
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON-DEVICE TRANSFER LEARNING BASED ON MIXED
PRECISION PARTITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT

The application of machine learning is becoming more widespread, with a grow-
ing number of use cases. The development of centralized data training and the
exponential growth of data generation raise significant privacy and security con-
cerns. On-device training offers a solution by enhancing privacy and reducing
the need for communication between the cloud and the device. Furthermore, on-
device transfer learning (TL) can leverage the knowledge gained from pre-trained
models, hence, accelerating the training process. However, backpropagation, es-
pecially in embedded systems, requires more memory than running inference,
which becomes a challenge for devices with limited resources. This paper aims
to improve the efficiency and performance of on-device TL. We propose an open
source mixed-precision partitioning framework that identifies optimal partitioning
layers for retraining, combining quantized and bfloat16 layers to enhance per-
formance and energy efficiency. Our approach is validated through experiments
on ResNet-18 and SqueezeNetV1.1 models using Flowers-102, STL-10, and Ox-
fordIIITPet datasets. The partitioned mixed-precision model is able to transfer the
knowledge from the pre-trained model to new datasets without losing accuracy
compared to the baseline bfloat16 model. These results illustrate the potential for
resource-constrained devices to perform TL locally.

1 INTRODUCTION

Machine Learning (ML) in the past decade has been applied in various fields from healthcare (Javaid
et al., 2022) to autonomous driving (Bachute & Subhedar, 2021), due to its well-known ability to
derive patterns and make predictions from vast amounts of data. Traditional ML approaches often
involve centralizing data in cloud servers in order to train a model. The following factors, such as
the centralized training approach, the growth of generated data, and the continued adoption of ML
algorithms, could pose critical concerns about the privacy and security of user data (Xu et al., 2021).

Addressing these privacy concerns is one of the reasons to use Transfer Learning (TL). This tech-
nique allows models to leverage the knowledge of the pre-trained models from another domain (Pan
& Yang, 2010). TL is also applicable when limited data is available, reducing the need for exten-
sive data collection. Many research papers have explored the potential of TL, for example, in the
autonomous driving (Chen et al., 2024), and robotics (Zhu et al., 2023). However, to fully imple-
ment TL solutions into real-world scenarios, it is essential to bring the training process closer to the
data source. This can be achieved through on-device training, where models are trained directly on
devices in the deployed environment (Zhu et al., 2022).

On-device training offers several advantages, including improved data privacy, real-time model up-
dates, and reduced latency in cloud-to-device communication, which is very important for an au-
tonomous driving use case. Despite these benefits, performing training on a device is a challenging
task due to the limited computational resources and memory constraints of embedded devices (Dhar
et al., 2019), which are required for the inference and backpropagation on device. To overcome
the limitations of hardware, common approach in TL is to freeze weights and biases of the feature
extractor layers and only retrain the classifier. This technique enables the network adaptation to new
data with less computational resources, but at the same time leads to the accuracy degradation of the
adapted model. Moreover, current studies rarely address the problem of the partitioning point selec-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tion, before which all layers of the network are frozen. Hence, our paper fills this gap by answering
the following research question:

• How can we identify a partitioning layer to freeze the preceding layers and retrain the
subsequent ones in order to successfully and efficiently train on a device?

The contribution of the paper is as follows.

• We introduce an open source framework for mixed-precision partitioning for on-device TL.

• We present a new algorithm for the partitioning layer identification based on layer robust-
ness analysis.

• We verified that the partitioned model, consisting of quantized and bfloat16 layers, can
perform as well as a full bfloat16 model on new datasets.

Additionally, we made the code publicly available.

2 MOTIVATION

The influential paper of Yosinski et al. (2014) proved the possibility of Deep Neural Networks
(DNNs) to transfer the learned features from one dataset to another. One of the main results demon-
strated in that paper was the performance degradation of the model when only the top layers were
retrained. As they concluded, the closer we get to the final layer, the less a model can relearn for a
new dataset. Despite of their contribution, many scientific works, e.g. Chiang et al. (2023), still split
models between the feature extraction and the classification layers during transfer learning. Table 1
shows the accuracy of the ResNet-18 model by splitting at the three feature extraction layers (first,
penultimate, and the last one) and at the classification layer. After splitting, the upper layers were
retrained on three datasets (more details in section 5). The model weights were initially pre-trained
on the ImageNet dataset. As expected, splitting a model even one layer before the classifier signifi-
cantly improves the model performance. Hence, our first motivation is partitioning the model before
the classifier will increase the accuracy.

