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ABSTRACT

The design of complex physical systems entails satisfying several competing per-
formance objectives. In practice, some design requirements are often implicit
in the intuition and knowledge of designers who have many years of experience
working with similar designs. Designers use this experience to sample a few
promising candidates in the design space and evaluate or simulate them using
detailed, typically slow multiphysics models. The goal in design is usually to gen-
erate a diverse set of high-performing design configurations that allow trade-offs
across different objectives and avoid early concretization. In this paper, we de-
velop a machine learning approach to automate physical system design. We use
deep generative models to learn a manifold of the valid design space, followed by
Hamiltonian Monte Carlo (HMC) with simulated annealing to explore and opti-
mize design over the learned manifold, producing a diverse set of optimal designs.
Our approach is akin to partial simulated annealing restricted to the learned design
manifold, where the annealing schedule is varied to trade-off different objectives.
To prevent our approach from traversing off the design manifold and proposing
unreliable designs, we leverage Monte Carlo dropout as a way to detect and avoid
design configurations where the learned model cannot be trusted. We demonstrate
the efficacy of our proposed approach using several case studies that include the
design of an SAE race vehicle, propeller, and air vehicle. Across these case stud-
ies, we successfully show how our method generates high-performing and diverse
designs.

1 INTRODUCTION

The automated design of systems is a long-standing goal of artificial intelligence (AI), and computer-
aided design has been successfully used across a wide spectrum of applications, ranging from micro-
processors to programs (Fujita, 2019; Solar-Lezama, 2008). But this success is limited to domains
where the design intent can be captured using complete and unambiguous specifications. We focus
on the design of physical systems, which presents unique challenges beyond the scope of traditional
design automation techniques. First, the design process lacks a complete formal characterization
and relies on human intuition and domain expertise. The space of designs is large, but the design-
ers have access to several examples of valid designs created for different performance objectives or
functional goals. Designers use this knowledge and experience to identify a promising space of can-
didate designs and conduct manual design space exploration. Second, the design space exploration
uses complex multiphysics models (Rider, 2013; Stolarski et al., 2018) spanning across several di-
mensions such as mechanical, electrical, and fluid-dynamics, and are non-differentiable, blackbox
and proprietary. This renders a direct use of combinatorial search or gradient-based methods for
design inapplicable, and necessitates minimizing the number of evaluated candidate designs during
exploration. Finally, the design process is often incremental and requires optimizing over multiple
objectives (Schaltz & Soylu, 2011). Hence, it is not sufficient to view design as just an optimization
process to find one optimal design; instead, designers create multiple diverse high-performing de-
signs that trade-off different design objectives. This avoids early concretization and enables freedom
to select designs for downstream integration and optimization when new objectives are added.

This paper aims to address these challenges and develop a machine learning approach to aid the
physical design process, reducing the dependency on human intuition and experience, accelerating
the discovery of new designs, and improving the performance and diversity of generated designs.
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Our primary contribution is the formulation of a two-staged approach, DeLPhy for design using
learning focussed on physical system. DeLPhy uses examples of designs to learn a design manifold
and simultaneously explores and optimizes designs meeting the specified objectives. We jointly
train a variational autoencoder to generate design examples with a specification network to predict
design objectives. The following novel contributions in DeLPhy makes it an effective approach to
physical design:

• We use Hamiltonian Monte Carlo (HMC) with a novel temperature scaling in the latent space
of a variational autoencoder to implement a partial simulated annealing approach, whereby we
optimize for the specified designs objectives.

• We use Monte Carlo Dropout to make the prediction of performance objectives uncertainty-aware,
and detect new unreliable design configurations. This avoids exploration in unreliable parts of the
design manifold.

• Our sampling approach leads to the generation of a diverse set of designs that trade-off multiple
design objectives. This is critical to designing physical systems, which necessitates diversity to
increase adaptation to downstream design.

In Section 2, we describe the problem of physical system design and use an example to illustrate
the key aspects of the problem. We also identify the desiderata of a machine learning approach to
physical design and present DeLPhy in Section 3 that meets these desiderata. We present three case
studies to demonstrate the effectiveness of our approach in Section 4 and discuss related work in
Section 5. We conclude in Section 6 by summarizing our key findings.

2 PHYSICAL SYSTEM DESIGN

The design freedom for a specific application can be parameterized to define a design space that
needs to be explored. We expect multiple competing design objectives that need to be achieved
simultaneously. The evaluation of these objectives requires the evaluation of domain models, which
are typically slow and computationally expensive multiphysics models. Each point in the design
space is called a design configuration. We are given a set of exemplar designs that are valid design
configurations but do not address the design objectives under consideration. The goal is to use these
exemplar designs to learn a manifold in the design space over which we can explore and identify a
diverse set of optimal design configurations that trade off different design objectives.

Figure 1: Physical Design Problem for the Formula SAE racing vehicle (Soria Zurita et al., 2018)

Figure 1 illustrates the physical design problem using the example of the Formula SAE racing ve-
hicle from systems engineering literature (Soria Zurita et al., 2018). The design of a Formula SAE
racing vehicle comprises 11 subsystems such as the tires, suspensions, engine, cabin, impact attenua-
tor and wings. Each subsystem is described using multiple parameters listed above. For example, the
tire components have radius, pressure, x position and mass as parameters. There are 39 parameters
that describe the vehicle’s design space. A more detailed design could consider higher dimensional
description, such as the 3D shape of the wings, to better estimate wind-drag. The design objectives
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capture the designer’s underlying preferences for the system. The 11 objectives listed above can be
a mixture of target performance such as the preferred height of the center of gravity, and optimiza-
tion metrics such as maximizing acceleration and minimizing drag. While some of these objectives
could be analytical domain models, the accurate computation of quantities such as drag requires
slow blackbox proprietary software (Rider, 2013). The slow physics domain models need to be
approximated by faster surrogate specification models that can allow more efficient exploration and
optimization. Further, a possible spread of performance over the objectives of the exemplar vehicle
designs is illustrated in the radar plot in the top right corner in blue. The performance of a target ve-
hicle design configuration is shown in red. The target requires us to have much higher velocity and
acceleration while reducing drag, height of center of gravity and crash force. Designs must also be
adaptable, that is, new metrics might be added later and hence, it is critical to generate not just one
optimal design but a number of diverse designs that trade off different design objectives and enable
future adaptation to new metrics. We identify the following desiderata that need to be satisfied by
an effective machine learning approach for the design of physical systems.

• The exemplar designs are likely to be far from optimal design objectives, but help identify the
design space constraints. This implicit design space must be learned from the example designs.

• Since the target performance objectives can be very different from those of the exemplar designs,
the learned models need to be uncertainty-aware and detect when its predictions on new configu-
rations cannot be trusted to avoid exploration of configurations that are likely to be unrealizable.

• A diverse set of optimal designs need to be identified to trade off different objectives, and en-
able future adaptation to additional objectives. We need an exploration approach that can sample
diverse designs that meet the design objectives in addition to optimization.

3 PHYSICAL SYSTEM DESIGN USING MACHINE LEARNING

In this paper, we develop a two-stage approach DeLPhy (illustrated in Figure 2) for design using
learning focussed on physical system that satisfies the desiderata identified in the previous section.
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Figure 2: DeLPhy uses exemplar designs to learn a variational encoder (VAE) where the decoder
is trained with dropout. The latent space represents the learned design manifold. The specification
network predicts the design objectives from the latent space. The VAE and the specification network
are jointly trained on the exemplar designs and their evaluation on physics models. In the design
exploration stage, we condition on the new target design objectives and use temperature annealed
HMC to sample the latent space, moving towards optimal designs exploiting the gradient informa-
tion. Further, Monte Carlo dropout in the decoder leads to multiple design samples for a sampled
latent design, which are then passed through the encoder and the specification network to determine
a distribution over the design objectives. High variance/uncertainty implies off-manifold designs
that may not be unrealizable. DeLPhy finds multiple diverse optimal design configurations.

