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Abstract

Large pretrained models enable transfer learn-001
ing to low-resource domains for language gen-002
eration tasks. However, previous end-to-end003
approaches do not account for the fact that004
some generation sub-tasks, specifically aggre-005
gation and lexicalisation, can benefit from006
transfer learning in different extents. To ex-007
ploit these varying potentials for transfer learn-008
ing, we propose a new hierarchical approach009
for few-shot and zero-shot generation. Our010
approach consists of a three-moduled jointly011
trained architecture: the first module indepen-012
dently lexicalises the distinct units of infor-013
mation in the input as sentence sub-units (e.g.014
phrases), the second module recurrently aggre-015
gates these sub-units to generate a unified in-016
termediate output, while the third module sub-017
sequently post-edits it to generate a coherent018
and fluent final text. We perform extensive019
empirical analysis and ablation studies on few-020
shot and zero-shot settings across 4 datasets.021
Automatic and human evaluation shows that022
the proposed hierarchical approach is consis-023
tently capable of achieving state-of-the-art re-024
sults when compared to previous work.1025

1 Introduction026

The recent development of large pretrained lan-027

guage models (PLMs; i.e. BERT (Devlin et al.,028

2019), GPT-3 (Brown et al., 2020), T5 (Raffel et al.,029

2020)) has caused a shift of interest in the research030

community towards domain adaptation and transfer031

learning for few-shot and zero-shot settings. Promi-032

nent and relevant examples of this include transfer033

learning on machine translation (Zoph et al., 2016;034

Brown et al., 2020) and language generation for035

task-oriented dialogues (Peng et al., 2020). This pa-036

per focuses on the latter, more broadly discussed as037

concept-to-text natural language generation (NLG),038

wherein the aim is to generate a natural language039

1Code will be made public on acceptance of the paper.
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Figure 1: Structure of Hierarchical Recurrent Aggrega-
tive Generation (HRAG). The lexicalisation PLM gen-
erates one sub-phrase per attribute-value pair. The ag-
gregation PLM recurrently combines sub-phrases and
the post-edit PLM rephrases them into a fluent output.

text that describes the semantic content of an ab- 040

stract structured machine-readable input (Meaning 041

Representation; MR). 042

Transfer learning from large pretrained models 043

has become a popular and high performing ap- 044

proach for concept-to-text systems, with 13 out of 045

the 15 participating teams in the latest WebNLG+ 046

Shared Task (Ferreira et al., 2020) employing a 047

fine-tuned pretrained model as their main submitted 048

system. Specifically, T5-based systems achieved a 049

human evaluation ranking on par with the ground 050

truth in terms of fluency and adequacy. 051

Recent machine learning, and in extension trans- 052
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OFFER ( stylist name = Atelier Salon Willow Glen ) OFFER ( city = San Jose ) INFORM ( count = 10 )

I found 10 salons you may likeLocated in San JoseIt is called Atelier Salon Willow Glen

There is a nice salon called Atelier Salon Willow Glen in San Jose

There is a nice salon called Atelier Salon Willow Glen . San Jose has 10 salons you may like and

I found 10 salons you may like . There is a nice salon in San Jose called Atelier Salon Willow Glen .

Figure 2: Example of lexicalisation, recurrent aggregation, and post-editing.

