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Abstract

Motivated by practical applications in clinical tri-
als and online platforms, we study A/B testing
with the aim of estimating a confidence interval
(CI) for the average treatment effect (ATE) us-
ing the minimum expected sample size. This CI
should have a width at most ϵ while ensuring that
the probability of the CI not containing the true
ATE is at most δ. To answer this, we first estab-
lish a lower bound on the expected sample size
needed for any adaptive policy which constructs
a CI of ATE with desired properties. Specifically,
we prove that the lower bound is based on the solu-
tion to a non-convex max-min optimization prob-
lem for small δ. Tailoring the “plug-in” approach
for the ATE problem, we construct an adaptive
policy that is asymptotically optimal, i.e., matches
the lower bound on the expected sample size for
small δ. Interestingly, we find that, for small ϵ
and δ, the asymptotically optimal fraction of treat-
ment assignment for A and B is proportional to the
standard deviation of the outcome distributions
of treatments A and B, respectively. However, as
the proposed approach can be computationally in-
tensive, we propose an alternative adaptive policy.
This new policy, informed by insights from our
lower bound analysis, is computationally efficient
while remaining asymptotically optimal for small
values of ϵ and δ. Numerical comparisons demon-
strate that both policies perform similarly across
practical values of ϵ and δ, offering efficient solu-
tions for A/B testing.
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1. Introduction
The simplest controlled experiment where two variants are
compared is referred to as an A/B test. In an A/B test, indi-
viduals arrive sequentially, the experiment designer assigns
an arriving individual to either treatment A or treatment
B and measures the response. There is a long history of
use of A/B tests in clinical trials to assess the efficacy of a
drug (treatment A) relative to another drug (treatment B).
In recent years, A/B testing has gained widespread adop-
tion among large-scale online platforms for assessing the
performance of new product designs, web page layouts, or
services (see Kohavi & Thomke (2017)). A typical objective
of a sequential A/B test is to infer the better treatment. This
inference problem is well-studied in the literature as the
best arm identification or best treatment identification (BTI)
problem (see Bubeck et al. (2011), Garivier & Kaufmann
(2016)). A related but more informative metric of infer-
ence in an A/B test is the average treatment effect (ATE),
which measures the difference in performance of treatment
A vs treatment B. In this paper, we consider a sequential
A/B test with the aim of estimating ATE. An experiment
designer seeks to obtain a confidence interval (CI) with the
width at most ϵ > 0 such that the probability ATE does
not lie in the CI is at most δ > 0. We say that such CI
has (ϵ, δ)−coverage guarantee. We aim to minimize the
expected length of the experiment, i.e. expected sample size
of the A/B test while delivering a CI with (ϵ, δ)−coverage
guarantee. Both ϵ and δ are pre-specified at the beginning
of the experiment.

A CI of ATE can be extremely useful in decision-making for
online platforms in terms of deciding the design/treatment
to pursue in future. ATE is especially useful to know how
much value one is gaining via choosing the better treatment
over the alternative when there is a deployment cost of
designs/treatments. Further, a CI of ATE can be used in
the design of future experiments as it precisely quantifies
the value of one treatment over the other (see Johari et al.
(2022)). Also, this CI is useful in clinical trials, as stated in
Gardner & Altman (1986), “In medical studies investigators
are usually interested in determining the size of difference of
a measured outcome between groups, rather than a simple
indication of whether or not it is statistically significant.”
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Another application of estimating ATE, see Simchi-Levi
& Wang (2023), is in situations where the best drug is not
available due to shortage or some other factors. Then it is
helpful to know the ATE of other drugs as compared to the
best one.

Typically in A/B testing, the assignment rule used is the
uniform randomized assignment rule, where incoming in-
dividuals are randomly assigned treatment A or B, with
equal probabilities (see Tang et al. (2010) and Kohavi et al.
(2013)). This is referred to as a randomized control trial
(RCT). However, it is unclear whether this equal probability
assignment for treatment A vs B is the best way to assign
treatments to obtain the least sample size of the A/B test to
estimate a CI of ATE with (ϵ, δ)-coverage guarantee. We
aim to develop a policy that optimality assigns the treat-
ments and uses the minimum sample size. To this end, we
first develop an asymptotic lower bound on the expected
sample size required for any adaptive experimental policy
that provides a CI of the ATE with (ϵ, δ)-coverage guarantee
as δ → 0. It is important to note that the (ϵ, δ)-coverage
guarantee for a CI of the ATE is valid for any ϵ > 0 and any
δ ∈ (0, 1). We find that the lower bound on the expected
sample size scales at the rate of log

(
1
δ

)
as δ → 0, and the

dependence of the lower bound on the parameters of the
outcome distributions and ϵ can be expressed as the solution
to a non-convex max-min optimization problem.

We then turn to develop a policy for A/B testing. Using
the “plug-in” approach tailored for our ATE problem, we
propose an adaptive experimental policy referred to as, P1,
which under mild assumptions is shown to be asymptoti-
cally optimal as δ → 0 and has (ϵ, δ)−coverage guarantee.
The policy P1 however is computationally expensive as it
solves the non-convex max-min optimization problem be-
fore assigning treatments to each arriving individual. To
improve the computation burden, we note that the max-min
optimization problem that is defined in the lower bound
provides the asymptotically optimal fraction of assignments
for treatments A and B. This max-min optimization problem
also provides insights into the asymptotically optimal CI of
ATE.

We find that the asymptotically optimal fraction of treat-
ment assignment for A and B is proportional to the standard
deviation of their respective outcome distributions when
ϵ → 0 and δ → 0. This assignment is in agreement with
Neyman’s allocation rule (see Neyman (1992) for the back-
ground) that aims to minimize the variance of the estimator
and is extensively discussed in the existing literature. It is
worth noting that, our objective function does not directly
aim to minimize variance rather our goal is to minimize the
expected sample size.

We note that the asymptotically optimal fraction of treat-
ment assignment for A and B when ϵ > 0, does not match

with Neyman’s allocation rule for general distributions. (It
does for Gaussian distribution.) However, we prove the-
oretically that for small ϵ > 0, the assignment of treat-
ments suggested by the lower bound optimization problem
is somewhat insensitive to the exact value of ϵ. This result
is confirmed numerically for small (practical) values of ϵ.
Using the above insights, we propose another adaptive pol-
icy P2, which is computationally efficient compared to P1

as it involves tracking the standard deviation of the outcome
distributions, instead of solving the lower bound max-min
optimization problem. We prove that P2 is asymptotically
optimal as ϵ → 0 and δ → 0 and has (ϵ, δ)−coverage
guarantee. Further, we observe numerically that P2’s per-
formance is statistically indistinguishable from P1 for finite
practical values of ϵ and δ.

Our proposed policies, P1 and P2, exhibit a notable feature:
they generate an anytime-valid confidence interval or se-
quence for the Average Treatment Effect (ATE) at any step,
aligning with Darling’s (1967) framework. These policies
enable experimenters to conclude A/B tests prematurely,
even when the (ϵ, δ)-coverage guarantee stopping rule is
not met. Upon termination, while the resulting confidence
interval (CI) width exceeds ϵ, it ensures that the ATE is cap-
tured in the CI with a minimum probability of 1− δ. This
feature is especially beneficial in environments like online
platforms, where flexibility to stop experiments early with-
out compromising validity is crucial. Termed as ’continuous
monitoring,’ or ’peeking’ this approach allows for ongoing
assessment of A/B tests, diverging from fixed end-point
evaluations. This evolving methodology is supported by
recent research, including works by (Waudby-Smith et al.,
2021), (Ham et al., 2022), and (Lindon & Malek, 2022),
highlighting its growing acknowledgement.

In Appendix F, we also quantify the value of the asymp-
totically optimal assignment rule in comparison to the uni-
form randomized assignment rule in terms of reducing the
expected sample size. Additionally, unless specified other-
wise, asymptotic optimality implies asymptotic optimality
as δ → 0.

Organization of the paper. In the next section, we discuss
the related literature. In Section 3, we present our main
model. Section 4 provides the lower bound results on the
expected sample size of the A/B test for constructing CI of
ATE with (ϵ, δ)−coverage guarantee and our asymptotically
optimal policy P1 as δ → 0. In Section 5, we provide
insights into the asymptotically optimal assignment rule for
small δ. Section 6 leverages these insights from the lower
bound to develop our asymptotically optimal policy P2

when ϵ→ 0 and δ → 0. In section 7, we provide the details
of the numerical experiments. In Section 8, we provide the
limitations of our work and future directions of the work. In
Section 8 we provide the broader impact of our work.
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2. Related literature
Our work is related to three streams of literature. The first
stream is the work related to adaptive experiment design for
ATE. The second stream is on sequential hypothesis. The
third stream is concerned with bandit literature with pure
exploration.

Adaptive Experiment Design for ATE: The field of ex-
periment design, particularly for estimating the Average
Treatment Effect (ATE), has been extensively studied. Re-
cently adaptive experiments have been proposed by Hahn
et al. (2011) and Kato et al. (2020) for minimizing asymp-
totic variance in ATE estimation. (Dai et al., 2024) aims to
minimize the variance of an estimator of ATE within a fixed
sample size in a design-based framework. Bhat et al. (2020)
solved the allocation of treatments, using a dynamic opti-
mization framework. Glynn et al. (2020) proposes a theoreti-
cal framework, to estimate ATE with asymptotic variance in
the presence of temporal interference by reformulating it as
a Markov decision problem. These methods primarily aim
at minimizing asymptotic variance over a fixed experiment
length, contrasting with our sequential approach focusing
on non-asymptotic (ϵ, δ)−coverage guarantee. Simchi-Levi
& Wang (2023) explores balancing efficiency and statistical
power in adaptive experiments. Similar concepts in clinical
trials were discussed by Hayre & Turnbull (1981) however
the guarantees are only asymptotic.

Sequential Hypothesis Testing: The concept of sequential
hypothesis testing, initiated in Wald (1945), involves con-
cluding tests based on statistical criteria over time. Chernoff
(1959) made seminal contributions in this area, see Naghsh-
var et al. (2013) and references there in for more recent ad-
vancements. Unlike the work in this stream that focuses on
inferring hypotheses from finite sets related to outcome dis-
tributions, our objective is to minimize the length of the ex-
periment to obtain an estimate of ATE with (ϵ, δ)−coverage
guarantee.

Pure Exploration in Bandits: Substantial work has come
up in recent times in the pure exploration problems in multi-
armed bandit literature, see Bubeck et al. (2011) and Latti-
more & Szepesvári (2020), where algorithm designer is in-
terested in designing algorithms which at the end infers with
statistical guarantees. One of the most studied problems
in pure exploration is the best arm/treatment identification
(BTI problem (see Mannor & Tsitsiklis (2004), Even-Dar
et al. (2006), Audibert & Bubeck (2010), Garivier & Kauf-
mann (2016), Kaufmann et al. (2016), Russo (2016) see
Juneja & Krishnasamy (2019) for generalizations). The BTI
problem aims to identify with high probability the treatment
that yields the highest mean outcome, with a minimum ex-
pected sample size. Our problem utilizes tools from this
stream. However, our problem can not be solved by this
framework directly (the BTI problem is in the same spirit

as the sequential hypothesis testing problem), as we are
interested in designing an experiment that estimates a CI of
ATE with (ϵ, δ)−coverage guarantee.

3. Model
We consider a sequential framework with two treatments
A and B. Our objective is to measure Average Treatment
Effect (ATE) defined as the difference between the outcomes
associated with treatment A and treatment B. To achieve this
objective, we apply treatments to each incoming individual
at a discrete time denoted by n = 1, 2, 3, . . .. Specifically,
either treatment A or B is assigned to the individual arriv-
ing at time n, represented as Un. To define causal effects,
we utilize the potential outcome notation introduced by Im-
bens & Rubin (2015). Let (Xn(A),Xn(B)) represent the
random variable tuple whose first and second components
capture the outcome that would have been observed if the
nth individual was assigned treatment k ∈ {A,B}. How-
ever, we observe only a single realized outcome, denoted
as Xn, which corresponds to Xn(Un). We assume that
{Xn(A); n = 1, 2, . . .} and {Xn(B); n = 1, 2, . . .} are
independent and identically distributed according to distri-
butions νA and νB , respectively. Let ν = {νA, νB} denote
our true unknown underlying environment. Denoting the
mean of a distribution by the functionm(·), let µA = m(νA)
and µB = m(νB). We denote the ATE of treatment A over
treatment B is ∆ = µA − µB . Let {Fn; n = 1, 2, . . .}
denote the σ-algebra generated by {(Uj , Xj); j ≤ n}. Our
goal is to estimate a CI with the desired width ϵ > 0, which
contains the ATE, with a probability of at least 1 − δ, i.e.,
(ϵ, δ)−coverage guarantee. To achieve this goal, we choose
an adaptive experimental policy consisting of the following
three components:

1. Assignment rule: At each time n = 1, 2, . . ., choose
an assignment Un ∈ {A,B} adaptively and receives an
independent draw Xn from νUn

.

2. Estimation rule: Let [∆̂L(s), ∆̂R(s)] represent
the estimated confidence interval after observing
(U1, X1), (U2, X2), . . . , (Us, Xs) for s = 1, 2, . . ..

3. Stopping rule: Let τ denote a stopping time with respect
to {Fn : n = 1, , 2, , 3...}.

Given the above three components, the adaptive policy
yields the CI, [∆̂L(τ), ∆̂R(τ)]. We next formally define
the notion of (ϵ, δ)−coverage guarantee for an adaptive
policy.

Definition 3.1. Given ϵ > 0 and δ ∈ (0, 1), we say
that an adaptive policy P, provides the (ϵ, δ)−coverage
guarantee if the three components (assignment, estima-
tion and stopping rule) above yield a confidence interval
[∆̂L(τ), ∆̂R(τ)] such that Pν{∆ /∈ [∆̂L(τ), ∆̂R(τ)]} ≤ δ
and ∆̂R(τ) − ∆̂L(τ) ≤ ϵ, for all environment ν, where,
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Pν(·) denotes the probability measure induced by the envi-
ronment ν.

For ease of exposition, we assume that νA and νB belong to
the canonical single-parameter exponential family (SPEF)
(see Cappé et al. (2013)), denoted as S. In Appendix I, we
extend our results to distributions of the outcome of treat-
ments belonging to a non-parametric family with bounded
support. The set S includes many commonly used distribu-
tions including Bernoulli, Poisson, Gaussian with known
variance, and Gamma distribution with known shape param-
eter. Specifically νA, νB ∈ S, where,

S =

{
pθ : θ ∈ Θ ⊂ R,

dpθ
dξ

= exp(θ · x− b(θ))

}
,

where ξ is some fixed reference measure on R, and, b(·) is
a fixed twice differentiable strictly convex function. The
mean of the distribution pθ is the derivative b′(θ) and
the variance of the distribution is the double derivative
b
′′
(θ), for all θ ∈ Θ. Further, any distribution pθ ∈ S

can be parameterized either by θ or by its mean. Let
KL(pθ, pθ̃) represent the KL divergence of pθ with re-
spect to pθ̃. Since there is a one-to-one mapping between
the mean of the distribution and the parameter θ, we de-
fine a divergence function, d(µ, µ̃) ≜ KL(pθ(µ), pθ(µ̃)) =
b(θ(µ̃)) − b(θ(µ)) − b′(θ(µ))(θ(µ̃) − θ(µ)), such that
b′(θ(µ)) = µ, b′(θ(µ̃)) = µ̃ and pθ(µ), pθ(µ̃) ∈ S. Let
σ(µ) denote the standard deviation of the distribution with
mean µ. For future use, let I denote the support of d(µ, ·)
and define µ = sup I and µ = inf I. We also assume that
S is regular, that is, I = (µ, µ). Note that µ can be ∞ or
µ can be −∞ as in the case of Gaussian with known vari-
ance. In Appendix D, we establish several key properties
of the function d(µ, x), notably that d(µ, x) exhibits strict
quasi-convexity in the second argument.
Remark 3.2. Since ∆ can take values in between (µ−µ, µ−
µ) when outcome distributions lie in S , hence it follows that
our ATE problem is well defined only if ϵ < 2(µ− µ).

4. Lower bound and asymptotically optimal (ϵ,
δ)−coverage guarantee policy

4.1. Lower bound

In this subsection, we first develop a lower bound on
the expected sample size required for any adaptive pol-
icy which provides (ϵ, δ)−coverage guarantee. Recall that
ν = {νA, νB} denotes our true underlying environment.
In this environment, the distributions of the outcomes of
treatments A and B are νA, νB ∈ S with means µA and µB ,
respectively.

Consider an adaptive policy denoted by P, which pro-
vides (ϵ, δ)-coverage guarantee. Let NA(n) and NB(n) =
n−NA(n) represent the number of times treatment A and
B have been chosen for the first n assignments, respectively,

by P. The estimation of the CI for ATE, i.e., ∆ by P is
denoted by [∆̂L(τ), ∆̂R(τ)] at the stopping time τ , where
∆̂R(τ)− ∆̂L(τ) ≤ ϵ. Consider any alternate environment
ν′ = {ν′A, ν′B} in the set K, where, K = K1 ∪ K2, and
K1 = {(ν′A, ν′B) : ν′A, ν

′
B ∈ S, µ′

A − µ′
B < ∆ − ϵ} and

K2 = {(ν′A, ν′B) : ν′A, ν′B ∈ S, µ′
A − µ′

B > ∆+ ϵ}. Using
information theoretic arguments (see Section 33.2.1 in Lat-
timore & Szepesvári (2020) and Kaufmann (2020)), if τ is
almost surely finite, we have,
Eν [NA(τ)] · d(µA, µ′

A) + Eν [NB(τ)] · d(µB , µ′
B) (1)

≥ Ψ(Pν(E),Pν′(E)),

where, Eν [·] denotes the expectation operator under our
environment ν for any event E ∈ Fτ , where Ψ(p1, p2) ≜

p1 log
p1
p2

+ (1− p1) log
(

1−p1
1−p2

)
for p1, p2 ∈ (0, 1).

Set E to be {∆′ /∈ [∆̂L(τ), ∆̂R(τ)]}, where ∆′ = µ′
A−µ′

B .
Using the definition of (ϵ, δ)−coverage, we have Pν′(E) ≤
δ and observing

Pν(E) ≥ Pν(∆ ∈ [∆̂L(τ), ∆̂R(τ)]) ≥ 1− δ. (2)

Thus we obtain that left hand side of (1) of bounded by
Ψ(1− δ, δ), which in turn is greater than log( 1

4δ ). Further
noting Eν [NA(τ)]

Eν [τ ]
= w ∈ [0, 1], Eν [NB(τ)]

Eν [τ ]
= 1− w ∈ [0, 1],

we have

Eν [τ ] ≥
log( 1

4δ )

sup
w∈[0,1]

inf p
ν′∈K

wd(µA, µ′
A) + (1− w)d(µB , µ′

B)
.

We observe that the above result provides a lower bound on
the expected sample size using the set of alternate environ-
ments K. This bound turns out to be not tight and one can
obtain a tighter bound by expanding the set K. However,
for any set larger than K, the first inequality (left one) in (2)
may not hold, thus we impose a stability condition to obtain
a tighter bound which is asymptotic in the regime as δ → 0.
From now on, we will index τ with subscript δ. Here is the
formal definition of the stability condition.

Definition 4.1. Let τδ be the stopping time of a
(ϵ, δ)−coverage adaptive experimental policy with the es-
timated CI of ATE, denoted by [∆̂L(τδ), ∆̂R(τδ)]. The
policy is said to be stable with limiting CI [∆L,∆R], if
∆̂L(τδ)

p→ ∆L and ∆̂R(τδ)
p→ ∆R as δ → 0, where ∆L

and ∆R are constants.

For stating the asymptotic lower bound, consider an adap-
tive policy denoted by P, which provides (ϵ, δ)-coverage
guarantee with limiting CI [∆L,∆R]. Define the set of al-
ternate environments K(∆L,∆R) = K1(∆L) ∪ K2(∆R),
and K1(∆L) = {(ν′A, ν′B) : ν′A, ν′B ∈ S, µ′

A − µ′
B < ∆L}

and K2(∆R) = {(ν′A, ν′B) : ν′A, ν′B ∈ S, µ′
A−µ′

B > ∆R}.
Definition 4.1 and the (ϵ, δ)−coverage guarantee ensures
that ∆R − ∆L ≤ ϵ and ∆ ∈ [∆L,∆R], which implies
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that K ⊂ K(∆L,∆R). We use the same argument as be-
fore where we consider ν′ ∈ K(∆L,∆R) and E = {∆′ /∈
[∆̂L(τδ), ∆̂R(τδ)]}. We cannot use (2) as mentioned be-
fore, however the stability condition implies Pν(E) ≈ 1
for small δ. The rest of the argument is similar to before
and we obtain the asymptotic lower bound. We present a
rigorous proof (see Appendix A.1) of the above argument.
Before we state the formal result, we define some notation
that will be useful for stating the theorem. For w ∈ [0, 1],
let C(z) = {(x, y) : x, y ∈ I, x− y = z} and,

T (µA, µB , w, z) ≜ min
x,y∈C(z)

wd(µA, x)+(1−w)d(µB , y).

(3)

Define Υ(ϵ) = {(∆L,∆R) : ∆ ∈ [∆L,∆R],∆R = ∆L +
ϵ}. Now we state our lower bound result.

Theorem 4.2. For given νA, νB ∈ S with mean µA and µB
respectively and any (ϵ, δ)−coverage and stable adaptive
experimental policy with an almost surely finite stopping
time τδ , we have

lim inf
δ→0

Eν [τδ]
log(1/δ)

≥ 1

ℓ∗(µA, µB , ϵ)
, (4)

where ℓ∗(µA, µB , ϵ) is the optimal value of the following
optimization problem (denoted by L):

ℓ∗(µA, µB , ϵ) =

sup
w∈[0,1]

(∆L,∆R)∈Υ(ϵ)

inf
ν′∈K(∆L,∆R)

w d(µA, µ
′
A)+(1−w) d(µB , µ′

B).

This further equals,

sup
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min{T (µA, µB , w,∆L), T (µA, µB , w,∆R)}.