The mentioned work of Chiang et al. (2023) targeted a challenging task - transfer learning on em-
bedded devices, such as NVIDIA Jetson Nano and Raspberry Pi 4. Due to the limited memory and
computational resources of these devices, the backward pass computation should be highly opti-
mized to achieve a lower memory footprint as well as lower latency of the forward and backward
passes. It is thus apparent that the bottom layers cannot be considered viable candidates for use as a
partitioning point in order to enable on-device transfer learning in such embedded systems. More-
over, the reduction in the number of layers undergoing retraining will result in enhanced memory
efficiency with regard to backpropagation. As a result, this serves as a second key motivation for
our work.

Finally, the work of Xiao et al. (2023) demonstrates the significant memory reduction by using int8
precision instead of fp16. As stated, quantization is an effective method for reducing the model
size and accelerating inference. Other works, such as Rossi et al. (2022), also showed the increased
efficiency and performance of using integer rather than single-precision floating-point format for
the presented Internet-of-Thing endnode system on chip. The bfloat16 format seems to be the
best trade-off between the training performance of a DNN and energy efficiency. As stated by Norrie
et al. (2021), bfloat16 works seamlessly for almost all ML training, while reducing hardware and
energy costs. They estimated that bfloat16 has approximately a 1.5 x energy advantage over the
IEEE 16-bit float for the more recent 7 nm processors. This leads to our third key motivation, that
the combination of integer and bfloat16 will significantly increase performance and energy
efficiency.

3 MIXED-PRECISION PARTITIONING FOR ON-DEVICE TRAINING

The optimization of on-device training for the purposes of improving model accuracy while reduc-
ing model size requires the identification of a beneficial trade-off. This trade-off must balance the
opposing principles mentioned above. This section presents a framework that employs an optimized

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy of the ResNet-18 model by splitting at the feature extraction and classification
layers and retraining on three datasets.

Datasets Feature Extractor Classifier

First layer Penultimate layer Last layer

Flowers-102 88.7 % 87.8 % 86.1 % 78.3 %
STL-10 94.7 % 94.7 % 94.5 % 91.9 %
OxfordIIITPet 88.7 % 87.8 % 86.1 % 78.3 %

mixed-precision partitioning methodology to enable energy-efficient on-device TL in embedded sys-
tems.

In the field of partitioning, a multitude of approaches have been published that address the problem
of finding a beneficial trade-off for splitting the inference (Peccia & Bringmann, 2024). However, for
the purposes of this work, we are only able to draw upon a limited number of these methodologies, as
they typically do not investigate the impact on the model accuracy. In order to identify a partitioning
scheme that enables on-device TL while maintaining high accuracy, it is necessary to conduct an in-
depth analysis of the impact of each layer in the forward pass. Nevertheless, executing this procedure
for each upcoming TL iteration would result in a significant computational overhead. Consequently,
we propose a methodology that employs the pre-trained model for this analysis.

3.1 PRELIMINARIES

Before proceeding to the problem description and our approach, it is first necessary to formally
define a DNN as well as a function to further quantize weights and activations. A DNN can be
described as a graph comprising nodes and edges, representing layers and their respective connec-
tions. The objective of our methodology is to achieve a good trade-off between energy efficiency
and on-device training performance in edge devices. Consequently, we assume that weights and
activations are already provided in bfloat16 number representation. Accordingly, a layer of a
DNN is defined as follows:

Definition 1 A layer l is a layer of a DNN with bfloat16 computational precision.

As previously stated, embedded systems are constrained in terms of available memory and offer
less performance than GPU-based HPC platforms due to their limited size and power consumption.
Consequently, further quantization of individual layers to q-bit integers is beneficial in order to
account for these limitations during deployment. For this purpose, a corresponding function is used,
which is defined as follows:

Definition 2 A function Q(l, q) = lq is quantization of layer l with q-bit integer computational
precision.