We denote the design space by X with candidate designs x ∈ X and the specification of the design
objectives by s which is a vector of competing multidimensional objectives si expressing the perfor-
mance of the target design. In the first stage, we use exemplar designs to learn a generative model
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in the form of a variational autoencoder (VAE) (Kingma & Welling, 2013; Rezende et al., 2014)
over the design space, along with a specification network that predicts the values of the different
design objectives from the latent representation. The latent design space is denoted by z ∈ Z . The
encoder network µ, logσ2 = Eθ(x) and z = µ + εσ with parameters θ maps a design to latent
space and ε ∼ N (0, 1) is the VAE reparameterized noise. The decoder of the VAE is represented by
x = Dφ(z), where φ are the parameters of the decoder. The specification network s = Sµ(z) with
model parameters µ predicts the design objectives as a function of the latent design z.

Training Model. Training the VAE and the specification network models can be done offline with-
out a full knowledge of the target design objectives, and can be reused for different design problems.
Since the exemplar designs only need to be valid but not address design objectives, we can generate
them by sampling configurations from a simple distribution and evaluating the valid configurations
using the physics models. The learned generative model along with the specification network in-
terpolates the design objectives over the configurations and thus, also serves as a differentiable
surrogate model minimizing the evaluation of the slow physics models. We train the generative
model with Monte Carlo dropout (Gal & Ghahramani, 2016) over the decoder network to make the
model uncertainty-aware and enable us to compute the confidence on our predicted design perfor-
mance. The encoder, decoder, and the specification network are jointly trained using the following
loss function where we use a variant of the standard VAE evidence lower bound (ELBO) loss called
the generalized ELBO with constrained optimization (Rezende & Viola, 2018).

Lλ(θ,φ,µ) = Eρ(x)[DKL(Eθ(z|x)||π(z))] + λT (Eρ(x)Eθ(z|x)[MSE(x, Dφ(z)) + MSE(s, Sµ(z))])

This variant allows directly controlling the balance between compression (KL minimization) and
the other constraints we wish to enforce in our model (reconstruction error and the accuracy of the
specification network). We use a mixture of Gaussian prior π(z) and the MSE loss, but MSE can
be replaced with any other error characterization. The loss Lλ(θ,φ,µ), with λ as the Lagrange
multiplier, is computed using a sampling distribution ρ(x) and it is minimized to obtain the network
parameters θ,φ,µ using the standard method of Lagrange multipliers (Bertsekas, 2014).

Temperature annealed HMC exploration. This offline first stage in DeLPhy is followed by the
second stage of exploration over the design configurations and optimization of the specific target
objectives. We use Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal et al., 2011) with a
novel temperature scaling in the latent space of the VAE to implement a partial simulated annealing
approach, whereby we optimize for certain objectives while conditioning on a baseline performance
with respect to other objectives. HMC is a gradient-based MCMC approach that is well-suited
to the exploration of high dimensional distributions. It is especially suited to our problem, as the
specification network can be differentiated with respect to the latent space. This enables exploration
of the Pareto frontier of the multiobjective design optimization problem and yields a diverse set of
design configurations. Formally, for a target performance s, we aim to explore and find optimal
designs by sampling from p(z|s) following by decoding to a design x = Dφ(z).

In order to formulate a temperature annealed HMC, we first define a potential energy function U(z)
to characterize the negative log-likelihood of the latent design given a target objective.

log p(z|s) ∝
∑
i

log p(si|z) + log p(z) = −U(z)

We augment our system to include a vector, p, of the momentum and introduce a kinetic energy
term in the usual form K(p) = 1

2p
TM−1p. This form of K(p) corresponds to the negative log

probability of the zero mean Gaussian distribution with covariance matrix (symmetric, positive def-
inite) M. We can choose other forms of kinetic energy which would lead to different exploration
pattern. Through the introduction of the kinetic energy term, we have built a Hamiltonian system
from which we can sample using Hamiltonian dynamics according to HMC (Duane et al., 1987;
Neal et al., 2011). Our canonical distribution can be written as:

p(z,p) =
1

Z
exp

(
−U(z)

T

)
exp

(
−K(p)

T

)
where Z is the normalizing constant and T is the temperature. The total energy H(z,p) = U(z) +
K(p). In HMC, we sample new values for momentum p using Gaussian distribution dependent on
M. This is followed by a Metropolis update using Hamiltonian dynamics to propose a new state. We

4



Under review as a conference paper at ICLR 2022

simulate the Hamiltonian dynamics using the Leapfrog method (Leimkuhler & Reich, 2005) and the
computed proposed state is accepted as the next state (z′,p′) of the Markov chain with probability:

a(z′|z) = min

(
1, exp

{
−H(z′,p′) +H(z,p)

T

})
We use a new approach of partial simulated annealing where each objective has its own annealing
schedule. For each annealing schedule, the temperature at step k is T (k) = T0e

−λk where T0 is the
initial temperature and λ is the annealing rate. At high temperatures T > 1, the energy gap between
the subsequent proposals is reduced, which results in a higher chance of the Metropolis-Hastings
step accepting moves to the regions of the space with lower probability. This favors more explo-
ration and enables us to traverse low probability regions. As T increases, we encourage accepting
samples in the regions of high probability. Given a set of multiple objectives, we can treat these
asymmetrically during exploration by using a different temperature annealing schedule for each of
the objectives, favoring conditioning on some target values while trying to optimize over the oth-
ers. This makes the approach partial annealing since some objectives are optimized via annealing
while the remaining continue to be sampled conditioned on the target objective performances. The
corresponding acceptance probability is:

a(z′|z) = min

1, exp


|s|∑
i

1

Ti

[
log p(si|z′)− log p(si|z) +

−K(p′) +K(p)

|s|+ 1

]
+

1

T

[
log p(z′)− log p(z) +

−K(p′) +K(p)

|s|+ 1

]})
For the objectives which are not optimized, we have a fixed Ti and for the objectives being optimized,
we select different annealing schedules Ti(k) = T0e

−λik to drive the optimization towards diverse
designs with different trade-offs over the design objectives (more details in Appendix 1).

Uncertainty quantification in DeLPhy. Since we are optimizing over a surrogate model, opti-
mization can drive the model out of its training distribution and the predicted values of the design
objective on some apparent promising configurations will not match their real values. We can run
the slow physics models to detect such errors, but we would like to minimize such a possibility
by making our generative model and the specification network uncertainty-aware. We accomplish
this without hurting the scalability of our method using Monte Carlo dropout (Gal & Ghahramani,
2016) over the decoder network of the generative model, which allows us to quantify uncertainty
in the predicted values of the design objectives. The MC dropout in the decoder is used to sample
reconstructions that are passed through the specification network to compute the uncertainty:

Uncertainty(z) = Variance({s = Sµ(Eθ(x)) | x ∈ MCDroput(Dφ(z))})
Therefore, rather than deciding on whether a design proposed by the generative model is likely
in the design space, we use the specification network to determine the reliability of the design.
By focussing on the regions where the objectives can be predicted with low uncertainty, DeLPhy
is able to avoid high uncertainty regions of the manifold and find diverse designs which have high
confidence of retaining optimal performance when evaluated against slow but more accurate models.
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HMC Time Step
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Variance in specification thickness while annealing to the digit two
Variance

ID: 6000

ID: 3000ID: 0 ID: 1500

ID: 4500

Figure 3: Variance in the predicted thickness while annealing.
After sample ID 4000, the variance rapidly rises, indicating un-
reliability - IDs 4500 and 6000 are unrecognizable as digits.

