × 1 conv, per-channel
elsewhere). INT8 remains close to FP32 for both CNN and Hybrid backbones, while INT4 depends
on the different backbone and on the chosen granularity. Additional architectures see Appendix E.1

CNNs Are Inherently More Quantization-Robust Than Hybrids: Hybrid models such as Med-
Former and UNETR are highly sensitive to low-bit quantization. Under per-tensor INT4, these
models show catastrophic degradation, with MedFormer’s DSC dropping from 0.882 (FP32) to 0.000
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Table 1: Quantization results across backbones and granularities in MedQuanBench on BTCV
We evaluate multiple 3D medical segmentation models under FP32, INT8, and INT4 post-training
quantization. INT8 quantization consistently preserves full-precision accuracy. In contrast, INT4
performance varies depending on model backbones and quantization granularity: hybrid models are
particularly sensitive under per-tensor quantization, while CNNs degrade more gradually. Reported
DSC and NSD values are shown along with relative drop ( ↓∆%) from the FP32 baseline, highlighting
the impact of precision and granularity choices.

Backbone Architectures Precision Quant-Granularity DSC ( ↓∆%) NSD ( ↓∆%)

CNN

nnU-Net (2021)

FP32 – 0.872 (–) 0.888 (–)

INT W8A8
Per-channel 0.870 (0.2%) 0.887 (0.1%)
Per-tensor 0.870 (0.2%) 0.888 (0)
Adaptive stratification 0.870 (0.2%) 0.887 (0.1%)

INT W4A4
Per-channel 0.387 (55.6%) 0.354 (60.1%)
Per-tensor 0.170 (80.5%) 0.169 (80.9%)
Adaptive stratification 0.393 (54.9%) 0.358 (59.7%)

STU-Net-B (2023b)

FP32 – 0.881 (–) 0.903 (–)

INT W8A8
Per-channel 0.881 (0) 0.901 (0.2%)
Per-tensor 0.881 (0) 0.902 (0.1%)
Adaptive stratification 0.881 (0) 0.902 (0.1%)

INT W4A4
Per-channel 0.647 (26.6%) 0.619 (31.5%)
Per-tensor 0.654 (25.8%) 0.636 (29.6%)
Adaptive stratification 0.829 (5.9%) 0.833 (7.8%)

Hybrid

UNETR (2022)

FP32 – 0.824 (–) 0.714 (–)

INT W8A8
Per-channel/token 0.824 (0) 0.714 (0)
Per-tensor 0.802 (2.7%) 0.669 (6.3%)
Adaptive stratification 0.809 (1.8%) 0.676 (5.3%)

INT W4A4
Per-channel/token 0.553 (35.3%) 0.366 (48.7%)
Per-tensor 0.004 (99.5%) 0.004 (94.4%)
Adaptive stratification 0.590 (28.4%) 0.386 (45.9%)

MedFormer (2022)

FP32 – 0.882 (–) 0.826 (–)

INT W8A8
Per-channel/token 0.882 (0) 0.826 (0)
Per-tensor 0.880 (0.2%) 0.823 (0.3%)
Adaptive stratification 0.882 (0) 0.826 (0)

INT W4A4
Per-channel/token 0.654 (25.9%) 0.462 (44.1%)
Per-tensor 0.000 (100%) 0.000 (100%)
Adaptive stratification 0.719 (18.5%) 0.610 (26.3%)

and NSD approaching zero. In contrast, architectures with a CNN backbone, such as nnU-Net and
STU-Net degrade more gradually under the same conditions. This difference likely stems from the
reliance of hybrid models on linear attention and normalization layers, whose activations have high
spatial variance and are difficult to capture with a single global scale.

Finer granularity significantly improves INT4 performance. Quantization granularity has a
substantial impact on segmentation accuracy. Moving from per-tensor to per-channel or per-token
scaling consistently mitigates performance loss under W4A4. For example, architecture UNETR
recover more than 20% DSC with per-token scaling. Applying per-voxel scaling to 1 × 1 × 1
convolutions and per-channel elsewhere further enhances robustness. With this strategy, architecture
MedFormer reaches 0.719 DSC and architecture UNETR reaches 0.590. These results show that finer
granularity is essential for maintaining segmentation quality under low-bit settings.

4.2 BENCHMARK RESULTS ACROSS MODEL SCALES AND DATASET SCALES

Table 2 shows MedQuanBench results on BTCV with SwinUNETR models of increasing size. The
degradation observed with W4A4 quantization does not follow a clear monotonic relationship with
parameter count. More detailed analyses, including results from CNN backbones, are provided in the
Appendix E.2. Table 3 summarizes MedQuanBench results on BTCV and AbdomenAtlas 1.1, two
abdominal CT datasets with different dataset sizes and label complexities. BTCV includes 50 scans
with 13 annotated abdominal structures, while AbdomenAtlas 1.1 contains over 9,000 scans and 25
labels.
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Table 2: Quantization results across model scales in MedQuanBench on BTCV. We evaluate
SwinUNETR models with increasing parameter sizes (Tiny, Small, Base) to analyze how model scale
affects quantization robustness. INT8 quantization maintains segmentation performance close to
FP32 regardless of model size. However, INT4 sensitivity shows no clear scaling trend: larger models
are not strictly more or less robust. Instead, quantization granularity remains a dominant factor, as
adaptive stratification consistently improves performance.

Architecture Param Precision Quant-Granularity DSC ( ↓∆%) NSD ( ↓∆%)

SwinUNETR-T (2022) 4.1 M

FP32 – 0.684 (–) 0.586 (–)

INT W8A8
Per-channel/token 0.682 (0.3%) 0.583 (0.5%)
Per-tensor 0.679 (0.7%) 0.578 (1.4%)
Adaptive stratification 0.683 (0.1%) 0.584 (0.3%)

INT W4A4
Per-channel/token 0.328 (52.0%) 0.154 (73.7%)
Per-tensor 0.019 (97.2%) 0.010 (98.3%)
Adaptive stratification 0.347 (49.2%) 0.169 (71.2%)

SwinUNETR-S (2022) 15.7 M

FP32 – 0.788 (–) 0.713 (–)

INT W8A8
Per-channel/token 0.787 (0.1%) 0.712 (0.1%)
Per-tensor 0.783 (0.6%) 0.704 (1.2%)
Adaptive stratification 0.787 (0.1%) 0.713 (0)

