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ABSTRACT

Causal learning from data has received a lot of attention in recent years. One
way of capturing causal relationships is by utilizing Bayesian networks. There,
one recovers a weighted directed acyclic graph in which random variables are
represented by vertices, and the weights associated with each edge represent the
strengths of the causal relationships between them.
This concept is extended to capture dynamic effects by introducing a dependency
on past data, which may be captured by the structural equation model. This for-
malism is utilized in the present contribution to propose a score-based learning
algorithm. A mixed-integer quadratic program is formulated and an algorithmic
solution proposed, in which the pre-generation of exponentially many acyclicity
constraints is avoided by utilizing the so-called branch-and-cut (“lazy constraint”)
method.
Comparing the novel approach to the state-of-the-art, we show that the proposed
approach turns out to produce more accurate results when applied to small and
medium-sized synthetic instances containing up to 25 time series. Lastly, two in-
teresting applications in bioscience and finance, to which the method is directly
applied, further stress the importance of developing highly accurate, globally con-
vergent solvers that can handle instances of modest size.

1 INTRODUCTION

The problem of causal learning using graphical structures has received considerable attention from a
wide range of communities in recent years. This attention comes from the wide range of applications
including, but not limited to, medicine (Rajapakse & Zhou, 2007), machine learning (Koller &
Friedman, 2009), econometrics (Luetkepohl, 2005; Demiralp & Hoover, 2003; Malinsky & Spirtes,
2018) and others (Guo et al., 2020; Assaad et al., 2022).

One key reason for this is that in many applications data is abundant, but modeling using first prin-
ciples may be difficult due to the complexity of the problem at hand (Guo et al., 2020). Some of this
complexity may arise due to an abundance of non-linear effects, only a partial ability to observe the
system, or unexpected stochastic effects influencing the system. For a detailed discussion on these,
please refer to Friedman et al. (2013); Kungurtsev et al. (2024).

Other issues that are inherent to graphical structure learning from time series data are related to the
sampling timescales and scaling to large instances, these have been addressed in Abavisani et al.
(2023); Ouyang et al. (2024), respectively. A key benefit of learning via graphical structures is the
full explainability of the output; the network may be either used to compute outputs for different
situations or the learned graph structure may be inspected and dependencies of particular interest
analyzed.

In this contribution, we revisit the score-based learning of dynamic Bayesian networks utilizing
a directed acyclic graph (DAG) structure augmented by additional time dependencies from data
(Murphy, 2002; Dean & Kanazawa, 1989; Assaad et al., 2022). This approach to learning causality
has been successfully applied to a variety of problems, many of which are related to applications
in medicine (Zandonà et al., 2019; van Gerven et al., 2008; Michoel & Zhang, 2023; Zhong et al.,
2023). In addition to medical applications, the dynamic Bayesian network approach representations
are widely used in econometrics (Hoover & Demiralp, 2003b) and financial risk modeling (Ballester
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et al., 2023). This broad scope of applications has spawned a large number of excellent solvers that,
under different assumptions, can discover the underlying causal structure of a system. The use of
various assumptions is key to ensure the tractability of a solver, since the the number of constraints
that is needed to impose to acyclicity of the representing graph is super-exponential in the number
of random variables.

One of the possible assumptions is to separate observational and interventional data (Gao et al.,
2022), which reduces the number of dependencies that need to be found. Another is the assump-
tion of continuous underlying dynamics represented by stochastic differential equations Bellot et al.
(2021). One can also assume a priori knowledge about time-lagged data and incorporate this knowl-
edge into the solver Sun et al. (2021). One can also deal with the general problem and propose
local methods (Pamfil et al., 2020; Gao et al., 2022), which can scale further at the cost of some
loss of accuracy. Note that many of the previous works also combine several of these approaches to
arrive at solvers that are tractable and applicable to a wide range of applications. However, it should
be noted that many methods may not identify DAG representations of casual dependencies under
certain conditions Kaiser & Sipos (2022); Reisach et al. (2021). One of the possible causes is that
many of them only converge to a local stationary point for the optimization problem.