The implementation of our framework employs the use of ONNX as the input format of DNNs,
which offers the benefit of inherent representation as a graph. This layer graph serves as the foun-
dation for subsequent operations and explorations.

3.2 TOPOLOGICAL ORDERING

In modern DNNs, parallel branches or skip connections are utilised to address the issue of vanishing
gradients during training. However, this architectural feature also has implications for the partition-
ing, as some layers in the layer graph receive input from multiple sources. Consequently, the search
space for partitioning becomes significantly larger than that of a purely sequential DNN, due to the
existence of numerous potential topological orderings for such models.

Based on the definition of Cormen et al. (2022), a topological sort is a linear ordering of the nodes in
a Directed Acyclic Graph (DAG). Non-recurrent DNNs are acyclic and can therefore be represented

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as a DAG, with the nodes representing associated layers. Based on this, we define the topological
ordering of a DNN as follows:

Definition 3 A topological ordering of a DNN comprising a set L of m layers is a consistent enu-
meration of these layers and is given by φ : L→ {1, . . . ,m} such that

∀l1, l2 ∈ L : φ(l1) < φ(l2) ⇒ l1 is executed before l2,

∀l1, l2 ∈ L, l1 ̸= l2 ⇒ φ(l1) ̸= φ(l2).

Consequently, in order to evaluate the robustness of each layer, it is first necessary to identify a valid
topological ordering. In our framework, we use the Python library NetworkX provided by Hagberg
et al. (2008) to derive a linear ordered set of layers for the subsequent exploration.

3.3 LAYER ROBUSTNESS EXPLORATION

Based on the topological ordering of a DNN, we define the problem of finding an advantageous par-
titioning for efficient on-device training as follows. First, we generalize the definition of layerwise
partitioning as proposed by Kreß et al. (2024). A partitioning point marks the first layer after the
partitioning of the network:

Definition 4 A partitioning point is a layer ls ∈ L with s ∈ {1, . . . , |L|} in a DNN consisting of a
set P of sequentially executed partitions, such that

ψ : φ→ {1, . . . , |P |}, ∀l1, l2 ∈ L : φ(l1) < φ(l2) ⇒ ψ(φ(l1)) ≤ ψ(φ(l2)),

ψ(φ(ls−1)) ̸= ψ(φ(ls))

In general, we assume that the sensitivity factor of each layer indicates its impact on the model’s
accuracy. This allows us to reduce the search space for partitioning to O(N), where N is the num-
ber of layers. To conduct the in-depth analysis of the impact of each layer in the forward pass, the
current state of the art primarily calculates the sensitivity of each individual parameter (Dash et al.,
2022). Nevertheless, this approach entails a considerable runtime overhead, with the analysis requir-
ing approximately an hour per eigenvector on two NVIDIA GTX1080 Ti GPUs for a ResNet-18. In
contrast, we use the robustness of each layer to quantization as an effective and expedient indicator
for identifying sensitive layers. Given the vast number of potential integer precision combinations
within the search space, two simplifications based on characteristics of typical hardware architec-
tures are applied in our framework to further reduce the runtime. Firstly, the activations and weights
are quantized to the same integer precision. Secondly, only the relevant integer computational preci-
sion that can be implemented in the system is selected, i.e. 4-, 6-, 8-, and 16-bit integer. Remaining
combinations are efficiently explored with the NSGA-II (Deb et al., 2002), similar to the method-
ology proposed by Hotfilter et al. (2023). As a result, the exploration algorithm can be defined as
follows.

Definition 5 The exploration algorithm is an automated procedure that operates on

1. a DNN described by L and φ,

2. a set of quantization functions Q(l, q), where q ∈ {4, 6, 8, 16}, and

3. an accuracy threshold ath

to find Pareto-optimal quantization schemes s ∈ S of the DNN that provide an accuracy a ≥ ath.