INT W4A4
Per-channel/token 0.450 (42.9%) 0.324 (54.5%)
Per-tensor 0.012 (98.5%) 0.011 (98.4%)
Adaptive stratification 0.494 (37.3%) 0.371 (48.0%)

SwinUNETR-B (2022) 62.2 M

FP32 – 0.804 (–) 0.746 (–)

INT W8A8
Per-channel/token 0.803 (0.1%) 0.744 (0.3%)
Per-tensor 0.802 (0.2%) 0.740 (0.8%)
Adaptive stratification 0.804 (0) 0.745 (0.1%)

INT W4A4
Per-channel/token 0.380 (52.7%) 0.286 (61.7%)
Per-tensor 0.002 (99.8%) 0.004 (99.5%)
Adaptive stratification 0.378 (53.0%) 0.289 (61.2%)

Larger datasets increase sensitivity to INT4 quantization. SwinUNETR shows a 52.7% DSC drop
on BTCV under per-channel quantization, which increases to 77.1% on AbdomenAtlas 1.1. This
trend indicates that larger-scale and more fine-grained segmentation tasks amplify quantization errors,
likely due to higher activation variability and tighter numerical precision requirements. Despite these
challenges, W8A8 quantization consistently maintains near full-precision accuracy across datasets,
demonstrating its reliability for clinical deployment. Additional experiments on other imaging
modalities (e.g., MRI) and larger-scale segmentation tasks (e.g., WholeBrain with 133 anatomical
structures) are provided in the Appendix E.3.

4.3 LAYER-WISE QUANTIZATION SENSITIVITY

Quantization sensitivity varies widely across layers, and identifying the most vulnerable components
is essential for reliable low-bit deployment. MedFormer was selected as the primary achitecture for
the sensitivity analysis in MedQuanBench to identify the components most susceptible to quantization.
This choice is motivated by MedFormer’s hybrid design, which integrates convolutional kernels of
sizes 1×3×3 and 1×1×1, along with transformer blocks employing bi-directional attention enhanced
by depth-wise convolutional kernels. Its strong out-of-distribution performance on the JHH dataset
reported by the Touchstone benchmark (Bassi et al., 2024) further supports its representativeness.
Additional layer-wise sensitivity analysis is provided in Appendix F.

Identifying Sensitive Layers. Starting from a standard per-channel (convolution) and per-token
(linear) quantization granularity, we gradually remove quantization from different layer types. As
shown in Figure 3, dequantizing 1 × 3 × 3 convolutions leads to the largest accuracy recovery
(mDSC: 0.65 → 0.82), indicating their high sensitivity. Further layer-by-layer analysis reveals that
the second 1× 3× 3 convolution is the primary bottleneck, with the most significant performance
improvement after dequantization. This sensitivity can be explained by its structural position and
functional role. This layer lies at a crucial junction between local convolutional features and global
Transformer attention, making it particularly vulnerable to INT4 quantization. Its activations often
show high dynamic range around organ boundaries, which low-bit precision struggles to represent
accurately. The anisotropic 1×3×3 kernel also lacks depth context, allowing quantization noise to
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Table 3: Quantization results across dataset scales in MedQuanBench. We evaluate Swin-
UNETR’s quantization robustness across datasets with different sizes and label complexities. BTCV
includes 50 CT volumes with 13 annotated abdominal structures, while AbdomenAtlas 1.1 contains
9,262 CT volumes with 25 anatomical labels. As dataset size and structural diversity increase, the
model becomes more sensitive to INT4 quantization. For instance, the DSC drop under per-channel
quantization rises from 52.7% on BTCV to 77.1% on AbdomenAtlas 1.1. These results demonstrate
that scaling dataset size and label granularity introduce additional challenges for low-bit deployment.

Architecture Dataset Precision Quant-Granularity DSC ( ↓∆%) NSD ( ↓∆%)

SwinUNETR (2022)

AbdomenAtlas 1.1

FP32 – 0.780 (–) 0.742 (–)

INT W8A8
Per-channel/token 0.779 (0.1%) 0.741 (0.1%)
Per-tensor 0.773 (0.9%) 0.731 (1.5%)
Adaptive stratification 0.779 (0.1%) 0.741 (0.1%)

INT W4A4
Per-channel/token 0.179 (77.1%) 0.112 (84.9%)
Per-tensor 0.006 (99.2%) 0.004 (99.5%)
Adaptive stratification 0.194 (75.1%) 0.119 (83.9%)

BTCV

FP32 – 0.804 (–) 0.746 (–)

INT W8A8
Per-channel/token 0.803 (0.1%) 0.744 (0.3%)
Per-tensor 0.802 (0.2%) 0.740 (0.8%)
Adaptive stratification 0.804 (0) 0.745 (0.1%)

INT W4A4
Per-channel/token 0.380 (52.7%) 0.286 (61.7%)
Per-tensor 0.002 (99.8%) 0.004 (99.5%)
Adaptive stratification 0.378 (53.0%) 0.289 (61.2%)

Figure 3: Layer-wise sensitivity analysis via incremental dequantization. Starting with all layers
quantized to INT4, we sequentially remove quantization by layer type. Dequantizing 1 × 3 × 3
convolutions recovers most of the mDSC, identifying them as highly sensitive. Further per-layer
analysis reveals that the second 1× 3× 3 convolution is the most critical layer, yielding the largest
performance gain when dequantized.

persist. Because its outputs directly feed the attention blocks, even small errors can distort attention
weights and propagate through the network, degrading segmentation quality.

Limited Effect of Existing Methods. Applying advanced PTQ methods such as activation smoothing,
SVD-based, and rotation quantization yields only marginal improvements, as summarized in Table 4.
This limited gain reflects a mismatch between medical activation characteristics and the assumptions
of existing methods, which are built around LLM-style activation patterns where outliers cluster in a
few channels and remain stable across tokens. (See activation after smoothing in Appendix B).