We utilize mixed-integer programming to learn dynamic Bayesian networks. All of the previous
works mentioned above focus mostly on solving the curse of dimensionality and scaling with ad-
equate precision. On the other hand, we focus on leveraging fundamental principles that apply to
quadratic mixed-integer programs to find global solutions to the score-based DAG learning prob-
lem, which results in a high-quality reconstruction of the DAG. Furthermore, we tackle the curse
of dimensionality by avoiding the pre-generation of the acyclic constraints. It is shown that given
sufficient data, only a small amount of these constraints are actually needed to ensure the acyclicity
of the resulting graph, which leads to the runtime generation of these constraints granting a large
speedup over the version of the algorithm that uses all of the constraints for the entire duration of the
computation. The formulation and its implementation are easily reproducible, making it accessible
to a wide range of potential practitioners.

2 PROBLEM FORMULATION

Before formulating the problem of score-based Bayesian network learning as a mixed-integer pro-
gram, let us describe the state space using a structural vector autoregressive model (Hoover & Demi-
ralp, 2003a; Kilian, 2011). Let d, T ∈ N and assume that Xi,t is a set of stochastic processes, where
i ∈ {1, 2, . . . , d} and t ∈ {1, 2, . . . , T}. Let the underlying DAG to be learned be characterized by
the set of vertices and edges organized in a pair (V,E), where the vertices are indexed by the set of
integers {1, 2, . . . , d} and E ⊂ V × V . Denote the auto-regressive order by p ∈ N and let

W ∈ Rd,d, Ai ∈ Rd,d, i ∈ {1, 2, . . . , p} , (1)

be the weighed adjacency matrix of (V,E) and Ai be the matrices encoding the time regressive
dependencies. The intra-slice interactions defined at the present time are expressed by the weight
matrix W and the inter-slice interactions are expressed by Ai. For simplicity, the matrices Ai are
assumed to be constant. Let Xt ∈ Rn,d be the data matrix at time t, then the linear auto-regressive
model of order p reads

Xt = XtW +Xt−1A1 +Xt−2A2 + . . .+Xt−pAp + Z, (2)

where Z ∈ Rn,d is the error vector, which is not assumed to be Gaussian. Note that non-linear
autoregressive models can also be formulated in an analogous way. The problem may be written in
a simplified manner as

Xt = XtW + YtA+ Z, (3)

where
A = A1 |A2 . . . |Ap , Yt = Xt−1 |Xt−2 . . . |Xt−p . (4)

To maximize the fit of the data over the model, a score function, which reads may be formulated

J (W,A) = ∥X −XW − Y A∥2F + λ ∥W∥+ η ∥A∥ , (5)
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where ∥·∥ denotes an arbitrary matrix norm and λ, η > 0 are sufficiently small regularization coef-
ficients. The problem of interest then reads

min
W,A

J (W,A) ,

G (W ) ∈ ΓDAG,
(6)

where A need not be constrained, since cycles are excluded by construction; ∥·∥ denotes an arbitrary
norm, which is usually chosen to be the L1-norm and ∥·∥F denotes the Frobenius norm.

Remark 1 The identifiability of W and A using 6 has been studied for Gaussian and non-Gaussian
noise. Regardless of noise, the identifiability of A is a consequence of the basic theory of autoregres-
sive models (Kilian, 2011). The identifiability of W is a bit more involved and must be separated
into the Gaussian and non-Gaussian case. However, in either case, identifiability is possible under
mild conditions (Hyvärinen et al., 2010; Peters & Bühlmann, 2012).

3 BRIEF INTRODUCTION TO MIXED INTEGER QUADRATIC PROGRAMMING

To better frame the content of Section 4, we provide a short introduction to mixed-integer quadratic
programming. An optimization problem, is called a mixed-integer quadratically constrained
quadratic program (MIQCQP) if it is of the form

min
x∈Rn

xTQx+ qTx, (7)

s.t. xTQix+ qTi x ≤ ai, (8)
Ax ≤ b, (9)
x ∈ F (10)

where Q,Qi ∈ Rn,n, q, qi ∈ Rn, A ∈ Rm,n, a ∈ Rk, b ∈ Rm, F is a product of the form

F = R× . . .× R︸ ︷︷ ︸
n−r times

×N× . . .× N︸ ︷︷ ︸
r times

(11)

and m,n, k, r ∈ N. Equation equation 7 is often called the cost or loss function, equation 8 repre-
sents the quadratic constraints, equation 9 are the linear constraints, and F is the set that enforces
the integrality constraints for the r components of the decision variable x.

