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ABSTRACT

Transformer-based vision—language models (VLMs) have achieved state-of-the-
art performance across a wide range of multimodal tasks, yet their high inference
cost remains a major obstacle to scalability. We address the fundamental chal-
lenge of efficiently identifying the most informative visual tokens in VLMs—a
key bottleneck for large-batch and long-sequence inference. Existing methods of-
ten rely on exhaustive or heuristic search strategies that become prohibitively slow
or memory-intensive at deployment scale. We introduce Global-Local Diver-
sity Selection (GLDS), a training-free, model-agnostic framework that performs
computationally efficient token selection while explicitly balancing local impor-
tance with global coverage. To further enhance representational quality under ag-
gressive pruning, GLDS incorporates a determinantal point process (DPP)-based
diversity mechanism, ensuring that the retained subset captures both spatially
and semantically diverse regions. This leads to consistent improvements across
batch sizes and sequence lengths. GLDS accelerates both the prefill and decoding
stages, achieving up to x1.75 speedup in prefill and x1.40 in decoding, while
scaling to inference regimes that overwhelm conventional approaches. On image
understanding benchmarks, it maintains performance with less than 1% absolute
accuracy loss. To our knowledge, this is the first principled and scalable token-
selection strategy to achieve a favorable efficiency—accuracy trade-off in VLMs,
paving the way for practical deployment of accelerated multimodal transformers.

1 INTRODUCTION

Large vision-language models (LVLMs) have recently extended the reasoning capabilities of large
language models by jointly processing images, videos, and text. These models (e.g. GPT-4, LLaVA-
NeXT (Liu et al., [2024a)), Qwen2.5-VL (Bai et al., |2025)) typically use a vision encoder (such as
CLIP (Radford et all [2021) or a ViT (Dosovitskiy et al., 2021)) to convert an image into a se-
quence of visual tokens, which are then concatenated with text tokens and fed into an LLM. How-
ever, an image usually yields hundreds to thousands of tokens, far more than a typical text prompt.
Since transformer self-attention has quadratic cost in the token sequence length, very long visual
sequences dramatically increase computation and memory use. Prior work notes that these dense
token sequences “often reach thousands in length, leading to significant computational and memory
overhead” (Zhang et al.| [2025b)). In practice, this makes vision-language inference expensive and
slow, especially for high-resolution images or videos. To mitigate this, many methods prune or com-
press redundant visual tokens during inference. Existing techniques fall into two broad categories:
pre-encoder (Zhang et al.,|2024a))(reducing tokens during or immediately after the visual encoding)
and decoder-stage pruning (Chen et al.| 2024b)(dropping or merging tokens during generation). In
the pre-encoder stage, one common strategy is attention-based selection (Yang et al.,|2024)): tokens
are scored by their attention weights or relevance and the least-important ones are dropped. Another
strategy is feature-similarity pruning (Bolya et al.| [2023): visually similar or spatially adjacent
tokens are merged or removed to eliminate redundancy. A third approach is text-guided filtering
(Zhang et al., 2025¢): each visual token’s importance is evaluated by its correlation with the lan-
guage input, e.g. via text-visual attention or mutual information. In the decoder stage, methods
may selectively drop tokens or compress the key/value memory during language generation based
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on various criteria. These methods can be either training-based or training-free. However, most
prior token-pruning work targets architectures like CLIP-based encoders or standard ViTs (Zhang
et al.;, 2024a; Yang et al., |[2024; Wang et al., 2024; [Liu et al., [2025)). State-of-the-art VLMs such
as Qwen2.5-VL differ in key ways: they omit a global [CLS] token (commonly used for impor-
tance scoring) and include built-in PatchMerger block (Renggli et al.l[2022) that already merge 2x2
patches. This limits the applicability of [CLS]-based or uniform downsampling techniques. More-
over, we find that computing full attention or similarity matrices over thousands of tokens can itself
be prohibitively expensive. In our empirical analysis on Qwen2.5-VL, we observe that (1) averaging
early-layer attention focuses on the first/last patches and yields low variance across tokens, making
ranking unreliable, and (2) the overhead of computing token-importance metrics often erases the
speedup for single images or large inputs. We also find that aggressive token pruning during de-
coding gives only marginal latency gains at the cost of large accuracy drops. Motivated by these
insights, we propose GLDS, a fast, efficient token-pruning framework that operates only during
visual encoding. GLDS progressively removes low-impact visual tokens in the image encoder by
exploiting its patch-merging operations, without any extra training. In summary, our contributions
are:

1. A comprehensive analysis of existing visual-token pruning methods when applied to Qwen2.5-
VL models, highlighting their computational costs and limitations.