Architecture-Level Optimization. To address the identified bottleneck, we replace the most sensitive
1×3×3 convolution with a 1×1×1 layer, which allows finer-grained quantization. This lightweight
modification preserves FP32 accuracy and improves INT4 performance from 0.654 to 0.721 under
standard granularity, and up to 0.847 with adaptive stratification, approaching full-precision accuracy
while remaining compatible with deployment pipelines. In addition, the 1 × 1 × 1 design can be
directly mapped to efficient GEMM kernels, whereas optimized 4-bit 3D convolution kernels are still
limited. This makes the redesigned architecture not only more quantization-friendly but also more
practical for real-world deployment.
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Table 4: Quantization performance on sensitive layers. We compare advanced quantization
methods applied to a hybrid model with sensitive layers. Methods like activation smoothing, SVD,
and rotation show limited gains under INT4. To improve robustness, we re-design the architecture by
replacing the sensitive 1× 3× 3 convolution with a 1× 1× 1 layer, enabling finer granularity (e.g.,
per-voxel). This modification preserves FP32 accuracy and significantly improves INT4 performance.

Method Precision Quant-Granularity DSC NSD

Baseline FP32 – 0.882 0.826
INT4 Quantized (All layers) INT W4A4 per-channel/token 0.654 0.462

Activation Smoothing INT W4A4 per-channel/token 0.648 0.448
Activation Smoothing+SVD INT W4A4 per-channel/token 0.569 0.358
Rotation INT W4A4 per-channel/token 0.621 0.395

Architecture Re-design
FP32 – 0.881 0.820

INT W4A4 per-channel/token 0.721 0.579
INT W4A4 Adaptive stratification 0.847 0.732

4.4 HARDWARE PROFILING

While MedQuanBench primarily focuses on benchmarking low-bit quantization performance, it
also provides practical deployment insights by profiling representative models on modern GPUs.
Table 5 summarizes real INT8 deployment results on NVIDIA Ada architecture using TensorRT.
Across different datasets and architectures, INT8 quantization consistently reduces model size by
roughly 3.2∼3.8× and accelerates inference by about 2.1∼2.7×, while maintaining segmentation
performance nearly identical to FP32. These results confirm that 8-bit quantization is a stable and
deployment-ready solution for medical imaging models in clinical settings. As medical segmentation
models and datasets continue to grow in size and complexity, reducing model size and latency becomes
increasingly important for mitigating memory and throughput bottlenecks in clinical deployment.

Table 5: Quantization results on modern GPUs. INT8 deployment performance of representative
medical segmentation models on NVIDIA Ada GPUs using TensorRT. Compared with FP32, INT8
consistently reduces model size by up to 3.8× and accelerates inference by up to 2.7× while
maintaining accuracy, demonstrating its readiness for clinical deployment. As model and dataset
scales increase, such compression is crucial for practical applications. Emerging platforms such as
NVIDIA Blackwell, which provide native sub-8-bit support (e.g., 4 bit), enable efficiency gains.

Dataset Architecture
Model Size (MB) Latency (ms)

FP32 INT W8A8
(Reduction Ratio)

FP32 INT W8A8
(Latency Gain)

BTCV U-Net (2015) 23.11 6.61 (3.50×) 2.62 1.05 (2.50×)
TransUNet (2021) 351.85 91.90 (3.83×) 4.09 1.74 (2.35×)

Whole Brain UNesT (2023) 349.41 96.72 (3.61×) 5.59 2.72 (2.06×)

TotalSegmentator V2

STU-Net-S (2023b) 55.7 20.5 (2.72×) 2.6 1.0 (2.60×)
STU-Net-H (2023b) 5,559.4 1,519.8 (3.66×) 98.5 30.2 (3.26×)
nnU-Net (2021) 107.84 33.97 (3.17×) 2.99 1.25 (2.39×)
SwinUNETR (2021) 247.96 70.18 (3.53×) 9.85 3.59 (2.74×)
SegResNet (2019) 170.44 50.29 (3.39×) 5.14 2.06 (2.49×)
VISTA3D (2024) 264.57 71.18 (3.72×) 4.59 1.93 (2.38×)

5 CONCLUSION

Quantization presents a promising path for improving the deployment of medical AI models in
resource-constrained clinical environments, such as edge GPUs, hospital CPUs, and remote healthcare
systems. By reducing memory footprint and enhancing computational efficiency, quantized models
facilitate time-sensitive medical tasks. MedQuanBench reveals that while 8-bit quantization is
generally robust and 4-bit precision demands careful granularity control to preserve accuracy. Our
sensitivity analysis further identifies architectural components most vulnerable to quantization,
providing actionable insights for balancing precision, efficiency, and reliability in deployment.
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All authors of this work have read and commit to adhering to the ICLR Code of Ethics. We provide
the potential impact and limitations on clinical applications below.

Impact and Limitation on Clinical Application. In real-world clinical settings, efficient and
reliable AI inference is critical. Beyond edge devices, the quantization techniques have broader
impacts on remote healthcare environments (e.g., cloud services, telesurgery) where infrastructure
and communication capabilities are further limited. However, quantization methods inevitably
involve trade-offs with accuracy, reliability, and robustness. Our benchmark results reveal the varying
influences of quantization across different model components and layer choices. These insights can
enable practitioners to make informed decisions: whether to prioritize accuracy, maximize efficiency,
or make a balance between the two, depends on specific clinical requirements and deployment.

7 REPRODUCIBILITY

To ensure reproducibility, we will provide a full open-source model and code shown in the manuscript.
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Appendix
A DATASET DESCRIPTIONS

MedQuanBench incorporates four carefully selected datasets, consisting of diverse imaging modal-
ities, anatomical regions, and annotation granularities, to evaluate quantization techniques across
realistic medical scenarios.

AbdomenAtlas 1.1(Li et al., 2025) comprises 9,262 abdominal CT scans collected globally from 238
hospitals, annotated at voxel-level for 25 abdominal organs. It is used as a dataset scaling analysis
resource, ensuring quantization technology efficacy on diverse clinical settings. (see Table 6)

BTCV (Beyond the Cranial Vault) (Landman et al., 2015; Tang et al., 2021) includes 50 abdominal
CT volumes annotated for 13 key organ and vessel structures. 30 scans are exploited for model
training and validation, while the remaining 20 scans serve as testing cases in MedQuanBench. The
dataset originates from clinical research studies at Vanderbilt University Medical Center on healthy
anatomies, providing a high-quality dataset to test model performance on a well-defined segmentation
task.