fer learning, approaches to language generation053

adopt an end-to-end architecture for generation054

(Peng et al., 2020) which inputs the full meaning055

representation and produces the full output text. In056

such end-to-end models, the traditional sub-tasks057

(Reiter and Dale, 2000) involved in language gen-058

eration (i.e. planning, lexicalisation, aggregation,059

referring expression generation, and surface realisa-060

tion) are performed implicitly. However, we posit061

that some language generation sub-tasks, specifi-062

cally lexicalisation (i.e. choice of vocabulary) and063

aggregation (i.e. process of combining simpler sen-064

tence structures to form complex ones), exhibit065

varying potential for exploiting transfer learning.066

For example, it is more difficult to exploit transfer067

learning for lexicalisation since if certain words are068

not already associated with a particular MR input,069

few-shot learning may not be able to create a strong070

association through the limited data. This is further071

exacerbated in zero-shot learning. On the other072

hand, the knowledge required to form complicated073

sentence structures and apply aggregation strate-074

gies is more commonly shared between domains075

and would benefit more from transfer learning.076

We aim to exploit these potentials for transfer077

learning in few-shot and zero-shot generation, via a078

new hierarchical approach to concept-to-text NLG.079

Specifically, we propose Hierarchical Recurrent080

Aggregative Generation (HRAG), a three-moduled081

architecture where the first module is in charge of082

independently lexicalising each unit of information083

in the input as a sub-phrase (e.g. a phrase express-084

ing that unit of information alone), the second mod-085

ule is responsible for recurrently aggregating these086

sub-units to generate a unified text, while the third087

module rephrases it to produce a coherent and flu-088

ent output; see Figure 1. The modules are jointly089

trained with a loss that combines their individual090

objectives. Concept-to-text is ideal for HRAG as091

MRs can be split into attribute-value pairs that 092

vaguely correspond to output sub-phrases. 093

In this paper, we (i) present Hierarchical Re- 094

current Aggregative Generation and experimen- 095

tally demonstrate the benefits of separately apply- 096

ing transfer learning to language generation sub- 097

tasks; (ii) facilitate the model’s training by infer- 098

ring module-specific training signal from the avail- 099

able output targets; (iii) provide extensive empiri- 100

cal analysis and ablation studies on few-shot and 101

zero-shot settings across 4 datasets, one of which 102

we adapt ourselves for few-shot learning; (iv) per- 103

form human evaluation comparing our proposed 104

approach to previous work on few-shot generation. 105

Our automatic and human evaluation results show 106

that our hierarchical approach achieves state-of-the- 107

art results when compared against previous work. 108

2 Method 109

Figure 1 shows the overall structure of the proposed 110

hierarchical model HRAG. Its three modules are 111

in charge of lexicalisation, aggregation and post- 112

edit, and are inspired by traditional NLG stages 113

and their specific potential for transfer learning in 114

a few-shot setting. Figure 2 shows an example of 115

how the outputs of each stage are formed. 116

2.1 Input segmentation 117

In a pre-processing step, the input MR is divided 118

into individual attribute value pairs sxvx each cor- 119

responding to one distinct fact (i.e. unit of informa- 120

tion). As we briefly mentioned in the introduction, 121

concept-to-text generation is particularly fitted to 122

our approach as the input MR is usually straightfor- 123

wardly divisible into distinct facts. To elaborate, in 124

task-oriented dialogue, a typical input MR consists 125

of one or more predicates that denote the commu- 126

nicative goal of the sentence, followed by a set of 127
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attribute-value pairs that correspond to the informa-128