2. GLDS, a new training-free pruning framework primarily for Qwen2.5-VL that gradually trims
non-informative tokens in the image encoder.

3. Extensive empirical evaluation on multiple image understanding benchmarks, measuring accu-
racy—throughput trade-offs and how speedup scales with batch size and image resolution.
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Figure 1: Averaged attention weights density plots.

2 RELATED WORKS

2.1 TRAINING-AWARE APPROACHES

Several recent methods inject token-compression modules into training. For example, LLaVolta
(Chen et al.} 2024a), ConvLLaVa (Chunjiang Ge) introduces stage-wise visual-context compression
during training or MADTP (Jianjian et al.,[2024) uses a learnable dynamic cross-modal alignment.
Other works learn special compression schemes: Matryoshka (M3) (Cai et al., 2025), LLaVA-Mini
(Zhang et al.|[2025d)), YOPO (Zhang et al., 2024b)).

2.2 TRAINING-FREE TOKEN PRUNING (ATTENTION-BASED)

A large family of methods prune tokens at inference time without extra training. Many rely on
attention scores to judge token importance: FitPrune (Ye et al., 2024), FastV (Chen et al.,|2024b)
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or SparseVLM (Zhang et al.,|2025¢)), MustDrop (Liu et al.|[2024b)) use text-guided attention during
the prefilling stage. Similarly, other methods leverage the [CLS] token’s attention in the image
encoder to drop low-attention patches: FasterVLM (Zhang et all [2024a), VisionZip (Yang et al.,
2024), GlobalCom (Liu et al.| 2025), VScan (Zhang et al.,[2025al).

2.3 TRAINING-FREE TOKEN MERGING (FEATURE-BASED)

Feature-based approaches avoid attention heuristics and merge tokens based on feature similarity:
ToMe (Bolya et al., [2023)), LLaVA-PruMerge (Shang et al.||[2025). Or merges the retaining tokens
by semantic similarity to form contextual tokens. The recent AIM (Zhong et al.| |2025) performs
iterative token merging before the LLM on grouping similar visual embeddings.

2.4 MULTI-STAGE METHODS

Several training-free schemes exploit global context or diversity. G-Prune (Jiang et al.| 2025)) con-
structs a graph over visual tokens and propagates importance weights; CDPruner (Zhang et al.}
2025c¢)) frames token selection as a Determinantal Point Process (DPP) that maximizes conditional
diversity given the question, FiCoCo (Han et al.| [2025) explicitly splits pruning into three stages:
“Filter—Correlate—Compress”, PyramidDrop (Xing et all |2025) segments the LLM layers into
stages and drops a fixed fraction of tokens at each stage, iLLaVA (Hu et al., 2024)) inserts a fast
merging block between layers, VIW (Lin et al., [2025) simply withdraws” all remaining visual
tokens after a chosen deep layer using a KL-divergence criterion. All of these inference-time meth-
ods dramatically reduce visual token counts with minimal retraining (if any) by leveraging attention
patterns, feature similarity, or token diversity criteria.

3 METHODOLOGY

3.1 PRELIMINARY: ATTENTION IN VLM ENCODER PHASE

Visual Language Models (VLMs) typically adopt a Transformer-based encoder to process visual
tokens. Given an input image, it is partitioned into patches and projected into a sequence of embed-
dings

E,={e1,e2,...,en}, € €RY (1)

where IV is the number of visual tokens and d is the hidden dimension. In practice, N often reaches
hundreds or thousands, significantly larger than the number of textual tokens.

Self-attention in the encoder computes pairwise interactions between tokens. For a query matrix
Q € RV*4 key matrix K € RY*? and value matrix V € RV X4, attention weights are defined as:

.
A:Softmax(Qj% ) A e RVXN, )

For high-resolution images in models such as Qwen2.5-VL, N can easily exceed 1,000, making
quadratic attention prohibitively expensive in both inference latency and memory consumption.