Illustration of DeLPhy. Be-
fore demonstrating the effec-
tiveness of DeLPhy in physi-
cal design, we use the simple
MNIST dataset (LeCun et al.,
1998) to provide readers with
the intuition on the key aspects
of DeLPhy. Figure 3 demon-
strates diversity-preserving sam-
pling in DeLPhy conditioned
on the digit being ‘2’ while us-
ing partial annealing HMC to re-
duce the thikness of the digit.
The variance in the thickness specification of the MNIST digit sharply rises at sample 4000 and
the generated images (IDs 4500 and 6000) are unrecognizable as digits. The digits with IDs greater
than 4000 could be misinterpreted as valid digits with low thickness; however, the uncertainty quan-
tification in DeLPhy prevents such errors.
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4 EXPERIMENTS

We demonstrate how DeLPhy can be used to generate physical designs using three case studies:
propeller design, SAE race vehicle design, and an air vehicle design. In our case studies, we examine
the following research questions: (1) Can DeLPhy find valid design configurations for given design
objectives? (2) Can uncertainty quantification in DeLPhy detect when the generated designs are
unreliable? (3) Do designs generated by DeLPhy exhibit high diversity?

4.1 PROPELLER DESIGN

Figure 4: DeLPhy can find propellers with
high efficiency at relatively low speed.

Propellers are key components in a range of vehi-
cle classes including aircraft, ships, and underwa-
ter vehicles. A propeller design configuration is de-
fined by its geometric properties such as the num-
ber of blades, diameter of the propeller, shape and
pitch of the blades, and hub diameter. The perfor-
mance metrics of a propeller include thrust, rotation
speed, required torque, and efficiency. In this design
problem, we look to trade off velocity and efficiency,
whereby the challenge is to design an efficient pro-
peller that operates at low velocities. To build and
evaluate the performance of our proposed designs,
we use OpenProp (DMS, 2021; Epps et al., 2009) -
an open-source tool that is widely used in academia
and industry and implements relevant physics mod-
els. Further experimental details are described in
Appendix B and C. Figure 4 compares the distribu-
tion of the two competing objectives - velocity and
the propeller efficiency when sampled using a Gaus-
sian prior in the latent space, and those generated
using DeLPhy. The designs from DeLPhy have high efficiency even at low velocity.

5

10

15

20

Ve
lo

cit
y 

(m
/s

)

Predicted Ship Velocity
Design Choice
Model Not Converged

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Predicted Propeller Efficiency
True Propeller Efficiency

Design Choice
Model Not Converged

0 2000 4000 6000 8000 10000 12000
Sample Number

0.00

0.05

0.10

Va
ria

nc
e Specification Variance

Model Not Converged

(a) Increased deviation of objective functions from
OpenProp physics model is detected by DeLPhy.

(b) High true error or physics model failure corre-
sponds to high uncertainty predicted by DeLPhy.

Figure 5: Uncertainty quantification detects unreliable designs during exploration.

Figure 5a, shows the sample trajectories of the velocity and the propeller efficiency, as well as the
corresponding variance on the objectives. Around sample ID 9000, we see high velocities with
high efficiency, but the corresponding variance is high, suggesting these are unreliable designs.
Figure 5b shows that our predicted high uncertainty area align with high deviation from the detailed
model (true error) and we are also able to identify cases (black points) when the OpenProp physics
model actually failed to produce a valid output. Physics models also have implicit assumptions
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on their inputs to converge to a valid output. Thus, we are able to avoid unreliable designs using
uncertainty quantification in DeLPhy. Figure 6 shows a few diverse propeller designs produced by
DeLPhy with the same objective of efficiency higher than 75% and velocity lower than 4.5 m/s.
The propellers have a different number of blades, shape and pitch of the blades, and hub diameter.

Figure 6: DeLPhy generates diverse designs with different numbers of blades, shape of blades, and
hub diameter for similar velocity and efficiency objective. More details in Appendix C and E.

4.2 SAE RACE VEHICLE DESIGN

(a) DeLPhy generates designs that meet the mass and
corner velocity objectives.
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(b) DeLPhy detects when the sampling is off-
manifold and generates designs that are not reliable.

Figure 7: DeLPhy can reliably generate SAE race vehicle designs satisfying the design objective.

Figure 8: DeLPhy generates vehicles
with different engines, tires and brakes
(color denotes the third dimension).

The second case study is the SAE race vehicle (Stolarski
et al., 2018) described in Section 2 and Figure 1. The de-
sign objective is to build a vehicle of 4,000 Kg, with a cor-
nering velocity of 17.3 m/s which is challenging as max-
imum cornering velocity decreases with the mass of the
vehicle. Further experimental and case study details are
described in Appendix B. Figure 7a shows that DeLPhy
samples designs that converge around the design objec-
tives even though the training data and the prior distri-
bution are far from it. Figure 7b shows that DeLPhy
is able to detect when the sampling trajectory goes off-
manifold and generates unreliable designs. The deviation
of the predicted objectives diverges from the true value af-
ter sample 4, 000 in the illustrated sampling strategy but
DeLPhy can detect this as the variance of the specifica-
tion output also rapidly increases after 4, 000. Figure 8 shows that the race vehicle designs created
by DeLPhy exhibits significant diversity in the choice of key components - engine, tires and brakes.
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4.3 AIR VEHICLE DESIGN

Air vehicles with rotors are capable of vertical takeoff and long-duration hovering, but they exhibit
relatively shorter maximum distance of flight compared to fixed wing crafts. One important trade
off in the design of such vehicles is to simultaneously meet the objectives of high hovering time
and long distance of flight. We focus on battery-operated air vehicles with the main components
being propellers, motor, electronic speed controllers and battery. We consider 414 possible APC
propellers widely used in the rotorcraft community (APC, 2021). These propellers range across a
large variety - thin electric, multi-rotor, slow flyer, reversible, wide chord, narrow chord, pusher and
carbon propellers. We consider 83 possible motors and the corresponding speed controllers (TMo-
tors, 2021), and 40 Nickel Cadmium (Ni-cad) batteries and Lithium-ion(Li-ion) batteries (Turnigy,
2021). There are several parameters of the design such as propeller diameter, pitch and mass, battery
capacity, max-current and voltage, and motor voltage, max-current, Kt, Km and Kv. For a detailed
physics model, we use a proprietary flight simulator model that provides flight diagnostics such
as maximum flight distance, maximum hover time, and efficiency. Simpler but less accurate flight
models are also available publicly for evaluation of individual designs (RCPlane, 2021; Cameron
Dowd, 2021). We set the design targets for flight distance and hover time to be 15,000 m and 700 s
respectively. More details on the case study is described in Appendix B and Appendix D.

(a) DeLPhy generates designs that meet the hover-
time and flight distance objectives.
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(b) DeLPhy detects when the generates designs can-
not be trusted using the specification variance.

Figure 9: DeLPhy can reliably generate air vehicle designs satisfying the design objective.

Figure 10: DeLPhy generates air vehicles
with different key parameters.

Figure 9a shows that DeLPhy samples design that
converge around the specified design objectives for
the maximum fight distance and hover-time. Fig-
ure 9b shows a sample trajectory of designs gener-
ated by DeLPhy. As the maximum flight distance
objective is annealed, we see that the proposed de-
signs increasingly focus around a maximum flight
distance of 15,000 m, as indicated by the dashed red
line. As we keep the temperature of the predicted
maximum hover time fixed at 1.0, its relative im-
portance decreases and actually climbs well above
the design choice, likely influenced by the focus on
flight distance. The bottom plot in Figure 9b shows
the variance across the dropout samples, when passed
through the specification network. We can clearly see
that at around sample 7,000, there is a jump in the
variance of the proposed designs. In fact, when run-
ning every 1,000th sample through the high-fidelity
physics model as the physics model is too slow to run many configurations, we actually see that the
jump in variance has correctly indicated the true drop in actual performance, where the UAV is no
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longer able to take off. In fact at samples 8,000 and 9,000, the physics model fails to converge to
any solution at all, signifying invalid designs. Figure 10 shows a few examples of the diverse air
vehicle designs created by DeLPhy with significant diversity in the key design parameters.