TotalSegmentator V2 (Wasserthal et al., 2022) provides extensive anatomical coverage with 1,228
full-body CT scans annotated for 117 anatomical structures (brain, organs, bones, vessels). Scans
originate from multiple institutes within the University Hospital Basel network. MedQuanBench
utilizes a distinct subset ( 743 scans) exclusively for evaluation, representing a rigorous test of model
robustness and generalization to unseen clinical populations and imaging conditions.

Whole Brain Segmentation Dataset (Huo et al., 2019; Yu et al., 2023) consists of MRI T1-weighted
volumes acquired from multiple institutions, structured specifically for detailed neuroanatomical
segmentation. It includes a primary manually annotated training set (50 MRI scans from the OASIS
dataset, labeled with 133 brain regions) and two distinct evaluation sets: the high-resolution Colin27
scan (labeled with 130 regions) and 13 pediatric scans from the CANDI dataset (ages 5-15, labeled
with 130 regions). Additionally, MedQuanBench incorporates an auxiliary dataset of 4,859 MRI scans
automatically segmented using multi-atlas techniques for large-scale pretraining before fine-tuning
with manually labeled OASIS data. This design enables assessment across age groups, resolutions,
and labeling granularities, testing quantization robustness in fine-grained neuro-imaging tasks. (see
Table 7)
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Table 6: Public Datasets Comprising AbdomenAtlas 1.1. Constructed from 17 publicly available
datasets (items 1-17), it comprises 9,262 abdominal CT volumes with 25 annotated classes per
volume. Due to overlapping volumes among sources, the total count does not equal the sum of
individual datasets. Its diversity–spanning 88 centers across 9 countries–makes it ideal for evaluating
quantization robustness in varied clinical settings.

Dataset # of
classes

# of
volumes

# of
centers

source
countries license

1. Pancreas-CT (2015) 1 42 1 US CC BY 3.0

2. LiTS (2019) 1 131 7 DE, NL, CA,
FR, IL CC BY-SA 4.0

3. KiTS (2020) 1 489 1 US CC BY-NC-SA 4.0

4. AbdomenCT-1K (2021) 4 1,050 12 DE, NL, CA,
FR, IL, US, CN CC BY-NC-SA

5. CT-ORG (2020) 5 140 8 DE, NL, CA,
FR, IL, US CC BY 3.0

6. CHAOS (2018) 4 20 1 TR CC BY-SA 4.0
7-12. MSD CT Tasks (2021) 9 945 1 US CC BY-SA 4.0
13. BTCV (2015) 12 50 1 US CC BY 4.0
14. AMOS22 (2022) 15 200 2 CN CC BY-NC-SA
15. WORD (2021) 16 120 1 CN GNU GPL 3.0
16. FLARE’23 13 4,100 30 - CC BY-NC-ND 4.0
17. Abdominal Trauma Det (2023) 0 4714 23 - -

18. AbdomenAtlas 1.1 (2025) 25 9,262 88
US, DE, NL,
FR, IL, CN,
CA, TR, CH

-

US: United States DE: Germany NL: Netherlands CA: Canada FR: France IL: Israel
CN: China TR: Turkey CH: Switzerland

Table 7: Public Neuroimaging Datasets Comprising WholeBrain. WholeBrain aggregates
4,859 brain MRI volumes from eight publicly available, multi-center datasets. By capturing diverse
neuroanatomical segmentation scenarios, it complements abdominal CT benchmarks and strengthens
quantization evaluation across distinct clinical modalities.

Study Name Website # of
Volumes

Attention Deficit Hyperactivity Disorder (ADHD200) fcon_1000.projects.nitrc.org/indi/adhd200 950
Autism Brain Imaging Data Exchange (ABIDE) fcon_1000.projects.nitrc.org/indi/abide 563
Baltimore Longitudinal Study of Aging (BLSA) www.blsa.nih.gov 614
Cutting Pediatrics vkc.mc.vanderbilt.edu/ebrl 586
Information Extraction from Images (IXI) www.nitrc.org/projects/ixi_dataset 541
Nathan Kline Institute Rockland (NKI_rockland) fcon_1000.projects.nitrc.org/indi/enhanced 141
Open Access Series of Imaging Studies (OASIS) www.oasis-brains.org 312
1000 Functional Connectome (fcon_1000) fcon_1000.projects.nitrc.org 1102

WholeBrain (Total) — 4859
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Figure 4: Visual Comparison of Quantization Results on BTCV and WholeBrain Datasets. Left
two columns: STU-Net-L segmentation results on BTCV dataset at different precision levels (INT
W8A8 and INT W4A4) and quantization granularities (per-channel, per-tensor, adaptive stratifica-
tion). Right two columns: UNesT segmentation predictions on WholeBrain dataset under the same
quantization settings. 8-bit quantization results closely align with the FP32 baseline, demonstrating
minimal accuracy loss. However, 4-bit quantization shows a notable variation in performance, with
higher quantization granularity (e.g., adaptive stratification) yielding better segmentation quality
compared to lower granularity methods (e.g., per-tensor).
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B QUANTIZATION METHODS

MedQuanBench evaluates three representative quantization methods–smoothing, SVD-based decom-
position, and rotation–each targeting distinct quantization challenges through different approaches.

Smoothing (Xiao et al., 2023) addresses the challenge of activation outliers, which can hinder
quantization by distorting numeric ranges. This method redistributes activation magnitudes between
activations and weights using complementary scaling factors. Specifically, extreme values are
scaled downward, while corresponding weights are scaled upward, preserving the original model
computation. By balancing activation distributions, smoothing reduces quantization errors caused by
outliers.

SVD-based Low-Rank Decomposition (Li et al., 2024a) targets outlier values within weight
matrices. The method factorizes weights into low-rank approximations, separating significant outlier
components from the rest. A small set of high-magnitude components is retained at higher precision
or handled separately, while the remaining weights are quantized directly. This decomposition isolates
problematic weight values, making the overall weight quantization more uniform and less error-prone.

Rotation-based Transform (Ashkboos et al., 2024) focuses on balancing uneven value distributions
in activations or weights. It applies an orthogonal transformation (rotation) to redistribute values
across multiple dimensions. The rotated representation facilitates efficient low-bit quantization by
spreading large outliers more evenly. After quantization, an inverse rotation restores the original
computational form, ensuring mathematical equivalence to the original model computation.