3.2 TOKEN PRUNING PROBLEM FORMALIZATION

Let E, = {e1,ea,...,en} denote the set of visual tokens produced by the vision encoder, where
N = |E,]| is typically much larger than the number of textual tokens. The objective of token

pruning is to select a smaller subset E, C E, of size N, where N < N, while preserving the
essential semantic information necessary for accurate prediction.

Formally, token pruning can be viewed as learning a selection mapping function

f:E,— E,, with |E,|=N. (3)

The pruned subset E,, is then passed to the downstream multimodal language model (MLLM). The
quality of the pruning strategy can be evaluated by comparing model performance with the original
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tokens E, and with the pruned tokens E,. This can be expressed by a discrepancy measure between
their predictive outputs:

L(model(E,), model(EU)), 4)

where L(-, ) denotes a suitable loss function (e.g., accuracy drop, cross-entropy divergence, or task-
specific metric).

The central challenge lies in designing f such that the selected subset E, is both compact (minimiz-
ing computational cost) and informative (minimizing task performance degradation).

3.3 EMPIRICAL STUDY. CROSS-MODAL TOKEN SELECTION

Empirical analyses show that using text tokens to guide visual token selection is often unreliable. In
many multimodal LLMs, the final text token’s attention is very dispersed across the image (Xu et al.,
2025;|Zhang et al.,|2025b)). In other words, text tokens (like the last instruction token) do not strongly
focus on the most relevant visual regions, making it hard to pick important vision tokens from them.
As a result, text cues provide little useful signal for which visual tokens to drop.Therefore, many
pruning strategies now simply keep all text tokens and only remove visual tokens

To provide further evidence, we simulated the attention distribution of the last text token over vi-
sual tokens in Qwen2.5-VL. The distribution is nearly uniform with only few true relevant patches,
confirming that the model spreads attention broadly rather than focusing on a group salient patches.
Figure [2| shows both the 2D heatmap and projection back to the image grid. The dispersed pattern
demonstrates that text tokens do not offer strong localization cues, consistent with the claims in prior
work (Xu et al., 2025 [Zhang et al., 2025b)).

We report an empirical finding that highlights a fundamental limitation in existing methods for
ranking attention weights in models advertised as compatible with the Qwen-VL family. A com-
mon strategy is to extend the [CLS] token paradigm by averaging attention scores across all tokens
and image patches. However, this aggregation dilutes token-level distinctions, leading to a homog-
enization of ranking weights and ultimately preventing the reliable identification of salient tokens.
Figure [1] illustrates the distribution of attention weights under two ranking schemes: (i) alignment
with the [CLS] token and (ii) pairwise inter-token ranking. In the [CLS]-based setting, the separa-
tion between informative and non-informative tokens is clearly delineated, enabling effective token
selection. In contrast, the inter-token ranking distribution collapses into a narrow region, obscuring
meaningful boundaries and rendering the method ineffective for relevance estimation.

3.4 ATTENTION AND SIMILARITY COMPUTATION COST

A core challenge is that self-attention scales as O(N?) in the number of tokens. With thousands
of visual tokens (e.g. up to 16,384 in Qwen-2.5-VL), the computational and memory cost becomes
enormous. In other words, pruning tokens is critical because full attention over a long sequence
is prohibitively expensive [3] Some pruning methods compute pairwise similarity between tokens
(for diversity-based selection). This requires forming an N x IV cosine-similarity matrix among N
tokens. For large N, storing and processing this matrix is O(/N?) in memory and time. For example,
constructing the cosine similarity matrix C' € RY*® and iterating over it can exhaust memory when
N is in the thousands Hardware considerations. Modern libraries (like FlashAttention-2 (Dao),
2024)) reduce memory usage of attention to O(N) per layer, but they do not output token-wise
importance scores. Thus, many token-pruning methods (which rely on attention scores) must disable
these efficient routines to access raw weights. In summary, whether computing attention or pairwise
similarities, the operations remain quadratic in NV, making large-batch or high-resolution inputs very
costly.