5 RELATED WORK

The use of deep generative modelling for computer aided design is a relatively recent research fron-
tier (Seff et al., 2021; Xu et al., 2021; Zhao et al., 2020). These approaches target certain aspects
of design such as geometry while we focus on system-level design. Some recent work (Tripp et al.,
2020; Sanchez-Lengeling & Aspuru-Guzik, 2018) combine the latent space representation of gener-
ative models as part of their Bayesian optimization (Shahriari et al., 2015) algorithms. One particular
approach relevant to our work is by Notin et al. (2021), where they derive an importance sampling
estimator of the mutual information to indicate uncertainty in the latent space for discrete data. In
our work, DeLPhy samples over the latent space to simultaneously explore and optimize to en-
sure diversity. Further, we develop an uncertainty quantification approach that takes into account
the variance of the specification network predicting the design objectives. This ensures DeLPhy
can avoid exploring design configurations where the predicted performance cannot be trusted. Ma-
chine learning methods have also been used for drug discovery and molecule design (Brookes &
Listgarten, 2018; Brookes et al., 2019). These approaches have impressive results on solving com-
plex combinatorial optimization problems. In our work, we are focused on the design of diverse
physical systems with both continuous and discrete components, and with multiple design objec-
tives which have to be satisfied simultaneously. Surrogate-based optimization is widely explored
in design optimization, where the goal is to learn a surrogate function to replace often expensive
black-box simulators e.g., computational fluid dynamics simulators (Koziel et al., 2011; Han et al.,
2012; Viquerat et al., 2021). The surrogate function aims to capture the physical properties of the de-
sign environment and reliably evaluate design samples. These approaches tend to be more scalable
compared to the black-box optimization approaches (Greenhill et al., 2020; Belakaria et al., 2020;
Deshwal et al., 2021) by avoiding the expensive black-box evaluation during optimization. Further,
if the surrogate function is differentiable e.g., a neural network, the gradients are also available to
the optimizer to perform an end-to-end optimization Grabocka et al. (2019); Liu et al. (2020); Sun
et al. (2021). Our proposed method can leverage advances in better surrogate modeling for more
efficient exploration. In contrast to existing methods, the design for physical systems needs to find a
diverse set of designs that trade off different objectives and allow further downstream adaptation to
new design objectives.

6 CONCLUSION

Design of a physical system for a given set of design objectives requires domain expertise and
creativity. System designers use their experience and knowledge about previous designs to propose
new solutions. The challenge of using machine learning for physical design requires a combination
of uncertainty-aware extrapolation from existing designs to new design configurations, and efficient
exploration and optimization to identify diverse optimal designs. DeLPhy presented in this paper
addresses these challenges. DeLPhy comprises two stages. The first is an offline stage of learning
the design manifold using a variational autoencoder which is trained to be uncertainty-aware using
Monte Carlo dropout in the decoder network. We also jointly learn a specification network to predict
the design objectives from the latent space, which helps replace slow domain models with faster
differentiable neural network surrogates. The second stage uses partial simulated annealing with
HMC over the latent space of the autoencoder to explore the design manifold and optimize the
design objectives, generating a diverse set of optimal designs. DeLPhy was demonstrated on three
case studies involving the design of an SAE race vehicle, a propeller, and an air vehicle. First,
DeLPhy is shown to be able to sample designs with objectives which are very different from the
original exemplar designs used in learning. Second, DeLPhy uses uncertainty awareness to detect
when the predictions of the surrogate model cannot be trusted and thus, enables it to avoid designs
that are not realistic. Finally, DeLPhy finds a diverse set of optimal designs in each of the three
case studies. This work is a first step towards leveraging deep learning to aid the design of physical
systems.
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Ethics Statement: In this paper, we have developed a machine learning approach to aid the design
of physical systems. Design automation can possibly reduce the need for human workforce skilled
in solving this problem manually. We expect this concern to be offset by the need for a new work-
force that is trained at using AI assistants for design and that can help build better AI co-designers.
We expect the creative process of design to eventually be a joint endeavor that combines human
ingenuity with learning-based extrapolation.

Reproducibility Statement: The implementation details are described in Section 4 with additional
details provided in Appendix B, Appendix C, Appendix D and Appendix E. We have also provided
Python notebooks in the supplementary material.
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A DELPHY PARTIAL SIMULATED ANNEALING ALGORITHM

In this section we include the partial simulated annealing algorithmic component of DeLPhy. Part
of the input to this stage are the three pre-trained networks, Sµ(z), Dφ(z), Eθ(x), and the HMC
parameters of step size, ε, and trajectory length, L. One must also set an initial z, design targets
s, and number of samples to collect, N . The temperature annealing schedule for the individual
objectives, Ti(n), and prior T (n) must also be passed as inputs. In Algorithm 1, the Leapfrog
function on line 8 runs the leapfrog integration scheme (e.g. see Neal et al. (2011)) from initial
momentum and latent space parameters to proposed momentum and latent space parameters. Note
that in our work, we have not annealed the prior temperature, where we set T (n) = 1.

Algorithm 1 DeLPhy: partial simulated annealing
Inputs: z, ε, L, Sµ(z), Dφ(z), Eθ(x), N, s, Ti(n), T0(n)

1: for n in 1, . . . , N do
2: # Sample Momentum
3: p ∼ N (0, I)
4: # Calculate the individual components of the Hamiltonian before the leapfrog step.
5: ui = − log p(si|z)
6: uprior = − log p(z)
7: k = K(p)/(|s|+ 1)
8: z′,p′ = Leapfrog(z,p, ε, L)
9: # Calculate the individual components of the Hamiltonian after the leapfrog step.

10: u′i = − log p(si|z′)
11: u′prior = − log p(z′)

12: k′ = K(p′)/(|s|+ 1)
13: # Metropolis–Hastings correction
14: u ∼ U(0, 1)
15: α =

∑|s|
i

1
Ti(n)

[
ui − u′i + k−k′

|s|+1

]
+ 1

T (n)

[
uprior − u′prior +

k−k′
|s|+1

]
16: if log u > min(0, α) then
17: z,p← z′,p′

18: end if
19: end for

B EXPERIMENTAL DETAILS

Computational Infrastructure. For the partial simulated annealing component of DeLPhy,
we adapt the python package hamiltorch (Cobb & Jalaian, 2020) and run with PyTorch version
1.9.1+cu111. We use Python 3.7.10. All experiments are run using NVIDIA’s GeForce RTX 2080
Ti Graphics Card.

Propeller. We train a VAE with five layers of [600, 500, 400, 300, 200] for the encoder, with
the reverse ordering for the decoder. For the specification network, we us the layer structure of
[128, 64, 32]. We use a latent space of size 100. For the specification network, we learn to regress
the two objectives of ship velocity and efficiency. We use a data set of size 226,610 and train on
85 % and validate on the final 15 % to ensure the model is adequately trained. All input features are
normalised using the training data means and standard deviations. We use PyTorch’s Adam Kingma
& Ba (2014) optimizer with a step size of 10−4 and momentum 0.9. We train for 200 epochs with a
batch size of 1024. We anneal the temperature of the efficiency component following 10e−6×10

−4k,
and collect 12,000 samples with a step size of 0.1 and trajectory length of 1. In the decoder we
set dropout to 0.05 at training time and collect 100 Monte Carlo dropout samples at test time. The
acceptance rate for the partial simulated annealing was 0.6.

SAE Race Vehicle. To learn the latent space vehicle design we train a VAE with two layers of
[512, 256] for all of the components including the specification network. We use a latent space of
size 32. The design input space is expanded to be 59 dimensional (from 39) to include the properties
of each component (e.g. rather than selecting from a discrete choice of motors, we include power,
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torque, etc. in the input space). The full feature and objective space is given by either Figure 1
in Section 2 or by Table 1 in Soria Zurita et al. (2018). For training, we use the PyTorch’s Adam
Kingma & Ba (2014) optimizer with a step size of 10−3 and its default parameters. We train the
VAE for 1000 epochs with a batch size of 1028, and a learning rate schedule that decreased the
learning rate by a factor of 10 at epochs 400 and 800. For the specification network, we learn to
regress all 11 objectives. We use a data set of size 300,000 and train on 80 % and validate on the
final 20 % to ensure the model is adequately trained. For the decoder we train with a dropout of
0.05 and collect 100 Monte Carlo dropout samples at test time. We anneal the temperature of the
mass design objective following 10e−6×10

−3k, and collect 6,000 samples with a step size of 0.1 and
trajectory length of 1. The acceptance rate for the partial simulated annealing was 0.73.