Let w∗(µA, µB , ϵ), ∆∗
L(µA, µB , ϵ) and ∆∗

R(µA, µB , ϵ) de-
note a solution to the optimization problem L (later in The-
orem 5.3, we demonstrate the existence of solution of L).
It follows from the above theorem that, ∆∗

R(µA, µB , ϵ) =
∆∗
L(µA, µB , ϵ) + ϵ. We provide a policy later in this sec-

tion that chooses the assignment rule such that the frac-
tion of assignment of treatment A tracks w∗(µA, µB , ϵ)
and the limiting CI is [∆∗

L(µA, µB , ϵ),∆
∗
R(µA, µB , ϵ)]. We

prove that this proposed policy matches the lower bound for
δ → 0, hence the lower bound provided above is asymp-
totically tight when δ → 0. Hence w∗(µA, µB , ϵ) and
[∆∗

L(µA, µB , ϵ),∆
∗
R(µA, µB , ϵ)] can be interpreted as the

asymptotic optimal fraction of assignment of treatment A
and the limiting CI, respectively.

We now propose our policy P1 that is shown to be asymp-
totically optimal and has (ϵ, δ)−coverage guarantee.

4.2. Asymptotically optimal policy P1

Let µ̂A(n) and µ̂B(n) denote the sample average of out-
comes of individuals who were assigned the treatment
A and B by time n, respectively. Hence, µ̂A(n) =∑n

t=1XtI{Un=A}∑n
t=1 I{Un=A}

, and µ̂B(n) =
∑n

t=1XtI{Un=B}∑n
t=1 I{Un=B}

.

To achieve asymptotic optimality, we choose the as-
signment rule to track w∗(µA, µB , ϵ). Further, our es-
timation and stopping rules aim to construct a CI of
ATE [∆̂L(τδ), ∆̂R(τδ)] such that ∆̂L(τδ) converges to
∆∗
L(µA, µB , ϵ) and ∆̂R(τδ) converges to ∆∗

R(µA, µB , ϵ) in
probability as δ → 0. All three components of P1 is given
by,

1. Assignment rule: Various tracking rules exist in
bandit literature (see Garivier & Kaufmann (2016),
Agrawal et al. (2020) and Degenne & Koolen (2019)).
Here, we use the D-tracking rule introduced in Garivier
& Kaufmann (2016). We define, Qn = {k ∈ {A,B} :
Nk(n) <

√
n− 1}. If Qn = {}, then

Un+1 = argmax
k∈{A,B}

n ·w∗(µ̂A(n), µ̂B(n), ϵ)−Nk(n),

else Un+1 = argmink∈Qn
Nk(n).

2. Estimation rule: We use the first-order optimality
conditions for L where we substitute µ̂A(n), µ̂B(n) in
the place of µA and µB . Formally, we compute ∆̂L(n)
and ∆̂R(n) that satisfies,

T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂L(n)

)
(5)

= T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂R(n)

)
=
β(n, δ)

n
,

(see (3) for the definition of T (µA, µB , w,∆L) func-
tion). Here, for a given α > 1, we can choose
β(n δ) = log

(
c1n

α

δ

)
, where c1 = c1(α) is an ap-

propriately chosen positive constant. β(n, δ) is cho-
sen to ensure that [∆̂L(n), ∆̂R(n)] is wide enough
such that ATE lies in the CI with probability 1 − δ
at each step. We show in Lemma E.6 in Appendix E
that ∆̂L(n) and ∆̂R(n) satisfying (5) exist uniquely.
Further, in Lemma E.3 in Appendix E, we show that
T (µA, µB , w, z) is increasing for z ≥ ∆ and decreas-
ing z ≤ ∆, hence computing ∆̂L(n) and ∆̂R(n) re-
quires simple binary search.

Remark 4.3. The above threshold of β(n, δ) was used
by Garivier & Kaufmann (2016). Tighter definitions
of the threshold β(n, δ) have been proposed in various
papers to get probabilistic guarantees in the context
of the best treatment identification problem, which we
can utilize in our ATE problem as well (see Agrawal
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et al. (2020), Kaufmann & Koolen (2021) and Jourdan
et al. (2022)). Barrier (2023) gives another definition
of β(n, δ) which works well empirically in practice
although not theoretically supported.

3. Stopping rule: Set the stopping rule as

τδ = inf{n ∈ N : ∆̂R(n)− ∆̂L(n) ≤ ϵ}.

Next, we present results that state that P1 has the (ϵ,
δ)−coverage guarantee and is asymptotically optimal.

Theorem 4.4. ((ϵ, δ)−coverage guarantee and stability
of P1) For P1, there exists a ϵo > 0 such that for ϵ ≤ ϵo,
we have:

a) For a given δ ∈ (0, 1), τδ is finite almost surely.

b) P1 has the (ϵ, δ)−coverage guarantee.

c) P1 is a stable policy.

We assume the following technical property to prove the
asymptotic optimality of P1. In Section 6, we propose
another policy P2 based on the insights of the solution of
lower bound L which does not require this assumption.

Assumption 4.5. For all µA, µB ∈ I,
min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)} is a
jointly strictly quasi-concave function in w and ∆L for all
w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆) (see (3) for the definition
of T (µA, µB , w,∆L)).

Remark 4.6. We prove in Appendix H.2, that the above
technical property is satisfied by Gaussian distributions with
known variance. For general outcome distributions in S , we
numerically show that the above technical property holds
via plotting upper contour sets (See Appendix H.2). This
technical assumption implies that the solution of L is unique,
i.e., w∗(µA, µB , ϵ), ∆∗

L(µA, µB , ϵ) and ∆∗
R(µA, µB , ϵ) are

unique for a given µA, µB and ϵ > 0. (See statement and
proof of Lemma E.7 in Appendix E).

Theorem 4.7. (Asymptotic optimality of P1) For P1,
there exists a ϵo > 0 such that for ϵ ≤ ϵo, we have:

Pν
(
lim sup
δ→0

τδ
log(1/δ)

=
1

ℓ∗(µA, µB , ϵ)

)
= 1 and

lim
δ→0

Eν [τδ]
log(1/δ)

=
1

ℓ∗(µA, µB , ϵ)
.

Remark 4.8. Our proposed policy P1 not only has (ϵ,
δ)−coverage guarantee but its estimation rule constructs
a confidence sequence/ anytime valid confidence interval
(see Darling & Robbins (1967), Howard et al. (2021), and
references within) for ATE.

Definition 4.9. The confidence interval generated by a
policy’s estimation rule {[∆̂L(n), ∆̂R(n)], n = 1, . . .} is

called a (1 − δ)−confidence sequence of ∆, if following
holds,

Pν(∀n ∈ N : ∆ ∈ [∆̂L(n), ∆̂R(n)]) ≥ 1− δ. (6)

A policy generating a confidence sequence of ATE allows
the experimenter to terminate the A/B test at any arbitrary
point before the end of the experiment. Upon stopping, such
a policy yields a confidence interval (CI) wider than ϵ (if it
is stopped earlier than mandated by the stopping rule that
ensures (ϵ, δ)−coverage guarantee). However, this CI con-
tains the ATE with a probability of at least 1− δ. Note that
the stopping can occur at an arbitrary time, i.e., the experi-
menter at time n can use any of the CI that was generated
at time 1, ...n − 1. This aspect is particularly valuable in
practical scenarios, such as online platforms, where there
is a demand for the flexibility to halt experiments at any
juncture while still deriving valid conclusions. Our policy
P1 provide (1− δ)-confidence sequence of ∆ as it satisfies
(6). See the formal statement in Theorem A.2 in Appendix
A.2.

Observe that the assignment rule of P1 requires the solution
of L at each time step, which is computationally expensive.
In the remaining sections, we first develop structural in-
sights about w∗(µA, µB , ϵ) from the lower bound, we then
construct a policy, denoted as P2, that utilizes the structure
of w∗(µA, µB , ϵ) and has substantially lower computational
burden compared to P1. Further, we prove that P2 is asymp-
totically optimal when ϵ→ 0 and δ → 0.

5. Insights from lower bound
In this section, we first provide insights about any asymptoti-
cally optimal adaptive policy from the lower bound analysis,
in particular about the assignment rule for our ATE problem.
We now introduce Fisher’s information for distributions in
S, this will aid us in stating the next result. Given ν ∈ S
with mean m(ν) = µ, the Fisher information I(µ) of distri-
bution ν can be expressed as

I(µ) =
∂2d(µ, x)

∂x2

∣∣∣∣
x=µ

=
1

σ2(µ)
,

where σ2(µ) is the variance of ν. For details, see Theorem
5.4, Chapter 2 in Lehmann & Casella (2006) and Section
15.3 in Agrawal (2022). It is worth noting that we prove in
Appendix D.3 that b(θ) ∈ C∞ as a function of θ. This im-
plies that d(µ, x) is in C∞ as a function of x (see Appendix
D.1).

Our primary objective is to develop insights into the solution
for L. To this end, we start with Gaussian distributions
where the optimization problem L has a unique solution and
it can be explicitly characterized.
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Proposition 5.1. If underlying distributions of outcomes
of both treatments are Gaussian with known variances,
i.e., νA = N(µA, σ

2
A) and νB = N(µB , σ

2
B), then

w∗(µA, µB , ϵ) and ∆∗
L(µA, µB , ϵ) uniquely satisfy

w∗(µA, µB , ϵ) = w(µA, µB) and ∆∗
L(µA, µB , ϵ) = ∆− ϵ

2
,

where, w(µA, µB) ≜

√
1

I(µA)√
1

I(µA)
+
√

1
I(µB)

. The above in turn

implies that, w∗(µA, µB , ϵ) =
σA

σA+σB
.

Remark 5.2. It’s noteworthy that the above proposition per-
mits νA and νB to reside in distinct S sets. In the context of
Gaussian distributions, νA and νB are confined to the same
S solely if they share identical variances. As before, for the
rest of the results, we operate under the assumption that νA
and νB reside within the same S.

The above proposition states that if the outcome distribu-
tions of treatments are Gaussian distributed with known
variances, then the asymptotically optimal fraction of treat-
ment assignment for A and B is unique and is proportional
to standard deviation. This coincides with Neyman’s alloca-
tion rule. Note that this assignment of treatments does not
depend upon ϵ, however, this is not true in general. For a
general distribution of νA, νB ∈ S, L is a non-convex opti-
mization problem and the exact solution is not analytically
tractable, we compute its behaviour near ϵ ≈ 0 using Taylor
series expansion. The next result is our key finding.

Theorem 5.3. For a given νA, νB ∈ S with mean µA
and µB respectively, then following holds: a solution
to the optimization problem L exists, i.e., w∗(µA, µB , ϵ)
and ∆∗

L(µA, µB , ϵ) exists and any w∗(µA, µB , ϵ) and
∆∗
L(µA, µB , ϵ) that is a solution to the optimization problem

L satisfies,

lim
ϵ→0

ℓ∗(µA, µB , ϵ)

ϵ2
=

1

8
(√

1
I(µA) +

√
1

I(µB)

)2 . (7)

Further, limϵ→0
∆−∆∗

L(µA,µB ,ϵ)
ϵ = 1

2 , and

lim
ϵ→0

w∗(µA, µB , ϵ) = w(µA, µB).

The theorem states that as ϵ decreases, the value of
ℓ∗(µA, µB , ϵ) also decreases at a rate of ϵ2. As a result,
our ATE problem requires a larger expected sample size
and the growth of Eν [τδ] is at the rate of 1/ϵ2. Further, the
above result states that the asymptotically optimal construc-
tion of CI around the estimator of ATE is symmetric when
ϵ and δ are small. We find that the asymptotically optimal
fraction of treatment assignment for A and B is inversely
proportional to the square root of Fisher’s information of the
outcome distributions of treatments A and B, respectively,
when ϵ and δ are small. This result aligns with Neyman’s

allocation rule, as for S the inverse of Fisher’s information
of distribution equals the variance of the distribution. Now
we study how w∗(µA, µB , ϵ) changes with ϵ for general
outcome distributions in S.

Insensitivity of w∗(µA, µB , ϵ) to ϵ: Numerical observa-
tions and theoretical justification. We conducted a nu-
merical study to understand how w∗(µA, µB , ϵ) behaves
with changes in ϵ. Numerical exploration reveals that the
asymptotically optimal fraction of treatments, as δ → 0,
shows limited sensitivity to variations in ϵ, suggesting
w∗(µA, µB , ϵ) ≈ w(µA, µB) across a range of ϵ. In our
study, we examine outcome distributions for treatments
A and B under two scenarios: exponential and Bernoulli
distributions (refer to Figure 1). For both distributions,
w∗(µA, µB , ϵ) remains relatively constant, closely approxi-
mating w(µA, µB), with a notable exception for Bernoulli
distributions when µA = 0.5 and µB = 0.08, and ϵ > 0.2.

Now we theoretically justify that w∗(µA, µB , ϵ) ≈
w(µA, µB) for reasonable values of ϵ by showing that the
rate of change of w∗(µA, µB , ϵ) as a function of ϵ is 0 when
ϵ→ 0. We also characterize the lower order ϵ2 term in the
theorem below (see (8)).

Theorem 5.4. For a given νA, νB ∈ S with mean µA and
µB respectively, if d(µ, x) is four times continuously dif-
ferentiable in x around a neighbourhood of x = µ, then
following holds:

lim
ϵ→0

w∗(µA, µB , ϵ)− w(µA, µB)

ϵ
= 0.

Further, we have,

lim
ϵ→0

w∗(µA, µB , ϵ)− w(µA, µB)

ϵ2
=

v(µA, µB)

96
√
I(µA)I(µB)

,

(8)

where, v(µA, µB) ≜

(
∂4d(µB ,x)

∂x4

∣∣∣
x=µB

)
(1 −

w(µA, µB))
4 −

(
∂4d(µA,x)

∂x4

∣∣∣
x=µA

)
w4(µA, µB).

Remark 5.5. It is worth noting that the ϵ2 correction terms
provided in (8) are zero for the Gaussian case and this aligns
with our finding w∗(µA, µB , ϵ) = w(µA, µB).

6. Computationally efficient asymptotically
optimal policy P2

We now present a policy P2 which has less computational
burden in comparison to P1. As we study this policy in
the asymptotic regime where ϵ → 0 and δ → 0, hence we
index τ with both δ and ϵ and use the notation τδ,ϵ. Fur-
ther P2 is asymptotically optimal as ϵ → 0 and δ → 0.
We utilize the limiting behaviour of w∗(µA, µB , ϵ) when
ϵ → 0 for P2. Specifically, policy P2 is identical to P1

7
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Figure 1: Plot of w∗(µA, µB , ϵ) with ϵ for two cases: first
when outcome distributions are Bernoulli with µA = 0.5
and three different values of µB , second when outcome
distributions are exponential with µA = 10 and three

different values of µB . Horizontal lines starting from the
star points represent the value of w(µA, µB). One can see

that for the exponential cases, these horizontal lines
completely overlap with the values of w∗(µA, µB , ϵ). A
similar pattern follows for the Bernoulli cases as well,

except when ϵ becomes larger than 0.2.

with the modification that in the assignment rule we re-
place w∗(µ̂A(n), µ̂B(n), ϵ) with w(µ̂A(n), µ̂B(n)) and uti-
lize the same stopping and estimation rule as in P1.

Our policy P2, similar to the policy P1, is stable and
has (ϵ, δ)−coverage guarantee. This implies, Theorem
4.4 holds for P2 as well. Further, P2 also constructs a
(1 − δ)−confidence sequence of ATE. Now we state the
result which provides the asymptotic optimality of policy
P2.

Theorem 6.1. (Asymptotic optimality of policy P2)
There exists a ϵo > 0 such that the following holds for P2 if
ϵ ≤ ϵo:

lim
δ→0

Eν [τδ,ϵ]
log(1/δ)

=
1

ℓP2(µA, µB , ϵ)
,

where,
ℓP2(µA, µB , ϵ) =

sup
(∆L,∆R)∈Υ(ϵ)

min{T (µA, µB , w,∆L), T (µA, µB , w,∆R)}.

Further, we have limϵ→0 limδ→0
ϵ2Eν [τδ,ϵ]
log(1/δ) =

= lim
ϵ→0

ϵ2

ℓP2(µA, µB , ϵ)
= lim
ϵ→0

ϵ2

ℓ∗(µA, µB , ϵ)
(9)

=
1

8
(√

1
I(µA) +

√
1

I(µB)

)2 .

The lower bound developed in Theorem 4.2 and (9) above
together imply the asymptotic optimality of the policy P2

in the regime ϵ→ 0 and δ → 0. Using the above theorem,
we also obtain that for a given small ϵ > 0, our policy P2 is
near optimal as δ → 0.

It is worth noting that I(µ) is a continuous function of µ
for Gaussian with known variance, Gamma with known
shape parameters, Bernoulli, Poisson and Geometric distri-
bution. In general, it requires the b(θ) function to be twice
continuously differentiable (see Appendix D for detailed
discussion).

Comparison of P1 and P2. Even though theoretically
P2 policy is asymptotically optimal in ϵ → 0 and δ → 0
whereas P1 policy is asymptotically optimal in δ → 0 for
any small ϵ > 0, we numerically verify that expected sam-
ple size taken by P2 is statistically indistinguishable when
compared to expected sample size taken by P1 for reason-
able values of ϵ > 0 and δ ∈ (0, 1). This great performance
of P2 stems from the fact that w∗(µA, µB , ϵ) ≈ w(µA, µB)
(see Theorem 5.4 and discussion around it). In the next
section, we present the numerical performance of P2 pol-
icy and compare it with a uniform randomized assignment
policy where incoming individuals are randomly assigned
treatment A or B, with equal probabilities.

7. Numerical experiments
In this section, we present a numerical analysis to demon-
strate the performance of our policy, P2, compared to a
uniform randomized policy. According to Theorem 5.3,
P2 tends to sample in a manner close to uniform when the
Fisher’s information I(µA) and I(µB) for the two treat-
ments are similar. Consequently, when I(µA) and I(µB)
are nearly equal, the expected benefit of employing policy
P2 over a uniform randomized approach is relatively minor.

To highlight the advantages of our policy P2 against the
uniform randomized policy, we examine a scenario where
I(µA) and I(µB) significantly diverge. Specifically, we
model the outcomes for treatments A and B as exponentially
distributed with means µA = 10 and µB = 0.1, respec-
tively. We select ϵ = 0.5 and explore different values of δ,
including 10%, 5%, and 1%. For each δ setting, we gener-
ate 2000 sample paths and calculate the average outcomes.
The efficacy of policy P2 is then compared to that of a
policy adhering to the randomized controlled trials (RCT)
framework, which combines a uniform random assignment
with our estimation and stopping criteria, referred to here
as PRCT. We present our findings in Table 1. Details of
the numerical experiments are provided in Appendix G. We
observe the approximately 50% reduction in the sample
size by our policy P2 over the performance of the policy
PRCT. We provide the theoretical support for this finding

8
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Table 1: Performance of P2 and PRCT policy for finite δ
values.The width of 95% CI for estimated E[τδ] for both

policies is less than 150. We observe that the CI of ATE for
both policies P2 and PRCT always contains ATE at the

end, for all three cases of δ = 10, 5, 1%.

δ Lower bound on E[τδ] E[τδ] for P2 E[τδ] for PRCT

10% 7.52× 103 3.74× 104 7.85× 104

5% 9.78× 103 4.14× 104 8.62× 104

1% 1.50× 104 4.98× 104 1.02× 105

in Proposition F.2 in Appendix F. We quantify the value
of any asymptotically optimal adaptive policy’s assignment
rule compared to the uniform randomized assignment rule
in terms of reducing the sample size as a function of the
ratio of Fisher’s information of outcome distributions for
small ϵ and δ.

We next present the comparison of policy P2 with a policy
that uses the adaptive sampling rule of clip-OGD described
in Section 4 of Dai et al. (2024) along with the estimation
and stopping rules of P2. We refer to this policy as Clip-
OGD. While our paper and Dai et al. (2024) refer to the
asymptotically optimal assignment fraction of treatments
as Neyman’s allocation rule, they are not identical. The
Neyman’s allocation rule in Dai et al. (2024), is expressed
as S(A)

S(A)+S(B) , where S(A) and S(B) are the square root of
the second moment of treatment A and B, respectively. This
represents the asymptotically optimal weight (assignment
probability of treatment A) in their setting for a large sample
size.

Using a numerical study, we show that this assignment rule
disparity results in a notable difference in performance. We
consider two well-separated treatments: the outcome distri-
bution of treatment A is Bernoulli with mean µA = 0.98
and of treatment B is Bernoulli with µB = 0.5. We set
ϵ = 0.2 and δ = .01, and then compare our policy P2 with
the Clip-OGD policy. The expected sample sizes are pre-
sented in the first two rows of Table 2. Our findings show
that P2 requires a significantly lower expected sample size
than Clip-OGD. This may be due to differences in assign-
ment rules. Our policy adaptively assigns close to 21.9% of
samples to treatment A, which is the asymptotically optimal
fraction of the assignment of treatment A. Here, we have
σ(µA) = 0.14 and σ(µB) = 0.5, and 0.14

0.14+0.5 ≈ 21.9%.
In contrast, the Clip-OGD adaptively assigns based on the
second moments, S(A) = 0.98 and S(B) = 0.5, and thus
allocates close to 0.98

0.98+0.5 ≈ 66.2% to treatment A, which
is significantly sub-optimal.

For completeness, we also include the benchmark non-
adaptive infeasible Neyman’s allocation rule of Section 3
of Dai et al. (2024), i.e., assigning the treatment A to each

Table 2: Performance of P2, Clip-OGD and infeasible
benchmark of Section 3 of Dai et al. (2024) for δ = 0.01
and ϵ = 0.2. The width of 95% CI for estimated E[τδ] for
both policies is less than 100. We observe that the CI of

ATE for all three policies always contains ATE at the end.

Policy E[τδ] for the policy

P2 2672
Clip-OGD, Dai et al. (2024) 4034
Neyman Benchmark, Dai et al. (2024) 4573

individual with fixed probability 66.2%, and uses the same
estimation and stopping rule as P2. The performance of
this policy is reported in row 3 of the table. As the bench-
mark non-adaptive rule always allocates a fixed suboptimal
fraction to treatment A, the performance deteriorates even
further.