As an initial population, we generate 32 samples containing only quantizations of the two largest
integer bit widths, i.e. 8- and 16-bit integer, to achieve fast convergence. Subsequently, these are
evaluated in terms of accuracy and the sum of layer bit widths, after which a new generation is
derived based on simulated binary crossover (SBX) and polynomial mutation (PM). In total, the
framework assesses 20 generations to identify non-dominated solutions, as described in Definition 5.
To accelerate the search process, we iteratively increase the number of validation samples over the
generations, which are used to determine the accuracy, dismissing unpromising solutions early on.
While the algorithm tries to maximize the number of layers quantized to low bit integer precision, it
tries to maximize the accuracy. Hence, the multi-objective optimization can be defined as follows:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 6 The goal of the multi-objective optimization is to find the Pareto front S such that the
number of integer quantized layers and the top-1 accuracy are maximized while the q-bit integer
computational precision is minimized.

3.4 MIXED-PRECISION PARTITIONING

The robustness analysis may yield multiple non-dominated solutions, depending on the DNN. Con-
sequently, the framework must ultimately select a partitioning scheme that optimizes the trade-off
for on-device TL. According to the results presented in Table 1, we remove the classification lay-
ers from the exploration. The selection of a point is typically driven by the specific requirements
of the application domain. In certain scenarios, a higher degree of accuracy loss may be tolerated
to enable significantly more energy-efficient on-device training. This is represented in the frame-
work by a user-defined parameter, δ, which denotes the maximum loss of accuracy compared to the
non-dominated quantization scheme with the best accuracy abest found. As a result, the framework
seeks a non-dominated solution s ∈ S that offers a low q-bit integer computational precision while
maintaining an accuracy a ≥ abest − δ. This can be defined as a minimization problem, as follows:

Definition 7 The minimization problem for a set S of quantization schemes is given as

minimize
S

|L|∑
i=0

qi

subject to ai ≥ abest − δ

with the set of layers L and the qi-bit integer computational precision of a layer li ∈ L.

For the following experiments we will use δ = 0.01. So we allow a maximum loss of accuracy of
1 %. Once the partitioning layer is obtained by the algorithm, the DNN mapping can be formulated
as follows:

Definition 8 The output of the framework is defined by

1. a set Ω ⊂ L that contains all layers l ∈ {lq1, . . . , l
q
s−1} (bottom layers) mapped to an

accelerator with computational precision q, and

2. a set Θ ⊂ L that contains all layers l ∈ {ls, . . . , l|L|} (upper layers) mapped to an accel-
erator for training.

As a result of our framework, the identified mixed-precision partitioning scheme can be implemented
in embedded systems for on-device TL. The bottom layers Ω of a DNN, before the partitioning layer,
are quantized and can be deployed on a lower bit-width accelerator. These layers can be thought of
as the inference of a model. In contrast, the upper layers Θ are represented as bfloat16 and can
be deployed on another accelerator to adapt the model for a new dataset locally on the device.

4 EXPERIMENTAL SETUP

In this section, we present the used models, datasets, and our step-by-step experiment to prove the
identified partitioning point for training of DNNs in embedded systems.

4.1 MODEL AND DATASET PREPARATIONS

The main idea of TL is to utilize pre-trained models on large datasets to derive learned features,
and then apply them to improve the learning performance on a new dataset. In our case, we used
image classification as a TL task. The ResNet-18 (He et al., 2016) and SqueezeNetV1.1 (Iandola
et al., 2016) are the well-known models for image classification. In our experiments, the ImageNet
dataset (Deng et al., 2009) was used as the large dataset, on which the models were pre-trained. In
order to demonstrate our approach on the TL example, we used three additional image classification
datasets, i.e. the Flowers-102 (Nilsback & Zisserman, 2008), the STL10 (Coates et al., 2011), and
the OxfordIIITPet (Parkhi et al., 2012).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENTAL PROCEDURE

In our experimental procedure, we used the datasets and models mentioned above. In order to keep
this work transparent, comparable, and reproducible for all interested researchers, we also provide
additional details of the training setup. The details, such as learning rates, number of epochs, etc.,
can be found in Appendix A. The framework itself is omitted for blind review, but will be made
publicly available.

The goal of this experiment is to demonstrate that the partitioning layer identified by the presented
algorithm fulfills the two primary conditions: it represents the maximum number of quantized lay-
ers prior to partitioning with the highest possible accuracy of the model. In other words, the goal
is to identify the uppermost layer to start retraining a model without losing accuracy. As a con-
sequence, these conditions can enable energy-efficient training in embedded devices. This was
achieved through the experiment, which consists of three main steps, shown as rows in Figure 1.