3.5 DECODER-STAGE PRUNING ISSUES

By the time the model is in the LLM (decoder) layers, visual and text information are deeply entan-
gled. Studies indicate that only in the mid-to-late decoder layers do cross-modal interactions become
effective (Zhang et al.,|2025a). In other words, much of the final prediction relies on visual features
that have been propagated through many layers. Pruning tokens at this point is like deleting context
that the model has already learned to use, so it disrupts the answer generation. From a complexity
standpoint, pruning in the decoder yields only constant-factor gains. The per-token generation step
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Figure 2: Attention distribution from last text token to visual tokens (Qwen2.5-VL)
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Figure 3: Comparison of two attention strategies

still costs O((Nyis + Neext)?) attention. Removing P tokens out of N reduces the constant but does
not change the O(N?) scaling. Moreover, the initial “’prefill” step must process all tokens anyway,
so any savings accrue only after pruning. In practice, managing the key-value cache when deleting
tokens adds overhead. Thus, decoder-stage pruning offers minimal speedup while severely degrad-
ing performance.

We did not find existing literature explicitly analyzing pruning at the LLM decoder stage. However,
our own experiments show that removing visual tokens during the autoregressive decoding phase
dramatically hurts accuracy. In the Table [T] below we provide a empirical results for this observa-
tion. Once the optimal set of tokens has been selected at the encoder stage, applying additional
pruning at the decoder provides negligible gains in inference speed while causing a notable drop in
output quality. This suggests that, for inference efficiency, pruning is most effective when restricted
to the encoder, without extending it to the decoder.

4 GLOBAL-LOCAL DIVERSE SAMPLING (GLDS)

4.1 DPP GLOBAL SCAN (GLOBAL TOKEN SELECTION)

A key component of GLDS is the global token selection stage. To solve the problem of ineffective-
ness tokens selection based on attention, we aim to retain a diverse yet informative subset of visual



Under review as a conference paper at ICLR 2026

Table 1: Comparison of different pruning strategies on speed and accuracy on TextVQA.

Model Variant Speed (tokens/s) Accuracy (%)
Base model (Qwen2.5-VL) 1x 77.6
Base model + Encoder pruning 1.15x 76.7
Base model + Encoder + Decoder pruning 1.17x 74.5
tokens from the encoder output based on DPP. Given the set of visual tokens E, = {e1,...,en}

with e; € R, our goal is to select a subset E, C E, of size \EU| = M < M that maximizes
representational coverage while avoiding redundancy. To this end, we leverage the determinantal
point process (DPP) as a principled mechanism for subset selection, sharing same assumptions with
CDPruner (Zhang et al.,[2025c)), but on visual tokens only.

Determinantal Point Processes. A DPP defines a probability distribution over all subsets E, C
E, such that diverse subsets are more likely to be sampled. Formally, for a positive semi-definite
kernel matrix L € RM*M the probability of selecting a subset £,, is

P(E,) o det(L ), 5)

where L denotes the principal submatrix of L indexed by E,. Intuitively, the determinant mea-
sures the volume spanned by the selected vectors, favoring subsets with high diversity.

Kernel Construction. In our formulation, the kernel matrix is derived from encoder attention
scores. Specifically, we compute a similarity kernel between tokens e; and e; as

Lij = Q- Attn(ei, Ej) + (1 — OL) . <él, éj>, (6)

where Attn(e;,e;) is the normalized attention weight between tokens, é; = ﬁ is the fo-

normalized feature, and o € [0, 1] balances attention-driven importance and feature-driven simi-
larity.

Subset Selection. To obtain a subset F,,, we apply k-DPP sampling with £ = N, ensuring that
exactly IV tokens are selected. In practice, we employ the efficient k-DPP algorithm with eigen
decomposition of L (Kuleszal [2012), yielding a global set of diverse tokens that balances importance
and redundancy.

The selected subset E, then serves as the input to the subsequent local scan stage, where fine-grained
token filtering is applied. See Algorithm [T}

4.2 LoOCAL TOKENS

To complement the global selection, GLDS conducts a local scan that captures fine-grained details
potentially missed by the DPP. We partition the image into a grid of non-overlapping windows (e.g.
fixed-size patches) and perform token selection within each window independently at a shallow
feature layer. Concretely, select tokens by reshaping attention weights into structured windows
and applying fully vectorized top-k operations, enabling simultaneous local selection and global
refinement without explicit loops. This ensures that even spatially small but semantically important
regions contribute tokens. Formally, if W, is the set of tokens in window u we choose the highest-
scoring tokens in W,, so that the total tokens across all windows meets the desired budget. This
localized selection helps prevent missing fine details: as noted in prior works, combining global
and local scan mechanisms “selects important tokens based on both local and global information”
(Zhang et al.| [2025a).