Figure 5: Activation distribution before and after smoothing on a representative medical
segmentation model layer. The two subplots visualize the absolute value of input activations to
a quantization-sensitive layer, arranged by channel (x-axis) and spatial position (y-axis). The left
plot shows the distribution before smoothing, characterized by sharp outliers within many channels.
The right plot shows the result after smoothing using α = 0.5, where activation magnitudes are
reduced. While prior works show that outliers persistently dominate specific channels (Xiao et al.,
2023), medical models display a different pattern: outliers are unevenly distributed within each
channel, rather than fixed across all spatial positions or tokens. This structural discrepancy suggests
that channel-wise smoothing alone is insufficient for handling activation outliers in medical models.
Instead, outliers frequently manifest across channels at specific spatial sites, limiting the effectiveness
of conventional smoothing and highlighting the need for finer-grained or cross-channel quantization
strategies.
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C KURTOSIS AND OUTLIERS

Kurtosis (κ) is the standardized fourth central moment of a distribution, defined mathematically as

κ = E

[(
X − µ

σ

)4
]
, (5)

where X is a random variable, µ is its mean, and σ its standard deviation. This metric quantifies
the tailedness of a distribution, indicating how heavy or light the tails are compared to a normal
distribution (which has κ = 3). High kurtosis values show the presence of extreme outliers within the
distribution. Empirical observations in medical imaging models show greater kurtosis within channels
than across channels. This suggests that extreme activation outliers occur within individual channels
rather than uniformly across channels. This result highlights potential limitations of channel-wise
normalization or per-channel quantization strategies for medical models. On the contrary, across-
channel kurtosis tends to be lower, which indicates more stable distributions across the channel
dimension at each spatial location. This observation motivates the use of per-voxel quantization,
which assigns a single scaling factor to all channels at each spatial position. Thus, it can better align
with the observed activation distributions. However, this approach can introduce large computational
overhead due to the large number of required scaling factors, especially given that the spatial
dimensions in medical imaging models are typically larger than the number of channels. As a result,
the choice between per-channel and per-voxel quantization strategies involves a fundamental trade-off
between preserving accuracy and maintaining computational efficiency.

D QUANTIZATION: RELATED WORKS

Model quantization is an emerging technique for accelerating and deploying AI models on certain
hardware, particularly in LLM, computer vision, and recently, medical imaging domains. Quantiza-
tion methods are broadly categorized into Quantization-Aware Training (QAT) and Post-Training
Quantization (PTQ). QAT includes a low-precision or mix-precision simulation during training, which
enables models to align quantization-induced bias via methods like Straight-Through Estimators
(STE) (Yin et al., 2019) or differentiable quantization algorithm (Zhou et al., 2016). While effective,
QAT demands access to full training datasets, which is often limited and unexplored in medical
imaging due to data challenges (Price & Cohen, 2019) and the scale of datasets like huge volumes set
AbdomenAtlas (Qu et al., 2023). In addition, PTQ, requires no retraining or uses minimal unlabeled
calibration data to adjust pre-trained models, making it more capable for clinical practice. Recent
works like AdaRound (Nagel et al., 2020) and BRECQ (Li et al., 2021) have PTQ for certain layers
by optimizing weight rounding and layer-wise dependencies, while methods such as PTQ4ViT (Yuan
et al., 2022) can address challenges in quantizing vision transformers (ViTs), such as post-softmax
distribution skew and activation outliers. However, existing PTQ approaches are only fake quanti-
zation, which simulates low-precision computation during inference but maintains high-precision
weights and activations in memory, yielding no real reductions in model size or latency (Gholami
et al., 2022).

In medical imaging, where 3D segmentation models such as U-Net (Ronneberger et al., 2015), Swin-
UNETR (Hatamizadeh et al., 2021), and STU-Net (Huang et al., 2023b) demand high computational
resources, the gap between simulated and real quantization efficiency becomes critical. Prior efforts
have been made to balance accuracy preservation with actual deployment gains. For instance, fake
quantization of ViTs in PTQ4SAM (Lv et al., 2024) improved attention map quantization but failed
to reduce memory footprint. This limitation is even intense by the growing scale of medical datasets
(e.g., TotalSegmentator V2 (Wasserthal et al., 2023) with 117 labels) and models, where large-scale
architectures like VISTA3D (He et al., 2024) require efficient inference speed and memory footprint.
Recent frameworks like TensorRT offer promise by enabling hardware-accelerated real quantization,
converting models to INT8 precision with true memory and latency savings. However, systematic
exploration of real PTQ applicability to diverse medical segmentation architectures remains limited,
which leaves a critical need for frameworks that bridge the divide between theoretical quantization
benefits and clinical utility.

In this work, we explore three representative quantization techniques–activation smoothing (Xiao
et al., 2023), singular value decomposition (SVD)-based quantization (Li et al., 2024a), and rotation
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quantization (Ashkboos et al., 2024)–as initial attempts to quantify their effectiveness on medical
models, particularly focusing on layers identified as sensitive to quantization-induced errors. Specifi-
cally, we adopt an activation smoothing factor of α = 0.5 to balance the redistribution of extreme
activations between activations and weights. For SVD-based quantization, we utilize a low-rank
approximation with rank set to 4, isolating significant weight outliers to enhance quantization stability.
Additionally, rotation quantization is implemented via a Hadamard matrix of order 32, matching the
input channel dimension of the quantization-sensitive layer.
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E ADDITIONAL ANALYSIS OF BENCHMARK EXPERIMENTS

E.1 QUANTIZATION RESULTS OF DIFFERENT BACKBONES

Table 8: Quantization results across backbones and granularities in MedQuanBench on BTCV
FP32, INT8, and INT4 evaluated under per-tensor, per-channel/token, and adaptive stratification
INT8 is close to FP32 across models. INT4 varies with backbone and granularity, CNNs degrade
more gradually than Hybrids, and finer granularity improves robustness. Cells report DSC/NSD with
relative drop ( ↓∆%) vs FP32.