Air Vehicle Design. To learn the latent space of design of vehicles we train a VAE with two layers
of [512, 256] for all the components including the specification network. Our VAE model is trained
over 52,202 designs and validated over 13,051 with a latent space of 8 dimensions. The training
data is collected on a lower fidelity simulator than the test simulator which leads to the expectation
that results will be slightly worse on the higher fidelity simulator compared to the validation data
performance. For training, we use the PyTorch’s Adam Kingma & Ba (2014) optimizer with a step
size of 10−3 and its default parameters. We train the VAE for 1000 epochs with a batch size of 1028,
and a learning rate schedule that decreased the learning rate by a factor of 10 at epochs 300 and 400.
For the decoder we train with a dropout of 0.05 and collect 100 Monte Carlo dropout samples at test
time. We anneal the temperature of the flight distance objective following 10e×10

−3k, and collect
10,000 samples with a step size of 0.002 and an HMC trajectory length of 10. The acceptance rate
for the partial simulated annealing was 0.79.
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C PROPELLER DESIGN

In this section, we illustrate key geometric properties of a propeller, 3D geometry of propellers, and
diversity of propeller designs generated by DeLPhy. Figure 11 shows the key geometric properties
of a propeller such as number of blades, radius of the propeller, hub of the propeller, chord length and
pitch angle of the blade along the length of the blade. Figure 12 shows the 3D shape of the propeller
from views. Finally, Figure 13 and 14 show the diversity of propeller designs in terms of number of
blades, shape of blades, pitch angles, and hub diameter for the same objective of efficiency higher
than 75% and velocity lower than 4.5 m/s.

Figure 11: Key geometric properties of a propeller. The front surface is colored in red and the
back surface is colored in green. The grid denotes lengthwise and chordwise discretization for the
numerical computation.

Figure 12: We show three views to illustrate the 3D shape of the propeller - 1) frontal view, 2) view
at a 45 degree angle, and 3) side view. The front surface is colored in red and the back surface
is colored in green. The grid denotes lengthwise and chordwise discretization for the numerical
computation.
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Figure 13: DeLPhy generates diverse designs (with different numbers of blades, shape of blades,
pitch angles, and hub diameter) for similar velocity and efficiency objective.
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Figure 14: DeLPhy generates diverse designs (with different numbers of blades, shape of blades,
pitch angles, and hub diameter) for similar velocity and efficiency objective.

D AIR VEHICLE DESIGN

In this section we include the list of the batteries, propellers, and motors in Tables 1, 2, 3 respectively.
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Table 1: Battery properties for Air Vehicle Design

Name Cost [$] Mass [g] Voltage [V] Capacity [mAh] Cont. Discharge Rate [C]
Turnigy Graphene 800mAh 2S 20C 8.36 58 7.4 800 20
Turnigy Graphene 1000mAh 2S 75C 9.54 84 7.4 1000 75
Turnigy Graphene 1000mAh 3S 75C 16.88 116 11.1 1000 75
Turnigy Graphene 1300mAh 3S 75C 16.96 137 11.1 1300 75
Turnigy Graphene 1500mAh 3S 75C 22.62 162 11.1 1500 75
Turnigy Graphene 1000mAh 4S 75C 23.65 148 14.8 1000 75
Turnigy Graphene 1300mAh 4S 75C 23.99 173 14.8 1300 75
Turnigy Graphene 1400mAh 3S 75C 24.00 156 11.1 1400 75
Turnigy Graphene 1600mAh 4S 75C Square 24.99 212 14.8 1600 75
Turnigy Graphene 1500mAh 4S 75C 26.49 202 14.8 1500 75
Turnigy Graphene 1000mAh 6S 75C 26.79 212 22.2 1000 75
Turnigy Graphene 1400mAh 4S 75C 27.87 196 14.8 1400 75
Turnigy Graphene 1200mAh 6S 75C 27.99 232 22.2 1200 75
Turnigy Graphene 1600mAh 4S 75C 30.00 212 14.8 1600 75
Turnigy Graphene 2200mAh 3S 75C 32.73 230 11.1 2200 75
Turnigy Graphene 3000mAh 3S 75C 42.54 320 11.1 3000 75
Turnigy Graphene 2200mAh 4S 75C 42.63 295 14.8 2200 75
Turnigy Graphene 4000mAh 3S 75C 55.05 412 11.1 4000 75
Turnigy Graphene 3000mAh 4S 75C 56.77 405 14.8 3000 75
Turnigy Graphene 5000mAh 3S 75C 65.48 490 11.1 5000 75
Turnigy Graphene 4000mAh 4S 75C 70.83 526 14.8 4000 75
Turnigy Graphene 6000mAh 3S 75C 75.16 630 11.1 6000 75
Turnigy Graphene 5000mAh 4S 75C 81.70 630 14.8 5000 75
Turnigy Graphene 3000mAh 6S 75C 82.57 598 22.2 3000 75
Turnigy Graphene 6000mAh 4S 75C 99.80 800 14.8 6000 75
Turnigy Graphene 4000mAh 6S 75C 104.34 760 22.2 4000 75
Turnigy Graphene 5000mAh 6S 75C 116.32 920 22.2 5000 75
Turnigy Graphene 6000mAh 6S 75C 129.99 1140 22.2 6000 75
Turnigy Receiver 1500mAh 4.8V 6.24 95 4.8 1500 10
Turnigy Receiver 1500mAh 6.0V 7.72 120 6.0 1500 10
Turnigy nano-tech 2000mAh 20˜40C 14.73 109 6.6 2000 20
Turnigy nano-tech 1700mAh 20˜40C 12.33 97 6.6 1700 20
Turnigy nano-tech 3000mAh 20˜40C 21.13 167 6.6 3000 20
Turnigy nano-tech 1450mAh 20˜40C 11.49 85 6.6 1450 20