Mixed-integer quadratic programs have been shown to be in NP Del Pia et al. (2014), which often
leads to an exhaustive demand for computational resources. The algorithms used to solve MIQP
are typically branch-and-bound or cutting plane Dakin (1965); Bonami et al. (2009); Westerlund &
Pettersson (1995); Kronqvist et al. (2015). Both of these algorithmic treatments are often employed
together, often with the addition of a presolving step, the use of heuristics and parallelism. The
aforementioned allows many modern solvers to solve even large problems despite the NP hardness.
Some of these solvers are open source (like SCIP and GLPK) and others are commercial (GUROBI
and CPLEX). The powerful infrastructure present in these solvers can be made use of together with
additional problem-specific modifications to deliver high-quality solutions.

Due to the exhaustive nature of the algorithms mentioned in the previous paragraph, global conver-
gence is guaranteed Belotti et al. (2013). Furthermore, convergence to the global solution may be
tracked and the error estimated by computing the dual problem of (7–10). The dual of the problem
is then used to computed the so called MIP GAP as follows

MIP GAP =
|J (x∗)− Jdual (y

∗)|
|J (x∗)|

, (12)

where x∗ and y∗ are the current best solutions of the primal and dual problems respectively, and
J and J∗ are the cost functions of the primal and dual problems, respectively. The MIP GAP
ensures that we can assess the quality of the minimization during solution time and terminate the
computation when the result is good enough (small enough MIP GAP). Furthermore, if the gap
reaches 0 at any point, we are sure that the current solution is a global optimum.
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4 MIXED INTEGER QUADRATIC PROGRAMMING FORMULATION

Formulating the learning problem as a mixed-integer quadratic problem sets things up so that a
globally convergent algorithm may be used. This is fundamental for high-precision learning to be
possible.

Let ei,j ∈ {0, 1} and esi,j ∈ {0, 1} be decision variables that govern the placement of edges between
random variables at time level t and between time levels t and t − s, respectively, and let wi,j ∈ R
and ati,j ∈ R be the associated edge weights. Using these variables, the scoring function of problem
equation 6 becomes

Jp =

n∑
i=1

d∑
j=1

∣∣∣∣∣Xi,j −
d∑

k=1

Xi,kwk,j −
p∑

s=1

d∑
k=1

Xs
i,ka

s
k,j

∣∣∣∣∣
2

+ REG, (13)

which avoids the use of a bi-linear term if the additional constraints

wk,j ≤ cek,j , wk,j ≥ −cek,j for all k, j ∈ {1, 2, . . . , d} . (14)

and
ask,j ≤ cesk,j , ask,j ≥ −cesk,j for all k, j ∈ {1, 2, . . . , d} , s ∈ {1, 2, . . . , p} (15)

are imposed, where c > 0 is the maximal admissible magnitude of any weight and λ > 0 is a
regularization constant. Note that the maximal admissible regularization is chosen so as not to affect
the result of the identification, i.e. c = 100, but the true edge weights are two orders of magnitude
smaller.

Where REG is a regularization expression equals either: (L1)

REG = λ

n∑
i=1

n∑
j=1

ei,j + η

p∑
s=1

n∑
i=1

n∑
j=1

esi,j . (16)

or (L2)

REG = λ

n∑
i=1

n∑
j=1

ei,j + η

p∑
s=1

n∑
i=1

n∑
j=1

asi,j . (17)

Lastly, the acyclicity constraints are described. Let C denote the set of all cycles in a graph
with d vertices, where each cycle c ∈ C of length k is represented as a set of edges: c =
{(i1, i2), (i2, i3), . . . , (ik−1, i1)} . The constraint excluding a cycle c ∈ C from a solution then
reads ∑

(i,j)∈c

ei,j ≤ k − 1. (18)

The algorithmic treatment of constraint equation 18 is key in the following section, in which the al-
gorithmic treatment is discussed as implementing the branch-and-bound-and-cut algorithm without
a reduction mechanism for this constraint is doomed to fail due to the super-exponential number of
such constraints.