4.3 TOKEN MERGING

After selecting the key tokens via global and local scans, GLDS improves token’s expressiveness by
merging non-retained tokens into retained ones. In essence, any token that is considered redundant
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Algorithm 1: GLDS: Global-Local Diversity Selection

Input: Aggregated attention weights[Bjla € RN from attention weights RV >, token features
F € RV*4_ target number of tokens k, local window size w

Qutput: Selected token indices S
Step 1: Pre-filtering (Optional).
Retain top-M tokens by attention score, M > k (reduces DPP cost).
Step 2: Compute token quality scores.
G % Vi e [1,M]
Step 3: Compute similarity kernel.
Normalize token features: f; + H;‘%H
Ky« [ f; Vi,j<M
Step 4: Global DPP selection.
Construct DPP kernel: L « Q'/2KQ'/?, where Q = diag(¢?,...,q3%)
Or kernel approximation [6]
Run greedy MAP inference (Chen et al., 2018) or faster k-DPP (Gautier et al.,|[2019) to select

Saiobat Of size Kgiobal < k.
Step 5: Local refinement (window-based top-k).
Partition remaining tokens into non-overlapping windows of size w.
for each window W do

Select r highest-quality tokens from W according to g;.
Add them to Soca-

Step 6: Final token set.
S+ Sglobal U Slocal
return S

compared to the remaining token is merged with the closest important token in terms of distance,
and its contribution to the embedding is added.

Formally, let E, € RM*? denote the set of visual token embeddings after global and local pruning,
and let E, C E, be the retained subset of size T = |E,|. We define a binary mask m € {0, 1}
indicating retained tokens:

1, e € EU

i = . 7
" {0, otherwise ™

Let R = E, be the retained token embeddings and N = E,, \ R the non-retained embeddings. We
compute pairwise cosine similarities between non-retained and retained tokens:

S = cosine_sim(N, R) € RM=T)xT (8)
and assign each non-retained token n; € N to its nearest retained token r; € R via

J* = argmax .S;;. 9
J

The merged feature embeddings are then computed by aggregating each retained token with all
assigned non-retained tokens:
rj-scaling+ > . .._.n;
F = e iy 7 (10)
scaling + |{i : j* = j}|
where scaling > 1 balances the contribution of the original retained token.

This approach effectively reduces redundancy while preserving semantic content, and it is fully
differentiable and training-free. The resulting set of merged embeddings R = {71, ..., 77} is then
passed to the decoder or subsequent stages of the VLM pipeline.

4.4 ENGINEERING IMPROVEMENTS

Attention weights computation. Due to the architectural characteristics of image processing in
batch inference and the computational requirements of attention weight-based pruning, modern in-
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ference systems utilizing FlashAttention-2 and XFormers (Lefaudeux et al.l|2022)) incur substantial
overhead during the computation of attention matrices (Zhang et al., 2025bjcj [Yang et al., [2024).
The problem becomes particularly acute in models without a [CLS] token, where the absence of
a dedicated global representation requires computing the entire attention weight matrix, resulting
in substantially higher computational cost compared to evaluating only a single row. To solve this
problem we implement method for computing attention weights, comprising pre-aggregating query
and key embeddings into spatial blocks prior to attention, thereby reducing attention computation
from quadratic time and memory O(N?) to O((N/k)?), where k is the block size, thus achieving
block-level efficiency while preserving averaged attention signals. Proposition |1| shows that the
grouped approximation is close to the true mean attention under local smoothness assumptions.
Efficient Token Merging. To find nearest tokens, a cosine similarity is usually used, which is
effectively computing all pairwise similarities in a fairly memory-heavy way. When PyTorch
computes cosine similarity, it broadcasts the shapes, that means a huge temporary tensor of size
(N —T) x T x D is created in memory. So instead of recomputing norms for every pair we
just compute them once for each token and then use a dot product for all pairs. We use efficient
CUDA kernels and nearest-neighbor heuristics to quickly assign merge candidates. Inspired by
QuickMerge++ (Liu & Yu, 2025), we can weight merges by token “saliency” or norm so that
less-important tokens donate their mass to stronger ones. The merging is done via batch matrix
operations, making it very fast. We also allow a dynamic merge ratio: larger images or simpler
scenes can merge more tokens.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

All experiments are conducted using the Qwen-2.5-VL model as the primary backbone, given
its state-of-the-art performance in image understanding tasks and unique architectural challenges
for token pruning. Inference is executed on NVIDIA A100 GPUs with 80GB of memory, using
FlashAttention-2 as the default attention implementation.