8. Limitations and future research directions
As mentioned earlier, we show that Assumption 4.5 holds
when outcome distributions are Gaussian. For other out-
come distributions in S , we numerically show that Assump-
tion 4.5 holds.

Often in practical scenarios, individuals come with their
contexts. Hence it is worth exploring a setting where the
decision whether to observe a sample from distribution A or
B is conditioned on the context of an incoming individual.
Hence extending our work to a contextual setting is an im-
portant direction for future research. In this work, outcome
distributions are restricted to SPEF or have bounded support
for the asymptotic optimality of the two policies. A more
general class of outcome distributions should be explored
as part of future work.

Impact Statement
This paper presents research aimed at enhancing A/B test-
ing through statistical learning methods, a practice prevalent
across various fields. While our work holds numerous po-
tential societal implications, we believe that none require
explicit emphasis within this context.
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A. Proofs of results in Section 4
A.1. Proofs of results in Section 4.1.

Proof of Theorem 4.2:

Recall Ξ is the set of adaptive policies which satisfy the (ϵ, δ)−coverage property and are stable. Consider P ∈ Ξ. As the
policy P is stable, it follows that

∆̂L(τδ)
p→ ∆L and ∆̂R(τδ)

p→ ∆R, (10)

under the environment ν, where ∆L and ∆R are constants such that ∆R − ∆L ≤ ϵ, and ∆L and ∆R lies within the
interval [∆ − ϵ,∆] and [∆,∆ + ϵ] respectively. Let ν′ = {ν′A, ν′B} denote an alternate environment. In this alternate
environment, the means of these distributions are µ′

A and µ′
B , respectively. We first choose ν′ ∈ K1(∆L) with ATE ∆′, i.e.,

∆′ = (µ′
A − µ′

B). Let η ≜ ∆L −∆′. It follows that η is a positive number.

Using equation (33.6) in Lattimore & Szepesvári (2020) / Lemma 1 in Kaufmann et al. (2016), for any E ∈ Fτδ , we have

Eν [NA(τδ)] · d(µA, µ′
A) + Eν [NB(τδ)] · d(µB , µ′

B) ≥ Ψ(Pν(E),Pν′(E)),

It follows that,

Eν [τδ]
(
Eν [NA(τδ)]

Eν [τδ]
d(µA, µ

′
A) +

Eν [NB(τδ)]
Eν [τδ]

d(µB , µ
′
B)

)
≥ Ψ(Pν(E),Pν′(E)). (11)

We claim that the following holds:

lim inf
δ→0

Ψ(Pν(E),Pν′(E))
log(1/δ)

≥ 1, (12)

where, E = {∆′ /∈ [∆̂L(τδ), ∆̂R(τδ)]}, where, ∆̂R(τδ)− ∆̂L(τδ) ≤ ϵ.

To prove the claim made in (12), using Definition 3.1, we get Pν′(E) ≤ δ.

Now observe that,
Pν(E) = P{∆′ /∈ [∆̂L(τδ), ∆̂R(τδ)]} ≥ P{∆L − η < ∆̂L(τδ)}.

Using (10), we get, limδ→0 Pν(E) = 1. Using the definition of Ψ(·, ·), proof of the claim follows trivially. Now we come
back to our original proof.

Notice that (11) and (12) holds for any ν′ ∈ K1(∆L). Hence it follows that,

lim inf
δ→0

[
Eν [τδ]
log(1/δ)

]
inf

ν′∈K1(∆L)

(
Eν [NA(τδ)]

Eν [τδ]
d(µA, µ

′
A) +

Eν [NB(τδ)]
Eν [τδ]

d(µB , µ
′
B)

)
≥ 1. (13)

Now we choose alternate environment ν′ ∈ K2(∆R) with ATE ∆′, i.e., ∆′ = (µ′
A − µ′

B). Let η = ∆′ −∆R. Again it
follows that η is a positive number. Using similar steps we get,

lim inf
δ→0

[
Eν [τδ]
log(1/δ)

]
inf

ν′∈K2(∆R)

(
Eν [NA(τδ)]

Eν [τδ]
d(µA, µ

′
A) +

Eν [NB(τδ)]
Eν [τδ]

d(µB , µ
′
B)

)
≥ 1. (14)

Combining the (13) and (14), we get,

lim inf
δ→0

[
Eν [τδ]
log(1/δ)

]
inf

ν′∈K(∆L,∆R)

(
Eν [NA(τδ)]

Eν [τδ]
d(µA, µ

′
A) +

Eν [NB(τδ)]
Eν [τδ]

d(µB , µ
′
B)

)
≥ 1.

The above lower bound holds for a policy P, where Eν [NA(τδ)]
Eν [τδ]

∈ [0, 1]. To get a lower bound for any adaptive stable policy
with (ϵ, δ)−coverage guarantee, we have

lim inf
δ→0

Eν [τδ]
log(1/δ)

≥ 1

sup w∈[0,1],
∆L,∆R:∆∈[∆L,∆R],

∆R≤∆L+ϵ

infν′∈K(∆L,∆R) wd(µA, µ
′
A) + (1− w)d(µB , µ′

B)
.

12
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To get the desired result, we need to show that, the above supremum will be achieved when ∆R = ∆L + ϵ. To see that,
K(∆L,∆L + ϵ) ⊆ K(∆L,∆R) for any ∆R ≤ ∆L + ϵ. Hence it follows that,

lim inf
δ→0

Eν [τδ]
log(1/δ)

≥ 1

ℓ∗(µA, µB , ϵ)
.

This completes the first part of the proof.

Now we prove the second part of the theorem,

ℓ∗(µA, µB , ϵ) = sup
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

inf
ν′∈K(∆L,∆R)

wd(µA, µ
′
A) + (1− w)d(µB , µ

′
B).

where, K(∆L,∆R) = K1(∆L) ∪ K2(∆R), and K1(∆L) = {(ν′A, ν′B) : ν′A ∈ S, ν′B ∈ S, µ′
A − µ′

B < ∆L} and
K2(∆R) = {(ν′A, ν′B) : ν′A ∈ S, ν′B ∈ S, µ′

A − µ′
B > ∆R}.

Now we define for w ∈ [0, 1], ∆L ∈ [∆− ϵ,∆] and ∆R = ∆L + ϵ,

T̃1(µA, µB , w,∆L) ≜ inf
x,y∈C̃1(∆L)

wd(µA, x) + (1− w)d(µB , y),

where, C̃1(∆L) = {(x, y) : x, y ∈ I, x− y < ∆L}.

T̃2(µA, µB , w,∆L) ≜ inf
x,y∈C̃2(∆R)

wd(µA, x) + (1− w)d(µB , y),

where, C̃2(∆R) = {(x, y) : x, y ∈ I, x− y > ∆R}.

Hence it follows that,

ℓ∗(µA, µB , ϵ) = sup
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min{T̃1(µA, µB , w,∆L), T̃2(µA, µB , w,∆R)}. (15)

It is worth noting that for ϵ < 2(µ− µ), for each ∆L ∈ [∆− ϵ,∆], at most one of the set C̃1(∆L) and C̃1(∆L + ϵ) can be
empty. In that case, we define inf over an empty set to be ∞.

Now we define for w ∈ [0, 1], ∆L ∈ [∆− ϵ,∆] and ∆R = ∆L + ϵ,

T̂1(µA, µB , w,∆L) ≜ inf
x,y∈Ĉ1(∆L)

wd(µA, x) + (1− w)d(µB , y), (16)

where, Ĉ1(∆L) = {(x, y) : x, y ∈ I, x− y ≤ ∆L}.

T̂2(µA, µB , w,∆R) ≜ inf
x,y∈Ĉ2(∆R)

wd(µA, x) + (1− w)d(µB , y), (17)

where, Ĉ2(∆R) = {(x, y) : x, y ∈ I, x− y ≥ ∆R}.

Now take any x ∈ I and y ∈ I such that x− y = ∆L if such x, y exists. It follows that C̃1(∆L) does not contain {x, y}.
But we one can construct a sequence of (xn, yn) for n ≥ 1 such that (xn, yn) ∈ C̃1(∆L) and have the following property,

lim
n→∞

xn = x, lim
n→∞

yn = y.

13
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Hence using continuity of wd(µA, x) + (1− w)d(µB , y) in x and y, for w ∈ [0, 1], ∆L ∈ [∆− ϵ,∆] and ∆R = ∆L + ϵ,
we get,

T̂1(µA, µB , w,∆L) = T̃1(µA, µB , w,∆L).

Similarly, one can get,

T̂2(µA, µB , w,∆R) = T̂2(µA, µB , w,∆R).

Hence it follows that,

ℓ∗(µA, µB , ϵ) = sup
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min{T̂1(µA, µB , w,∆L), T̂2(µA, µB , w,∆R)}. (18)

Using strict quasi-convexity and uni-modality of d(µ, x) in x, we get that the solution of the optimization problem given in
(16) and (17) exists. Hence it follows that for w ∈ [0, 1], ∆L ∈ [∆− ϵ,∆] and ∆R = ∆L + ϵ,

T̂1(µA, µB , w,∆L) ≜ min
x,y∈Ĉ1(∆L)

wd(µA, x) + (1− w)d(µB , y).

T̂2(µA, µB , w,∆R) ≜ min
x,y∈Ĉ2(∆R)

wd(µA, x) + (1− w)d(µB , y).

Now again using strict quasi-convexity and uni-modality of d(µ, x) in x and (18), we get,

ℓ∗(µA, µB , ϵ) = sup
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min{T (µA, µB , w,∆L), T (µA, µB , w,∆R)}. (19)

This completes the proof.

□

Remark A.1. To get a non-asymptotic lower bound for any adaptive policy with (ϵ, δ)−coverage guarantee, for a given
environment ν = {νA, νB}, recall we have K = K1 ∪ K2, where K1 = {(ν′A, ν′B) : ν′A, ν′B ∈ S, µ′

A − µ′
B < ∆− ϵ} and

K2 = {(ν′A, ν′B) : ν′A, ν′B ∈ S, µ′
A − µ′

B > ∆+ ϵ}.

Now first fix an alternate environment ν′ ∈ K, and then fix E = {∆′ /∈ [∆̂L(τδ), ∆̂R(τδ)]}, where ∆′ = µ′
A − µ′

B . Since
for ν′ ∈ K, ∆′ < ∆− ϵ or ∆′ > ∆+ ϵ, hence it follows using the fact that ∆̂R(τδ)− ∆̂L(τδ) ≤ ϵ,

Pν(E) ≥ Pν(∆ ∈ [∆̂L(τδ), ∆̂R(τδ)]) ≥ 1− δ.

The last inequality in the above expression follows using (ϵ, δ)−coverage guarantee. Further, it follows trivially that
Pν′(E) ≤ δ using the (ϵ, δ)−coverage guarantee. Now using similar steps to the proof of this theorem and the fact that
Ψ(δ, 1− δ) ≥ log(1/4δ) for δ ∈ (0, 1), we get,

Eν [τδ]
log(1/4δ)

≥ 1

supw∈[0,1] infν′∈K̃ wd(µA, µ
′
A) + (1− w)d(µB , µ′

B)
. (20)

Since for any ∆L ∈ [∆−ϵ,∆] and ∆R ∈ [∆,∆+ϵ], it can be shown that K̃ ⊂ K(∆L,∆R), hence we have ℓ∗(µA, µB , ϵ) <
supw∈[0,1] infν′∈K̃ wd(µA, µ

′
A) + (1− w)d(µB , µ

′
B), which implies that this lower bound is not tight for adaptive stable

policies with (ϵ, δ)−coverage guarantee as δ → 0.
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A.2. Proofs of results in Section 4.2

Proof of Theorem 4.4(a) Given δ ∈ (0, 1), we define event E1 = {τδ = ∞}. We need to show that, P(E1) = 0.
We prove it by contradiction, suppose P(E1) > 0. Using the definition of τδ on any sample path in E1, it follows that
∀ n ∈ N, ∆̂R(n)− ∆̂L(n) > ϵ. Since limn→∞

β(n,δ)
n = 0, it follows from the definition that,

lim
n→∞

T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂L(n)

)
= T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂R(n)

)
= 0. (21)

Using Lemma E.8, we get that, limn→∞
NA(n)
n = w∗(µA, µB , ϵ), limn→∞ µ̂A(n) = µA and limn→∞ µ̂B(n) = µB almost

surely.

Since we know that,

µ− µ < ∆̂L(n) ≤ µ̂A(n)− µ̂B(n) and µ̂A(n)− µ̂B(n) ≤ ∆̂R(n) < µ− µ.

Using continuity of d(µ, x) in x, it follows that,

µ− µ ≤ lim sup
n→∞

∆̂L(n) ≤ µA − µB and µA − µB ≤ lim inf
n→∞

∆̂R(n) ≤ µ− µ. (22)

Now we claim that,
lim
n→∞

∆̂L(n) = lim
n→∞

∆̂R(n) = ∆ = µA − µB almost surely.

This implies that limn→0 ∆̂R(n)− ∆̂L(n) = 0 which leads to contradiction as under the event E1, as we have ∆̂R(n)−
∆̂L(n) ≥ ϵ for all n ∈ N under event E1. To complete the proof, we only need to prove the claim.

To prove the claim, we use the method of contradiction. Suppose, limn→∞ ∆̂L(n) ̸= µA−µB . A similar proof will follows
for the case limn→∞ ∆̂R(n) ̸= µA − µB .

Using (22), we get that,
lim sup
n→∞

∆̂L(n) = c ∈ [µ− µ,∆).

It is worth noting that µ−µ can be ∞, depending the support of the family of distributions of outcome of treatments that we
are considering within the S . It implies that there exists a subsequence ∆̂L(nk) of ∆̂L(n) such that limk→∞ ∆̂L(nk) → c
and limk→∞ nk = ∞.

Using Lemma E.2, we know that T (µA, µB , w,∆L) is jointly continuous function in (w,∆L, µA, µB) for w ∈ [0, 1],
∆L ∈ (µ− µ, µ− µ), µA ∈ I and µB ∈ I. Hence we have,

lim
k→∞

T

(
µ̂A(nk), µ̂B(nk),

NA(nk)

nk
, ∆̂L(nk)

)
= T (µA, µB , w

∗(µA, µB , ϵ), c). (23)

Since c ̸= ∆, hence using Lemma E.3, we get,

lim
k→∞

T

(
µ̂A(nk), µ̂B(nk),

NA(nk)

nk
, ∆̂L(nk)

)
̸= 0.

This leads to a contradiction with (21). This completes the proof.

□

Proof of Theorem 4.4(b) We first state the following theorem, provide its proof then provide the proof of Theorem 4.4(b).

Theorem A.2. The CI of ATE given by, [∆̂L(n), ∆̂R(n)] by P1 is a (1− δ)−confidence sequence.
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Using the definition of (1− δ)−confidence sequence, it suffices to show that,

P{∃n ∈ Z+ : ∆ /∈ [∆̂L(n), ∆̂R(n)]} ≤ δ.

Recall that,

T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂L(n)

)
= T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂R(n)

)
=
β(n, δ)

n
.

Using the definition of T (µA, µB , w, z) and Lemma E.3, we have,

{∆ /∈ [∆̂L(n), ∆̂R(n)]} ⊆ {NA(n)d(µ̂A(n), µA) +NB(n)d(µ̂B(n), µB) ≥ β(n, δ)}.

Hence it suffices to show that,

P{∃n ∈ Z+ : NA(n)d(µ̂A(n), µA) +NB(n)d(µ̂B(n), µB) ≥ β(n, δ)} ≤ δ.

For β(n δ) = log
(
c1n

α

δ

)
, we can use Proposition 12 in Garivier & Kaufmann (2016) to get that [∆̂L(n), ∆̂R(n)] is a

(1− δ)−confidence sequence. This completes the proof.

□

Now we prove Theorem 4.4(b). To get the (ϵ, δ)−coverage guarantee, we need to show that,

P{∆ /∈ [∆̂L(τδ), ∆̂R(τδ)]} ≤ δ.

Using part (a) of this theorem, it suffices to show that,

P{∃n ∈ Z+ : ∆ /∈ [∆̂L(n), ∆̂R(n)]} ≤ δ.

This follows from Theorem A.2. This completes the proof.

□

Proof of Theorem 4.4(c)

First we show that,
lim
δ→0

τδ = ∞ almost surely. (24)

To prove this, we use the method of contradiction. Hence, we define an event E2 = {lim infδ→0 τδ < ∞} and assume
P(E2) > 0. Recall the definition of ∆̂L(τδ) and ∆̂R(τδ),

T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂L(τδ)

)
= T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂R(τδ)

)
=
β(τδ, δ)

τδ
.

Let f1(w, µA, µB , x, y) = wd(µA, x) + (1 − w)d(µB , y). Using the fact that limδ→0 β(τδ, δ) = ∞ for any sample path
in E2. Hence we get, for any sample path in E2, there exists a subsequence τδn for n ∈ Z+ such that limn→∞ δn = 0,
limn→∞ τδn <∞ and

lim
n→∞

min
x,y∈C(∆̂L(τπ

δn
))
f1

(
NA(τδn)

τδn
, µ̂A(τδn), µ̂B(τδn), x, y

)
= ∞, and

lim
n→∞

min
x,y∈C(∆̂R(τδn ))

f1

(
NA(τδn)

τδn
, µ̂A(τδn), µ̂B(τδn), x, y

)
= ∞. (25)
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Using the definition of ∆̂L(τδn) and ∆̂R(τδn), we know that, ∆̂R(τδn)− ∆̂L(τδn) ≤ ϵ, hence it follows that,

min
x,y∈C(∆̂L(τδn ))∪C(∆̂R(τδn ))

f1

(
NA(τδn)

τδn
, µ̂A(τδn), µ̂B(τδn), x, y

)
≤

sup
w∈(0,1)

∆L∈[∆−ϵ,∆],∆R∈[∆,∆+ϵ]:∆R−∆L≤ϵ

min
x,y∈C(∆L)∪C(∆R)

f1 (w, µ̂A(τδn), µ̂B(τδn), x, y) .

Using an argument similar to the proof of Theorem 4.2, we get,

sup
w∈(0,1)

∆L∈[∆−ϵ,∆],∆R∈[∆,∆+ϵ]:∆R−∆L≤ϵ

min
x,y∈C(∆L)∪C(∆R)

f1 (w, µ̂A(τδn), µ̂B(τδn), x, y) =

sup
w∈(0,1)

(∆L,∆R)∈Υ(ϵ)

min
x,y∈C(∆L)∪C(∆R)

f1 (w, µ̂A(τδn), µ̂B(τδn), x, y) .

Hence it follows that we have,

min
x,y∈C(∆̂L(τδn ))∪C(∆̂R(τδn ))

f1

(
NA(τδn)

τδn
, µ̂A(τδn), µ̂B(τδn), x, y

)
≤ (26)

sup
w∈(0,1)

(∆L,∆R)∈Υ(ϵ)

min
x,y∈C(∆L)∪C(∆R)

f1 (w, µ̂A(τδn), µ̂B(τδn), x, y) .

Now using max-min inequality we get,

sup
w∈(0,1)

(∆L,∆R)∈Υ(ϵ)

min
x,y∈C(∆L)∪C(∆R)

f1 (w, µ̂A(τδn), µ̂B(τδn), x, y) ≤ (27)

sup
∆L∈[∆−ϵ,∆]

min
x,y∈C(∆L)∪C(∆L+ϵ)

sup
w∈(0,1)

f1 (w, µ̂A(τδn), µ̂B(τδn), x, y) .

Using some algebra and strict convexity of d(µ, x) in x, we get,

sup
∆L∈[∆−ϵ,∆]

min
x,y∈C(∆L)∪C(∆L+ϵ)

sup
w∈(0,1)

f1 (w, µ̂A(τδn), µ̂B(τδn), x, y) ≤

max
k∈{A,B}

min{d(µ̂k(τδn), µ̂k(τδn)− ϵ), d(µ̂k(τδn), µ̂k(τδn) + ϵ)}.

Define d(x, y) = ∞ for x ∈ I and y /∈ I. Combining above, (26) and (27), we get for ϵ <
(µ−µ)

2 ,

min
x,y∈C(∆̂L(τδn ))∪C(∆̂R(τδn ))

f1

(
NA(τδn)

τδn
, µ̂A(τδn), µ̂B(τδn), x, y

)
≤

max
k∈{A,B}

min{d(µ̂k(τδn), µ̂k(τδn)− ϵ), d(µ̂k(τδn), µ̂k(τδn) + ϵ)}.

Now we claim that,

lim
n→∞

max
k∈{A,B}

min{d(µ̂k(τδn), µ̂k(τδn)− ϵ), d(µ̂k(τδn), µ̂k(τδn) + ϵ)} <∞. (28)

It follows using the above claim that, we get a contradiction with (25), which completes the proof of (24). We now show that
the above claim stated in (28) holds. Observe that for a given sample path in E2, we have limn→∞ τδn <∞. Since τδn is a
sequence on the space of positive integers, hence it follows that for a given sample path in E2, limn→∞ τδn = τδn∗ for some

17
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n∗ ∈ Z+. Recall that µ̂k(τδn) ∈ I, further for ϵ <
(µ−µ)

2 , either µ̂k(τδn)− ϵ ∈ I or µ̂k(τδn) + ϵ ∈ I for k ∈ {A,B} for
all n ∈ Z+. Hence, using the continuity of d(x, y) in (x, y) for x ∈ I and y ∈ I, we have,

lim
n→∞

max
k∈{A,B}

min{d(µ̂k(τδn), µ̂k(τδn)− ϵ), d(µ̂k(τδn), µ̂k(τδn) + ϵ)} = (29)

max
k∈{A,B}

min{d(µ̂k(τδn∗ ), µ̂k(τδn∗ )− ϵ), d(µ̂k(τδn∗ ), µ̂k(τδn∗ ) + ϵ)}.

Recall that µ̂k(τδn) ∈ I and for ϵ <
(µ−µ)

2 , either µ̂k(τδn) − ϵ ∈ I or µ̂k(τδn) + ϵ ∈ I for k ∈ {A,B} for all n ∈ Z+.
Hence it follows that, maxk∈{A,B} min{d(µ̂k(τδn∗ ), µ̂k(τδn∗ )− ϵ), d(µ̂k(τδn∗ ), µ̂k(τδn∗ ) + ϵ)} <∞.