5 ALGORITHMIC IMPLEMENTATION USING
BRANCH-AND-BOUND-AND-CUT

One of our main contributions is the development of a branch-and-bound-and-cut algorithm to solve
the formulation mentioned above. Since the acyclic constraints 18 need to be imposed only for
the edges of the graph representing the intra-slice level, all of what follows is only applied to the
intra-slice graph. While we leverage the traditional branch-and-bound approach as described in
(Achterberg, 2007, e.g.), we incorporate cycle exclusion constraints equation 18 using ”lazy” con-
straints. These are only enforced once an integer-feasible solution candidate is found. If a violation
of a lazy constraint occurs, the constraint is added across all nodes in the branch-and-bound tree.
At the root node, only O (|E|) constraints 14 and 15 are initially used. Cycle-exclusion constraints
equation 18 are added later. Note that this method is not a heuristic and does not lead to a possi-
bly harmful reduction (or extension) of the solution space leading to omitting possible solutions or

4
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returning solutions which are not DAGs. Furthermore, it is shown that the number of constraints
that are actually needed in a computation is many orders of magnitude less than the number of all
possible constraints.

Once a new mixed-integer feasible solution candidate is identified, detecting cycles becomes
straightforward using a depth-first search (DFS). If a cycle is detected, the corresponding lazy
constraint equation 18 is added to the problem. The DFS algorithm solves the problem of cycle
detection in a worst-case quadratic runtime relative to the number of vertices in the graph, which
contrasts with algorithms that separate related inequalities from a continuous relaxation (Borndörfer
et al., 2020; Cook et al., 2011), such as the quadratic program in our case. Three variants of adding
lazy constraints for the problem were tested.

• Adding a lazy constraint only for the first cycle found.

• Adding a lazy constraint only for the shortest cycle found.

• Adding multiple lazy constraints for all cycles found in the current iteration in which an
integer-feasible solution candidate is available.

The third mentioned variant was found to consistently deliver the best results, despite (Achterberg,
2007, Chapter 8.9). Therefore, it is applied in all the numerical tests that follow.

6 DATA GENERATION

We generate data in a manner similar to that described in Zheng et al. (2018) and Pamfil et al.
(2020). The evaluation of ExDBN was performed on the synthetic data generated as follows.
First, a random intra-slice DAG was created using either the Erdős-Rény (ER) model or the scale-
free Barabási–Albert (SF) model. The DAG weights were sampled uniformly from the intervals
[−2.0,−0.5] ∪ [0.5, 2.0].

Next, inter-slice graphs were generated using the ER model. For each inter-slice graph, weights were
sampled from the interval [−0.5α,−0.2α] ∪ [0.2α, 0.5α], where α = 1/ηt−1, η ≥ 1 is the decay
parameter, and t is the time of the slice. t = 0 corresponds to the intra-slice, while t ∈ {1, . . . , p}
represents the inter-slices.

The data samples are then generated using the structural equation model equation and adding Gaus-
sian noise with either variance 1 or different variance for each variable sampled uniformly from a
given interval.

Specifically, we have adapted the ER and SF generators from Zheng et al. (2018) for dynamic
networks. Notice that this results in a slightly different generator than in Pamfil et al. (2020), which
may explain some of the differences in the performance of DYNOTEARS, compared to the original
article.

7 NUMERICAL EXPERIMENTS

In recent years, many solvers have been developed to facilitate the graphical learning of Bayesian
networks that represent causality (Pamfil et al., 2020; Hyvärinen et al., 2010; Malinsky & Spirtes,
2018; Gao et al., 2022; Dallakyan, 2023; Lorch et al., 2021). Each of these solvers (including the
one presented) faces the curse of dimensionality, which somewhat restricts the applicability of each
solver, and thus through testing needs to be provided. It is impossible to test the proposed solution
w.r.t. every solver developed. There is, however, a significant branch of development that allows for
direct comparison, and by transitivity of results, the comparison with many previous solvers follows.

In 2020, Pamfil et al. (2020) have developed a locally convergent method, called DYNOTEARS, that
learns causality as a Bayesian network that supersedes the solution methods previously developed
(Hyvärinen et al., 2010; Malinsky & Spirtes, 2018; Zheng et al., 2018). Further developments based
on previous publications include formulating the problem in the frequency domain or defining dif-
ferentiable Bayesian structures (Dallakyan, 2023; Lorch et al., 2021). In the following, we provide a
head-to-head comparison with DYNOTEARS and thus by transitivity with the methods documented
by Hyvärinen et al. (2010); Malinsky & Spirtes (2018).
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Figure 1: SHD, F1 score, and G score for a test case using ER3-1 random ensemble, i.e., edge-
vertex ratio 3 on intra graph, edge-vertex ratio 1 on inter graph, recursion depth 1. Variance of noise
is equal to 1 for all variables. Ex(λ, η, l1) means ExDBN algorithm with L1 regularization and
coefficients λ, η.