Backbone Architectures Precision Quant-Granularity DSC ( ↓∆%) NSD ( ↓∆%)

CNN

nnU-Net (2021)

FP32 – 0.872 (–) 0.888 (–)

INT W8A8
Per-channel 0.870 (0.2%) 0.887 (0.1%)
Per-tensor 0.870 (0.2%) 0.888 (0)
Adaptive stratification 0.870 (0.2%) 0.887 (0.1%)

INT W4A4
Per-channel 0.387 (55.6%) 0.354 (60.1%)
Per-tensor 0.170 (80.5%) 0.169 (80.9%)
Adaptive stratification 0.393 (54.9%) 0.358 (59.7%)

STU-Net-B (2023b)

FP32 – 0.881 (–) 0.903 (–)

INT W8A8
Per-channel 0.881 (0) 0.901 (0.2%)
Per-tensor 0.881 (0) 0.902 (0.1%)
Adaptive stratification 0.881 (0) 0.902 (0.1%)

INT W4A4
Per-channel 0.647 (26.6%) 0.619 (31.5%)
Per-tensor 0.654 (25.8%) 0.636 (29.6%)
Adaptive stratification 0.829 (5.9%) 0.833 (7.8%)

Hybrid

SwinUNETR (2022)

FP32 – 0.849 (–) 0.760 (–)

INT W8A8
Per-channel/token 0.849 (0) 0.761 (1% ↑)
Per-tensor 0.849 (0) 0.761 (1% ↑)
Adaptive stratification 0.849 (0) 0.761 (1% ↑)

INT W4A4
Per-channel/token 0.565 (33.5%) 0.446 (41.3%)
Per-tensor 0.059 (93.1%) 0.054 (92.9%)
Adaptive stratification 0.571 (32.7%) 0.447 (41.2%)

UNETR (2022)

FP32 – 0.824 (–) 0.714 (–)

INT W8A8
Per-channel/token 0.824 (0) 0.714 (0)
Per-tensor 0.802 (2.7%) 0.669 (6.3%)
Adaptive stratification 0.809 (1.8%) 0.676 (5.3%)

INT W4A4
Per-channel/token 0.553 (35.3%) 0.366 (48.7%)
Per-tensor 0.004 (99.5%) 0.004 (94.4%)
Adaptive stratification 0.590 (28.4%) 0.386 (45.9%)

MedFormer (2022)

FP32 – 0.882 (–) 0.826 (–)

INT W8A8
Per-channel/token 0.882 (0) 0.826 (0)
Per-tensor 0.880 (0.2%) 0.823 (0.3%)
Adaptive stratification 0.882 (0) 0.826 (0)

INT W4A4
Per-channel/token 0.654 (25.9%) 0.462 (44.1%)
Per-tensor 0.000 (100%) 0.000 (100%)
Adaptive stratification 0.719 (18.5%) 0.610 (26.3%)

MedSam2 (2025)

FP32 – 0.928 (–) 0.886 (–)

INT W8A8
Per-channel/token 0.926 (0.2%) 0.877 (1.0%)
Adaptive stratification 0.924 (0.4%) 0.873 (1.5%)
Per-tensor 0.921 (0.8%) 0.867 (2.1%)

INT W4A4
Per-channel/token 0.011 (98.8%) 0.003 (99.7%)
Adaptive stratification 0.010 (98.9%) 0.003 (99.7%)
Per-tensor 0.026 (97.2%) 0.067 (92.4%)
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E.2 QUANTIZATION RESULTS UNDER MODEL SCALING

Table 9: Quantization results across model scales on BTCV. We evaluate STU-Net
(Base/Large/Huge) and SwinUNETR (Tiny/Small/Base) models with increasing parameter sizes to
assess whether model scale influences quantization robustness. Across all models, INT8 quantization
maintains segmentation performance nearly identical to the FP32 baseline. However, the sensitivity
to INT4 quantization does not show a consistent trend with model size: larger models are not strictly
more or less robust. Instead, quantization granularity emerges as a more reliable factor, as adaptive
stratification consistently improves performance over lower-granularity schemes, highlighting its
importance in achieving accurate low-bit deployment in medical imaging.

Framework Architecture Backbone Param Precision Quant-Granularity DSC ( ↓∆%) NSD ( ↓∆%)

nnUNet

STU-Net-B (2023b) CNN 58.3 M

FP32 – 0.881 (–) 0.903 (–)

INT W8A8
Per-channel 0.881 (0) 0.901 (0.2%))
Per-tensor 0.881 (0) 0.902 (0.1%)
Adaptive stratification 0.881 (0) 0.902 (0.1%)

INT W4A4
Per-channel 0.647 (26.6%) 0.619 (31.5%)
Per-tensor 0.654 (25.8%) 0.636 (29.6%)
Adaptive stratification 0.829 (5.9%) 0.833 (7.8%)

STU-Net-L (2023b) CNN 440.3 M

FP32 – 0.880 (–) 0.903 (–)

INT W8A8
Per-channel 0.880 (0) 0.902 (0.1%)
Per-tensor 0.880 (0) 0.903 (0)
Adaptive stratification 0.880 (0) 0.902 (0.1%)

INT W4A4
Per-channel 0.701 (20.3%) 0.695 (23.0%)
Per-tensor 0.466 (47.0%) 0.460 (49.1%)
Adaptive stratification 0.857 (2.6%) 0.870 (3.7%)

STU-Net-H (2023b) CNN 1,457.3 M

FP32 – 0.873 (–) 0.889 (–)

INT W8A8
Per-channel 0.873 (0) 0.889 (0)
Per-tensor 0.872 (0.1%) 0.889 (0)
Adaptive stratification 0.872 (0.1%) 0.889 (0)

INT W4A4
Per-channel 0.700 (19.8%) 0.681 (23.4%)
Per-tensor 0.734 (15.9%) 0.716 (19.5%)
Adaptive stratification 0.840 (3.8%) 0.848 (4.6%)

MONAI

SwinUNETR-T (2022)hybrid 4.1 M

FP32 – 0.684 (–) 0.586 (–)

INT W8A8
Per-channel/token 0.682 (0.3%) 0.583 (0.5%))
Per-tensor 0.679 (0.7%) 0.578 (1.4%)
Adaptive stratification 0.683 (0.1%) 0.584 (0.3%)

INT W4A4
Per-channel/token 0.328 (52.0%) 0.154 (73.7%)
Per-tensor 0.019 (97.2%) 0.010 (98.3%)
Adaptive stratification 0.347 (49.2%) 0.169 (71.2%)

SwinUNETR-S (2022)hybrid 15.7 M

FP32 – 0.788 (–) 0.713 (–)