Table 2: Propeller properties for Air Vehicle Design

Propeller Type Diameter [mm] Pitch [mm] Mass [g]
10.5x6 266.700 152.40 34.881071
10x10 254.000 254.00 36.015046
10x10E 254.000 254.00 20.003319
10x3 254.000 76.20 26.081425
10x4 254.000 101.60 30.073017
10x4.5MR 254.000 114.30 15.013829
10x4.5MRP 254.000 114.30 15.013829
10x5 254.000 127.00 28.077221
10x5.5MR 254.000 139.70 15.013829
10x5.5MRP 254.000 139.70 15.013829
10x5E 254.000 127.00 20.003319
10x5EP 254.000 127.00 20.003319
10x6 254.000 152.40 28.939042
10x6E 254.000 152.40 20.003319
10x6EP 254.000 152.40 20.003319
10x7 254.000 177.80 30.889479
10x7E 254.000 177.80 20.003319
10x7EP 254.000 177.80 20.003319
10x8 254.000 203.20 28.939042
10x8E 254.000 203.20 20.003319
10x9 254.000 228.60 32.885275
11.5x4 292.100 101.60 41.095254
11.5x6 292.100 152.40 45.086846
11x10 279.400 254.00 41.957075
11x10E 279.400 254.00 22.997013
11x11 279.400 279.40 41.957075
11x12 279.400 304.80 41.957075
11x12E 279.400 304.80 25.990707
11x12W 279.400 304.80 43.091050
11x13 279.400 330.20 41.095254
11x14 279.400 355.60 39.144817
11x3 279.400 76.20 39.144817
11x4 279.400 101.60 39.144817
11x4.5EP 279.400 114.30 24.947450
11x4.5MR 279.400 114.30 17.009625
11x4.5MRP 279.400 114.30 17.009625
11x5 279.400 127.00 39.144817
11x5.5E 279.400 139.70 22.997013
11x5.5EP 279.400 139.70 22.997013
11x5.5MR 279.400 139.70 17.009625
11x5.5MRP 279.400 139.70 17.009625
11x6 279.400 152.40 39.961279
11x7 279.400 177.80 39.961279
11x7E 279.400 177.80 22.997013
11x8 279.400 203.20 41.095254
11x8.5E 279.400 215.90 23.994911
11x8E 279.400 203.20 22.997013
11x8EP 279.400 203.20 22.997013
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11x9 279.400 228.60 41.957075
12.25x3.75 311.150 95.25 43.091050
12.5x10 317.500 254.00 51.028875
12.5x6 317.500 152.40 53.024671
12x10 304.800 254.00 45.948667
12x10E 304.800 254.00 25.990707
12x10W 304.800 254.00 51.890696
12x11 304.800 279.40 47.082642
12x12 304.800 304.80 51.028875
12x12E 304.800 304.80 25.990707
12x12EP 304.800 304.80 25.990707
12x12N 304.800 304.80 45.948667
12x13 304.800 330.20 45.086846
12x13N 304.800 330.20 47.082642
12x4 304.800 101.60 39.961279
12x4.5MR 304.800 114.30 22.135192
12x4.5MRP 304.800 114.30 22.135192
12x5 304.800 127.00 41.095254
12x5.5MR 304.800 139.70 22.135192
12x5.5MRP 304.800 139.70 22.135192
12x6 304.800 152.40 45.948667
12x6E 304.800 152.40 26.988605
12x6EP 304.800 152.40 26.988605
12x7 304.800 177.80 43.091050
12x8 304.800 203.20 47.899104
12x8E 304.800 203.20 25.990707
12x8EP 304.800 203.20 25.990707
12x9 304.800 228.60 43.952871
12x9W 304.800 228.60 53.024671
13.5x10 342.900 254.00 51.028875
13.5x13.5 342.900 342.90 66.904525
13.5x14 342.900 355.60 66.904525
13.5x9 342.900 228.60 49.033079
13x10 330.200 254.00 60.100675
13x10E 330.200 254.00 29.982299
13x10EP 330.200 254.00 29.982299
13x11 330.200 279.40 56.970904
13x13.5N 330.200 342.90 51.890696
13x13N 330.200 330.20 53.024671
13x14 330.200 355.60 65.997345
13x4 330.200 101.60 49.894900
13x4.5EP 330.200 114.30 30.889479
13x4.5MR 330.200 114.30 24.085629
13x4.5MRP 330.200 114.30 24.085629
13x4E 330.200 101.60 29.982299
13x4EP 330.200 101.60 29.982299
13x4W 330.200 101.60 49.894900
13x5.5E 330.200 139.70 31.978095
13x5.5EP 330.200 139.70 34.019250
13x5.5MR 330.200 139.70 23.994911
13x5.5MRP 330.200 139.70 23.994911
13x6 330.200 152.40 47.899104
13x6.5E 330.200 165.10 29.982299
13x6.5EP 330.200 165.10 29.982299
13x7 330.200 177.80 47.899104
13x8 330.200 203.20 49.033079
13x8E 330.200 203.20 30.980197
13x8EP 330.200 203.20 30.980197
13x9 330.200 228.60 60.962496
14x10 355.600 254.00 73.980529
14x10E 355.600 254.00 34.019250
14x11 355.600 279.40 72.846554
14x12 355.600 304.80 77.110300
14x12E 355.600 304.80 35.017148
14x12N 355.600 304.80 66.995243
14x13 355.600 330.20 68.900321
14x13.5 355.600 342.90 70.034296
14x13N 355.600 330.20 68.900321
14x14 355.600 355.60 68.038500
14x14E 355.600 355.60 36.015046
14x14N 355.600 355.60 68.900321
14x4W 355.600 101.60 56.154442
14x5.5MR 355.600 139.70 30.073017
14x5.5MRP 355.600 139.70 30.073017
14x5N 355.600 127.00 49.894900
14x6 355.600 152.40 71.213630
14x6E 355.600 152.40 37.012944
14x7 355.600 177.80 77.110300
14x7E 355.600 177.80 34.019250
14x7EP 355.600 177.80 34.019250
14x8 355.600 203.20 70.034296
14x8.5E 355.600 215.90 37.012944
14x8.5EP 355.600 215.90 37.012944
15.5x12W 393.700 304.80 104.915367
15x10 381.000 254.00 89.856179
15x10E 381.000 254.00 44.996128
15x10EP 381.000 254.00 44.996128
15x11 381.000 279.40 90.990154
15x12 381.000 304.80 90.990154
15x4E 381.000 101.60 44.996128
15x4EP 381.000 101.60 44.996128
15x4W 381.000 101.60 70.034296
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15x5.5MR 381.000 139.70 36.015046
15x5.5MRP 381.000 139.70 36.015046
15x6 381.000 152.40 75.976325
15x6E 381.000 152.40 44.996128
15x7 381.000 177.80 77.110300
15x7E 381.000 177.80 44.996128
15x8 381.000 203.20 86.000664
15x8E 381.000 203.20 43.998230
16x10 406.400 254.00 104.915367
16x10E 406.400 254.00 51.981414
16x10EP 406.400 254.00 51.981414
16x12 406.400 304.80 102.919571
16x12E 406.400 304.80 51.981414
16x13 406.400 330.20 106.049342
16x14 406.400 355.60 104.915367
16x16 406.400 406.40 104.053546
16x4E 406.400 101.60 55.020467
16x4EP 406.400 101.60 55.020467
16x4W 406.400 101.60 85.048125
16x5.5MR 406.400 139.70 43.952871
16x5.5MRP 406.400 139.70 43.952871
16x6 406.400 152.40 89.856179
16x6E 406.400 152.40 56.018365
16x7 406.400 177.80 94.981746
16x8 406.400 203.20 100.923775
16x8E 406.400 203.20 51.981414
17x10 431.800 254.00 115.121142
17x10E 431.800 254.00 64.001549
17x10N 431.800 254.00 98.111517
17x10WE 431.800 254.00 84.004868
17x12 431.800 304.80 119.929196
17x12E 431.800 304.80 68.038500
17x12W 431.800 304.80 132.947229
17x13 431.800 330.20 117.933400
17x4W 431.800 101.60 94.981746
17x6 431.800 152.40 111.991371
17x6E 431.800 152.40 64.001549
17x7E 431.800 177.80 64.001549
17x8 431.800 203.20 115.937604
17x8E 431.800 203.20 64.001549
17x8N 431.800 203.20 94.119925
18.1x10 459.740 254.00 132.947229
18.1x12 459.740 304.80 125.009404
18x10 457.200 254.00 132.947229
18x10E 457.200 254.00 72.982631
18x10EP 457.200 254.00 72.982631
18x12 457.200 304.80 144.876646
18x12E 457.200 304.80 73.980529
18x12WE 457.200 304.80 79.015378
18x14 457.200 355.60 151.090829
18x5.5MR 457.200 139.70 61.007855
18x5.5MRP 457.200 139.70 61.007855
18x6W 457.200 152.40 134.943025
18x8 457.200 203.20 132.130767
18x8E 457.200 203.20 72.982631
18x8EP 457.200 203.20 72.982631
18x8W 457.200 203.20 142.880850
19x10E 482.600 254.00 83.006970
19x10EP 482.600 254.00 83.006970
19x11 482.600 279.40 132.130767
19x12E 482.600 304.80 83.006970
19x12WE 482.600 304.80 111.991371
19x8E 482.600 203.20 83.006970
19x8W 482.600 203.20 163.020246
20.5x12WE 520.700 304.80 130.996792
20.5x14E 520.700 355.60 123.058967
20x10 508.000 254.00 185.971900
20x10E 508.000 254.00 95.979644