We emphasize that, to the best of our knowledge, there are currently no widely available and prov-
able open-source implementations of token pruning that support the Qwen-2.5-VL architecture ef-
fectively. At the time of writing, only two works explicitly target Qwen2.5-VL models: VScan,
which provides an open-source codebase, and BTP (Balanced Token Pruning) |Li et al. (2025),
which has no released implementation. Consequently, the majority of our comparisons are con-
ducted against VScan. Beyond Qwen-2.5-VL, we also evaluate GLDS on LLaVA and LLaVA-Next
models. Although the core implementation of GLDS is designed to address the lack of a [CLS] to-
ken and the consequent limitations of attention-based averaging in Qwen2.5-VL, these experiments
demonstrate that the algorithm also generalizes effectively to LLaVA-like architectures.

In our tests all pruning methods were set on the 75% pruning ration for the LLaVa-like models and
60% for the Qwen2.5-VL. Other studies and examples are located in Appendix [D]

5.2 BENCHMARKS

Quality evaluations are performed on standard multimodal benchmarks including MME (Fu et al.,
2023), GQA (Hudson & Manning, 2019), POPE (Yifan Li & Wen, 2023), and TextVQA (Singh
et al., 2019).

5.3 RESULTS AND ANALYSIS

Inference Quality. The results in Table [2|indicate that, within the Qwen2.5-VL model class, the
GLDS method achieves the highest quality at the specified token pruning level. Comparable perfor-
mance is also observed for the Llava model class, demonstrating the method’s effectiveness across
different architectures.

Inference Efficiency. Finally in Table [3] we provide an ablation study analyzing the theoretical
prefill and decoding speedups of GLDS under varying batch sizes, in addition to its empirical per-



Under review as a conference paper at ICLR 2026

Table 2: Comparison of pruning methods across different models (Qwen2.5-VL, LLaVA, LLaVA-
Next) on standard benchmarks. Benchmarks include MME, GQA, POPE, and TextVQA. Bold indi-
cates the best method per model.

Model | Method | MME GQA POPE TextVQA
Baseline 2325 61.9 86.6 77.6
Qwen2.5-VL VScan - 60.9 85.9 76.1
GLDS (Ours) - 61.1 86.1 76.7
Baseline 1861 61.9 85.9 58.2
VTC-CLS 1735 58.8 87.1 57.0
VisionZip 1761 57.6 83.2 55.5
LLaVA Matryoshka (trained) 1731 62.5 87.0 56.8
VScan 1781 59.1 84.2 56.1
GLDS (Ours) 1821 59.6 84.3 57.2
Baseline 1844 61.3 86.5 61.3
VisionZip 1845 62.5 87.9 60.2
LLaVA-Next Matryoshka (trained) 1821 63.6 87.7 60.9
VScan 1842 62.7 87.2 60.8
GLDS (Ours) 1844 63.0 87.5 61.1

Table 3: Comparison of inference time (in milliseconds per step) between Qwen-VL-2.5 and GLDS
across batch sizes. We report both prefill (first forward pass) and decoding (autoregressive genera-
tion) times. Lower is better.

. Prefill Time (ms) Decoding Time (ms)
BawchSize | oenov  GLDS | Qwen-VL ® N GLDS

1 82.3 52 (1.58x) 30 29 (1.03x)

2 160 100 (1.6x) 40 39 (1.03x)

4 350 200 (1.75x%) 41 40 (1.03x)

8 700 400 (1.75x) 51 43 (1.18x)

16 1400 1000 (1.45x) 80 60 (1.33x)

32 2900 2000 (1.45x%) 140 100 (1.4x)

64 5800 4000 (1.45x) 260 185 (1.41x)

formance. This allows us to quantify both the measured efficiency improvements and the potential
upper bounds of acceleration in large-sequence or large-batch scenarios.