Figure 1: The main experimental procedure based on three main steps. The pre-trained model on the
Imagenet dataset is shown in the first row (blue), the second row demonstrates the TL of the model
to another dataset (red). The third depicts our final goal, i.e., the partitioned model with the frozen
and quantized layers before the partitioning P , and bfloat16 subsequent layers.

Each rectangle represents a simplified version of a layer in the DNN. The first row demonstrates
the given pre-trained models on the ImageNet dataset (blue). The second row shows the transfer of
knowledge from the pre-trained model to another dataset (red). In order to demonstrate the validity
of our framework, we independently obtained the partitioning layer by iteratively freezing the layers
one by one (l) and retraining the subsequent layers (|L| − l). This procedure was the second step,
and illustrated in the second row. We performed this step twice, in order to have baseline results
for the original float32 model as well as for the converted to bfloat16. The accuracy of each
obtained model with varying numbers of frozen layers (l) was evaluated, and the partitioning layer
was identified based on the same primary condition. The maximum number of bottom layers should
be quantized before partitioning with the highest possible accuracy of the model.

Consequently, in parallel, we obtained the same layer from our mixed-precision partitioning algo-
rithm. The third row reflects the main goal of this work, which is the identified partitioning layer
ls, and, as a result, the mixed-precision model capable of on-device TL. This model consists of the
frozen and quantized layers before ls, and the subsequent layers (in bfloat16) for retraining. It
is possible to keep the mixed-precision quantization for the frozen layers, as our algorithm provides
this as well. However, as a general example for the evaluation part, we converted all frozen layers
to int8.

Once the partitioning scheme has been identified and the partitioned mixed-precision model has
been created, the next step is to retrain the model on the device. Figure 2 shows this procedure.
During the retraining of the bfloat16 layers, there is still a need of the quantized q-bit layers.

There are two options to update an upper part of the model. The first one is to create a new training
dataset by passing the whole data through the bottom part of the model, and saving the output.
We consider this possibility less feasible for embedded devices with limited memory resources. The
second option is to use the bottom layers during each training epoch to pass data through to the upper

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Retraining procedure of the partitioned mixed-precision model. The quantized bottom
layers are only used to pass data through to the bottom layers.

layers. It is important to emphasize that the quantized bottom layers do not contain any additional
backpropagation computations. The only contribution of these layers in the training procedure is to
pass data through to the bfloat16 layers.

5 RESULTS

In this section, we demonstrate the results of the described experimental setup, in order to validate
our mixed-precision partitioning algorithm. Figure 3 shows the results of the proposed partitioning
scheme for the ResNet-18 and SqueezeNetV1 1 models to perform TL locally for three datasets.

As described in subsection 4.2, in order to validate our approach, we identified the partitioning layer
by iteratively freezing the layers and retraining the subsequent ones. Blue dots represent the retrained
model in float32, while the orange ones represent the baseline bfloat16 model. Each plot has
a red vertical line that illustrates the partitioning layer to retrain the model. The preceding layers are
frozen and int8 quantized. The layers after this partition are in bfloat16. The green dots show
the test accuracy of the mixed-precision models with this layer configuration.

The results yield the following conclusions. Firstly, all plots have an additional vertical line (dotted,
blue) that indicates the accuracy of the DNN if it was split before the classifier. In all cases, the
accuracy of the model that was retrained at a feature extractor layer was higher than that of the
model that was split before the classifier. This highlights the need to consider the upper layers of
feature extractor as potential layers of adaptation for transfer learning tasks.

Secondly, all plots demonstrate that our proposed mixed-precision algorithm successfully identified
the uppermost partitioning layer without losing accuracy compared to the baseline accuracy of mod-
els in bfloat16. Moreover, the partitioning scheme was found without the necessity of retraining
the model on a number of times equivalent to the total number of layers in the model. Hence, our
algorithm significantly reduces the computational overhead.

Finally, the partitioned mixed-precision model achieves the same model performance as the full
bfloat16 model on new datasets during the TL tasks. As a result, the approach presented in this
work successfully identifies the partitioning layer using layer robustness analysis. We verified that
a model with mostly all quantized layers can leverage the knowledge from the pre-trained model
and transfer it to new datasets. We believe that our approach has the potential to contribute to the
realization of on-device TL in embedded devices.