tion that should be expressed in the final text.129

For example, in Figure 2 the input MR describes130

that the text should offer/suggest to the user a stylist131

named “Atelier Salon Willow Glen” that is in the132

city of “San Jose’, and also inform them that it133

has found “10” salons that match their criteria. We134

assume that each attribute-value pair corresponds to135

one distinct fact which is expressed as a sub-phrase136

of the final output, e.g. CITY = SAN JOSE loosely137

corresponds to the sub-phrase “in San Jose”.138

2.2 Lexicalisation139

The next stage is lexicalisation, i.e. the process140

of selecting the required vocabulary to express the141

input. HRAG’s respective module achieves this by142

independently generating a corresponding phrase143

wx
1 . . . w

x
len_x for each input fact sxvx. We opt to144

generate from single facts, disconnected from their145

MR context, as it makes it easier for the model146

to associate them with their relevant vocabulary.147

This might lead to the loss of informative context,148

but HRAG reintroduces context in a later stage.149

Additionally, having a single fact input facilitates150

transfer learning in the few-shot setting since any151

previous context may be irrelevant to new domains.152

A final benefit is that such input is more robust to153

unseen facts, as any unknown attributes will only154

affect the corresponding sub-phrase and will not155

interfere with the generation from other facts.156

In contrast, due to considering the whole input157

at once, previous end-to-end models need to be158

exposed to a lot of different combinations and or-159

derings of attribute-value slots, to sufficiently asso-160

ciate complex input MRs with the output text. In161

few-shot settings, this becomes an issue as avail-162

able MR combinations during training are limited.163

2.3 Recurrent aggregation164

In this stage, the generated sub-phrases of the165

lexicalisation module are consistently ordered ac-166

cording to the dataset, and input into the aggre-167

gation layer one at a time in a recurrent fash-168

ion. At the first step, the first two sub-phrases169

w1
1 . . . w

1
len_1 and w2

1 . . . w
2
len_2, and the correspon-170

dent attribute-value pairs s1v1 s2v2, are input171

into the aggregation layer to produce the com-172

bined sub-phrase w
[1,2]
1 . . . w

[1,2]
len_[1,2] (see Figures 1173

and 2). At each subsequent step r the input of174

the aggregation module consists of the concate-175

nation of the previously aggregated sub-phrases176

w
[1,r−1]
1 . . . w

[1,r−1]
len_[1,r−1], the current sub-phrase 177

wr
1 . . . w

r
len_r, and the correspondent attribute- 178

value pairs s1v1 s2v2 . . . srvr, to produce the com- 179

bined sub-phrase w
[1,r−1]
1 . . . w

[1,r]
len_[1,r]. The aggre- 180

gation module is called recurrently until all the sub- 181

phrases generated by the lexicalisation module are 182

combined into a single output w[1,n]
1 . . . w

[1,n]
len_[1,n]. 183

Each distinct aggregation layer has the advan- 184

tage of being able to disassociate (to some extent) 185

from the specific semantics of the input and direct 186

its attention on how to combine (and copy over) 187

the sub-phrases of the lexicalisation module. This 188

is further enhanced by the recurrent structure of 189

the proposed aggregation layer which permits the 190

model to focus on a limited amount of operations 191

at a time, converging into a final unified output. 192

2.4 Post-editing 193

Lastly, the post-edit module takes the fully aggre- 194

gated sub-phrases w[1,n]
1 . . . w

[1,n]
len_[1,n] and produces 195

the output w′1 . . . w
′
l. The aggregation layer mod- 196

els are trained to combine sub-phrases into larger 197

sub-phrases and do not necessarily produce a fluent 198

and coherent text complete with appropriate punc- 199

tuation and devoid of errors. It is the purpose of 200

the post-edit layer to rewrite the aggregated sub- 201

phrases, fix any errors and finalise the text. 202

The aggregation and post-edit modules stand to 203

benefit the most from transfer learning, as these 204

tasks are largely domain-agnostic. 205

2.5 Training, reranking and selection 206

Each module is built on top of a PLM; these PLMs 207

have separate shared weights per stage and are 208

specifically fine-tuned for that stage. For training, 209

the modules’ losses are combined as in Eq. 1: 210

Loss = 1
n

∑
n Losslex +

1
n−1

∑
n−1 Lossaggr + Losspe

(1) 211

where cross entropy is used for Losslex, Lossaggr 212

and Losspe , and n the number of units in the MR. 213

To mitigate any data sparsity issues, we employ 214

language agnostic delexicalisation (Zhou and Lam- 215

pouras, 2021) for the lexicalisation and aggregation 216

modules, with relexicalisation performed before 217

post-edit. Briefly, values are delexicalized by com- 218

paring their semantic embeddings to varying size 219

n-grams of the output. In addition, to minimize 220

the error propagated between layers, each module 221

generates multiple hypotheses per input and for- 222

ward the hypothesis with the least slot error rate to 223
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Figure 3: Example of sub-phrase target inference for
training the lexicalisation module. The underlined val-
ues are matched with the input values.