INT W8A8
Per-channel/token 0.787 (0.1%) 0.712 (0.1%)
Per-tensor 0.783 (0.6%) 0.704 (1.2%)
Adaptive stratification 0.787 (0.1%) 0.713 (0)

INT W4A4
Per-channel/token 0.450 (42.9%) 0.324 (54.5%)
Per-tensor 0.012 (98.5%) 0.011 (98.4%)
Adaptive stratification 0.494 (37.3%) 0.371 (48.0%)

SwinUNETR-B (2022)hybrid 62.2 M

FP32 – 0.804 (–) 0.746 (–)

INT W8A8
Per-channel/token 0.803 (0.1%) 0.744 (0.3%)
Per-tensor 0.802 (0.2%) 0.740 (0.8%)
Adaptive stratification 0.804 (0) 0.745 (0.1%)

INT W4A4
Per-channel/token 0.380 (52.7%) 0.286 (61.7%)
Per-tensor 0.002 (99.8%) 0.004 (99.5%)
Adaptive stratification 0.378 (53.0%) 0.289 (61.2%)
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E.3 QUANTIZATION RESULTS ACROSS DIFFERENT MODALITY AND DATASETS

Table 10: Quantization results across modalities and dataset scales. This table evaluates the
quantization robustness of UNesT and SwinUNETR across datasets varying in imaging modality, class
numbers, and scale. BTCV and AbdomenAtlas 1.1 are both abdominal CT segmentation datasets,
while WholeBrain involves brain MRI. The datasets also vary significantly in size and complexity:
BTCV includes 50 CT volumes with 13 labeled abdominal structures, AbdomenAtlas 1.1 contains
9,262 CT volumes with 25 anatomical labels, and WholeBrain comprises 4,859 MRI volumes
covering 133 fine-grained brain regions. As the dataset size and class number increase, models
show greater sensitivity to 4 bit quantization. For instance, under Per-channel/token quantization
granularity, UNesT shows a minor DSC drop of 8.6% on BTCV, but a more substantial 21.9% drop
on WholeBrain. Similarly, SwinUNETR’s DSC drops 52.7% on BTCV, compared to 77.1% on
AbdomenAtlas. These findings highlight the increasing challenge of low-bit quantization under
high-resolution, large-scale conditions, and underscore the importance of employing finer granularity
or more adaptive quantization strategies in such settings.

Architecture Backbone Param Dataset Precision Quant-Granularity DSC ( ↓∆%) NSD ( ↓∆%)

UNesT Hybrid 87.3 M

BTCV

FP32 – 0.783 (–) 0.704 (–)

INT W8A8
Per-channel/token 0.783 (0) 0.704 (0)
Per-tensor 0.783 (0) 0.702 (0.3%)
Adaptive stratification 0.783 (0) 0.704 (0)

INT W4A4
Per-channel/token 0.716 (8.6%) 0.615 (12.6%)
Per-tensor 0.111 (85.8%) 0.064 (90.9%)
Adaptive stratification 0.721 (7.9%) 0.618 (12.2%)

WholeBrain

FP32 – 0.893 (–) 0.961 (–)

INT W8A8
Per-channel/token 0.893 (0) 0.961 (0))
Per-tensor 0.887 (0.6%) 0.959 (0.2%)
Adaptive stratification 0.893 (0) 0.961 (0)

INT W4A4
Per-channel/token 0.697 (21.9%) 0.664 (30.9%)
Per-tensor 0.019 (97.8%) 0.034 (96.5%)
Adaptive stratification 0.753 (15.7%) 0.741 (22.9%)

SwinUNETR Hybrid 62.2 M

AbdomenAtlas 1.1

FP32 – 0.780 (–) 0.742 (–)

INT W8A8
Per-channel/token 0.779 (0.1%) 0.741 (0.1%)
Per-tensor 0.773 (0.9%) 0.731 (1.5%)
Adaptive stratification 0.779 (0.1%) 0.741 (0.1%)

INT W4A4
Per-channel/token 0.179 (77.1%) 0.112 (84.9%)
Per-tensor 0.006 (99.2%) 0.004 (99.5%)
Adaptive stratification 0.194 (75.1%) 0.119 (83.9%)

BTCV

FP32 – 0.804 (–) 0.746 (–)

INT W8A8
Per-channel/token 0.803 (0.1%) 0.744 (0.3%)
Per-tensor 0.802 (0.2%) 0.740 (0.8%)
Adaptive stratification 0.804 (0) 0.745 (0.1%)

INT W4A4
Per-channel/token 0.380 (52.7%) 0.286 (61.7%)
Per-tensor 0.002 (99.8%) 0.004 (99.5%)
Adaptive stratification 0.378 (53.0%) 0.289 (61.2%)
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F ADDITIONAL LAYER-WISE QUANTIZATION SENSITIVITY

We further provide supplementary analyses on SegFormer3D (Perera et al., 2024) to validate the layer-
wise sensitivity findings in Sec. 4.3. Table 11 presents an incremental dequantization experiment,
while Table 12 benchmarks common PTQ methods applied specifically to the most sensitive layer.

Table 11: Incremental dequantization analysis on SegFormer3D. We incrementally remove INT4
quantization from individual 3 × 3 × 3 convolution layers to assess their relative contribution to
overall accuracy degradation. The fourth convolution layer shows the largest recovery in DSC and
NSD, indicating it as the most quantization-sensitive component.

Incremental Dequantization DSC NSD

FP32 Baseline 0.815 0.782
INT4 Quantized (All layers) 0.767 0.708
INT4 Quantized exclude 1st 3×3×3 conv 0.765 0.706
INT4 Quantized exclude 2nd 3×3×3 conv 0.766 0.709
INT4 Quantized exclude 3rd 3×3×3 conv 0.768 0.716
INT4 Quantized exclude 4th 3×3×3 conv 0.778 0.718

Table 12: Quantization performance on sensitive layers of SegFormer3D. We apply advanced
PTQ methods to the most sensitive layer identified in Table 11. Activation smoothing and SVD-based
decomposition yield marginal gains, highlighting the challenge of quantizing activation distributions
in medical segmentation.