6 DISCUSSION

In this work, we have considered the image classification task as a TL example. The approach
presented in this work and the obtained results can be potentially applied to another ML tasks.
We also focused on a clear separation between the fully frozen or quantized bottom layers and the
updated upper layers. As we demonstrated, it is sufficient for a model to successfully transfer the
knowledge to new datasets by updating only a few upper layers, while the bottom can be represented
as it would be for performing an inference. However, the efficiency of on-device TL can be further
improved by combining other works in this area. For example, by sparsity updating the weights of
the upper layers, as shown in the work of Lin et al. (2022).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) TL of the ResNet-18 (left) and SqueezeNetV1 1 (right) models on the Flowers-102 dataset.

(b) TL of the ResNet-18 (left) and SqueezeNetV1 1 (right) models on the STL10 dataset.

(c) TL of the ResNet-18 (left) and SqueezeNetV1 1 (right) models on the OxfordIIITPet dataset.

Figure 3: Applied Transfer learning to the ResNet-18 and SqueezeNetV1 1 models, including
float32 (blue), bfloat16 (orange), and the mixed-precision quantized and bfloat16 ver-
sions. The models were originally pre-trained on the ImageNet dataset, all new variations were
trained on the Flowers-102 (a), STL-10 (b), OxfordIIITPet (c) datasets.

7 RELATED WORK

It is quite common practice in TL on edge devices to freeze feature extractor layers and train only
classifier layers, often using only dense layers of the classifier part (Chiang et al., 2023), (Reguero
et al., 2025), (Kang et al., 2024), (Valery et al., 2018). These approaches allow efficient TL, since
only weights of the classifier are updated, which in turn requires less computational resources and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

memory. However, the expressiveness of TL in this case is limited and the accuracy of the adopted
model degrades, as it is demonstrated in section 2 or by Cai et al. (2020).

An alternative approach to TL on the edge that is superior to the aforementioned methods is to
gradually freeze layers based on the per-layer convergence (Li et al., 2024), (Wang et al., 2023).
The aforementioned methods determine the layers to be frozen during runtime, thereby reducing
the time required for TL. However, in contrast to our approach, the initial model must fit into the
device memory in order to perform the necessary inference and backpropagation at the early training
stages. Consequently, since our approach limits the number of layers in backpropagation from the
outset, we can significantly reduce the memory footprint in comparison to such methods achieving
similar results.

Finally, the idea of partial updates of weights and biases in the backpropagation pass has been
introduced and explored by a few studies such as Lin et al. (2022). Similar to our approach, these
methods allow to reduce memory requirements for on-device training, enabling TL on edge devices.
As an example, Cai et al. (2020) freeze the memory-heavy modules (weights of the feature extractor)
and only update memory-efficient modules (bias, lite residual, classifier head) during TL, regardless
of the position number of the layer. This methodology achieves memory saving compared to fine-
tuning the full network. In our work, we used the fully quantized layers along with fully bfloat16
layers split by the partition. Nevertheless, a combination of these two approaches to the upper layers
of a network will be considered in the future, as they are complementary to each other.

8 CONCLUSION

In this paper, we presented our mixed-precision partitioning approach for transfer learning of DNNs
in embedded systems. We emphasize that partitioning the model before the classifier improves the
model performance. The partitioning algorithm identifies the potential partitioning layer through a
process of layer robustness analysis. In order to allow resource-constrained devices to train locally,
the algorithm maximizes the number of quantized layers and the top-1 accuracy while minimizing
the computational precision. Investigating the best trade-off, we identified the partitioning scheme
for a model. It consists of the int8 quantized bottom layers and the bfloat16 upper layers. We
demonstrated our approach on the TL example for the image classification task, using pre-trained
models and three additional datasets. We showed that the mixed-precision model can be retrained
without losing accuracy compared to the baseline accuracy of the models in bfloat16. This leads
to the conclusion that the mixed-precision model is able to leverage the knowledge from the pre-
trained model to new datasets, and retrain locally on a device. Overall, our work can improve the
efficiency and performance of on-device transfer learning in embedded devices.