the next iteration/module, where slot error rate is224

defined as the percentage of values in the input that225

are missing, repeated or hallucinated in the output.226

2.6 Inferring labels227

Ideally, the PLMs that are used in HRAG’s different228

modules would be fine-tuned on stage-specific par-229

allel input and target data. However, while the post-230

edit module can be trained against the dataset’s231

final output target, such direct annotations for the232

first two modules are not readily available. To over-233

come this, we adopt a distant supervision approach234

to automatically extract stage-appropriate training235

signal from the existing data.236

For the lexicalization stage, we extract sub-237

phrase targets from the output target that weakly238

correspond to the individual facts; this process is239

depicted in Figure 3. Given a MR, we first deter-240

mine the occurrences of its attributes’ values in the241

output target via language agnostic delexicalisation.242

If the value is not matched, we repeat the process243

using the attribute name instead; this is particularly244

useful for some boolean attributes (e.g. “accepts245

credit cards = yes”). If a match is still not found,246

we assume that the fact is not present in the output247

target, and we ignore that attribute-value pair from248

the input during training.249

For each fact sxvx, the corresponding target sub-250

phrase is set to include the matched value of vx and251

all words preceding and following it until either252

a punctuation mark or another matched value is253

reached. This will cause some overlap between the254

inferred sub-phrase targets but ensures that all the255

relevant vocabulary is included in each fact’s target.256

While using this noisy training signal may encour-257

age some hallucinations of irrelevant input, in pre-258

liminary experiments this strategy worked better259

than alternatives; the aggregation layer proved ro- 260

bust enough to ignore irrelevant or repeated words 261

that were output from the lexicalisation layer. 262

Using the aforementioned value matching, we 263

can similarly infer targets for the aggregation lay- 264

ers. However, to facilitate the process, the order 265

in which lexicalisation sub-phrases are aggregated 266

(see Section 2.3) needs to be fixed to the appear- 267

ance order of the corresponding matched values in 268

the output target. Given the example of Figure 3, 269

the order would be INFORM (COUNT = 10) > OF- 270

FER (CITY = SAN JOSE) > OFFER (STYLIST NAME 271

= ATELIER SALON WILLOW GLEN). 272

The aggregation targets are then inferred as such: 273

for every aggregation group s1v1 s2v2 . . . srvr, the 274

target consists of a subphrase of the output target, 275

from its beginning, including the words of the last 276

matched value vr, and until either a punctuation or 277

another matched value is reached after that point. 278

Again following the example of Figure 3, the aggre- 279

gation target for INFORM (COUNT = 10) + OFFER 280

(CITY = SAN JOSE) will be “I found 10 salons you 281

may like. There is a nice salon in San Jose called”. 282

We note that this order of lexicalisation sub- 283

phrases is only imposed during training since we 284

are limited by the output target. During testing, as 285

we mentioned in Section 2.5, the generated sub- 286

phrases of the lexicalisation module are consis- 287

tently ordered according to the dataset. This results 288

in an important discrepancy between the order of 289

sub-phrases that HARG is exposed to during train- 290

ing and inference; we do not address this further in 291

this paper but leave it for future work. 292

3 Experimental Setup 293

3.1 Datasets 294

We perform experiments on four datasets: Schema- 295

Guided Dialogue (Rastogi et al., 2020, SGD) with 296

the few-shot splits provided by (Kale and Ras- 297

togi, 2020, FewShotSGD), MultiWoZ 2.2 (Zang 298

et al., 2020), FewShotWoZ (Peng et al., 2020) and 299

WebNLG 3.0 (Ferreira et al., 2020). The first three 300

are task-oriented dialogue datasets, that have been 301

adapted to different extents for few-shot learning by 302

previous work. For our experiments, dialogue MRs 303

are linearised as lists of “INTENT ( ATTRIBUTE = 304

VALUE)”, similar to what is depicted in Figure 2, 305

while utterances are tokenised and lower-cased. 306

In contrast to the other datasets, WebNLG 3.0 307

(Ferreira et al., 2020) does not contain dialogues 308

but describes entities from a variety of domains, 309
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and consists of sets of RDF triples and correspond-310