Method Precision Quant-Granularity DSC NSD

Baseline FP32 – 0.815 0.782
INT4 Quantized (All layers) INT W4A4 per-channel/token 0.767 0.708
Activation Smoothing INT W4A4 per-channel/token 0.771 0.711
Activation Smoothing + SVD INT W4A4 per-channel/token 0.769 0.698
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G ADDITIONAL HARDWARE PROFILING

Table 13: Latency comparison under different memory layouts. This table compares inference
latency of the MedFormer model using channel-first (default in most deep learning frameworks for
convolutional operations) and channel-last layouts, under a fixed input patch size of 32× 128× 128.
Although low-bit quantization schemes such as per-voxel scaling benefit from channel-last layouts
due to more contiguous memory access across spatial dimensions, most convolutional backends
(e.g., cuDNN) remain optimized for channel-first formats. However, we observe minimal latency
differences between the two layouts in our setting.

Architecture Patch size
Latency (ms)

Channel-first
[B×C×D×H×W]

Channel-last
[B×D×H×W×C]

Medformer [32× 128× 128] 85.3 86.6

H ADDITIONAL TASK

Table 14: Generation task on MASI (Guo et al., 2025): quantization results across datasets. FID
↓ is reported on MSD, LIDC, and COVID, with COVID runtime metrics. INT8 matches the FP16
baseline on FID (all gaps ≤ 0.2) while improving throughput, latency, and memory, consistent with
our core result that 8-bit quantization is near lossless. INT4 shows a clear FID degradation across
datasets.

Precision
FID ↓ COVID runtime metrics

MSD LIDC COVID Throughput
(samples/s)

Latency (s) Memory (GB)

FP16 4.35 6.20 8.35 1.0 1.2 3.2
INT8 4.42 6.35 8.52 1.8 0.7 1.6
INT4 5.82 6.90 10.40 - - 0.8

I INSIGHTS OF EFFICIENT MEDICAL MODEL ARCHITECTURES

Efficient Model Architectures for Medical Vision. The need of quantization-friendly medical vision
architectures reveals a critical gap between architectural complexity and computational efficiency.
Current state-of-the-art models, such as nnU-Net or MONAI frameworks, heavily rely on spatial
convolution operations (e.g., 3D convolutions) to capture intricate anatomical structures in volumetric
samples. While these operations perform well in spatial representation learning, they can introduce
significant bottlenecks for applying quantization. Spatial convolutions often require a designed scale
factor grouping across channels, tensors, or layers to maintain numerical stability during low-precision
inference. This is a process that becomes increasingly error-prone with larger networks. In addition,
the irregular memory access pattern inherent to 3D convolutions amplifies conversion overhead when
converting models into optimized TensorRT or other engines, which will limit the practical gains of
quantization.

On the other hand, transformer-based architectures, which have advantages for global context
modeling, also show their challenges in quantization. Hybrid designs are still incorporating 3 ×
3× 3 convolutional layers, such as those in SwinUNETR, and MedFormer inherit the quantization
difficulties of both CNNs and attention mechanisms. For instance, the dynamic range of attention
maps in ViTs often requires specialized quantization (adaptive stratification) to avoid information
collapse during INT4 conversion. Meanwhile, hybrid conv layers disrupt the uniformity necessary
for effective smoothing or singular value decomposition (SVD)-based quantization, which further
complicates deployment. These architectural complexities underscore the need for a paradigm shift
toward models explicitly designed for quantization efficiency, rather than relying on quantization
onto existing architectures optimized solely for accuracy.

Toward Quantization-Aware Architectural. To address the above challenges, future medical vision
architectures can target quantization-aware design principles without sacrificing spatial representation
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robustness. One promising direction is the development of lightweight, hardware-aligned operators
that can balance performance with low-precision robustness. For example, depthwise convolutions or
Fourier-based spatial filters could reduce parameter redundancy while maintaining compatibility with
INT8 optimizations. Similarly, attention mechanisms designed for medical imaging, such as sparse
attention, could reduce the computational burden of full self-attention maps, which are notoriously
sensitive to noise during quantization.

Another frontier is in designing medical models with emerging hardware. As platforms such as
NVIDIA Blackwell and Rubin architectures provide support for sub-8-bit precision (e.g., FP6, INT4),
medical AI models will need to evolve benchmarks that evaluate not only accuracy but also hardware-
aware efficiency metrics such as energy-delay product (EDP) and memory utilization. For instance,
architectures with regular computation, like hierarchical vision transformers with fixed patch sizes,
may better exploit tensor core parallelism on later GPUs. Furthermore, generative models such as
diffusion-based architectures (e.g., MAISI (Guo et al., 2025)) could benefit from quantization-friendly
U-Net backbones that maintain high-resolution spatial modeling while enabling real-time synthesis
on edge devices. By using quantization in architectural search pipelines and leveraging tools like
model optimizer, researchers can flexibly identify optimal designs that can harmonize accuracy,
efficiency, cost, and deployability.

Finally, the milestones to practical medical AI deployment hinge on closing the gap between simula-
tion advancements and real-world constraints. Frameworks like MedQuanBench provide a critical
foundation for evaluating quantization robustness. But the benchmark will require cross-disciplinary
collaboration among researchers, hardware engineers, and clinicians to ensure that efficiency gains
translate into real clinical workflows.

J POTENTIAL NEGATIVE SOCIETAL IMPACTS

The deployment of quantized medical imaging models may inadvertently amplify existing inequities
in healthcare systems by prioritizing computational efficiency over diagnostic precision. Quantization-
induced accuracy decreases could mismatch the effect of underrepresented populations if calibration
datasets lack demographic diversity, which will lead to biased performance in critical tasks like tumor
segmentation or anomaly detection. Furthermore, reliance on optimization frameworks risks creating
technological bias and may lock resource-limited institutions into costly hardware. Overemphasis
on benchmark metrics (e.g., Dice Score) without rigorous clinical validation might also obscure
real-world trade-offs, such as delayed diagnoses or false negatives in time-sensitive scenarios. These
risks highlight the ethical imperative to balance efficiency gains with equitable, transparent, and
rigorously audited deployment practices to prevent harm to vulnerable patient populations.

K DECLARATION OF LLM TOOL USAGE

During the preparation of this manuscript, we used AI model for minor word selection, fixing
grammar issues, and smoothing of the writing. The LLM tool was not used for generating original
content, conducting data analysis, or formulating core scientific ideas. All conceptual development,
experimentation, and interpretation were conducted independently without reliance on LLM tools.
The other points involving the use of LLMs have already been highlighted in the paper.
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