Combining the above with (29) we get that the claim stated in (28) holds.

Now we come back to our original proof. Using (24), Lemma E.8 we get,

µ̂A(τδ) → µA and µ̂B(τδ) → µB almost surely as δ → 0. (30)

It follows that, ∆̂L(τδ) will satisfy the following: ∆̂(τδ)− ϵ ≤ ∆̂L(τδ) ≤ ∆̂(τδ), where ∆̂(τδ) = µ̂A(τδ)− µ̂B(τδ).

Using (30), it follows that ∆̂L(τδ) is a bounded sequence on each sample path. Similarly, ∆̂R(τδ) is a bounded sequence
too on each sample path.

Using the definition of τδ , ∆̂L(τδ) and ∆̂R(τδ), it follows that,

∆̂R(τδ) ≤ ∆̂L(τδ) + ϵ and ∆̂R(τδ − 1) > ∆̂L(τδ − 1) + ϵ. (31)

T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂L(τδ)

)
= T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂R(τδ)

)
. (32)

Using Lemma E.3, (31) and (32), we get,

T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂L(τδ)

)
≤ T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂L(τδ) + ϵ

)
. (33)

T

(
µ̂A(τδ − 1), µ̂B(τδ − 1),

NA(τδ − 1)

τδ − 1
, ∆̂L(τδ − 1)

)
≥ T

(
µ̂A(τδ − 1), µ̂B(τδ − 1),

NA(τδ − 1)

τδ − 1
, ∆̂L(τδ − 1) + ϵ

)
.

(34)

Now we show that limδ→0 ∆̂L(τδ) = ∆∗
L(µA, µB , ϵ) almost surely. A similar proof will follow for limδ→0 ∆̂R(τδ) =

∆∗
R(µA, µB , ϵ) on each sample path. This will imply the stability of the policy P1.

We prove it by contradiction, suppose there exists a sequence ∆̂L(τδ) does not converge to ∆∗
L(µA, µB , ϵ) on a positive

measure set E3, i.e., P(E3) > 0. Fix any sample path in E3. Since ∆̂L(τδ) is a bounded sequence and hence we assume
lim supδ→0 ∆̂L(τδ) = ∆ and lim infδ→0 = ∆. Without loss of generality, we assume that ∆ ̸= ∆∗

L(µA, µB , ϵ).

Since ∆̂L(τδ) is a bounded sequence, hence there will exist a sub-sequence {δk, k ∈ Z+} and δk ∈ (0, 1) such that
limk→∞ δk = 0 and limk→∞ ∆̂L(τδk) = ∆. Using Lemma E.8, on this subsequence, limδ→0

NA(τδk )

τδk
= w∗(µA, µB , ϵ).

Using (33) and (34) on the sub-sequence defined above and Lemma E.2, we get that,

lim
k→∞

T

(
µ̂A(τδk), µ̂B(τδk),

NA(τδk)

τδk
, ∆̂L(τδk)

)
= lim
k→∞

T

(
µ̂A(τδk), µ̂B(τδk),

NA(τδk)

τδk
, ∆̂L(τδk) + ϵ

)
= T (w∗(µA, µB , ϵ),∆, µA, µB) = T (w∗(µA, µB , ϵ),∆+ ϵ, µA, µB).

18
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Using Lemma E.5, for a given µA, µB and w∗(µA, µB , ϵ), we know that there is a unique solution of the above equation
and it equals ∆∗

L(µA, µB , ϵ). Hence we get a contradiction. This completes the proof.

□

Proof of Theorem 4.7:

a) Almost sure sample size analysis. Observe that ∆̂L(τδ) and ∆̂R(τδ) satisfy the following:

T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂L(τδ)

)
= T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂R(τδ)

)
=
β(τδ, δ)

τδ
. (35)

Fix a sample path. Using (30), we get that limδ→0 µ̂A(τδ) = µA and limδ→0 µ̂B(τδ) = µB . Using Lemma E.8 and the part
(c) of Theorem 4.4, we get, limδ→0

NA(τδ)
τδ

= w∗(µA, µB , ϵ), limδ→0 ∆̂L(τδ) = ∆∗
L(µA, µB , ϵ) and limδ→0 ∆̂R(τδ) =

∆∗
L(µA, µB , ϵ) + ϵ. Using Lemma E.2, we have,

lim
δ→0

T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂L(τδ)

)
= lim
δ→0

T

(
µ̂A(τδ), µ̂B(τδ),

NA(τδ)

τδ
, ∆̂R(τδ)

)
= ℓ∗(µA, µB , ϵ).

Hence we have,

lim
δ→0

β(τδ, δ)

τδ
= ℓ∗(µA, µB , ϵ) almost surely.

Since β(n δ) = log
(
c1n

α

δ

)
, hence we get the desired result. This completes the proof.

□

b) Expected sample size analysis.

To get the results of convergence in expectation from almost sure, we will show that collection of random variables indexed
by δ, τδ

log(1/δ) is uniformly integrable, which will complete the proof. Hence it suffices to show supδ∈(0,δ1)
E[τ(δ)]2

( log (1/δ))2 <∞,

where, δ1 is any small fixed number in (0, 1). Observe that,

E[τδ]2 =

∞∑
n=1

(2n− 1)P(τδ > n).

We start the analysis by the construction of the following set. Let Gn(η) = ∩ni=h(n) maxk∈{A,B} |µ̂k(i)− µk| ≤ ζ1, where
ζ1 is chosen to satisfy the following condition for a given small positive number η > 0. Here h(n) = n1/4.

max
k∈{A,B}

|µ′
k − µk| ≤ ζ1 =⇒ |w∗(µ′

A, µ
′
B , ϵ)− w∗(µA, µB , ϵ)| ≤ η.

Above holds true from Lemma E.7 and Lemma E.7. Hence it follows that,

E[τδ]2 ≤
∞∑
n=1

(2n− 1)P({τδ > n} ∩ Gn(η)) +
∞∑
n=1

(2n− 1)P(Gn(η)c). (36)

We will handle the two series summations given in (36) separately, then we will come back to (36).

Upper bound on
∑∞
n=1(2n− 1)P(Gn(η)c): Observe that,

P(Gn(η)c) ≤
n∑

i=h(n)

∑
k∈{A,B}

(P(µ̂k(i) ≤ µk − ξ) + P(µ̂k(i) ≥ µk + ξ)).
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Using Lemma E.10, we get that Nk(i) ≥
√
i− 2 for i > 4, we get,

P(µ̂k(i) ≤ µk − ξ) = P(µ̂k(i) ≤ µk − ξ ∩Nk(i) >
√
i− 2).

Using Chernoff’s inequality for outcome distributions in S ,

P(µ̂k(i) ≤ µk − ξ) ≤
i∑

s=
√
i−1

e−sd(µk−ξ,µa).

Similarly,

P(µ̂k(i) ≥ µk + ξ) ≤
i∑

s=
√
i−1

e−sd(µk+ξ,µa).

Using some algebra, we get,
P(Gn(η)c) ≤ c1ne

−c2n1/8

,

where c1 and c2 are well-chosen positive constants. Hence it follows that,

∞∑
n=1

(2n− 1)P(Gn(η)c) ≤
∞∑
n=1

c1n(2n− 1)e−c2n
1/8

≤ c3, (37)

where c3 is a well-chosen positive constant which is independent of δ. It follows that the right most inequality in (37) holds
as one can upper bound

∑∞
n=1 c1n(2n− 1)e−c2n

1/8

using the definition of the Gamma function.

Upper bound on
∑∞
n=1(2n− 1)P({τδ > n} ∩ Gn(η)): We claim that after N(δ) ≜ O(log(1/δ)) terms P({τδ > n} will

be 0 under the set Gn(η), i.e,
P({τδ > n} ∩ Gn(η)) = 0 ∀n ≥ N(δ). (38)

Using (38), we get,

∞∑
n=1

(2n− 1)P({τδ > n} ∩ Gn(η)) ≤
N(δ)∑
n=1

(2n− 1)P(τδ > n) ≤ O((log(1/δ))2).

Combining the above inequality with (38), and using (37) and substituting them in (36), we get

sup
δ∈(0,δ1)

E[τ(δ)]2

(log (1/δ))2
≤ sup
δ∈(0,δ1)

O((log(1/δ))2) + c3
(log (1/δ))2

<∞.

To complete the proof, all we need to show is that our claim (38) holds. To prove (38), observe that, we will show that, there
exists a N(δ) which is O(log(1/δ)), for n ≥ N(δ), one has Gn(η) ⊆ {τδ ≤ n}.

First, we define,
V (µA, µB , ϵ) ≜ inf

µ′
A∈[µA−ξ(η)+µA+ξ(η)]

µ′
B∈[µB−ξ(η)+µB+ξ(η)]

w′∈[w∗(µA,µB ,ϵ)−3η+w∗(µA,µB ,ϵ)+3η]

J(µ′
A, µ

′
B , w

′, ϵ),

where,
J(µA, µB , w, ϵ) = max

∆L∈[∆−ϵ,∆]
min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)}. (39)

Using the the proof of Lemma E.5, we get,

J(µA, µB , w, ϵ) = T (µA, µB , w, ∆̃L(µA, µB , w, ϵ)),

where, ∆̃L(µA, µB , w, ϵ)) uniquely satisfies,

T (µA, µB , w, ∆̃L(µA, µB , w, ϵ)) = T (µA, µB , w, ∆̃L(µA, µB , w, ϵ) + ϵ).
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First, we show that J(µA, µB , w, ϵ) is a jointly continuous function of (µA, µB , w). To see, we know from Lemma E.2
that min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)} is a continuous function in (µA, µB , w,∆L) for w ∈ (0, 1), µA ∈ I ,
µB ∈ I and ∆L ∈ (µ − µ, µ − µ). Hence using (39) and Berge’s Maximum Theorem, we get that J(µA, µB , w, ϵ) is a
continuous function in in (µA, µB , w) for w ∈ (0, 1), µA ∈ I and µB ∈ I. Since ∆̃L(µA, µB , w, ϵ)) ∈ (∆ − ϵ,∆) and
T (µA, µB , w, ∆̃L(µA, µB , w, ϵ)) > 0, hence J(µA, µB , w, ϵ) > 0 for µA ∈ I, µB ∈ I and w ∈ (0, 1). Hence it follows
that V (µA, µB , ϵ) > 0.

Now we define N(δ) as follows,

N(δ) ≜ inf

{
n ∈ N : n ≥ nη,

β(n, δ)

V (µA, µB , ϵ)
+
√
n ≤ n

}
.

Here nη is defined in Lemma E.10. Using the definition of β(n, δ) and above, it follows that N(δ) = O(log(1/δ)). Now
we show that for n ≥ N(δ), one has Gn(η) ⊆ {τδ ≤ n}. Using Lemma E.10, Lemma E.3 and the definition of set Gn(η),
observe that for n ≥ N(δ), we have under the set Gn(η),

∆̂R(n)− ∆̂L(n) ≤ ϵ.

This implies that Gn(η) ⊆ {τδ ≤ n}. This completes the proof.

□

B. Proofs of results in Section 5.
For a given µA ∈ I, µB ∈ I, w ∈ (0, 1) and z ∈ [∆ − ϵ,∆+ ϵ], we denote any solution of (3) as x∗(µA, µB , w, z) ( in
Lemma E.4, we show that it uniquely exists for small ϵ).

Proof of Preposition 5.1

If νA = N(µA, σ
2
A) and ν2 = N(µB , σ

2
B), where σ2

A and σ2
B are known, then L takes following form,

max
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min
x,y∈C(∆L)∪C(∆R)

w
(x− µA)

2

2σ2
A

+ (1− w)
(y − µB)

2

2σ2
B

,

where C(z) = {(x, y) : x, y ∈ I, x− y = z} .

First, we solve the following optimization problem.

min
x,y∈C(∆L)

w
(x− µA)

2

2σ2
A

+ (1− w)
(y − µB)

2

2σ2
B

.

It follows that the above optimization problem is a convex optimization problem for a given µA ∈ I, µB ∈ I, w ∈ [0, 1],
∆L ∈ [∆ − ϵ,∆]. Hence for a given µA ∈ I, µB ∈ I, w ∈ [0, 1] and ∆L ∈ [∆ − ϵ,∆], x∗(µA, µB , w,∆L) uniquely
satisfies,

w
(x− µA)

σ2
A

|x=x∗(µA,µB ,w,∆L) + (1− w)
(x−∆L − µB)

σ2
A

|x=x∗(µA,µB ,w,∆L) = 0.

Also y∗(µA, µB , w,∆L) = x∗(µA, µB , w,∆L)−∆L. Hence using some algebra, it follows that,

x∗(µA, µB , w,∆L) =
wµAσ

2
B + (1− w)σ2

AµB +∆Lσ
2
A(1− w)

σ2
avg(w)

,

y∗(µA, µB , w,∆L) =
wµAσ

2
B + (1− w)σ2

AµB −∆Lσ
2
Bw

σ2
avg(w)

,
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where σ2
avg(w) = wσ2

B + (1− w)σ2
A.

It follows that,

min
x,y∈C(∆L)

w
(x− µA)

2

2σ2
A

+ (1− w)
(y − µB)

2

2σ2
B

=
w(1− w)

2σ2
avg(w)

(µB − µA +∆L)
2. (40)

One can similarly get,

min
x,y∈C(∆R)

w
(x− µA)

2

2σ2
A

+ (1− w)
(y − µB)

2

2σ2
B

=
w(1− w)

2σ2
avg(w)

(µB − µA +∆R)
2. (41)

Now using (40) and (41), we re-write L,

max
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

w(1− w)

2σ2
avg(w)

min{(µB − µA +∆R)
2, (µB − µA +∆L)

2}.

Using the fact that, ∆R = ∆L + ϵ, we get,

max
w∈[0,1],

∆L∈[∆−ϵ,∆]

w(1− w)

2σ2
avg(w)

min{(µB − µA +∆L + ϵ)2, (µB − µA +∆L)
2}.

The above can be re-written as,

max
∆L∈[∆−ϵ,∆]

min{(µB − µA +∆L + ϵ)2, (µB − µA +∆L)
2} max

w∈[0,1]

w(1− w)

2σ2
avg(w)

.

It follows that, ∆∗
L(µA, µB , ϵ) = ∆− ϵ

2 and w∗(µA, µB , ϵ) solves the following problem.

w∗(µA, µB , ϵ) = argmax
w∈[0,1]

w(1− w)

2σ2
avg(w)

.

Using the definition of σavg(w), we get,
w(1− w)

2σ2
avg(w)

=
1

σ2
A

w +
σ2
B

(1−w)

.

Hence,

w∗(µA, µB , ϵ) = argmin
w∈[0,1]

σ2
A

w
+

σ2
B

(1− w)
.

Hence it, follows that, w∗(µA, µB , ϵ) =
σA

σA+σB
. This completes the proof.

□

Proof of Theorem 5.3:

Using Lemma E.2 and Weierstrass existence theorem, we get that a solution of L exists and the following holds,

ℓ∗(µA, µB , ϵ) = max
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min{T (µA, µB , w,∆L), T (µA, µB , w,∆R)}. (42)

Recall we denote any solution of L as w∗(µA, µB , ϵ), ∆∗
L(µA, µB , ϵ) and ∆∗

R(µA, µB , ϵ). Now we claim that
w∗(µA, µB , ϵ) ∈ (0, 1) and ∆∗

L(µA, µB , ϵ) ∈ (∆ − ϵ,∆). Notice that for any w ∈ (0, 1), ∆L ∈ (∆ − ϵ,∆) and
∆R = ∆L + ϵ, we have

T (µA, µB , w,∆L) > 0 and T (µA, µB , w,∆R) > 0,
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as (µA, µB) /∈ C(∆L) ∪ C(∆R). Further, if ∆L ∈ {∆ − ϵ,∆} and ∆R = ∆L + ϵ, then we have
min{T (µA, µB , w,∆L), T (µA, µB , w,∆R)} = 0 for any w ∈ [0, 1] as (µA, µB) ∈ C(∆L) ∪ C(∆R). Now for
w = 0 and ∆L ∈ (∆ − ϵ,∆), there exists a x ∈ I and y = µB such that (x, y) ∈ C(∆L) ∪ C(∆L + ϵ), hence
min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)} = 0. Similarly for w = 1 and ∆L ∈ (∆ − ϵ,∆), we get that
min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)} = 0. Hence we get that w∗(µA, µB , ϵ) ∈ (0, 1), ∆∗

L(µA, µB , ϵ) ∈
(∆− ϵ,∆) and ∆∗

R = ∆∗
L + ϵ.

For ease of readability, we suppress the notation we denote w∗(µA, µB , ϵ), ∆∗
L(µA, µB , ϵ) and ∆∗

R(µA, µB , ϵ) as w∗, ∆∗
L

and ∆∗
R respectively. Using Lemma E.5, we get for small ϵ,

T (µA, µB , w
∗,∆∗

L) = T (µA, µB , w
∗,∆∗

R).

This completes the proof of the first two first-order conditions. Now we provide the proof of the last first-order condition.
Re-writing the lower optimization problem as,

ℓ∗(µA, µB , ϵ) = max
∆L∈(∆−ϵ,∆)

max
w∈(0,1)

max
t≥0

t,

t ≤ T (µA, µB , w,∆L),

t ≤ T (µA, µB , w,∆L + ϵ).

Writing the Lagrangian for above,

max
w∈(0,1)

max
∆L∈(∆−ϵ,∆)

max
t≥0

L(w,∆L, t, λ1, λ2) = t+ λ1(T (µA, µB , w,∆L)− t) + λ2(T (µA, µB , w,∆L + ϵ)− t).

Using Lemma E.4, we get that T (µA, µB , w,∆L) and T (µA, µB , w,∆L + ϵ) are continuously differentiable in (w,∆L)
for small ϵ. Hence using the KKT conditions for small ϵ, we get that w∗, ∆∗

L and t∗ satisfies,

λ1 + λ2 = 1.

λ1 ≥ 0, λ2 ≥ 0.

λ1(T (µA, µB , w
∗,∆∗

L)− t∗) = 0, T (µA, µB , w
∗,∆∗

L) ≥ t∗.

λ2(T (µA, µB , w
∗,∆∗

L + ϵ)− t∗) = 0, T (µA, µB , w
∗,∆∗

L + ϵ) ≥ t∗.

λ1
∂T (µA, µB , w,∆L)

∂∆L
|(w=w∗,∆L=∆∗

L)
+ λ2

∂T (µA, µB , w,∆L + ϵ)

∂∆L
|(w=w∗,∆L=∆∗

L)
= 0. (43)

λ1
∂T (µA, µB , w,∆L)

∂w
|(w=w∗,∆L=∆∗

L)
+ λ2

∂T (µA, µB , w,∆L + ϵ)

∂w
|(w=w∗,∆L=∆∗

L)
= 0.

Recall that,
T (µA, µB , w

∗,∆∗
L) = T (µA, µB , w

∗,∆∗
L + ϵ).

It follows from above equations that t∗ = T (µA, µB , w
∗,∆∗

L) = T (µA, µB , w
∗,∆∗

L + ϵ).

Let x∗L represent x∗(µA, µB , w∗,∆∗
L) and x∗R represent x∗(µA, µB , w∗,∆∗

R). Using Envelope theorem, the proof of
Lemma E.4 and definition of x∗L and x∗R, we can re-write (43) and (B) as,

λ1
∂d(µB , x

∗
L −∆L)

∂∆L
|∆L=∆∗

L
+ λ2

∂d(µB , x
∗
R −∆L − ϵ)

∂∆L
|∆L=∆∗

L
= 0.

λ1(d(µA, x
∗
L)− d(µB , x

∗
L −∆∗

L)) + λ2(d(µA, x
∗
R)− d(µB , x

∗
R −∆∗

L − ϵ)) = 0.
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Using some algebra, we get that w∗ and ∆∗
L satisfies

(d(µA, x
∗
L)− d(µB , x

∗
L −∆∗

L))

(
∂d(µB , x

∗
R −∆L − ϵ)

∂∆L
|∆L=∆∗

L

)
= (44)

(d(µA, x
∗
R)− d(µB , x

∗
R −∆∗

L − ϵ))

(
∂d(µB , x

∗
L −∆L)

∂∆L
|∆L=∆∗

L

)
.

We now re-write the first-order conditions for L and index everything by ϵ,

∆∗
R,ϵ = ∆∗

L,ϵ + ϵ

T (µA, µB , w
∗
ϵ ,∆

∗
L,ϵ) = T (µA, µB , w

∗
ϵ ,∆

∗
R,ϵ).

(d(µA, x
∗
L,ϵ)− d(µB , x

∗
L,ϵ −∆∗

L,ϵ))

(
∂d(µB , x

∗
R,ϵ −∆L − ϵ)

∂∆L
|∆L=∆∗

L,ϵ

)
=

(d(µA, x
∗
R,ϵ)− d(µB , x

∗
R,ϵ −∆∗

R,ϵ))

(
∂d(µB , x

∗
L,ϵ −∆L)

∂∆L
|∆L=∆∗

L,ϵ

)
.

Using the definition of function T , we get,

w∗
ϵd(µA, x

∗
L,ϵ) + (1− w∗

ϵ )d(µB , x
∗
L,ϵ −∆∗

L,ϵ) = w∗
ϵd(µA, x

∗
R,ϵ) + (1− w∗

ϵ )d(µB , x
∗
R,ϵ −∆∗

R,ϵ). (45)

We are interested in the limiting behaviour of w∗(µA, µB , ϵ) and ℓ∗(µA, µB , ϵ) in the limiting regime of ϵ→ 0. We will be
using the twice continuous differentiability of d(µ, x) for x in a small neighbourhood around µ (see Appendix D.1). Let
∂2d(µ,x)
∂x2 |x=c = H(µ, c). It follows that H(µ, µ) = I(µ).