20x10EP 508.000 254.00 95.979644
20x10W 508.000 254.00 202.119704
20x11E 508.000 279.40 99.018697
20x12 508.000 304.80 191.097467
20x12WE 508.000 304.80 130.996792
20x13E 508.000 330.20 98.020799
20x13EP 508.000 330.20 98.020799
20x14 508.000 355.60 199.987831
20x15C 508.000 381.00 151.090829
20x15E 508.000 381.00 117.933400
20x8 508.000 203.20 182.025667
20x8E 508.000 203.20 95.979644
20x8W 508.000 203.20 193.047904
21x10W 533.400 254.00 225.116717
21x12WE 533.400 304.80 147.144596
21x13E 533.400 330.20 130.134971
21x13WE 533.400 330.20 128.003098
22x10 558.800 254.00 233.871004
22x10E 558.800 254.00 133.990486
22x12E 558.800 304.80 135.986282
22x12WE 558.800 304.80 157.985397
22x8 558.800 203.20 240.130546
24x12E 609.600 304.80 164.018144
25x12.5E 635.000 317.50 223.120921
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26x13E 660.400 330.20 209.014272
26x15E 660.400 381.00 214.003762
27x13E 685.800 330.20 232.011285
27x13EP 685.800 330.20 232.011285
4.1x4.1E 104.140 104.14 3.129771
4.1x4.1EP 104.140 104.14 3.129771
4.2x2 106.680 50.80 3.129771
4.2x4 106.680 101.60 3.129771
4.5x3.5 114.300 88.90 3.991592
4.5x4 114.300 101.60 3.991592
4.5x4.1E 114.300 104.14 3.991592
4.75x4 120.650 101.60 5.942029
4.75x4.5E 120.650 114.30 3.991592
4.75x4.5EC 120.650 114.30 3.129771
4.75x4.75E 120.650 120.65 3.991592
4.75x4.75EC 120.650 120.65 3.129771
4.75x4.75EP 120.650 120.65 3.991592
4.75x5.5E 120.650 139.70 3.991592
4.7x4.2E 119.380 106.68 3.129771
5.1x4.5E 129.540 114.30 5.125567
5.25x5.5E 133.350 139.70 3.991592
5.25x6.25E 133.350 158.75 3.991592
5.5x2 139.700 50.80 7.076004
5.5x2.5 139.700 63.50 7.076004
5.5x4.5E 139.700 114.30 3.991592
5.5x4.5EP 139.700 114.30 3.991592
5.5x4.7E 139.700 119.38 3.991592
5.5x6.5E 139.700 165.10 3.991592
5.7x3 144.780 76.20 5.125567
5x3 127.000 76.20 5.942029
5x3E 127.000 76.20 3.129771
5x3EP 127.000 76.20 3.129771
5x4R-RH 127.000 101.60 7.983184
5x5E 127.000 127.00 3.991592
5x5EP 127.000 127.00 3.991592
5x7.5E 127.000 190.50 4.989490
5x7.5EP 127.000 190.50 4.989490
6.3x4 160.020 101.60 11.067596
6.5x2.9 165.100 73.66 11.067596
6.5x3.7 165.100 93.98 11.067596
6.5x5.0 165.100 127.00 11.067596
6.5x5.5 165.100 139.70 11.067596
6.5x6.0 165.100 152.40 11.067596
6.5x6.5 165.100 165.10 11.067596
6x2 152.400 50.80 7.937825
6x3 152.400 76.20 7.937825
6x3R-RH 152.400 76.20 7.983184
6x4 152.400 101.60 5.125567
6x4E 152.400 101.60 5.125567
6x4EP 152.400 101.60 5.125567
6x5 152.400 127.00 6.985286
6x5.5E 152.400 139.70 5.125567
6x6E 152.400 152.40 5.125567
6x6EP 152.400 152.40 5.125567
7.4x7.5C 187.960 190.50 15.875650
7.4x7.6C 187.960 193.04 15.875650
7.4x7.7C 187.960 195.58 15.875650
7.8x4 198.120 101.60 17.871446
7.8x6 198.120 152.40 17.871446
7.8x7 198.120 177.80 17.871446
7x10 177.800 254.00 13.063392
7x3 177.800 76.20 11.929417
7x4 177.800 101.60 11.929417
7x4E 177.800 101.60 7.983184
7x4EP 177.800 101.60 7.983184
7x5 177.800 127.00 11.067596
7x5E 177.800 127.00 7.983184
7x5EP 177.800 127.00 7.983184
7x6 177.800 152.40 13.063392
7x6E 177.800 152.40 7.983184
7x6EP 177.800 152.40 7.983184
7x6W 177.800 152.40 13.063392
7x7 177.800 177.80 13.063392
7x7E 177.800 177.80 7.983184
7x8 177.800 203.20 13.063392
7x9 177.800 228.60 13.063392
8.75x5.0 222.250 127.00 28.077221
8.75x7.0N 222.250 177.80 28.077221
8.75x7.5N 222.250 190.50 28.077221
8.75x7.5NN 222.250 190.50 28.939042
8.75x7.5W 222.250 190.50 24.947450
8.75x7.75NN 222.250 196.85 24.947450
8.75x8.0NN 222.250 203.20 28.939042
8.75x8.5N 222.250 215.90 28.077221
8.75x8.75NN 222.250 222.25 24.947450
8.75x8.75W 222.250 222.25 24.947450
8.75x9.0NN 222.250 228.60 26.081425
8.75x9.0W 222.250 228.60 26.081425
8.75x9.25NN 222.250 234.95 24.947450
8.75x9.25W 222.250 234.95 24.947450
8.8x8.5 223.520 215.90 24.947450
8.8x8.75 223.520 222.25 26.943246
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8.8x8.9 223.520 226.06 26.081425
8.8x9.0 223.520 228.60 26.081425
8.8x9.25 223.520 234.95 26.943246
8.8x9.5 223.520 241.30 26.081425
8.8x9.75 223.520 247.65 26.081425
8x10 203.200 254.00 19.005421
8x3.75 203.200 95.25 17.009625
8x4 203.200 101.60 15.875650
8x4.5MR 203.200 114.30 9.071800
8x4.5MRP 203.200 114.30 9.071800
8x4E 203.200 101.60 13.018033
8x5 203.200 127.00 19.005421
8x6 203.200 152.40 19.005421
8x6E 203.200 152.40 14.015931
8x6EP 203.200 152.40 14.015931
8x7 203.200 177.80 19.005421
8x8 203.200 203.20 19.005421
8x8E 203.200 203.20 15.013829
8x8EP 203.200 203.20 15.013829
8x9 203.200 228.60 19.005421
9.25x6.0 234.950 152.40 17.009625
9.3x3 236.220 76.20 24.947450
9.5x4.5 241.300 114.30 28.077221
9.5x6 241.300 152.40 26.943246
9.5x7.5N 241.300 190.50 28.939042
9.5x7N 241.300 177.80 28.939042
9.625x3.75N 244.475 95.25 30.889479
9x10 228.600 254.00 22.135192
9x3 228.600 76.20 24.947450
9x3N 228.600 76.20 15.013829
9x4 228.600 101.60 22.951654
9x4.5E 228.600 114.30 17.962164
9x4.5EP 228.600 114.30 17.962164
9x4.5MR 228.600 114.30 11.067596
9x4.5MRP 228.600 114.30 11.067596
9x4.5R-RH 228.600 114.30 26.036066
9x5 228.600 127.00 22.135192
9x6 228.600 152.40 22.135192
9x6.5 228.600 165.10 30.073017
9x6E 228.600 152.40 18.007523
9x6EP 228.600 152.40 18.007523
9x6N 228.600 152.40 17.871446
9x7 228.600 177.80 22.951654
9x7.5 228.600 190.50 30.073017
9x7.5C 228.600 190.50 20.139396
9x7.5E 228.600 190.50 18.007523
9x8 228.600 203.20 24.085629
9x8.5 228.600 215.90 30.073017
9x9 228.600 228.60 24.085629
9x9E 228.600 228.60 18.007523
7x4SF 177.800 101.60 5.125567
7x4SFP 177.800 101.60 5.125567
7x4.1SF 177.800 104.14 3.492643
7x5SF 177.800 127.00 5.125567
7x6SF 177.800 152.40 5.125567
8x3.8SF 203.200 96.52 7.076004
8x3.8SFP 203.200 96.52 7.076004
8x4.1SF 203.200 104.14 4.490541
8x4.2SFR 203.200 106.68 4.989490
8x4.7SF 203.200 119.38 7.076004
8x4.7SFP 203.200 119.38 7.076004
8x6SF 203.200 152.40 7.076004
9x3.7SF 228.600 93.98 4.989490
9x3.8SF 228.600 96.52 9.071800
9x3.8SFP 228.600 96.52 9.071800
9x4.1SF 228.600 104.14 4.989490
9x4.4SFR 228.600 111.76 6.531696
9x4.6SF 228.600 116.84 4.989490
9x4.7SF 228.600 119.38 9.071800
9x4.7SFP 228.600 119.38 9.071800
9x6SF 228.600 152.40 9.071800
9x7.5SF 228.600 190.50 9.933621
10x3.8SF 254.000 96.52 11.929417
10x3.8SFP 254.000 96.52 11.929417
10x4.6SF 254.000 116.84 7.983184
10x4.7SF 254.000 119.38 11.929417
10x4.7SFP 254.000 119.38 11.929417
10x7SF 254.000 177.80 11.929417
11x3.8SF 279.400 96.52 15.013829
11x3.8SFP 279.400 96.52 15.013829
11x4.6SF 279.400 116.84 9.978980
11x4.7SF 279.400 119.38 15.013829
11x4.7SFP 279.400 119.38 15.013829
12x3.8SF 304.800 96.52 17.871446
12x3.8SFP 304.800 96.52 17.871446
12x4.7SF 304.800 119.38 17.871446
12x4.7SFP 304.800 119.38 17.871446
12x6SF 304.800 152.40 19.005421
12x8SF 304.800 203.20 19.005421
13x4.7SF 330.200 119.38 22.135192
13x4.7SFP 330.200 119.38 22.135192
14x4.7SF 355.600 119.38 24.947450
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14x4.7SFP 355.600 119.38 24.947450