Figure 2: SHD, F1 score, and G score for a test case using ER3-1 random ensemble, i.e., edge-
vertex ratio 3 on intra graph, edge-vertex ratio 1 on inter graph, recursion depth 1. Variance of noise
is randomly sampled from uniform distribution on interval (0.6, 1.2) for each variable.
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Figure 3: SHD, F1 score, and G score for a test case using SF3-1 random ensemble, i.e., edge-vertex
ratio 3 on intra graph, edge-vertex ratio 1 on inter graph, recursion depth 1. Variance of noise is
equal to 1 for all variables.

7.1 BENCHMARK SETUP AND QUANTITIES OF INTEREST

In Section 7.2, Wtrue denotes the adjacency matrix representing the intra-slice dependencies and Atrue
denotes the inter-slice dependencies of the ground truth, where Atrue is used to denote a p-tuple as
in equation 4. Wtrue and Atrue are used to generate data while applying Gaussian distribution noise.
Following the data generation process, the matrices W and A are identified and compared with
Wtrue and Atrue. Because noisy data inevitably leads to some falsely identified edges, typically with
negligible weights, edges with a weight less than δ > 0 can be removed from W and A, resulting
in a graph W δ and Aδ , respectively. To compare methods for known ground truth Wtrue and Atrue,
we choose the best possible δ > 0 for each method. This δ > 0 may then be used as a reference for
learning from data, where a ground truth is not known. Next, we introduce the relevant metrics used
to evaluate the quality of the reconstruction, when Wtrue is available.

In the following, we suppose that a DBN represented by an inter-slice matrix V and an inter-slice
matrix A is denoted by an ordered pair (V,A). Let (V,A) and (V,A) be two such pairs, then one
defines the structural Hamming distance (SHD) as

ρ (V,A;W,B) =

d∑
i,j=1

rij (V,W ) +

p∑
k=1

d∑
i,j=1

rij (Ak, Bk) , (19)

where

rij (C,D) =


0 if Cij ̸= 0 and Dij ̸= 0 or Cij = 0 and Dij = 0
1
2 if Cij ̸= 0 and Dji ̸= 0

1 otherwise.
(20)

SHD is used as a score that describes the structural similarity of two DAGs in terms of edge place-
ment and is commonly used to assess the quality of solutions (Zheng et al., 2018; Pamfil et al.,
2020). Besides SHD,

precision =
true positive

true positive + false positive
, and recall =

true positive
true positive + false negative

, (21)

are used Andrews et al. (2024) to evaluate the quality of structural recovery. It is important to note
that precision and recall isolate false positives and negatives, respectively, in contrast to SHD, where
these quantities are both accounted for simultaneously. The last metric that can be used to evaluate
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Figure 4: SHD, F1 score, and G score for a test case using ER2-1-1 random ensemble, i.e., edge-
vertex ratio 2 on intra graph, edge-vertex ratio 1 on inter graphs, recursion depth 2. Variance of
noise is equal to 1 for all variables.

structural similarity is the F1 score and reads

F1 =
2

precision−1 + recall−1 . (22)

Note that all of the quantities evaluated in equation 21 and equation 22 are a result of summing up
all of the differences over both inter- and intra-slice dependencies between a given pair (V,W ) and
a ground truth.

Although structural similarity is a key concern, merely comparing structural properties does not tell
the full story, as the weights play a crucial role in the resulting statistical behavior of the found DAG.
This motivates us to additionally utilize a cost function based metric, which reads

σp (V,W ) = |Jp (V )− Jp (W )| , (23)

where λ = 0 and typically p = 2. We may also evaluate the differences in adjacency matrices by
considering

∥V −W∥F , (24)

where ∥·∥F denotes the Frobenius norm.