Using Taylor series expansion of (45),

w∗
ϵ

(x∗L,ϵ − µA)
2

2
H(µA, c1,ϵ) + (1− w∗

ϵ )
(x∗L,ϵ −∆∗

L,ϵ − µB)
2

2
H(µB , c2,ϵ) =

w∗
ϵ

(x∗R,ϵ − µA)
2

2
H(µA, c3,ϵ) + (1− w∗

ϵ )
(x∗R,ϵ −∆∗

R,ϵ − µB)
2

2
H(µB , c4,ϵ).

Here c1,ϵ ∈ (x∗L,ϵ, µA), c2,ϵ ∈ (µB , x
∗
L,ϵ −∆∗

L,ϵ), c3,ϵ ∈ (µA, x
∗
R,ϵ) and c4,ϵ ∈ (x∗R,ϵ −∆∗

R,ϵ, µB). Let

K1,ϵ ≜ (µA − x∗L,ϵ)K2,ϵ ≜ (x∗R,ϵ − µA), and αϵ ≜ ∆−∆∗
L,ϵ.

Using some algebra,

w∗
ϵH(µA, c1,ϵ)(K

2
1,ϵ −K2

2,ϵ) + (1− w∗
ϵ )H(µB , c2,ϵ)((−K1,ϵ + αϵ)

2 − (K2,ϵ + αϵ − ϵ)2) = (46)

w∗
ϵK

2
2,ϵ(H(µA, c3,ϵ)−H(µA, c1,ϵ)) + (1− w∗

ϵ )(K2,ϵ + αϵ − ϵ)2(H(µB , c4,ϵ)−H(µB , c2,ϵ)).

Notice that we are not assuming in the proof that w∗
ϵ and ∆∗

L,ϵ is unique for a given ϵ. Hence to prove this result, we select
any arbitrary sequence of w∗

ϵ and ∆∗
L,ϵ, i.e., for each ϵ > 0, we can choose any of the solutions of L if it is not unique. We

know that, limϵ→0 αϵ = 0, limϵ→0K1,ϵ = 0 and limϵ→0K2,ϵ = 0. It follows that using continuity of H(µ, x) in x, we get,

lim
ϵ→0

H(µA, c5,ϵ) = lim
ϵ→0

H(µA, c7,ϵ) = I(µA).

lim
ϵ→0

H(µB , c6,ϵ) = lim
ϵ→0

H(µB , c8,ϵ) = I(µB).

Since w∗
ϵ is a bounded sequence, it follows that the limit of RHS of (46) equals 0. This further implies,

lim
ϵ→0

w∗
ϵH(µA, c1,ϵ)(K

2
1,ϵ −K2

2,ϵ) + (1− w∗
ϵ )H(µB , c2,ϵ)((−K1,ϵ + αϵ)

2 − (K2,ϵ + αϵ − ϵ)2) = 0. (47)
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It follows that x∗L,ϵ and x∗R,ϵ uniquely satisfy for small ϵ, we get,

w∗
ϵ

∂d(µA, x)

∂x
|x=x∗

L,ϵ
+ (1− w∗

ϵ )
∂d(µB , x−∆∗

L,ϵ)

∂x
|x=x∗

L,ϵ
= 0. (48)

w∗
ϵ

∂d(µA, x)

∂x
|x=x∗

R,ϵ
+ (1− w∗

ϵ )
∂d(µB , x−∆∗

R,ϵ)

∂x
|x=x∗

R,ϵ
= 0. (49)

Using the Taylor series expansion of the above equation, we get,

w∗
ϵH(µA, c5,ϵ)

(x∗L,ϵ − µA)

ϵ
+ (1− w∗

ϵ )H(µB , c6,ϵ)
(x∗L,ϵ − µB −∆∗

L,ϵ)

ϵ
= 0. (50)

w∗
ϵH(µA, c7,ϵ)

(x∗R,ϵ − µA)

ϵ
+ (1− w∗

ϵ )H(µB , c8,ϵ)
(x∗R,ϵ − µB −∆∗

R,ϵ)

ϵ
= 0. (51)

Here c5,ϵ ∈ (x∗L,ϵ, µA), c6,ϵ ∈ (µB , x
∗
L,ϵ −∆∗

L,ϵ), c7,ϵ ∈ (µA, x
∗
R,ϵ) and c8,ϵ ∈ (x∗R,ϵ −∆∗

R,ϵ, µB).

The above two equations can be written as,

K1,ϵ =
αϵ(1− w∗

ϵ )H(µB , c6,ϵ)

(1− w∗
ϵ )H(µB , c6,ϵ) + w∗

ϵH(µA, c5,ϵ)
.

K2,ϵ =
(−αϵ + ϵ)(1− w∗

ϵ )H(µB , c8,ϵ)

(1− w∗
ϵ )H(µB , c8,ϵ) + w∗

ϵH(µA, c7,ϵ)
.

Notice that αϵ ∈ [0, ϵ] for all ϵ > 0, hence it follows that αϵ

ϵ is a bounded sequence in [0, 1]. Hence, we re-write the above
two equations as,

K1,ϵ

ϵ
=
αϵ
ϵ

(
(1− w∗

ϵ )H(µB , c6,ϵ)

(1− w∗
ϵ )H(µB , c6,ϵ) + w∗

ϵH(µA, c5,ϵ)

)
. (52)

K2,ϵ

ϵ
=

(−αϵ + ϵ)

ϵ

(
(1− w∗

ϵ )H(µB , c8,ϵ)

(1− w∗
ϵ )H(µB , c8,ϵ) + w∗

ϵH(µA, c7,ϵ)

)
. (53)

Since we know that w∗
ϵ and αϵ

ϵ are bounded sequences in [0, 1], hence there exists a converging subsequence of w∗
ϵ , and αϵ

ϵ

i.e., limk→∞ w∗
ϵk

= W, and limk→∞
αϵk

ϵk
= η such that limk→∞ ϵk = 0, where W ∈ [0, 1] and η ∈ [0, 1]. It follows that

W and η are functions of µA and µB .

Hence writing the (52) and (53) for the subsequence defined above, we get,

γ1 ≜ lim
k→∞

K1,ϵk

ϵk
= η

(
(1−W)I(µB)

(1−W)I(µB) +WI(µA)

)
. (54)

γ2 ≜ lim
k→∞

K2,ϵk

ϵk
= (1− η)

(
(1−W)I(µB)

(1−W)I(µB) +WI(µA)

)
. (55)

In the above, γ1 and γ2 are function of µA and µB . Using above two limiting results in (47) for the subsequence, we get,

WI(µA)(γ1 + γ2)(γ1 − γ2) + (1−W)I(µB)(γ1 − γ2 − 2η + 1)(γ1 + γ2 − 1) = 0. (56)

Using the definition of γ1 and γ2, we get,

γ1 + γ2 = (1−W).

γ1 − γ2 = (2η − 1)(1−W),
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where, W ≜
(

WI(µA)
(1−W)I(µB)+WI(µA)

)
.

Substituting the values of γ1 and γ2 in (56), we get,

W(1−W)2(2η − 1) + (1−W)(2η − 1)(W)2 = 0.

The above can be simplified as,
W(1−W)(2η − 1) = 0.

There are three possibilities for the above equation to be satisfied. W = 0 or W = 1 or η = 1/2.

Case 1: First we take η = 1
2 . We later show that the other two cases are not possible. Now we move to the second FOC of

the optimization problem L.

(d(µA, x
∗
L,ϵ)− d(µB , x

∗
L,ϵ −∆∗

L,ϵ))

(
∂d(µB , x

∗
R,ϵ −∆L − ϵ)

∂∆L
|∆L=∆∗

L,ϵ

)
=

(d(µA, x
∗
R,ϵ)− d(µB , x

∗
R,ϵ −∆∗

R,ϵ))

(
∂d(µB , x

∗
L,ϵ −∆L)

∂∆L
|∆L=∆∗

L,ϵ

)
.

Using (48) and (49), we get,

(d(µA, x
∗
L,ϵ)− d(µB , x

∗
L,ϵ −∆∗

L,ϵ))

(
∂d(µA, x)

∂x
|x=x∗

R,ϵ

)
=

(d(µA, x
∗
R,ϵ)− d(µB , x

∗
R,ϵ −∆∗

R,ϵ))

(
∂d(µA, x)

∂x
|x=x∗

L,ϵ

)
.

Using the Taylor series expansion of the above, we get,

H(µA, c7,ϵ)

(
K2,ϵ

ϵ

)[(
K1,ϵ

ϵ

)2

H(µA, c1,ϵ)−
(
K1,ϵ − αϵ

ϵ

)2

H(µB , c2,ϵ)

]
=

H(µA, c5,ϵ)

(
−K1,ϵ

ϵ

)[(
K2,ϵ

ϵ

)2

H(µA, c3,ϵ)−
(
K2,ϵ + αϵ − ϵ

ϵ

)2

H(µB , c4,ϵ)

]
. (57)

Coming back the converging subsequence limk→∞ w∗
ϵk

= W, and limk→∞
αϵk

ϵk
= 1

2 such that limk→∞ ϵk = 0, where
W ∈ (0, 1). It follows that,

γ1 = γ2 =
1

2

(
(1−W)I(µB)

(1−W)I(µB) +WI(µA)

)
. (58)

Writing (57) for above mentioned subsequence, we get,

γ2(γ
2
1I(µA)− (γ1 − 1/2)2I(µB)) = −γ1(γ22 − I(µA)− (γ2 − 1/2)2I(µB)).

Since γ1 = γ2 and using (58), we know that, γ1 ∈ (0, 1/2), hence it follows that,

γ1 = γ2 =

√
I(µB)

2(
√
I(µA) +

√
I(µB))

.

Substituting the value of γ1 from (58), we get,

W =

√
I(µB)√

I(µA) +
√
I(µB)

.
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To summarise, we started with the solutions w∗
ϵ and ∆∗

L,ϵ for each ϵ, which satisfy the FOCs of L. Since w∗
ϵ and ∆∗

L,ϵ may
not be unique, hence we selected any one of the solutions of L for a given ϵ. Then we showed that there exists a converging

subsequence w∗
ϵk

and ∆∗
L,ϵk

such that limk→∞ ϵk → 0, limk→∞ w∗
ϵk

=

√
I(µB)√

I(µA)+
√
I(µB)

and limk→∞
∆−∆∗

L,ϵk

ϵk
= 1

2 .

Since we can show that each of the subsequences of w∗
ϵ will have a converging subsequence going to the same limit. Hence

it follows that,

lim
ϵ→0

w∗(µA, µB , ϵ) =

√
I(µB)√

I(µA) +
√
I(µB)

,

and

lim
ϵ→0

∆−∆∗
L(µA, µB , ϵ)

ϵ
=

1

2
.

Now we show that,

lim
ϵ→0

ℓ∗(µA, µB , ϵ)

ϵ2
=

(I(µA)I(µB))

8(
√
I(µA) +

√
I(µB))2

.

Recall from (42), we get,

ℓ∗(µA, µB , ϵ) = max
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)}.

Using the FOCs, we know that for any ϵ > 0,

ℓ∗(µA, µB , ϵ) = T (µA, µB , w
∗,∆∗

L).

Now using the definition of T (µA, µB , w,∆L), we get,

ℓ∗(µA, µB , ϵ) = w∗d(µA, x
∗
L) + (1− w∗)d(µB , x

∗
L −∆∗

L).

Indexing w∗, x∗L and ∆∗
L with ϵ, we get,

ℓ∗(µA, µB , ϵ) = w∗
ϵd(µA, x

∗
L,ϵ) + (1− w∗

ϵ )d(µB , x
∗
L,ϵ −∆∗

L,ϵ).

Using Taylor series expansion,

ℓ∗(µA, µB , ϵ) = w∗
ϵ

(x∗L,ϵ − µA)
2

2
H(µA, c1,ϵ) + (1− w∗

ϵ )
(x∗L,ϵ −∆∗

L,ϵ − µB)
2

2
H(µB , c2,ϵ). (59)

Above can be re-written as,

ℓ∗(µA, µB , ϵ)

ϵ2
= w∗

ϵ

(x∗L,ϵ − µA)
2

2ϵ2
H(µA, c1,ϵ) + (1− w∗

ϵ )
(x∗L,ϵ −∆∗

L,ϵ − µB)
2

2ϵ2
H(µB , c2,ϵ).

Taking the limit of ϵ→ 0, we get,

lim
ϵ→0

ℓ∗(µA, µB , ϵ)

ϵ2
=
γ21
2
I(µA) lim

ϵ→0
w∗
ϵ +

(1/2− γ1)
2

2
I∗(µB) lim

ϵ→0
(1− w∗

ϵ ).

Substituting the value of limit of w∗
ϵ and γ1, we get,

lim
ϵ→0

ℓ∗(µA, µB , ϵ)

ϵ2
=
γ21
2
I(µA).

lim
ϵ→0

ℓ∗(µA, µB , ϵ)

ϵ2
=

I(µA)I(µB)

8(
√
I(µA) +

√
I(µB))2

.
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To complete the proof, we need to show that the remaining two cases are not possible.

Case 2: Suppose W = 0, then for the subsequence w∗
ϵk

, we have limk→∞ w∗
ϵk

= W = 0. Using (54) and (55), we get,
γ1 = η and γ2 = 1− η. Taking k → ∞ in (57), we get η = 0 or 1. In both cases, using the definition of ℓ∗(µA, µB , ϵk)
(see (59)), it follows that, limk→∞

ℓ∗(µA,µB ,ϵk)
ϵ2k

= 0. We now show the contradiction by choosing a feasible point for the

optimization problem L, wϵk =

√
I(µB)√

I(µA)+
√
I(µB)

and ∆L,ϵk = ∆− ϵk/2, we get that,

lim
k→∞

min{T (µA, µB , wϵk ,∆L,ϵk), T (µA, µB , wϵk ,∆L,ϵk + ϵk)}
ϵ2k

=
I(µA) · I(µB)

8(
√
I(µA) +

√
I(µB))2

.

This leads to contradiction as limk→∞
ℓ∗(µA,µB ,ϵk)

ϵ2k
< limk→∞

min{T (µA,µB ,wϵk
,∆L,ϵk

),T (µA,µB ,wϵk
,∆L,ϵk

+ϵk)}
ϵ2k

and
ℓ∗(µA, µB , ϵk) is the optimal value of the optimization problem L. We get a similar proof for the last case when W = 1.
This completes the proof. □

Proof of Theorem 5.4: First we show that,

lim
ϵ→0

w∗(µA, µB , ϵ)− w(µA, µB)

ϵ
= 0,

where w(µA, µB) =
√
I(µB)√

I(µB)+
√
I(µA)

. To prove this, we utilize the first-order conditions of L. We index everything by ϵ in

(44) and use the notations defined in the proof of Theorem 5.3. Using the third order Taylor series expansion around ϵ = 0
of (44) and dividing both sides by ϵ4,we get,

H(µA, c7,ϵ)

(
K2,ϵ

ϵ

)
B1,ϵ = H(µA, c5,ϵ)

(
−K1,ϵ

ϵ

)
B2,ϵ, (60)

where,

B1,ϵ =

(
K2

1,ϵ

ϵ3

)
I(µA)−

(
K3

1,ϵ

3ϵ3

)
O(µA, c9,ϵ)−

(αϵ −K1,ϵ)
2

ϵ3
I(µB)−

(αϵ −K1,ϵ)
3

3ϵ3
O(µB , c10,ϵ).

B2,ϵ =

(
K2

2,ϵ

ϵ3

)
I(µA) +

(
K3

2,ϵ

3ϵ3

)
O(µA, c11,ϵ)−

(K2,ϵ + αϵ − ϵ)2

ϵ3
I(µB)−

(K2,ϵ + αϵ − ϵ)3

3ϵ3
O(µB , c12,ϵ).

Here O(µA, a) ≜ ∂3d(µA,x)
∂x3 |x=a. Further c9,ϵ ∈ (x∗L,ϵ, µA), c10,ϵ ∈ (µB , x

∗
L,ϵ − ∆∗

L,ϵ), c11,ϵ ∈ (µA, x
∗
R,ϵ) and c12,ϵ ∈

(x∗R,ϵ −∆∗
R,ϵ, µB). Using the (52) and (53) in the proof of Theorem 5.3, we get,

lim
ϵ→0

K1,ϵ

ϵ
= w(µA, µB)/2, lim

ϵ→0

K2,ϵ

ϵ
= w(µA, µB)/2.

lim
ϵ→0

α1,ϵ

ϵ
= 1/2.

It follows from the definition that, limϵ→0 c5,ϵ = limϵ→0 c7,ϵ = limϵ→0 c9,ϵ = limϵ→0 c11,ϵ = µA and limϵ→0 c10,ϵ =
limϵ→0 c12,ϵ = µB . Taking the limit of ϵ→ 0 on both side in (60), we get,

lim
ϵ→0

(B1,ϵ +B2,ϵ) = 0.

Using some algebra above can be re-arranged as,

lim
ϵ→0

[
I(µA)

(
K2

1,ϵ +K2
2,ϵ

ϵ3

)
− I(µB)

(
(αϵ −K1,ϵ)

2 + (K2,ϵ + αϵ − ϵ)2

ϵ3

)]
= 0.
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Recall the definition of K1,ϵ and K2,ϵ,

K1,ϵ =
αϵ(1− w∗

ϵ )H(µB , c6,ϵ)

(1− w∗
ϵ )H(µB , c6,ϵ) + w∗

ϵH(µA, c5,ϵ)
.

K2,ϵ =
(−αϵ + ϵ)(1− w∗

ϵ )H(µB , c8,ϵ)

(1− w∗
ϵ )H(µB , c8,ϵ) + w∗

ϵH(µA, c7,ϵ)
.

Using the above definitions, we get,

lim
ϵ→0

[
I(µA)

(
I2(µB)(1− w∗

ϵ )
2

ϵ

)
− I(µB)

(
I2(µA)(w

∗
ϵ )

2

ϵ

)]
= 0.

The above can be simplified to,

lim
ϵ→0

w∗
ϵ − w(µA, µB)

ϵ
= 0.

This completes the proof of the first part. Now we show that,

lim
ϵ→0

w∗(µA, µB , ϵ)− w(µA, µB)

ϵ2
=

v(µA, µB)

96
√
I(µA)I(µB)

,

where, v(µA, µB) =
(
∂4d(µB ,x)

∂x4

∣∣∣
x=µB

)
(1− w(µA, µB))

4 −
(
∂4d(µA,x)

∂x4

∣∣∣
x=µA

)
w4(µA, µB).

To prove this, we again utilize the first-order conditions of L. Using the fourth order Taylor series expansion around ϵ = 0
of (44) and dividing both sides by ϵ5, and similar to the proof of the first part of this theorem, we get,

lim
ϵ→0

(C1,ϵ + C2,ϵ + C3,ϵ) = 0. (61)

C1,ϵ =

(
K2

1,ϵ +K2
2,ϵ

ϵ4

)
I(µA)−

(
(αϵ −K1,ϵ)

2

ϵ4
+

(K2,ϵ + αϵ − ϵ)2

ϵ4

)
I(µB).

C2,ϵ =

(
K3

2,ϵ −K3
1,ϵ

3ϵ4

)
O(µA, µA)−

(
(αϵ −K1,ϵ)

3

3ϵ4
+

(K2,ϵ + αϵ − ϵ)3

3ϵ4

)
O(µB , µB).

C3,ϵ =

(
K4

1,ϵ

12ϵ4

)
E(µA, c13,ϵ) +

(
K4

2,ϵ

12ϵ4

)
E(µA, c15,ϵ)−

(αϵ −K1,ϵ)
4

12ϵ4
E(µB , c14,ϵ)−

(K2,ϵ + αϵ − ϵ)4

12ϵ4
E(µB , c16,ϵ),

where, E(µ, c) ≜ ∂4d(µ,x)
∂x4

∣∣∣
x=c

.

First, using some algebra it follows that,

lim
ϵ→0

C3,ϵ =
v(µA, µB)

96
. (62)

Now we consider C2,ϵ. Using the fact, that limϵ→0
K1,ϵ

ϵw∗
ϵ
= limϵ→0

K2,ϵ

ϵw∗
ϵ
= 1/2, and the first part of this theorem, we get,

lim
ϵ→0

C2,ϵ = 0. (63)

Now we consider,

C1,ϵ =

(
K2

1,ϵ +K2
2,ϵ

ϵ4

)
I(µA)−

(
(αϵ −K1,ϵ)

2

ϵ4
+

(K2,ϵ + αϵ − ϵ)2

ϵ4

)
I(µB).
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Using the fact, that limϵ→0
K1,ϵ

ϵw∗
ϵ
= limϵ→0

K1,ϵ

ϵw∗
ϵ
= 1/2, we get,

lim
ϵ→0

C1,ϵ =

(
(w∗

ϵ )
2

2ϵ2

)
I(µA)−

(
(1− w∗

ϵ )
2

2ϵ2

)
I(µB).

It can be re-written as,

lim
ϵ→0

C1,ϵ =

(
(w∗

ϵ )
√
I(µA)− (1− w∗

ϵ )
√
I(µB)

2ϵ2

)
(w(µA, µB)

√
I(µA) + (1− w(µA, µB))

√
I(µB)).

Hence,

lim
ϵ→0

C1,ϵ =

(
w∗
ϵ − w(µA, µB)

ϵ2

)
(
√
I(µA)I(µB)). (64)

Combining (62), (63), (64) and substituting in (61), we get the desired result. This completes the proof.

□

C. Proofs of results in Section 6.

Proof of Theorem 6.1: Proof of the corollary follows similar to the proof of Theorem 4.4. Since

√
1

I(µA)√
1

I(µA)
+
√

1
I(µB)

is jointly

continuous function of µA and µB since I(µ) is a continuous function of µ for µ ∈ I and the fact that I(µ) = 1
σ2(µ) > 0

(see Appendix D.2).

□

D. Properties of d(µ, x) and Fisher’s information I(µ).
D.1. Properties of d(µ, x) as a function of x.

Recall from Section 3,

d(µ, µ̃) ≜ KL(pθ(µ), pθ(µ̃)) = b(θ(µ̃))− b(θ(µ))− b′(θ(µ))(θ(µ̃)− θ(µ)),

such that b′(θµ) = µ, b′(θ(µ̃)) = µ̃ and pθ(µ), pθ(µ̃) ∈ S.

Using Lemma D.1 and Section 3, we know that b(θ) ∈ C∞ and a strictly convex function, hence it follows that θ(µ) =
b′−1(µ) is a continuous function in µ as well. Further we also know that, σ2(µ) = b′′(b′−1(µ)) > 0.

d(µ, x) = b(b′−1(x))− b(b′−1(µ)) + µ(b′−1(x)− b′−1(µ)).