ing texts in English and Russian; here we use only311

the English portion. The dataset is organised in312

subsets based on the number of RDF triples in the313

input, ranging from 1 to 7. To create appropriate314

splits for few-shot learning, for each length-specific315

subset, we identified all unique combinations of316

RDF properties in the input and limited the dataset317

to a single (where available) instance per combina-318

tion. In other words, we kept only 1 instance per319

property for the 1-triple subset, 1 instance per pair320

of properties for the 2-triple subset, and so forth.321

Our splits essentially constitute a 1-shot learning322

dataset, which we will refer to as FewShotWeb323

dataset. More details regarding the FewShotWeb324

splits can be found in appendix X. Preprocessing325

of the RDF triples and target text were performed326

similarly to Zhou and Lampouras (2021).327

3.2 Automatic metrics328

Following related work, to estimate the fluency of329

the output, we provide results for BLEU-4 (com-330

puted with SacreBLEU) (Papineni et al., 2002; Post,331

2018), and BLEURT (Sellam et al., 2020) (specif-332

ically the bleurt-base-128 version). We calculate333

BLEU score over multiple references to mitigate334

the unreliability of single reference evaluation.335

To estimate adequacy, we use Missing Slot Error336

(MER), computed as the macro-averaged percent-337

age of values in the MR that are missing (i.e. do338

not appear verbatim) from the output utterance.339

We should note that MER is an imperfect approx-340

imation compared to slot error rate, as it does not341

account for hallucinations, boolean or no-value at-342

tributes. These types of slot errors are difficult to343

detect in non-delexicalized output, which all sys-344

tems in our experiments produce. Evaluation is345

performed consistently across all datasets.2346

3.3 Systems347

We compare HRAG against a fine-tuned end-to-348

end T5 model (E2E T5), equivalent to the “Naive"349

model shown by Kale and Rastogi (2020), which350

achieved state-of-the-art results on the MultiWoZ351

dataset as well as in the recent WebNLG Challenge352

2020 (Castro Ferreira et al., 2020). In all experi-353

ments, we employ t5-small for both the underlying354

PLMs of HRAG’s modules and E2E T5.355

2Evaluation scripts will be released along with the code.

BLEU ↑ BLEURT ↑ MER ↓

Lexicalisation 46.29 -0.39 0.00
+ aggregation 46.60 -0.30 1.16
+ post-edit 53.00 -0.20 1.13
+ selection 53.04 -0.20 0.14

E2E T5 50.15 -0.23 0.84
+ delex 50.25 -0.27 0.81

Table 1: Results of ablation study on 5-Shot SGD.