7.2 SYNTHETIC BENCHMARK RESULTS

In the following benchmark, the generation methods described in Section 6 are used to compare
ExDBN with DYNOTEARS (Pamfil et al., 2020) under the assumption of Gaussian noise. Even
though the cost function is a maximum likelihood estimator (see Section 1) for non-Gaussian noise,
we leave this evaluation for future publication. The scaling is studied for different numbers of
variables, samples, and graph generation methods with the relevant metrics; SHD, F1 score, and G
score recorded in Figures 1, 2, 3 and 4.

A statistical ensemble with 10 different seeds was used for each of the experiments, and the mean
and worst possible case values are used in the plots. It should be noted that, naturally, the worst
possible value and the mean can be used together to bound the variance. The solution time is
capped for ExDBN at 7200 seconds, and the regularization applied in ExDBN needs to be scaled
appropriately with the number of samples, as it is assumed that the optimal choice of regularization
constant is a decreasing function of the number of samples. We use the aforementioned as a guide

8
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Figure 5: Comparison of ExDBN solution quality (SHD) versus running time on SF3-1 problem.

(in a nonstrict way) to find the right regularization for a given sample size. This follows from the
fact that the regularization is to be kept proportionally small to the main objective expressed by
equation 13. Furthermore, it was found that changing the regularization from L1 to L2 is beneficial
for identification when the number of samples is large. Furthermore, if we do not know the ground-
truth graph. We can try to run the algorithm for multiple values of λ and η and then use the one that
produces a better MIP GAP. For a smaller number of samples, L1 regularization works better. For a
larger number of samples, L2 yields good results and is usually faster.

As noted in (Reisach et al., 2021), the noise variances and data scale may be important for some
algorithms to perform well. We tested ExDBN on normalized data and noticed a significant perfor-
mance drop. Therefore, ExDBN is suitable for problems in which the data of the samples have a
true scale.

The results of the tests can be divided into two categories by the average number of edges. Figures
1, 2 and 3 show higher-degree graphs (average degree 3) and Figure 4 shows the reconstruction of
a lower-degree graph. In the case of the lower degree graph, it is clear that both DYNOTEARS and
ExDBN perform similarly, with ExDBN performing better than DYNOTEARS some of the time,
with the converse being true equally often.

In the case of the identification of higher degree graphs, however, one can notice that the worst pos-
sible performance and the mean performance are much closer in the case of ExDBN, where we can
point out for instance the G score in the case with 1000 samples. In these instances, the difference
between the worst possible G score difference is between 0.3 and 0.5 in the case of DYNOTEARS
but stays well below 0.1 in the case of ExDBN. The aforementioned can be interpreted as superior
reliability of the solution as the worst possible reconstruction is consistently better.

Focusing on the 1000-sample case, while somewhat taking into account the previous ones, too, we
see that the performance gap between the solvers increases in favor of ExDBN as we increase the
number of samples. In the lower sample cases, one may also observe that ExDBN outperforms
DYNOTEARS for many graph sizes in the mean and consistently outperforms DYNOTEARS in the
worst possible case (min/max depending on the metric).

Note that the global convergence of the method, which is rooted in the fundamentals of mixed-
integer quadratic programming, allows us to increase the computation time, which leads to im-
proving the metrics reported further. While some time-sensitive applications like short-term stock
evaluation might not be able to benefit from this, others like biomedical applications might benefit
as a computation lasting several days, in which the accuracy in measurably improved (by monitor-
ing the duality gap) is desirable. See Figure 5 for the comparison of running time versus solution
quality.

We also made a comparison with VarLiNGAM (Hyvärinen et al., 2010). We used the default settings
of the algorithm. ExDBN performed better in all scenarios tested.

7.3 APPLICATION IN BIOMEDICAL SCIENCES

In biomedical sciences, there is a keen interest in learning dynamic Bayesian networks to estimate
causal effects (Tennant et al., 2020) and identify confounding variables that require conditioning. A
recent meta-analysis (Tennant et al., 2020) of 234 articles on learning DAGs in biomedical sciences

9
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found that the averaged DAG had 12 nodes (range: 3–28) and 29 arcs (range: 3–99). Interestingly,
none of the DAGs were as sparse as the commonly considered random ensembles; median saturation
was 46%, that is, each of all possible arcs appeared with probability 46% and does not converge to
a global minimum of the problem.