A APPENDIX

Table 2 shows the additional details of the training setup, which was presented in the paper. We used
the Adam optimizer as the optimization algorithm in all cases.

Table 2: Details of the training setup.

Model

Datasets ResNet-18 SqueezeNetV1 1

learning rate epoch, # learning rate epoch, #

Flowers-102 5 · 10−4 10 10−4 80∗

STL-10 10−4 10 10−4 10
OxfordIIITPet 10−4 10 10−4 20

∗ - In addition, we used data augmentation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Mrinal R. Bachute and Javed M. Subhedar. Autonomous driving architectures: Insights of ma-
chine learning and deep learning algorithms. Machine Learning with Applications, 6:100164,
2021. ISSN 2666-8270. doi: https://doi.org/10.1016/j.mlwa.2021.100164. URL https:
//www.sciencedirect.com/science/article/pii/S2666827021000827.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. TinyTL: Reduce Memory, Not Parameters
for Efficient On-Device Learning. In Advances in Neural Information Processing Systems, vol-
ume 33, pp. 11285–11297. Curran Associates, Inc., 2020.

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-
to-end autonomous driving: Challenges and frontiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–20, 2024. doi: 10.1109/TPAMI.2024.3435937.

Hung-Yueh Chiang, Natalia Frumkin, Feng Liang, and Diana Marculescu. MobileTL: On-device
Transfer Learning with Inverted Residual Blocks, April 2023.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudı́k (eds.), Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pp. 215–223, Fort Lauderdale, FL, USA, 11–13 Apr
2011. PMLR. URL https://proceedings.mlr.press/v15/coates11a.html.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Saurabh Dash, Yandong Luo, Anni Lu, Shimeng Yu, and Saibal Mukhopadhyay. Robust processing-
in-memory with multibit reram using hessian-driven mixed-precision computation. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 41(4):1006–1019, 2022.
doi: 10.1109/TCAD.2021.3078408.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002. doi: 10.1109/
4235.996017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. On-
device machine learning: An algorithms and learning theory perspective. ArXiv, abs/1911.00623,
2019. URL https://api.semanticscholar.org/CorpusID:207780008.

Aric Hagberg, Pieter J. Swart, and Daniel A. Schult. Exploring network structure, dynamics, and
function using networkx. 1 2008. URL https://www.osti.gov/biblio/960616.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. pp. 770–778, 06 2016. doi: 10.1109/CVPR.2016.90.

Tim Hotfilter, Julian Hoefer, Philipp Merz, Fabian Kreß, Fabian Kempf, Tanja Harbaum, and Jürgen
Becker. Leveraging mixed-precision cnn inference for increased robustness and energy efficiency.
In 2023 IEEE 36th International System-on-Chip Conference (SOCC), pp. 1–6, 2023. doi: 10.
1109/SOCC58585.2023.10256738.

Forrest Iandola, Song Han, Matthew Moskewicz, Khalid Ashraf, William Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and ¡0.5mb model size. 02 2016.
doi: 10.48550/arXiv.1602.07360.

Mohd Javaid, Abid Haleem, Ravi Pratap Singh, Rajiv Suman, and Shanay Rab. Significance
of machine learning in healthcare: Features, pillars and applications. International Journal
of Intelligent Networks, 3:58–73, 2022. ISSN 2666-6030. doi: https://doi.org/10.1016/j.ijin.
2022.05.002. URL https://www.sciencedirect.com/science/article/pii/
S2666603022000069.

10

https://www.sciencedirect.com/science/article/pii/S2666827021000827
https://www.sciencedirect.com/science/article/pii/S2666827021000827
https://proceedings.mlr.press/v15/coates11a.html
https://api.semanticscholar.org/CorpusID:207780008
https://www.osti.gov/biblio/960616
https://www.sciencedirect.com/science/article/pii/S2666603022000069
https://www.sciencedirect.com/science/article/pii/S2666603022000069

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Pixi Kang, Julian Moosmann, Sizhen Bian, and Michele Magno. On-Device Training Empowered
Transfer Learning For Human Activity Recognition, July 2024.