Hence we get that d(µ, x) is a continuous function in (x, µ) for µ ∈ I and x ∈ I.

Now we move to the differentiability of d(µ, x) in x. Using Inverse mapping theorem, we know that θ(µ) = b′−1(µ), is
differentiable in µ and we have,

dθ(x)

dx
=

1

b′′(b′−1(x))
. (65)

Hence it follows that, d(µ, x) is differentiable in x and we have,

∂d(µ, x)

∂x
= (x− µ)

dθ(x)

dx
= (x− µ)

1

b′′(b′−1(x))
.

Since b(θ) is a twice differentiable strictly convex function in θ, hence it follows that b′′(θ) > 0. This further implies
that, ∂d(µ,x)∂x > 0 for x > µ, ∂d(µ,x)∂x < 0 for x < µ and ∂d(µ,x)

∂x = 0 at x = µ. Hence we get that d(µ, x) is a strictly
quasi-convex and unimodal function in x. Further d(µ, x) = 0 if only if x = µ.
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Now we move to the twice differentiability of d(µ, x) in x. Recall,

∂d(µ, x)

∂x
= (x− µ)

dθ(x)

dx
= (x− µ)

1

b′′(b′−1(x))
.

Now to get twice differentiability of d(µ, x) in x, θ(x) should be twice differentiable in x. Since b(θ) ∈ C∞, we have,

d2θ(x)

dx2
=

−b′′′(b′−1(x))

(b′′(b′−1(x)))3
. (66)

Further, following holds as well,
∂2d(µ, x)

∂x2
=
dθ(x)

dx
+ (x− µ)

d2θ(x)

dx2
. (67)

It follows that for d(µ, x) to be twice continuous differentiable in x, we need b(θ) to be thrice continuous differentiable in θ.
Since b(θ) ∈ C∞, hence we get that d(µ, x) ∈ C∞ as a function of x.

D.2. Fisher’s information I(µ) and continuity of I(µ) in µ

For a given ν ∈ S with mean µ, using Theorem 5.4 , Chapter 2 in Lehmann & Casella (2006), we know that,

I(µ) =
1

σ2(µ)
.

Since d(µ, x) is twice differentiable in x, hence using (66), (66) and (67), we have,

I(µ) =
1

σ2(µ)
=
∂2d(µ, x)

∂x2
∣∣
x=µ

.

Since σ2(µ) = b′′(b′−1(µ)), hence it follows that I(µ) is continuous as b(θ) ∈ C∞ (see Lemma D.1).

□

D.3. Properties of b(θ) and µ(θ) as a function of θ for θ ∈ Θ.

Lemma D.1. For θ ∈ Θ, b(θ) ∈ C∞.

Lemma D.2. For θ ∈ Θ, µ(θ) is a strictly increasing function of θ. Further µ(θ) ∈ C∞.

Proof of Lemma D.1:

Fix a θ ∈ Θ. Since pθ is a Radon–Nikodym derivative. Hence it follows that,

∫
R

exp(θ · x− b(θ))dξ(x) = 1.

It can be re-written as,

b(θ) =

∫
R

exp(θ · x)dξ(x).

Define a function M1(θ, η) = E[exp(η ·Xθ))], where Xθ is distributed according to pθ and η is a small number such that
θ + η ∈ Θ. Hence it follows that,

M1(θ, η) =

∫
R

exp((θ + η) · x− b(θ))dξ(x).

The above can be re-written as,
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M1(θ, η) = exp(b(θ + η)− b(θ))

∫
R

exp((θ + η) · x− b(θ + η))dξ(x).

Since θ + η ∈ Θ, hence it follows that,

M1(θ, η) = exp(b(θ + η)− b(θ)).

The above can be re-written as,
b(θ + η) = log(M1(θ, η)) + b(θ).

Since log(M1(θ, η)) as a function of η is the log-moment generating function of Xθ) for a given θ ∈ Θ. Using e.g., 2.2.24
in Dembo & Zeitouni (2009), we know that log(M1(θ, η)) is infinitely differentiable in η for small η such that θ+ η ∈ Θ as
b(θ + η) is well defined for such values of η. This further implies that, ∂

nb(θ+η)
∂ηn

∣∣
η=0

exists for all n ∈ Z+. This completes
the proof.

□

Proof of Lemma D.2:

Since we know that µ(θ) = b′(θ). Using Lemma D.1 and the fact that b(θ) is a strictly convex function, we get the desired
result.

□

D.4. Specific examples in canonical SPEF S.

Now we consider the special cases of canonical SPEF (see Cappé et al. (2013)).

Gaussian distribution with variance σ2: Here I = R, Θ = R, θ(µ) = µ
σ2 and b(θ) = σ2θ2

2 .

d(µ, x) =
(x− µ)2

σ2
.

Binomial distribution with n samples: Here I = (0, n), Θ = R, θ(µ) = log(µ/(n− µ)) and b(θ) = n(log(1 + eθ)) .

Notice that the special case of n = 1 corresponds to the Bernoulli distribution.

d(µ, x) = µ log
(µ
x

)
+ (n− µ) log

(
n− µ

n− x

)
.

Poisson distribution: Here I = (0,+∞), Θ = R, θ(µ) = log(µ) and b(θ) = eθ .

d(µ, x) = x− µ+ µ log
(µ
x

)
.

Gamma distributions with known shape parameter r > 0: Here I = (0,∞), Θ = (−∞, 0), θ(µ) = −r/µ and
b(θ) = −r log(−θ) .

Notice that the special case of r = 1 corresponds to the exponential distribution.

d(µ, x) = r
(µ
x
− 1− log

µ

x

)
.

Negative binomial distributions with known shape parameter r > 0: Here I = (0,∞), Θ = (−∞, 0), θ(µ) =
log(µ/(r + µ)) and b(θ) = −r log(1− eθ) .

Notice that the case r = 1 corresponds to geometric distributions.

d(µ, x) = r log

(
r + x

r + µ

)
+ µ log

(
µ(r + x)

x(r + µ)

)
.

□
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E. Supporting Lemmas
Lemma E.1. If ν1 and ν2 ∈ S with mean µ and x respectively, then there exists a η > 0 such that d(µ, x) is strictly convex
function in x for x ∈ (µ− η, µ+ η) and a given µ ∈ I.

Proof of Lemma E.1: We know that ∂
2d(µ,x)
∂x2

∣∣
x=µ

= 1
σ2(µ) . Since d(µ, x) ∈ C∞ as a function of x for a given µ and

σ2(µ) > 0, hence it follows that there exists a η > 0 such that ∂
2d(µ,x)
∂x2

∣∣
x=c

> 0 for c ∈ (µ− η, µ+ η). This completes the
proof. □

Lemma E.2. T (µA, µB , w, z) is a jointly continuous function in (µA, µB , w, z) for w ∈ [0, 1], z ∈ (µ−µ, µ−µ), µA ∈ I
and µB ∈ I.

Proof of Lemma E.2:

Recall the definition of T (µA, µB , w, z),

T (µA, µB , w, z) = min
x,y∈C(z)

wd(µA, x) + (1− w)d(µB , y), where,

C(z) = {(x, y) : x, y ∈ I, x− y = z}.

First, we consider a case for z ≤ µA − µB . Using strict quasi-convexity of d(µ, x) in x, we get,

T (µA, µB , w, z) = min
x,y∈C(z)

wd(µA, x) + (1− w)d(µB , y), where,

C(z) = {(x, y) : x, y ∈ I, x ∈ [µB + z, µA], y ∈ [µB , µA − z]}.

Using Berge’s Maximum theorem, we get the desired result. A similar proof will follow for the other case which is
∆L ≥ µA − µB .

□

Lemma E.3. For a given µA ∈ I, µB ∈ I and w ∈ (0, 1), following holds: T (µA, µB , w, z) is a strictly decreasing
function of z for z ∈ (µ− µ,∆) and a strictly increasing function of z for z ∈ (∆, µ− µ). Further, T (µA, µB , w, z) = 0
iff z = ∆, for a given µA ∈ I, µB ∈ I and w ∈ (0, 1).

Proof of Lemma E.3: Recall,

T (µA, µB , w, z) = min
x,y∈C(z)

wd(µA, x) + (1− w)d(µB , y), where,

C(z) = {(x, y) : x, y ∈ I, x− y = z}. Using the strict quasi convexity of d(µA, x) in x, we get, for z ∈ (µ− µ,∆), we
have,

T (µA, µB , w, z) = min
x,y∈Ĉ1(z)

wd(µA, x) + (1− w)d(µB , y), where,

Ĉ1(z) = {(x, y) : x, y ∈ I, x− y ≤ z}. Hence it follows trivially that for z ∈ (µ− µ,∆), T (µA, µB , w, z) is decreasing
in z. To get that T (µA, µB , w, z) is strictly decreasing in z, first recall from the proof of Lemma E.2 ,

T (µA, µB , w, z) = min
x,y∈C(z)

wd(µA, x) + (1− w)d(µB , y), where,

C(z) = {(x, y) : x, y ∈ I, x ∈ [µB + z, µA], y ∈ [µB , µA − z]}.

observe that for any z < z′ < ∆, take any (x, y) ∈ C(z), it follows using the fact that d(µ, x) is strictly increasing in x for
x > µ and strictly decreasing in x for x < µ, there exists a (x′, y′) ∈ C(z′), such that,

wd(µA, x) + (1− w)d(µB , y) > wd(µA, x
′) + (1− w)d(µB , y

′).
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Using the Lemma E.2 and the compactness of the set C(z), we get the desired result. A similar proof will follow for
z ∈ (∆, µ− µ). This completes the proof of the lemma.

□

Lemma E.4. There exists a ϵ1 > 0, such that T (µA, µB , w, z) is a continuously differentiable in (w,∆L) for w ∈ (0, 1)
and z ∈ [∆− ϵ,∆+ ϵ] for ϵ ≤ ϵ1, µA ∈ I and µB ∈ I.

Proof of Lemma E.4: Recall,

T (µA, µB , w, z) = min
x,y∈C(z)

wd(µA, x) + (1− w)d(µB , y), where,

C(z) = {(x, y) : x, y ∈ I, x− y = z}.

It follows that for any w ∈ (0, 1), z ∈ (µ− µ, µ− µ), C(z) is a non-empty set. First, we consider a case for z ≤ ∆. Using
strict quasi-convexity of d(µ, x) in x, we get,

T (µA, µB , w, z) = min
x,y∈C(z)

wd(µA, x) + (1− w)d(µB , y), where, (68)

C(z) = {(x, y) : x, y ∈ I, x ∈ [µB + z, µA], y ∈ [µB , µA − z]}.

For the case, z ≥ ∆. Using strict quasi-convexity of d(µ, x) in x, we get,

T (µA, µB , w, z) = min
x,y∈C(z)

wd(µA, x) + (1− w)d(µB , y), where, (69)

C(z) = {(x, y) : x ∈ I, y ∈ x ∈ I, x ∈ [µA, µB + z], y ∈ [µA − z, µB ]}.

Using Lemma E.1, we know that d(µ, x) is strictly convex for x ∈ (µ− η, µ+ η) where η is a small positive number. Hence
it follows that there exists a ϵ1 > 0 such that for ϵ ≤ ϵ1, the optimization problem given in (68) is a convex optimization
problem for a given µA ∈ I, µB ∈ I, w ∈ (0, 1), z ∈ [∆− ϵ,∆]. Similarly, the optimization problem given in (69) is a
convex optimization problem for a given µA ∈ I, µB ∈ I, w ∈ (0, 1), z ∈ [∆,∆+ ϵ].

Hence for a given µA ∈ I, µB ∈ I, w ∈ (0, 1) and z ∈ [∆− ϵ,∆+ ϵ], the solution of (3), denoted as x∗(µA, µB , w, z),
uniquely satisfies,

w
∂d(µA, x)

∂x

∣∣∣
x=x∗

+ (1− w)
∂d(µB , x− z)

∂x

∣∣∣
x=x∗

= 0.

Also y∗(µA, µB , w, z) = x∗(µA, µB , w, z)− z.

Using the implicit function and strict convexity of d(µ, x) in x for x ∈ (µ− η, µ+ η) and uniqueness of x∗(µA, µB , w, z),
we get that x∗(µA, µB , w, z) is twice differentiable in (w, z). It follows that,

T (µA, µB , w, z) = wd(µA, x
∗(µA, µB , w, z)) + (1− w)d(µB , y

∗(µA, µB , w, z)).

We get the desired result from the above. This completes the proof.

□

Lemma E.5. There exists a ϵ1 > 0, for given µA ∈ I, µB ∈ I and any w ∈ (0, 1), there exists a ∆̃L(w, µA, µB , ϵ) ∈
(∆− ϵ,∆) such that following holds for ϵ ≤ ϵ1,

T (µA, µB , w, ∆̃L(w, µA, µB , ϵ)) = T (µA, µB , w, ∆̃L(w, µA, µB , ϵ) + ϵ).

Further, we have,
T (µA, µB , w

∗,∆∗
L) = T (µA, µB , w

∗,∆∗
R).
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Proof of Lemma E.5:

For any given w ∈ (0, 1), using Lemma E.3, we get that T (µA, µB , w, z) is a strictly increasing function in z for
z ∈ (∆, µ− µ) and is a strictly decreasing function in z for z ∈ (µ− µ,∆).

Using Lemma E.3, we also know that T (µA, µB , w,∆) = 0. Now using the above properties it follows that, for any
w ∈ (0, 1), there exists a ∆̃L(w, µA, µB , ϵ) ∈ (∆− ϵ,∆) such that following holds for small ϵ,

max
∆L∈(∆−ϵ,∆)

min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)} = T (µA, µB , w, ∆̃L(w, µA, µB , ϵ))

= T (µA, µB , w, ∆̃L(w, µA, µB , ϵ) + ϵ).

Since the above holds for any w ∈ (0, 1), it will hold for w∗. Hence,

max
∆L∈(∆−ϵ,∆)

min{T (µA, µB , w∗,∆L), T (µA, µB , w
∗,∆L + ϵ)} = T (µA, µB , w

∗, ∆̃L(w
∗, µA, µB , ϵ))

= T (µA, µB , w
∗, ∆̃L(w

∗, µA, µB , ϵ) + ϵ).

It follows that, ∆∗
L = ∆̃L(w

∗, µA, µB , ϵ), hence this completes the proof of the lemma.

□

Lemma E.6. There exists an unique ∆̂L(n) and ∆̂R(n) which satisfies the (5).

Recall that we find ∆̂L(n) and ∆̂R(n) such that following holds,

T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂L(n)

)
= T

(
µ̂A(n), µ̂B(n),

NA(n)

n
, ∆̂R(n)

)
=
β(n, δ)

n
.

Using Lemma E.5, we get, for any given µ̂A(n), µ̂B(n),
NA(n)
n , there exists an unique ∆̂L(n) and ∆̂R(n) which satisfies

the above equation for large n,. This completes the proof.

□

Lemma E.7. For a given w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), if min{T (µA, µB , w,∆L), T (µA, µB , w,∆L+ ϵ)} is a jointly
strictly quasi-concave function in w and ∆L, w∗(µA, µB , ϵ) and ∆∗

L(µA, µB , ϵ) are unique and are jointly continuous
functions in (µA, µB) for µA ∈ I and µB ∈ I.

Proof of Lemma E.7

Recall that, w∗(µA, µB , ϵ) and ∆∗
L(µA, µB , ϵ) is the solution of following equation.

max
w∈[0,1],

∆L∈[∆L−ϵ,∆]

min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)}.

Using Lemma E.2 and Sundaram (1996) (Corollary 9.20), we get the desired result.

□

Lemma E.8. Under the assumptions of Lemma E.7, for the assignment rule of the policy P1, following holds

lim
n→∞

NA(n)

n
= w∗(µA, µB , ϵ) almost surely.

Further following holds as well,

lim
n→∞

µ̂A(n) = µA and lim
n→∞

µ̂B(n) = µB almost surely.
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Proof of the above lemma follows trivially from the Proposition 9 of Garivier & Kaufmann (2016), if w∗(µA, µB , ϵ) is
a continuous function in (µA, µB) for µA ∈ I and µB ∈ I. It follows that we have the continuity of w∗(µA, µB , ϵ) in
(µA, µB) for µA ∈ I and µB ∈ I using Lemma E.7.

Lemma E.9. For the assignment rule of the policy P2, following holds

lim
n→∞

NA(n)

n
= w(µA, µB) almost surely,

where w(µA, µB) =

√
1

I(µA)√
1

I(µA)
+
√

1
I(µB)

. Further following holds as well,

lim
n→∞

µ̂A(n) = µA and lim
n→∞

µ̂B(n) = µB almost surely.

Proof of the above lemma follows trivially from Proposition 9 of Garivier & Kaufmann (2016) as long as w(µA, µB) is a
continuous function in (µA, µB) for µA ∈ I and µB ∈ I. It follows that under the assumption that I(µ) is continuous in µ
for µ ∈ I and we know that I(µ) > 0 using the fact that σ2(µ) > 0 and I(µ) = 1

σ2(µ) for µ ∈ I.

□

Lemma E.10. ([Garivier & Kaufmann (2016)], Lemma 8 and Lemma 20) For the policy P1, under the assumptions stated
in Lemma E.7, D-Tracking rule ensures that Nk(n) ≥ max{

√
n− 1, 0}− 1 for k ∈ {A,B}. Further, there exists a constant

nη such that for n ≥ nη , it holds for our assignment rule of policy P1, under the set Gη(n),

∀i ≥
√
n, max
k∈A,B

∣∣∣∣Nk(i)i
− w∗(µA, µB , ϵ)

∣∣∣∣ ≤ 3η.

Also for the assignment rule of policy P2, one needs to replace w∗(µA, µB , ϵ) with w(µA, µB) in the above.

Proof of Lemma E.10 From Lemma E.7, we get that w∗(µA, µB , ϵ) is unique and continuous in (µA, µB) for µA ∈ I and
µB ∈ I. Once we have the uniqueness and continuity of w∗(µA, µB , ϵ), proof follows similarly as given in the Garivier &
Kaufmann (2016). Similarly for P2, using the proof of Lemma E.10, we get that w(µA, µB) is continuous in (µA, µB) for
µA ∈ I and µB ∈ I under the assumption that I(µ) is a continuous function of µ for µ ∈ I. This completes the proof.

□

F. Value of asymptotically optimal adaptive policy over uniform randomized policy
Here, we aim to quantify the value of any asymptotically optimal adaptive policy’s assignment rule relative to the practically
used uniform randomized assignment rule in terms of reducing the expected sample size. In fact, we theoretically prove that
to deliver on (ϵ, δ)−correct guarantee the expected sample size required by any uniform randomized policy can be at most
twice as large by any asymptotically optimal adaptive policy for small δ.

To prove the above, first, we prove a result about the lower bound on the sample size required for any uniform randomized
policy to estimate a CI of ATE with (ϵ, δ)−coverage guarantee in the limiting regime of δ → 0.

Proposition F.1. For given νA, νB ∈ S with mean µA and µB respectively and any (ϵ, δ)−coverage, uniform randomized
stable policy with an almost surely finite stopping time τδ , we have

lim inf
δ→0

Eν [τδ]
log(1/δ)

≥ 1

ℓunif(µA, µB , ϵ)
, (70)

where,
ℓunif(µA, µB , ϵ) = sup

(∆L,∆R)∈Υ(ϵ)

min{T (µA, µB , 0.5,∆L), T (µA, µB , 0.5,∆R)}.

It is worth noting that we can show that the lower bound for any uniform randomized policy is also tight via developing
a uniform randomized policy which matches the lower bound via modifying the assignment rule of our policy P1 to the
uniform randomized assignment rule and keeping estimation and stopping rule same. Recall we denoted it as PRCT. Hence
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we compare the lower bound on the expected sample size for any adaptive policy and the lower bound on the expected
sample size for any uniform randomized policy. Note the above lower bound parallels Theorem 4.2 in terms of order, and
the constant is ℓunif(µA, µB , ϵ).

Now we denote any uniform randomized stable policy which matches the lower bound provided in (70) when δ → 0 and
has (ϵ, δ)−coverage guarantee, as Punif . It follows that PRCT belongs to the set Punif . Hence to compare the performance
of any a.o. adaptive policy with any Punif , we must compare ℓ∗(µA, µB , ϵ) with ℓunif(µA, µB , ϵ).
Proposition F.2. For given νA, νB ∈ S with mean µA and µB respectively, then following holds,

ℓ∗(µA, µB , ϵ) ≥ ℓunif(µA, µB , ϵ) ≥
ℓ∗(µA, µB , ϵ)

2
. (71)

Further, if d(µ, x) is twice continuously differentiable in x around a neighbourhood of x = µ, we have

lim
ϵ→0

ℓ∗(µA, µB , ϵ)

ℓunif(µA, µB , ϵ)
= R

(
I(µA)

I(µB)

)
, (72)

where,

R(x) =
2
(√

x+ 1√
x

)
(√

x+ 1√
x
+ 2
) .

Since by definition, we know that any uniform randomized policy will be a feasible policy under the set of adaptive policies,
hence it follows that ℓ∗(µA, µB , ϵ) ≥ ℓunif(µA, µB , ϵ). In (71), we also show that ℓunif(µA, µB , ϵ) ≥ ℓ∗(µA,µB ,ϵ)

2 which
implies that expected sample size to deliver on (ϵ, δ)−correct guarantee with any Punif can be at most twice as large as
compared to any asymptotically optimal adaptive policy for small δ. Interestingly in (72), we characterize the ratio of
ℓunif (µA,µB ,ϵ)
ℓ∗(µA,µB ,ϵ)

when ϵ→ 0 which is given by R
(
I(µA)
I(µB)

)
. We now plot the function R (x) with x = min{I(µA),I(µB)}

max{I(µA),I(µB)} takes
value in between (0, 1]. The plot is shown in Figure 2. This result helps us in characterizing the regime when there is a
value of any asymptotically optimal adaptive policy over any Punif and when there is no gain of any asymptotically optimal
adaptive policy over Punif for small ϵ and δ. We observe that when min{I(µA),I(µB)}

max{I(µA),I(µB)} is 1, then any Punif is asymptotically

optimal for small ϵ and δ. Hence, in this case, there is no value of any a.o policy over Punif . But as min{I(µA),I(µB)}
max{I(µA),I(µB)} ratio

decreases, there is a value of any a.o policy over any Punif and as min{I(µA),I(µB)}
max{I(µA),I(µB)} approaches 0, the value of any a.o

policy over any Punif increases to 50% reduction in the sample size.