Table 3: Motor properties for Air Vehicle Design

Motor Type Cost [$] KV [RPM/V] KT [Nm/A] Mass [g]
MT1306 3100KV 41.90 3100 0.003080 11.2
MN2204 1400KV 25.90 1400 0.006821 23.0
MT2208 1100 KV 43.90 1100 0.008681 45.0
MT2216 V2 800KV 54.90 800 0.011937 75.0
MN2212 KV780 46.90 780 0.012243 65.0
MN2212 KV920 46.90 920 0.010380 65.0
MN3110 KV470 61.90 470 0.020318 98.0
MN3110 KV700 61.90 700 0.013642 99.0
MN3110 KV780 61.90 780 0.012243 100.0
MN3508 KV380 69.90 380 0.025130 103.0
MN3508 KV580 69.90 580 0.016464 103.0
MN3508 KV700 69.90 700 0.013642 104.0
MN3510 KV360 79.90 360 0.026526 117.0
MN3510 KV630 79.90 630 0.015158 119.0
MN3510 KV700 79.90 700 0.013642 118.0
MN3515 KV400 96.90 400 0.023873 183.0
MN3520 KV400 109.90 400 0.023873 222.0
MN4010 KV370 86.90 370 0.025809 137.0
MN4010 KV475 86.90 475 0.020104 137.0
MN4010 KV580 86.90 580 0.016464 137.0
MN4012 KV340 92.90 340 0.028086 155.0
MN4012 KV400 92.90 400 0.023873 155.0
MN4012 KV480 92.90 480 0.019894 155.0
MN4014 KV330 96.90 330 0.028937 171.0
MN4014 KV400 96.90 400 0.023873 171.0
MN5208 KV340 99.90 340 0.028086 196.0
MN5212 KV340 109.90 340 0.028086 249.0
MN5212 KV420 109.90 420 0.022736 249.0
AT2308 KV1450 29.99 1450 0.006586 47.0
AT2308 KV2600 29.99 2600 0.003673 48.0
AT2310 KV2200 27.99 2200 0.004341 52.0
AT2312 KV1150 34.99 1150 0.008304 60.0
AT2312 KV1400 34.99 1400 0.006821 60.0
AT2317 KV880 39.99 880 0.010851 79.0
AT2317 KV1250 39.99 1250 0.007639 79.0
AT2317 KV1400 39.99 1400 0.006821 80.0
AT2321 KV950 44.99 950 0.010052 93.0
AT2321 KV1250 44.99 1250 0.007639 94.0
AT2814 KV900 49.99 900 0.010610 108.0
AT2814 KV1050 49.99 1050 0.009095 107.0
AT2814 KV1200 49.99 1200 0.007958 108.0
AT2820 KV880 59.99 880 0.010851 139.0
AT2820 KV1050 59.99 1050 0.009095 139.0
AT2820 KV1250 59.99 1250 0.007639 141.0
AT2826 KV900 69.99 900 0.010610 175.0
AT2826 KV1100 69.99 1100 0.008681 175.0
AT3520 KV550 79.99 550 0.017362 218.0
AT3520 KV720 79.99 720 0.013263 339.0
AT3520 KV850 79.99 850 0.011234 221.0
AT3530 KV580 99.99 580 0.016464 298.0
AT4120 KV250 109.99 250 0.038197 304.0
AT4120 KV500 109.99 500 0.019099 305.0
AT4120 KV560 109.99 560 0.017052 300.0
AT4125 KV250 115.99 250 0.038197 350.0
AT4125 KV540 115.99 540 0.017684 355.0
AT4130 KV230 119.99 230 0.041519 408.0
AT4130 KV300 119.99 300 0.031831 405.0
AT4130 KV450 119.99 450 0.021221 408.0
AS 2308 KV1450 18.99 1450 0.006586 49.0
AS 2308 KV2600 18.99 2600 0.003673 49.0
AS 2312 KV1150 19.99 1150 0.008304 63.0
AS 2312 KV1400 19.99 1400 0.006821 63.0
AS 2317 KV880 21.95 880 0.010851 81.0
AS 2317 KV1250 21.95 1250 0.007639 81.0
AS 2317 KV1400 21.95 1400 0.006821 81.0
AS 2814 KV900 33.99 900 0.010610 110.0
AS 2814 KV1050 33.99 1050 0.009095 112.0
AS 2814 KV1200 33.99 1200 0.007958 112.0
AS 2814 KV2000 33.99 2000 0.004775 116.0
AS 2820 KV880 34.00 880 0.010851 136.0
AS 2820 KV1050 34.00 1050 0.009095 144.0
AS 2820 KV1250 34.00 1250 0.007639 144.0
KDE2306XF-2550 28.95 2550 0.003700 42.0
KDE2315XF-965 60.95 965 0.009900 75.0
KDE2315XF-885 60.95 885 0.010800 75.0
KDE2814XF-775 71.95 775 0.012300 125.0
KDE2814XF-515 71.95 515 0.018500 125.0
KDE3510XF-715 92.95 715 0.013400 175.0
KDE3510XF-475 92.95 475 0.020100 175.0
KDE3520XF-400 112.95 400 0.023900 245.0
KDE4012XF-400 114.95 400 0.023900 200.0
KDE4014XF-380 118.95 380 0.025100 215.0
KDE4213XF-360 133.95 360 0.026500 230.0
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E COMPARISON WITH DIRECT OPTIMIZATION

In this section, we compare DeLPhy with a commonly used direct optimization approach covari-
ance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006) in terms of design diversity.
As shown in Figure 15, our approach can generate a more diverse set of designs that match the
design objective compared to the CMA-ES. Here, our design objective is to generate efficient pro-
pellers at a low velocity (efficiency higher than 75% and velocity lower than 4.5 m/s). Note that
DeLPhy generates diverse designs in terms number of blades, the shape of blades, pitch angles,
and hub diameter. CMA-ES generates designs with a slight variation of numbers of blades, whereas
the other geometric properties are quite similar.

DeLPhy (Our approach) CMA-ES Optimization

Figure 15: DeLPhy generates a more diverse set of designs, with a different numbers of blades, the
shape of blades, pitch angles, and hub diameter, compared to CMA-ES (Hansen, 2006) which is a
direct optimization approach.
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