As an example, we consider a recently proposed benchmark of Ryšavý et al. (2024), where the Krebs
cycle is to be reconstructed from time series of reactant concentrations of varying lengths. There,
DYNOTEARS cannot reach the (Ryšavý et al., 2024) F1 score of 0.5 even with a very long time
series. In contrast, our method can solve instances equation 13 to global optimality. Using ExDBN,
however, the global minimization is ensured given sufficient time and thus the maximum likelihood
estimator is found. However, it should be noted that depending on the number of samples and
noise, it may be that even the maximum-likelihood estimator is not sufficiently accurate. However,
this does not reflect poorly on the method itself, but is rather a matter of the modification of data
collection methods associated with the experiment. In a one-hour time limit, ExDBN can find a
solution with the 38% duality gap.

7.4 APPLICATION IN FINANCE

In financial services, there are also several important applications. The original DYNOTEARS paper
considered a model of diversification of investments in stocks based on dynamic Bayesian networks.
Independently, Ballester et al. (2023) consider systemic credit risk, which is one of the most impor-
tant concerns within the financial system, using dynamic Bayesian networks. They found that the
transport and manufacturing sectors transmit risk to many other sectors, while the energy sector and
banking receive risk from most other sectors. To a lesser extent, there is a risk transmission present
between approximately 25% of the sectors pairs, and these network relationships explain between 5
% and 40 % single systemic risks. Notice that these instances are much denser than the commonly
used random ensembles.

We elaborate on the example of Ballester et al. (2023), where 10 time series capture the spreads of
10 European credit default swaps (CDS). Considering the strict licensing terms of Refinitiv, the data
from Ballester et al. (2023) are not available from the authors, but we have downloaded 16 time-
series capturing the spreads of 16 European CDS with RED6 codes 05ABBF, 06DABK, 0H99B7,
2H6677, 2H66B7, 48DGFE, 6A516F, 8A87AG, 8B69AP, 8D8575, DD359M, EFAGG9, FF667M,
FH49GG, GG6EBT, NN2A8G, from January 1st, 2007, to September 25th, 2024. This amounts to
more than 11 MB of time series data when stored as comma-delimited values in plain text. Although
the procedure for learning the dynamic Bayesian network in Ballester et al. (2023) is rather heuristic,
we can solve the mixed integer programming (MIP) instance for the 16 European CDS in 2 minutes.
In the heuristic of Ballester et al. (2023), they first perform unconditional independence tests on each
set of two time series containing an original series and a lagged time series, to reduce the subsequent
number of unconditional independence tests performed. There are 45 unconditional and conditional
independence tests performed first, to suggest another 200 conditional independence tests. We stress
that the procedure of Ballester et al. (2023) does not come with any guarantees, while our instance
equation 13 is solved to global optimality. The run-time to global optimum of 2 minutes (using L2
regularization) validates the scalability of mixed-integer programming solvers.

8 CONCLUSION

Dynamic Bayesian networks have wide-ranging applications, including those in biomedical sciences
and computational finance, as illustrated above. Unfortunately, their use has been somewhat limited
by the lack of well-performing methods to learn them. Our method, ExDBN, provides the best pos-
sible estimate of the DBN, in the sense of minimizing empirical risk equation 13. Significantly, our
method does not suffer much from the curse of dimensionality, even for real-world dense instances,
which are typically challenging for other solvers. This is demonstrated most clearly in the case
of systemic risk transmission detailed in Section 7.4, in which the global minimizer is found in 2
minutes. Additionally, the use of the guarantees on the distance to the global minimizer (so-called
MIP gap, available ahead of the convergence to the global minimizer) provides a significant tool
for fine-tuning the parameters of the solver in the case of real-world application, where the ground
truth is not available. Combined with global convergence guarantees of the maximum likelihood
estimator, this provides a robust method with state-of-the-art statistical performance.
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Pierre Bonami, Mustafa Kılınç, and Jeff Linderoth. Algorithms and Software for Convex Mixed
Integer Nonlinear Programs, volume 154. 10 2009. ISBN 978-1-4614-1926-6. doi: 10.1007/
978-1-4614-1927-3 1.

Ralf Borndörfer, Heide Hoppmann, Marika Karbstein, and Niels Lindner. Separation of cycle in-
equalities in periodic timetabling. Discrete Optimization, 35:100552, 2020.

William J Cook, David L Applegate, Robert E Bixby, and Vasek Chvátal. The traveling salesman
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