Figure 2: Value of adaptivity over uniform randomized policy

Proof of Proposition F.1: Proof of (70) follows similar to the proof of Theorem 4.2.
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□

Proof of Proposition F.2: Now we show that (71) holds. From the definition of ℓ∗(µA, µB , ϵ) and ℓunif(µA, µB , ϵ), it
follows trivially that, ℓ∗(µA, µB , ϵ) ≥ ℓunif(µA, µB , ϵ).

Now we show that, ℓunif(µA, µB , ϵ) ≥ ℓ∗(µA, µB , ϵ)/2. Define a function for a given µA and µB for any w1 ≥ 0 and
w2 ≥ 0,

f(w1, w2,∆L) ≜ min
x,y∈C(∆L)∪C(∆L+ϵ)

w1d(µA, x) + w2d(µB , y).

First, f is a homogeneous function in (w1, w2) of degree one, i.e., f(cw1, cw2,∆L) = cf(w1, w2,∆L) for any c ≥ 1. second
it follows that f is non-decreasing in (w1, w2) for w1 ≥ 0 and w2 ≥ 0.

Let w∗ and ∆∗
L denote any solution of L (since we are not assuming that w∗ and ∆∗

L is unique in the theorem, hence for the
proof we choose any solution of L). It follows that,

rf(0.5, 0.5,∆L) = f(0.5r, 0.5r,∆L) ≥ f(w∗, 1− w∗,∆L),

where r = max{w∗/0.5, (1− w∗)/0.5}. The above can be re-written as,

f(0.5, 0.5,∆L) ≥ 2f(w∗, 1− w∗,∆L).

It follows that,

ℓunif(µA, µB , ϵ) = max
∆L∈(∆−ϵ,∆)

f(0.5, 0.5,∆L) and ℓ∗(µA, µB , ϵ) = max
∆L∈(∆−ϵ,∆)

f(w∗, 1− w∗,∆L).

Using the above, we complete the proof of (71).

Now we move to the proof of (72). In the definition of ℓunif(µA, µB , ϵ), we have maximization over ∆L and ∆R and we
have fixed w = 0.5. Using Lemma E.5, for small ϵ, we get that the solution of optimization problem in ℓunif(µA, µB , ϵ),
denoted as ∆̃L and ∆̃R, is unique and satisfies,

T (µA, µB , 0.5, ∆̃L) = T (µA, µB , 0.5, ∆̃R), and ∆̃R = ∆̃L + ϵ.

Similar to the proof of Theorem 5.3, using the second-order Taylor series expansion of the above equation, we get,

lim
ϵ→0

ℓunif(µA, µB , ϵ)

ϵ2
=

1

16

(
I(µA)I(µB)

I(µA) + I(µB)

)
.

Recall that, from Theorem 5.3, we get,

lim
ϵ→0

ℓ∗(µA, µB , ϵ)

ϵ2
=

1

8
(√

1
I(µA) +

√
1

I(µB)

)2 .
Using the above two equations, we get the desired result.

□

G. Details of numerical experiments mentioned in Section 7
We set the distributions of the outcome of treatment A and B to be exponential distributions with mean µA = 10 and
µB = 0.1 respectively. We choose ϵ to be 0.5 and we set δ = 10%, 5% and 1%. For each choice of δ, we generate 2000
sample paths and report the average numbers. We present the detailed performance of our policy P2 and PRCT in Table 3
(in Table 1, we presented a small version of this table).

As mentioned in Section 7, for empirical studies, we use Kaufmann & Koolen (2021) for the choice of β(n, δ) for the
estimation rule in P2 and PRCT. For exponential outcome distributions, using Theorem 10 of the same paper, we
choose β(n, δ) = 2

∑
k∈{A,B} log[4 + log(Nk(n))] + 2T

(
log(2/δ)

2

)
accordingly as we have chosen exponential outcome
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ϵ = 0.5, µA = 10 and µB = 0.1

δ value Lower bound
on E[τδ]

given in (4)

Estimated
E[τδ] for P2

Estimated
E[τδ] for
PRCT

P̂confidence sequence for
P2 in percentage(%)

P̂confidence sequence for
PRCT in

percentage(%)

10% 7.52×103 3.74×104 7.85×104 99.85 ± 0.1 99.60 ± 0.1
5% 9.78×103 4.14×104 8.62×104 100 100
1% 1.50×104 4.98×104 1.02×105 100 100

Table 3: Performance of P2 and PRCT policy for finite δ values. The width of 95% CI for estimated E[τδ] for both policies
is less than 150.

distributions for the numerical experiment. To state the definition of T (x), we need to introduce two functions. First for
u ≥ 1 the function z = ψ(u) = u− lnu and its inverse u = ψ−1(z) for z ≥ 1. And the other function is defined for any
y ∈ [1, e] and x ≥ 0 and given by

ψ̃y(x) =

{
e1/ψ

−1(x)ψ−1(x) if x ≥ ψ−1(1/ ln y),

y(x− ln ln y) o.w.

Now we define function T (x) : R+ → R+ as follows

T (x) = 2ψ̃3/2

(
ψ−1(1 + x) + ln 2ζ(2)

2

)
where ζ(2) =

∑∞
n=1 n

−2.

Using the definition of T (x), it follows that T (x) = O(x), where O(·) denotes the Big O notation. Hence the above choice
of β(n, δ) = O(log(log(n))/δ)).

We report the estimated number of the samples taken by each policy, i.e. estimated E[τδ]. We report the asymptotic lower
bound valid for small δ given in Theorem (4.2). We also report the estimation of the probability that ATE lies in the CI
at the end of the experiment, we refer to it as P̂(ϵ,δ)−coverage. Last, we also report the estimation of probability which tells
whether the confidence interval always contains the ATE or not during the entire sample path till the policy stops and
we refer to it as P̂confidence sequence. The reason for estimating P̂confidence sequence is to show that our estimation and stopping
rule constructs the confidence sequence of ATE which allows “continuous monitoring” of A/B tests while central limit
theorem-based confidence interval will fail miserably on this property. We have made one change in the estimation rule
for P2 and hence one change in the estimation rule for PRCT for the numerical experiment. Recall in P2 and PRCT, we
estimate (1 − δ)−confidence sequence at each n, denoted as [∆̂L(n), ∆̂R(n)]. To stop early for a given δ, we estimate
running intersection of [∆̂L(n), ∆̂R(n)], which is defined as,

[∆̃L(n), ∆̃R(n)] = ∩ns=1[∆̂L(s), ∆̂R(s)],

and stop when ∆̃R(n)− ∆̃L(n) ≤ ϵ for the first time. It follows that using [∆̃L(n), ∆̃R(n)], we will stop early and we will
still have (ϵ, δ)−correct guarantee due to the definition of confidence sequence (see (6)). We observe that the CI of ATE
of our policy P2 and for PRCT always contains ATE at the end of the experiment, i.e., P̂(ϵ,δ)−coverage = 1 and the ratio of
actual estimated E[τδ] with the lower bound value is decreasing sharply as δ gets smaller.

Last, we present the performance of the P2 with aggressive choice of β(n, δ) = log
(

1+log(n)
δ

)
as mentioned in Barrier

(2023) which is not theoretically supported but works well in practice. Results are shown in Table 4. In our set-up as well,
we improve the performance of our policy P2 as it stops much earlier and empirically (ϵ, δ)−correct guarantee holds as
well. We also notice that, this aggressive choice of β(n, δ) loses out on the confidence sequence property.

□
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ϵ = 0.5, µA = 10 and µB = 0.1

δ value Lower bound on
E[τδ] given in (4)

Estimated E[τδ] P̂(ϵ,δ)−coverage in
percentage(%)

P̂confidence sequence in
percentage(%)

10% 7.52×103 1.17×104 97.4 ± 0.5 84 ± 1
5% 9.78×103 1.40×104 99.6 ±0.2 92.05 ± 1
1% 1.50×104 1.92×104 99.70± 0.1 97.50 ± 0.6

Table 4: Performance of P2 policy with aggressive choice of β(n, δ) rule for finite δ values. The width of 95% CI for
estimated E[τδ] for P2 policy with aggressive choice of β(n, δ) is less than 150.

H. Discussion on stable policies and Remark 4.6
H.1. Discussion on stable policies

Recall a policy is called stable if ∆̂L(τδ)
p→ a and ∆̂R(τδ)

p→ b as δ → 0, where a and b are constants.

When a policy constructs a symmetric confidence interval at the conclusion of an A/B test and the estimator of the ATE
is consistent, and as δ tends to zero, τδ → ∞ almost surely, then, applying the Law of Large Numbers, it follows that the
policy satisfies the stability assumption. For example, an A/B test with a symmetric confidence interval based on the central
limit theorem (CLT) will meet the stability assumption for the reasons mentioned above. In this scenario, the values for
a and b can be determined as a = ∆ − ϵ/2 and b = ∆ + ϵ/2. In general, if a policy produces a consistent estimator of
the ATE, denoted as ∆̂(n), and the boundaries of the confidence interval, ∆̂L(n) and ∆̂R(n), are continuous functions of
the ATE estimator, and as δ → 0, τδ → ∞ almost surely, then by applying the Law of Large Numbers and considering
the continuity of the confidence interval boundaries, we can establish the stability assumption. Our policy is stable for the
same reason. This tells that stable assumption allows for a lot of tractable policies with very natural requirements such
as consistency of estimator, length of the A/B approaching infinity when δ → 0 and continuity of the confidence interval
boundaries with respect to the estimator of ATE.

H.2. Discussion on Assumption 4.5

Here we show that for given w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)} is jointly
strictly quasi-concave in w and ∆L. We will provide the proof when νA = N(µA, σ

2) and νB = N(µB , σ
2) with known

variances. For other outcome distributions in S, we do not have a formal proof but we provide a numerical study to show
that the above assumption holds via plotting upper contour sets.

First, let νA = N(µA, σ
2) and νB = N(µB , σ

2) with known variances. It follows from the proof of Proposition 5.1, we
have,

T (µA, µB , w,∆L) =
w(1− w)

2σ2
(∆L −∆)2.

We now show that T (µA, µB , w,∆L) is jointly strictly quasi-concave in w and ∆L for w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆).
For ease of readability, we suppress the notation and denote T (µA, µB , w,∆L) as T (w,∆L).

Now to show the strict quasi concavity of T (µA, µB , w,∆L) in (w,∆L), we use the sufficient conditions provided in
Theorem 1.12 in Takayama (1993). We first compute the matrices C1(w,∆) and C2(w,∆L). These matrices are defined as
follows,

C1(w,∆L) ≜

[
0 ∂T (w,∆L)

∂∆L
∂T (w,∆L)
∂∆L

∂2T (w,∆L)
∂∆2

L

]
,

C2(w,∆L) ≜


0 ∂T (w,∆L)

∂∆L

∂T (w,∆L)
∂w

∂T (w,∆L)
∂∆L

∂2T (w,∆L)
∂∆2

L

∂2T (w,∆L)
∂∆L∂w

∂T (w,∆L)
∂w

∂2T (w,∆L)
∂w∂∆L

∂2T (w,∆L)
∂w2

 .
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Using the definition of T (w,∆L), we get,

C1(w,∆L) =

[
0 (∆L−∆)w(1−w)

σ2

(∆L−∆)w(1−w)
σ2

w(1−w)
σ2

]
,

C2(w,∆L) =

 0 (∆L−∆)w(1−w)
σ2

(1−2w)(∆L−∆)2

2σ2

(∆L−∆)w(1−w)
σ2

w(1−w)
σ2

(1−2w)(∆L−∆)
σ2

(1−2w)(∆L−∆)2

2σ2

(1−2w)(∆L−∆)
σ2

−(∆L−∆)2

σ2

 .
To prove the quasi concavity of T (w,∆L) in (w,∆L), we need to show that det(C1(w,∆L)) < 0 and det(C2(w,∆L)) > 0
for all w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆).

Using some algebra, we get that for any w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆),

det(C1(w,∆L)) = −
(
(∆L −∆)w(1− w)

σ2

)2

< 0.

Using some algebra, we get that for any w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆),

det(C2(w,∆L)) =
w(1− w)(∆L −∆)4

σ6

(
3(1− 2w)2 + 4w(1− w)

4

)
> 0.

A similar proof will follow for the joint strictly quasi-concavity of T (µA, µB , w,∆L + ϵ) in w and ∆L for w ∈ (0, 1) and
∆L ∈ (∆ − ϵ,∆). Since min of two strict quasi concave functions is also a strict quasi concave, hence it follows that
min{T (µA, µB , w,∆L), T (µA, µB , w,∆L + ϵ)} is jointly strictly quasi-concave in w and ∆L. This completes the proof
when outcome distributions are Gaussian with known variance. For the other relevant distributions in S, we show upper
contour plots of T (µA, µB , w,∆L) for w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆) in Figure 3, 4, 5 and 6. Since these upper contour
sets are always strictly convex in all 4 figures. Using the definition of strict quasi concavity, it shows the joint strictly
quasi-concavity of T (µA, µB , w,∆L + ϵ) in w and ∆L for w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆). numerically.

□

I. Generalization to the non-parametric family with bounded support
In this section, we generalise our results to the setting where outcome distributions belong to the non-parametric family with
bounded support in [0, 1] denoted as B. Recall that m(ν) denotes the mean of a distribution ν. For ν ∈ B, let σ(ν) denote
the standard deviation of the distribution ν. Now we define the following functions which will help us to generalize the
results (see Appendix F in Jourdan et al. (2022) and Honda & Takemura (2010)). For ν ∈ B, we define

DU
inf (ν, x) ≜ inf

κ∈B:m(κ)≥x
KL(ν, κ).

DL
inf (ν, x) ≜ inf

κ∈B:m(κ)≤x
KL(ν, κ).

Now we define,
Dinf (ν, x) = max{DL

inf (ν, x), D
U
inf (ν, x)} (73)

In the analysis, Dinf (ν, x) will replace the d(µ, x) function as KL divergence between two non-parametric distributions as
it can not be defined via their means. Intuitively, DU

inf (ν, x)(D
L
inf (ν, x)) represents the minimum KL divergence between ν

and all the distributions in B which have a mean higher(less) or equal than x.

We will exclude the point mass distributions as our ATE problem is not well-defined for them. Hence it follows that for
ν ∈ B except point mass distribution will have mean in (0, 1). We first state properties of DU

inf (ν, x) and DL
inf (ν, x).

Dual Representation of DU
inf (ν, x) and DL

inf (ν, x) : It is well mentioned in the literature that dual representations of
DU
inf (ν, x) and DL

inf (ν, x) are much more tractable. We now rewrite Theorem 3 of Jourdan et al. (2022). For (λ, ν, x) ∈
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Figure 3: Upper contour plots for function T (µA, µB , w,∆L) in the space of (w,∆L) for a given µA = 5 and µB = 3
when outcome distributions are Geometric. Here we choose, ϵ = 0.5, hence w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), i.e.,

∆L ∈ (1.5, 2). There are various lines in the above figure. The number on a given line in the above figure represents the
value of T (µA, µB , w,∆L) for all values of (w,∆L) satisfying the trajectory of that given line for µA = 5 and µB = 3.

One can observe that all the upper contour plots are strictly convex.

N× B × [0, 1], let H+(λ, ν, x) = Eν [log(1− λ(X − x))], where we define log(x) = −∞ for x ≤ 0. Let H−(λ, ν, x) =
Eν [log(1 + λ(X − x))].

Theorem I.1. For all ν ∈ B and x ∈ (0, 1), we have,

DU
inf (ν, x) = sup

λ∈[0,1/(1−x)]
H+(λ, ν, x).

DL
inf (ν, x) = sup

λ∈[0,1/x]

H−(λ, ν, x).

Now we re-write some properties of DU
inf (ν, x) and DL

inf (ν, x) functions which are proven in Honda & Takemura (2010),
Agrawal (2022) and Jourdan et al. (2022).

I.1. Properties of DU
inf (ν, x) and DL

inf (ν, x) :

1. The function DU
inf (ν, x) (resp. DL

inf (ν, x)) is continuous on B × [0, 1) (resp. B × (0, 1]).

2. For all (ν, x) ∈ B × [0, 1), DU
inf (ν, x) ≤ − log(1− x).

3. For all (ν, x) ∈ B × (0, 1], DL
inf (ν, x) ≤ − log(x).

4. The function x→ DU
inf (ν, x) is strictly convex on (m(ν), 1]. Further, the function x→ DL

inf (ν, x) is strictly convex
on [0,m(ν)).

5. Let λU (ν, x) = argmaxλ∈[0,1/(1−x)]H
+(λ, ν, x) and λL(ν, x) = argmaxλ∈[0,1/x]H

−(λ, ν, x). λU (ν, x) is unique
except for the case ν is a point mass distribution. For the case when ν is a point mass distribution, we define
λU (ν, x) = 1

(1−x) . Similarly, λL(ν, x) is unique except for the case ν is a point mass distribution. For the case when ν
is a point mass distribution, we define λU (ν, x) = 1

x .
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Figure 4: Upper contour plots for function T (µA, µB , w,∆L) in the space of (w,∆L) for a given µA = 5 and µB = 3
when outcome distributions are Poisson. Here we choose, ϵ = 0.5, hence w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), i.e.,

∆L ∈ (1.5, 2). There are various lines in the above figure. The number on a given line in the above figure represents the
value of T (µA, µB , w,∆L) for all values of (w,∆L) satisfying the trajectory of that given line for µA = 5 and µB = 3.

One can observe that all the upper contour plots are strictly convex.

6. Let ν ∈ B and xU (ν) = 1− 1
EX∼ν [1/(1−X)] ≥ m(ν). We have,

λU (ν, x) = 0 ⇐⇒ x ≤ m(ν).

x ∈ (m(ν), xU (ν)] =⇒ Eν
[

1

1− λU (ν, x)(X − x)

]
= 1.

λU (ν, x) =
1

1− x
⇐⇒ x ≥ xU (ν).

7. For all ν ∈ B and x ∈ (m(ν), 1], x→ DU
inf (ν, x) is differentiable and

∂DU
inf (ν, x)

∂x
= λU (ν, x).

8. For all ν ∈ B and x ∈ [0,m(ν)), x→ DL
inf (ν, x) is differentiable and

∂DL
inf (ν, x)

∂x
= λL(ν, x).

Remark I.2. Similar to the case of outcome distributions in S (see Remark 3.2), our problem is well-defined for ϵ < 2 when
outcome distributions have bounded support in [0,1].

In order to generalize Theorem 5.3 and Theorem 5.4, we need to do Taylor series expansion of the Dinf (ν, x) around
x = m(ν). Hence we will need the four times continuous differentiability of Dinf (ν, x) for x ∈ (m(ν)− η,m(ν) + η),
where η is a small positive number. We next present a result which ensures the above.
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Figure 5: Upper contour plots for function T (µA, µB , w,∆L) in the space of (w,∆L) for a given µA = 5 and µB = 3
when outcome distributions are Exponential. Here we choose, ϵ = 0.5, hence w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), i.e.,

∆L ∈ (1.5, 2). There are various lines in the above figure. The number on a given line in the above figure represents the
value of T (µA, µB , w,∆L) for all values of (w,∆L) satisfying the trajectory of that given line for µA = 5 and µB = 3.

One can observe that all the upper contour plots are strictly convex.

Lemma I.3. For a given ν ∈ B, such that m(ν) ∈ (0, 1), there exists a η > 0 such that for x ∈ (m(ν) − η,m(ν) + η),
Dinf (ν, x) is four times continuously differentiable function in x. Further, we have,

∂2Dinf (ν, x)

∂x2

∣∣∣
x=m(ν)

=
1

σ2(ν)
.

∂3Dinf (ν, x)

∂x3

∣∣∣
x=m(ν)

=
2

σ6(ν)Eν [X −m(ν)]3
.

Now we are ready to generalize the main results for non-parametric bounded support distributions which were presented in
the main sections of the paper for outcome distributions in S.

I.2. ATE problem

Let
T (νA, νB , w, z) ≜ inf

(x,y)∈Cb(z)
wDinf (νA, x) + (1− w)Dinf (νA, y),

where Cb(z) = {(x, y) : x ∈ (0, 1), y ∈ (0, 1), x− y = z}.
Theorem I.4. For given νA, νB ∈ B, any (ϵ, δ)−coverage and stable adaptive policy with an almost surely finite stopping
time τδ , we have

lim inf
δ→0

Eν [τδ]
log(1/δ)

≥ 1

ℓ∗(νA, νB , ϵ)
,

where ℓ∗(νA, νB , ϵ) is the solution of the following optimization problem (denoted by Lb),

ℓ∗(νA, νB , ϵ) = sup
w∈[0,1],

(∆L,∆R)∈Υ(ϵ)

min{T (νA, νB , w,∆L), T (νA, νB , w,∆R)}.
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Figure 6: Upper contour plots for function T (µA, µB , w,∆L) in the space of (w,∆L) for a given µA = 0.5 and µB = 0.3
when outcome distributions are Bernoulli. Here we choose, ϵ = 0.1, hence w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), i.e.,

∆L ∈ (1.5, 2). There are various lines in the above figure. The number on a given line in the above figure represents the
value of T (µA, µB , w,∆L) for all values of (w,∆L) satisfying the trajectory of that given line for µA = 0.5 and µB = 0.3.

One can observe that all the upper contour plots are strictly convex.

Theorem I.5. For a given νA, νB ∈ B, then following holds: a solution to the optimization problem Lb exists, i.e.,
w∗(νA, νB , ϵ), ∆∗

L(νA, νB , ϵ) and ∆∗
R(νA, νB , ϵ) exists and any ∆∗

L(νA, νB , ϵ) and ∆∗
R(νA, νB , ϵ) that is a solution to the

optimization problem Lb satisfies,

∆∗
R(νA, νB , ϵ) = ∆∗

L(νA, νB , ϵ) + ϵ and lim
ϵ→0

ℓ∗(νA, νB , ϵ)

ϵ2
=

1

8 (σ(νA) + σ(νB))
2 .

lim
ϵ→0

w∗(νA, νB , ϵ) = wb(νA, νB) and lim
ϵ→0

∆∗
L(νA, νB , ϵ)−∆

ϵ
= −1

2
.

lim
ϵ→0

w∗(νA, νB , ϵ)− wb(νA, νB)

ϵ
= 0.