Fabian Kreß, El Mahdi El Annabi, Tim Hotfilter, Julian Hoefer, Tanja Harbaum, and Juergen Becker.
Automated deep neural network inference partitioning for distributed embedded systems, 2024.
URL https://arxiv.org/abs/2406.19913.

Sheng Li, Geng Yuan, Yawen Wu, Yuezhen Dai, Tianyu Wang, Chao Wu, Alex K. Jones, Jingtong
Hu, Yanzhi Wang, and Xulong Tang. Etuner: A Redundancy-Aware Framework for Efficient
Continual Learning Application on Edge Devices. January 2024.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
training under 256KB memory. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, pp. 22941–22954, Red Hook, NY, USA, April 2022.
Curran Associates Inc. ISBN 978-1-71387-108-8.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James Laudon, Cliff
Young, Norman Jouppi, and David Patterson. The design process for google’s training chips:
Tpuv2 and tpuv3. IEEE Micro, 41(2):56–63, 2021. doi: 10.1109/MM.2021.3058217.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

Federico Nicolás Peccia and Oliver Bringmann. Embedded distributed inference of deep neural
networks: A systematic review, 2024. URL https://arxiv.org/abs/2405.03360.

Álvaro Domingo Reguero, Silverio Martı́nez-Fernández, and Roberto Verdecchia. Energy-efficient
neural network training through runtime layer freezing, model quantization, and early stopping.
Computer Standards & Interfaces, 92:103906, March 2025. ISSN 0920-5489. doi: 10.1016/j.csi.
2024.103906.

Davide Rossi, Francesco Conti, Manuel Eggiman, Alfio Di Mauro, Giuseppe Tagliavini, Stefan
Mach, Marco Guermandi, Antonio Pullini, Igor Loi, Jie Chen, Eric Flamand, and Luca Benini.
Vega: A ten-core soc for iot endnodes with dnn acceleration and cognitive wake-up from mram-
based state-retentive sleep mode. IEEE Journal of Solid-State Circuits, 57(1):127–139, 2022. doi:
10.1109/JSSC.2021.3114881.

Olivier Valery, Pangfeng Liu, and Jan-Jan Wu. Low Precision Deep Learning Training on Mo-
bile Heterogeneous Platform. In 2018 26th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), pp. 109–117, March 2018. doi: 10.1109/
PDP2018.2018.00023.

Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. Egeria: Efficient
DNN Training with Knowledge-Guided Layer Freezing. In Proceedings of the Eighteenth Eu-
ropean Conference on Computer Systems, EuroSys ’23, pp. 851–866, New York, NY, USA, May
2023. Association for Computing Machinery. ISBN 978-1-4503-9487-1. doi: 10.1145/3552326.
3587451.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
accurate and efficient post-training quantization for large language models. In Proceedings of the
40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Runhua Xu, Nathalie Baracaldo, and James B. D. Joshi. Privacy-preserving machine learning:
Methods, challenges and directions. ArXiv, abs/2108.04417, 2021. URL https://api.
semanticscholar.org/CorpusID:236965906.

11

https://arxiv.org/abs/2406.19913
https://arxiv.org/abs/2405.03360
https://api.semanticscholar.org/CorpusID:236965906
https://api.semanticscholar.org/CorpusID:236965906

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? ArXiv, abs/1411.1792, 2014. URL https://api.semanticscholar.
org/CorpusID:362467.

Shuai Zhu, Thiemo Voigt, Jeonggil Ko, and Fatemeh Rahimian. On-device training: A
first overview on existing systems. ArXiv, abs/2212.00824, 2022. URL https://api.
semanticscholar.org/CorpusID:254220867.

Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(11):
13344–13362, 2023. doi: 10.1109/TPAMI.2023.3292075.

12

https://api.semanticscholar.org/CorpusID:362467
https://api.semanticscholar.org/CorpusID:362467
https://api.semanticscholar.org/CorpusID:254220867
https://api.semanticscholar.org/CorpusID:254220867

	Introduction
	Motivation
	Mixed-precision partitioning for on-device training
	Preliminaries
	Topological Ordering
	Layer Robustness Exploration
	Mixed-Precision Partitioning

	Experimental Setup
	Model and Dataset Preparations
	Experimental procedure

	Results
	Discussion
	Related Work
	Conclusion
	Appendix