6 CONCLUSION

In this work, we introduced Global-Local Diversity Selection (GLDS), a training-free and model-
agnostic framework for efficient visual token reduction in vision-language models. GLDS lever-
ages a determinantal point process (DPP) to perform a principled global scan, ensuring diversity
and coverage among selected tokens, while complementing it with a lightweight local scan to cap-
ture fine-grained visual details. Furthermore, GLDS integrates a memory-efficient token merging
mechanism and several engineering optimizations, enabling scalability across larger batch sizes and
high-resolution inputs. Empirical results demonstrate that GLDS consistently accelerates inference
while preserving near-lossless accuracy across multiple benchmarks, with speedups reaching up
to x1.75 in the prefill stage and x1.4 in decoding for larger batch settings. Importantly, GLDS
extends pruning support to the Qwen-VL family, where previous methods were either inapplicable
or inefficient. Overall, GLDS provides a practical, scalable, and effective solution for accelerat-
ing vision—language inference, and establishes a foundation for future exploration of principled
diversity-based token selection methods in multimodal learning.
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B AGGREGATED ATTENTION WEIGHTS.

In VLM token pruning, it is common to aggregate attention weights to estimate token importance.
When a model includes a [CLS] token, the aggregated attention for token ¢ is typically computed
as the mean of attention weights from all heads directed toward the [CLS] token:

H
1 ‘
a; = T E Attny, (i, [CLS]),
h=1

where H is the number of attention heads. In models without a [CLS] token, the aggregation is
performed across all token pairs by averaging the attention weights over heads and then summing

over the query tokens:
1 AN
ai =77 > 2 Aum (i),
h=1j=1
where N is the total number of visual tokens. This aggregation provides a scalar importance score
per token, used in subsequent global or local selection stages.

C GROUPED ATTENTION VIA TOKEN PRE-AGGREGATION

C.1 GROUPED QUERY-KEY REPRESENTATION

We consider an input sequence of S tokens, with multi-head self-attention of H heads and head
dimension d. Let Q, K,V € R%%9 be the query, key, and value matrices for one head (we omit
the head index for clarity). In standard scaled dot-product attention, we form the score matrix
X = QKT € R5*5 (scaled by 1/+/d) and compute the attention weights via row-wise softmax:

exp(Q] K;/V/d)
Z;S:L:l eXp(QlTKm/\/a) .

Thus a single head requires O(S?d) operations to compute QK " and O(S?) space to store the
weight matrix. In particular, with H heads the cost is O(H S?d), and storing all attention matrices
costs O(H S?) memory, which becomes prohibitive for large S.

A= an

C.2 GROUPED QUERY-KEY REPRESENTATION

To reduce this cost, we partition the sequence into M groups of size G (assume G divides S, so
M = S/G). For group g = 1,..., M, let indices (g — 1)G + 1, ..., gG belong to group g. We
define the group-averaged queries and keys for each group as

~ 1 9G ~ 1 9G
W=7 Qi  Ki=g > K
i=(g—1)G+1 i=(g—1)G+1

so that Q, K € RM*? collect these means. We then perform attention among these M group-
representatives:

A= softmax(@ RT/\/&) e RM*xM, (12)

Each query token in group g can then use A, ;, as the attention weight to tokens in group h. Intu-
itively, if tokens within a group have similar keys and queries (local smoothness), then averaging
is a reasonable surrogate. This “early grouping” reduces the attention problem from S tokens to
M = S/G group-representatives.

C.3 APPROXIMATION GUARANTEE

Let A; ; be the full attention weight from token ¢ to j in the standard model, and define the group-
averaged true weight from group g to group h as

1
Agh = & ZZAW"

i€g jEh
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i.e. the average attention mass that queries in group g place on keys in group h. Our goal is to show
Agn = @y, under mild conditions.

Proposition 1. Suppose that within each group g, all Q; (resp. K;) are close to their mean Qg
(resp. Kp,), so that

max [|Q; — Qyll S eq,  max|K; — Kyl < ex.
1€9 JjEh

Then the group-level attention weight satisfies
|gg,h — dg,h| < C(EQ + GK),
for some absolute constant C > 0, i.e. the error is bounded by the within-group variances scaled by

the Lipschitz constant of softmax.