Further, we have,

lim
ϵ→0

w∗(νA, νB , ϵ)− w(νA, νB)

ϵ2
=

v(νA, νB)

96
√
I(µA)I(µB)

,

where, v(νA, νB) ≜
(
∂4Dinf (νB ,x)

∂x4

∣∣∣
x=m(νB)

)
(1− w(µA, µB))

4 −
(
∂4Dinf (νA,x)

∂x4

∣∣∣
x=m(νA)

)
w4(µA, µB).

Here, ∆ = m(νA)−m(νB) and

wb(νA, νB) ≜
σ(νA)

σ(νA) + σ(νB)
.

Remark I.6. It is worth noting that, for ν ∈ B as well, using the above result, we get that the asymptotically optimal
assignment rule of treatments is Neyman’s allocation rule for small ϵ and δ. Using Lemma I.3, it also follows that
∂2Dinf (ν,x)

∂x2 |x=m(ν) is the generalized notion of Fisher’s information that we get in our non-parametric framework.
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Proposition I.7. For given νA, νB ∈ B, any (ϵ, δ)−coverage, uniform randomized stable policy with an almost surely finite
stopping time τδ , we have

lim inf
δ→0

Eν [τδ]
log(1/δ)

≥ 1

ℓunif(νA, νB , ϵ)
,

where,
ℓunif(νA, νB , ϵ) = sup

(∆L,∆R)∈Υ(ϵ)

min{T (νA, νB , 0.5,∆L), T (νA, νB , 0.5,∆R)}.

Further following holds,

ℓ∗(νA, νB , ϵ) ≥ ℓunif(νA, νB , ϵ) ≥
ℓ∗(νA, νB , ϵ)

2
.

lim
ϵ→0

ℓ∗(νA, νB , ϵ)

ℓunif(νA, νB , ϵ)
= R

(
σ2(νA)

σ2(νB)

)
,

where,

R(x) =
2
(√

x+ 1√
x

)
(√

x+ 1√
x
+ 2
) .

I.3. Asymptotically optimal (ϵ, δ)−coverage guarantee policies Pbound
1 and Pbound

2

Let NA(n) and NB(n) = n−NA(n) represent the number of times treatment A and B have been chosen for the first n
assignments respectively under the policy Pbound

1 . Recall Un ∈ {A,B} denotes the assignment of treatment A or B for
the individual arriving at time n and Xn denotes the outcome of the individual arriving at time n once, treatment Un was
assigned. Let ν̂A(n) denote the empirical distribution corresponding to NA(n) samples from the outcomes of the treatment
A by time n. Similar for the treatment B, we define ν̂B(n). It is worth noting that for νA and νB ∈ B, empirical distributions
ν̂A(n) and ν̂B(n) will also in B.

The estimation of the CI for ATE under the policy Pbound
1 is denoted by [∆̂L(n), ∆̂R(n)], and the stopping rule of policy

Pbound
1 is denoted by τδ for a given δ. All three components of Pbound

1 is given by,

1. Assignment Rule: For the assignment rule, we use the randomized tracking rule stated in Chapter 5 in Agrawal et al.
(2020). Similar to the assignment rule of P1, the key idea is to track the solution of the lower bound optimization
problem to estimate the asymptotically optimal fraction of treatments and some forced exploration. We write it here for
completeness as given below.

(a) Initialize by assigning m > 1 samples in a round-robin way to generate at least ⌊(m/2)⌋ samples from each
treatment. Set l = 1 and let lm denote the total number of samples generated.

(b) Check if the stopping criteria (discussed later in the stopping rule are met). If not, compute
w∗(ν̂A(lm), ν̂B(lm), ϵ).

(c) Compute starvation sk for each treatment as sk = (
√
(l + 1)m−Nk(lm))+.

(d) ifm ≥
∑
k∈A,B sk, generate sk samples from each treatment k. Specifically, first, generate sA samples from treat-

mentA, then sB samples from treatment B. In addition, toss a coin, with head probability w∗(ν̂A(lm), ν̂B(lm), ϵ),
max{m−

∑
k∈A,B sk, 0} times independently. For each toss of the coin, generate a sample from treatment A if

head comes up, otherwise from treatment B.
(e) Else, if

∑
k∈A,B sk > m generate ŝk samples from treatment k ∈ {A,B}, where (ŝA, ŝB) are a solution to the

load balancing problem: min(maxk{sk − ŝk}) s.t. sk ≥ ŝk ≥ 0 for k ∈ {A,B}, and
∑
k∈{A,B} ŝk = m. Again,

first, generate ŝA samples from treatment A, then ŝB samples from treatment B.
(f) Increment l by 1 and return to step (b).

2. Estimation Rule: Formally, we find ∆̂L(n) and ∆̂R(n) after n samples such that following holds,

min
x,y∈C(∆̂L(n))

NA(n)Dinf (ν̂A(n), x) +NB(n)Dinf (ν̂B(n), y) (74)

= min
x,y∈C(∆̂R(n))

NA(n)Dinf (ν̂A(n), x) +NB(n)Dinf (ν̂B(n), y) = β(n, δ).
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Here β(n, δ) = log(1/δ) + 2 log(1 + n) + 2 (see Theorem 5.18 in Agrawal (2022)) is chosen to ensure that
[∆̂L(n), ∆̂R(n)] is a (1 − δ)−confidence sequence of ∆. Similar to the policy P1, one can show here as well
that ∆̂L(n) and ∆̂R(n) uniquely solves the above equation.

3. Stopping Rule: Given that we have maintained the (1− δ)−confidence sequence of ∆ for ATE, we need to stop once
CI width becomes less than ϵ, hence we define the stopping rule as follows:

τδ = inf{n ∈ N : ∆̂R(n)− ∆̂L(n) ≤ ϵ}.

Theorem I.8. ((ϵ, δ)−coverage guarantee and stability of Pbound
1 ) For Pbound

1 , there exists a ϵo > 0 such that for
ϵ ≤ ϵo, we have:

a) For a given δ ∈ (0, 1), τδ is finite almost surely.

b) [∆̂L(n), ∆̂R(n)] is a (1 − δ)−confidence sequence of ∆. This in turn implies that Pbound
1 has the (ϵ, δ)−coverage

guarantee.

c) Pbound
1 is a stable policy.

Remark I.9. To get asymptotic optimality of Pbound
1 we assume that for a given w ∈ (0, 1) and ∆L ∈ (∆ − ϵ,∆),

min{T (νA, νB , w,∆L), T (νA, νB , w,∆L+ ϵ)} is jointly strictly quasi-concave function in w and ∆L. Later in Remark J.1,
we numerically verify this assumption. This assumption implies that for a given νA ∈ B, νB ∈ B and ϵ > 0, w∗(νA, νB , ϵ),
∆∗
L(νA, νB , ϵ) and ∆∗

R(νA, νB , ϵ) are unique.

Theorem I.10. (Asymptotic optimality of Pbound
1 ) For Pbound

1 , there exists a ϵo > 0 such that for ϵ ≤ ϵo, we have:

P
(
lim sup
δ→0

τδ
log(1/δ)

=
1

ℓ∗(νA, νB , ϵ)

)
= 1 and lim

δ→0

Eν [τδ]
log(1/δ)

=
1

ℓ∗(νA, νB , ϵ)
.

In the assignment rule of Pbounded
1 , replace w∗(ν̂A(n), ν̂B(n), ϵ) with wb(σ(ν̂A(n)), σ(ν̂B(n))) =

σ(ν̂A(n))
σ(ν̂A(n))+σ(ν̂B(n)) and

keep stopping and estimation rule same. We refer this policy as Pbounded
2 . Here σ(ν̂A(n)) denotes the standard deviation of

the empirical distribution of outcomes generated by treatment A by time n.

Corollary I.11. (Asymptotic optimality of policy Pbound
2 ) For Pbound

1 , there exists a ϵo > 0 such that for ϵ ≤ ϵo, we
have:

lim
δ→0

Eν [τδ]
log(1/δ)

=
1

ℓP2(νA, νB , ϵ)
,

where,

ℓP2(νA, νB , ϵ) = sup
(∆L,∆R)∈Υ(ϵ)

min{T (νA, νB , w(νA, νB),∆L), T (νA, νB , w
b(νA, νB),∆R)},

where,

w(νA, νB) =
σ(νA)

σ(νA) + σ(νB)
.

Further following holds as well,

lim
ϵ→0

lim
δ→0

ϵ2Eν [τδ,ϵ]
log(1/δ)

= lim
ϵ→0

ϵ2

ℓP2(νA, νB , ϵ)
= lim
ϵ→0

ϵ2

ℓ∗(νA, νB , ϵ)
. (75)

Since we are taking double limit of ϵ→ 0 then δ → 0 in (75), hence we have indexed τ with both δ and ϵ.
Remark I.12. Our policy Pbound

2 , similar to the policy Pbound
1 , is a stable policy and constructs a (1 − δ)−confidence

sequence of ATE. Hence it also follows that Pbound
2 has (ϵ, δ)−coverage guarantee. This implies,Theorem I.10 holds for

Pbound
2 as well.
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J. Proofs and supporting material related to Section I.
Remark J.1. Here we numerically show that for given w ∈ (0, 1) and ∆L ∈ (∆ − ϵ,∆),
min{T (νA, νB , w,∆L), T (νA, νB , w,∆L + ϵ)} is jointly strictly quasi-concave in w and ∆L via plotting upper
contour plots when outcome distributions are beta and Bernoulli. For Bernoulli outcome distributions, one can show that
Dinf(ν, x) = d(m(ν),m(ν′)) such that ν′ is a Bernoulli distribution with mean m(ν′) = x. Using Figure 6, we observe
that T (νA, νB , w,∆L) is a strictly quasi concave function in (w,∆L).

Now we numerically show that T (νA, νB , w,∆L) is a strictly quasi concave function in (w,∆L) when outcome distributions
are beta in Figure 7. Similarly, one can verify numerically that w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), T (νA, νB , w,∆L + ϵ) is
a jointly strictly quasi-concave in w and ∆L. This further implies that, min{T (νA, νB , w,∆L), T (νA, νB , w,∆L + ϵ)} is a
jointly strictly quasi-concave in w and ∆L.

Figure 7: Upper contour plots for function T (νA, νB , w,∆L) in the space of (w,∆L) when outcomes follow beta
distributions. νA is a beta distribution with shape parameters (1, 1) and νB is a beta distribution with shape parameters
(2, 4). It follows that m(νA) = 0.5, m(νB) = 1/3 = 0.333 and hence ∆ = 0.167. Here we choose, ϵ = 0.1, hence

w ∈ (0, 1) and ∆L ∈ (∆− ϵ,∆), i.e., ∆L ∈ (0.067, 0.167). There are various lines in the above figure. The number on a
given line in the above figure represents the value of T (νA, νB , w,∆L) for all values of (w,∆L) satisfying the trajectory of

that given line for given νA and νB . One can observe that all the upper contour plots are strictly convex.

Proof of Lemma I.3:

First, observe that from the definition of Dinf (ν, x) for x ∈ (m(ν), 1) and ν ∈ B,

Dinf (ν, x) = DU
inf (ν, x).

Similarly, for x ∈ (0,m(ν)) and ν ∈ B,
Dinf (ν, x) = DL

inf (ν, x).

Using the property number 6 mentioned above, we get that at x = m(ν), λU (ν, x) = 0. Similarly, we will have at x = m(ν),
λL(ν, x) = 0. Hence using properties number 7 and 8, we get that Dinf (ν, x) is differentiable in x for x ∈ (0, 1). Further,

∂Dinf (ν, x)

∂x
= λU (ν, x), (76)
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for x ∈ [m(ν), 1) and

∂Dinf (ν, x)

∂x
= −λL(ν, x), (77)

for x ∈ (0,m(ν)].

Since we are interested in proving thrice differentiability of Dinf (ν, x) with respect to x for x near m(ν). Hence we are
interested in differentiability of λU (ν, x) and λL(ν, x) for x near m(ν). Using the strict convexity of function 1

1−x for
x ∈ (0, 1), we get for ν ∈ B,

EX∼ν

[
1− x

1−X

]
> 1,

for x = m(ν). Using the continuity of 1− x in x, we get that there exists a ξ1 > 0 such that

EX∼ν

[
1− x

1−X

]
> 1, (78)

for x ∈ [m(ν),m(ν) + ξ1]. It is worth noticing that if PX∼ν(X = 1) > 0, then we define EX∼ν

[
1

1−X

]
= ∞. Since

we have established the fact that (78) holds for x ∈ [m(ν),m(ν) + ξ1], hence we get from property number 6, that
λU (ν, x) uniquely satisfy the following equation for x ∈ [m(ν),m(ν) + ξ1] since we are not choosing ν to be a point mass
distribution.

EX∼ν

[
(X − x)

1− (X − x)λU (ν, x)

]
= 0. (79)

Above equation also implies that for x ∈ [m(ν),m(ν) + ξ1], λU (ν, x) satisfies EX∼ν

[
1

1−(X−x)λU (ν,x)

]
= 1. Using (78),

we get that for λU (ν, x) ̸= 1/(1 − x) for x ∈ [m(ν),m(ν) + ξ1]. Hence using property number 9, we get λU (ν, x) is
continuous in x for x ∈ [m(ν),m(ν) + ξ1]. Let λm = maxx∈[m(ν),m(ν)+ξ1] λ

U (ν, x) > 0.

To find the derivative of λU (ν, x) with respect to x for x ∈ (m(ν),m(ν) + ξ1), we will use implicit function. Observe that
for a given ν, (79) can be re-written as,

F (λU (ν, x), x) = 0,

where, F (λU , x) = EX∼ν

[
(X−x)

1−(X−x)λU

]
.

Let B1 = {(λ, x) : x ∈ [m(ν),m(ν) + ξ1], λ ∈ [0, λm], λ ∈ [0, 1/(1 − x)}. It follows for x ∈ [m(ν),m(ν) + ξ1],
(x, λU (ν, x)) ∈ B1. Since ξ1 can be chosen small enough such that λm < 1/(1 − m(ν)), this implies that for all
x ∈ [m(ν),m(ν) + ξ1], λm < 1/(1− x). Further this implies that B1 set is a closed interval.

Let G(X,λ, x) ≜ (X−x)
1−(X−x)λ . Hence we have,

∂G(X,λ, x)

∂x
=

(X − x)2

(1− λ(X − x))2
,
∂G(X,λ, x)

∂λ
=

−1

(1− λ(X − x))2
.

ForX ∈ [0, 1], (x, λ) ∈ B1, since 1−(X−x)λ > 0. This implies thatG(X,λ, x), ∂G(X,λ,x)
∂x and ∂G(X,λ,x)

∂λ are continuous
functions of (X,λ, x) for X ∈ [0, 1] and (λ, x) ∈ B1. It also follows that G(X,λ, x) is jointly continuous differentiable in
λ and x for X ∈ [0, 1], (x, λ) ∈ B1.

Using Leibniz rule, we get the differentiability of F (λU , x) in λU and x for (λU , x) ∈ B1. Using the Bounded convergence
theorem, we get that ∂F (λU ,x)

∂x and ∂F (λU ,x)
∂λ are continuous in (λU , x) for (λU , x) ∈ B1. Since continuous partial derivative

implies the continuous differentiability in (λ, x) jointly, we get that, F (λU , x) in continuous differentiable in (λU , x) for
(λU , x) ∈ B1. Hence using the implicit function theorem and the fact that λU (ν, x) uniquely satisfies F (λU (ν, x), x) = 0
for x ∈ [m(ν),m(ν) + ξ], we get,

∂λU (ν, x)

∂x
=

EX∼ν

(
1

(1−λU (ν,x)(X−x))2

)
EX∼ν

(
(X−x)2

(1−λU (ν,x)(X−x))2

) . (80)
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Since we know that for (λU , x) ∈ B1, we have 1 − λU (X − x) > 0 for all X ∈ [0, 1]. Hence it follows that
EX∼ν

(
(X−x)2

(1−λU (ν,x)(X−x))2

)
> 0. This also gives us the differentiability of λU (ν, x) for x ∈ (m(ν),m(ν) + ξ2) and

right hand derivative at x = m(ν).

It also follows that, at x = m(ν), since λU (ν,m(ν)) = 0, right hand derivative of λU (ν, x) with respect to x is 1
σ2(ν) .

Similar analysis will follow for the derivative of −λL(ν, x) for x ∈ [m(ν)ξ2,m(ν)], and we get the left hand derivative
of −λL(ν, x) with respect to x is 1

σ2(ν) at x = m(ν). Here ξ2 is a well-chosen small positive number. Choosing
η = min{ξ1, ξ2} and using (76) and (77), we get that, for x ∈ (m(ν)− η),m(ν) + η), Dinf (ν, x) is twice differentiable

and ∂2Dinf (ν,x)
∂x2

∣∣∣
x=m(ν)

= 1
σ2(ν) .

Again applying the Bounded convergence theorem on (80) and similarly for λL(ν, x), we get that x ∈ (m(ν)−η),m(ν)+η),
Dinf (ν, x) is twice continuous differentiable in x. One can similarly get the higher order differentiability of Dinf (ν, x) in
x for x ∈ (m(ν)− η),m(ν) + η) as well.

A similar proof will follow for λL(ν, x)). This completes the proof.

□

Proof of Theorem I.4: Using the proof similar to the Theorem 4.2, we get,

lim inf
δ→0

Eν [τδ]
log(1/δ)

≥ 1

ℓ∗(νA, νB , ϵ)
,

where,
ℓ∗(νA, νB , ϵ) ≜ sup

w∈[0,1],
(∆L,∆R)∈Υ(ϵ)

inf
ν′∈K(∆L,∆R)

wKL(νA, ν
′
A) + (1− w)KL(νB , ν

′
B).

where, Kb(∆L,∆R) = Kb1(∆L) ∪ Kb2(∆R), and Kb1(∆L) = {(ν′A, ν′B) : ν′A ∈ B, ν′B ∈ B,m(ν′A)−m(ν′B) < ∆L} and
Kb2(∆R) = {(ν′A, ν′B) : ν′A ∈ B, ν′B ∈ B,m(ν′A)−m(ν′B) > ∆R}.

Using definition of DL
inf (ν, x) and DU

inf (ν, x) and some algebra, we get that for w ∈ [0, 1] and (∆L,∆R) ∈ Υ(ϵ), we have,

inf
ν′∈Kb

1(∆L)
wKL(νA, ν

′
A) + (1− w)KL(νB , ν

′
B) = min

x,y∈Cb(∆L)
wDL

inf (νA, x) + (1− w)DU
inf (νB , y).

Using the definition of Dinf (ν, x), we get,

min
x,y∈Cb(∆L)

wDL
inf (νA, x) + (1− w)DU

inf (νB , y) = min
x,y∈Cb(∆L)

wDinf (νA, x) + (1− w)Dinf (νB , y).

Similarly, we get, for w ∈ [0, 1] and (∆L,∆R) ∈ Υ(ϵ), we have,

inf
ν′∈Kb

2(∆R)
wKL(νA, ν

′
A) + (1− w)KL(νB , ν

′
B) = min

x,y∈Cb(∆R)
wDinf (νA, x) + (1− w)Dinf (νB , y).

This completes the proof.

□
Remark J.2. Theorem I.5, Proposition I.7, Theorem I.8, Theorem I.10 and Corollary I.11 are generalizations of result
present in main sections of this paper where we assume that outcome distributions lie in canonical SPEF. In all of these
results, we have replaced Dinf (ν, x) instead of d(µ, x). It follows from Appendix D, Lemma E.1, Appendix I.1 and
Lemma I.3, Dinf (ν, x) inherits most of the properties of d(µ, x) such as continuity in (ν, x), strict convexity in x with
Dinf (ν,m(ν)) = 0. Now we mention few points which helps us in understanding that proofs of this Appendix can be
generalized from the main sections of this paper.

1. Firstly, it is worth noting that, we have continuity of Dinf (ν, x) in the space of probability distributions. Hence we
need to study the properties of the functions defined on the space of probability measures of bounded support. Hence
we endow B, with the topology of weak convergence. We denote the weak convergence of sequence νn in B to ν by
νn ⇒ ν. This convergence is equivalent to convergence in the Lévy metric on B, denoted by dL, defined below.
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Definition J.3. For ν1, ν2 ∈ B,

dL(ν1, ν2) = inf{η > 0 : Fν1(x− η) ≤ Fν2(x) ≤ Fν1(x+ η) + η,∀x ∈ R},

where Fν(x) denotes the CDF of the distribution ν.

2. It is worth noting that, we have Dinf (ν, x) is four times continuously differentiable in x for a neighbourhood around
x = m(ν), which is what we need to extend our results in this Appendix (see Lemma I.3).

To show the above, one can use the continuity of Dinf (ν, x) in (ν, x) and the property numbers 2 and 3 in Appendix
I.1.

3. It is worth noting that we have used the randomized tracking rule introduced in Chapter 5 in Agrawal et al. (2020), in
our policies Pbound

1 and Pbound
2 . Hence to prove the Theorem I.10 and Corollary I.11, we need to replace Lemma E.8,

Lemma E.9 and Lemma E.10. We instead use Lemma 5.13, Lemma 5.14 and the proof of Theorem 5.15 of Chapter 5
in Agrawal et al. (2020), to define the set Gn(η) and to bound the probability P(Gn(η)c) for the policies Pbound

1 and
Pbound

2 .

4. Recall that Theorem 6.1 requires continuity of I(µ) or σ2(µ). To get the result for Corollary I.11, let’s take a sequence
of outcome distributions of treatment A denoted as νA,n ∈ B such that νA,n ⇒ ν∗A where ν∗A ∈ B. Using Skorohod’s
Theorem and bounded convergence theorem, we can show that,

lim
n→∞

m(νA,n) = m(ν∗A) and σ(νA,n) = σ(ν∗A).

Hence it follows that we have continuity of σ(ν) for ν ∈ B as well which is needed in the Corollary I.11.

□
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