Proof. By linearity of sums, the group-mean dot-product can be written as
QJRn= 5 Y Y@K,

i€g jeh
Hence the score used in the grouped attention /Tg,h equals the average of the true pairwise scores
(up to the 1/+/d scaling).
Now, for each 7 € g and j € h, we have

QI K — Qg Knl < 11Qi = Qqll - K1l + Q| - 15 = Erll < Oleq + ex).-
Thus each individual score deviates from the group mean score by at most O(eg + €x ).
Since the softmax function o : RM — RM has Jacobian
Jo(2) = diag(o(2)) — o(2)o(2) ",
its spectral norm satisfies ||.J,(2)||2 < 1/2. Therefore softmax(+) is 1/2-Lipschitz in o, i.e.
[softmax(z) — softmax(y)[l2 < ||z — yl|a.

Applying this to the score vectors of group-averaged vs. true tokens yields

|Agn —agn| < Cleg + €x).

Finally, since averaging over heads and tokens is linear, this error bound carries over directly to the
final N/G-dimensional score vector obtained after aggregation. O

D ANALYSIS AND ADDITIONAL EXPERIMENTS

To complement our large-scale benchmark evaluation, we provide additional studies that illustrate
the practical behavior of GLDS under diverse conditions.

Time Overhead Breakdown. We first decompose the end-to-end inference time into individual
components, including attention weight computation, global DPP-based selection, local window
refinement, and token merging. Results are reported across batch sizes 1, 4, 16, and 32 (Table Eq)
The dominant cost remains the local scan and token merging computations, while the global scan
overhead is negligible due to our use of a top-k warm-up approximation. Attention contributes
minimal runtime, showing that GLDS overhead does not bottleneck scaling.

Retention Ratio Sensitivity. We next study the effect of varying token retention ratios on
TextVQA under two temperature settings (I’ = 0 and 7" = 1). Results in Table 5] show that GLDS
degrades gracefully, with less than 1% accuracy loss even at 40% retention. Only at extreme com-
pression (10%) do we observe a notable drop, demonstrating robustness of GLDS to aggressive
pruning.
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Table 4: Overhead breakdown of GLDS (ms). Global scan overhead is negligible due to top-k
warm-up.

Operation Batch 1 Batch4 Batch 16 Batch 32
Attention 0.35 1.6 7 14
Local Scan 0.8 33 13 26
Token Merging 0.5 23 9 18
Total GLDS Overhead 1.7 7.2 29 58

Table 5: Accuracy (%) of GLDS vs. Qwen2.5-VL baseline on TextVQA across different retention
ratios.

Method 5% 60% 50% 40% 33% 25% 10%
Baseline (Qwen2.5-VL, T=0) 77.6 77.6 77.6 776 776 716 77.6
GLDS (T=0) 775 774 771 76,6 76.1 746 659
Baseline (Qwen2.5-VL, T=1) 724 724 724 724 724 724 724
GLDS (T=1) 720 725 717 715 705 689 594

High-Resolution Images. Benchmarks such as TextVQA often contain relatively small input im-
ages, underestimating the potential benefits of pruning. To reflect deployment scenarios, we evaluate
GLDS on large-resolution images (2940 x 1960 pixels). Results in Table [f|demonstrate that GLDS
achieves substantial e2e acceleration at batch sizes 8, 16, and 32 with Aggressive pruning strat-
egy (98%), with more than 4x speedup at scale, while maintaining nearly identical accuracy in

answers [D.1]

D.1 VISUALIZATION

Figure 4:

Why is this so funny?

Original: person in a diving suit, which is typically used for swimming
Pruned: person in a zebra-striped wetsuit
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Table 6: Acceleration on large-resolution images up to (3000 x 2000).

Model Batch 8 Batch 16 Batch 32
Qwen2.5-VL (Baseline) 16.2s 30.6 s OOM
GLDS (2%) 43s 7.1s 105 s
Speedup (2%) 3.76% 4.31x -

Figure 5:

Who is he?

Original: Will Smith

Pruned: person eating spaghetti with a fork. The text at the bottom of the image reads “stablediffu-
sionweb.com,” which suggests that this image might have been generated

Figure 6:
Who is his best friend?
Original: his best friend is Luigi
Pruned: his best friend is Luigi
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Figure 7:

Is this an Al generated one?

Original: it’s not possible to definitively determine if the image is artificially generated
Pruned: The image you provided appears to be an artificial creation, likely generated by Al

Figure 8:
Who is his best friend?
Original: Bugs Bunny
Pruned: Bugs Bunny
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