4 Results 356

4.1 Ablation Study 357

First, we present an ablation study of HRAG on the 358

5-shot SGD dataset aimed to analyse the impact of 359

its components; the results are presented in Table 360

1. To examine the output of the lexicalisation mod- 361

ule without aggregation, we simply concatenate 362

the independently generated sub-phrases to form a 363

unified text. As is to be expected, such a concate- 364

nation achieves low BLEU and BLEURT scores, 365

clearly indicating the need for more sophisticated 366

aggregation. Nevertheless, the lexicalisation mod- 367

ule achieves 0% missing slot error thanks to its 368

focus on individual units of information. 369

For the aggregation module, we examine the out- 370

put of its final iteration. Its performance is on par 371

with lexicalisation output, seemingly suggesting 372

that aggregation offers little improvement. How- 373

ever, based on output analysis, the low BLEU and 374

BLEURT are misleading and do not reflect the out- 375

put quality. We attribute the lack of automatic score 376

improvements to the module’s tendency to overgen- 377

erate at the end of the output in anticipation of the 378

next sub-phrase (as shown in the example in Figure 379

2). Other errors emerge from no-value attributes 380

and due to sub-optimal training targets. Slot er- 381

ror increases the most during aggregation, as its 382

recurrent nature is prone to error propagation. 383

The role of the post-edit module is to obviate 384

errors propagated from the lexicalisation and ag- 385

gregation modules, and it greatly improves perfor- 386

mance by 6.4 and 0.1 points in BLEU and BLEURT 387

respectively. Specifically, this stage fixes the lex- 388

icalisation of no-value attributes, removes over- 389

generated tokens, improves fluency, and adds or 390

removes values that have been missed or repeated. 391

Nonetheless, as this is an extra generation step, 392

it occasionally removes some required values, as 393

indicated by the almost constant slot error. 394

Due to these frequent imperfections in the post- 395
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edit layer’s output, the final output of HRAG is396

selected between the output of the last aggregation397

iteration and the output of the post-edit module ac-398

cording to which one has the lower slot error. This399

process leads to the highest BLEU and BLEURT400

scores and a missing slot error close to 0%.401

Finally, we examine the impact of delexicalisa-402

tion on E2E T5, applying it similarly to how it is403

applied to HRAG’s modules. While HRAG ben-404

efits from delexicalisation as it improves its gen-405

eralisation ability and helps reduce slot error, we406

observe only marginal improvements (a missing407

slot error decrease of 0.03%) when applied over a408

strong end-to-end model like E2E T5.409

4.2 Few-Shot Evaluation410

Tables 2 show automatic evaluation results for E2E411

T5 and HRAG systems trained on an increasing412

amount of data on FewShotSGD, FewShotWeb and413

MultiWoZ datasets. Overall the behaviour of the414

two systems is consistent across the three datasets.415

As discussed in Section 4.1, HRAG manages to416

preserve the input MR values throughout genera-417

tion, and as such outperforms E2E T5 in slot error418

across all dataset splits by a significant margin, es-419

pecially when trained on smaller splits. E2E T5420

only overperforms on 0.1% MultiWoZ, but a closer421

examination of the outputs reveals that the 4.85%422

MER is achieved at great expense to fluency as423

the system simply copies all input MRs instead of424

generating utterances. Although HRAG was not425

completely unaffected by such behaviour, it was426

still able to generate relevant outputs thanks to its427

ability to independently lexicalise smaller and sim-428

pler sub-phrases which lead to improvements of429

10.79 BLEU and 0.55 BLEURT scores over E2E430

T5 despite the higher MER on 0.1% MultiWoZ.431

Results in Table 2 demonstrate the effectiveness432

of HRAG in extremely low-resourced conditions433

with differences in BLEU and BLEURT scores of434

2.89 and 0.3 for FewShotSGD and 6.54 and 0.12435

for FewShotWeb on their respective smaller splits.436

Improvements over the end-to-end systems con-437

verge as the number of training examples increases.438

HRAG is able to maintain an edge over E2E T5 on439

all FewShotSGD and FewShotWeb splits, while on440

MultiWoZ, E2E T5 appears to be the best perform-441

ing system, especially in terms of BLEURT score442

with a difference up to 0.9. By looking at the sys-443

tem’s outputs, however, HRAG appears to perform444

comparably or even outperform E2E T5 despite445

BLEU ↑ 5 10 20 40 80

E2E T5 50.15 55.75 60.37 62.53 63.62
HRAG 53.04 56.95 60.94 62.49 63.97

BLEURT ↑ 5 10 20 40 80

E2E T5 -0.23 -0.15 -0.09 -0.06 -0.05
HRAG -0.20 -0.13 -0.09 -0.06 -0.04

MER ↓ 5 10 20 40 80

E2E T5 0.84 0.65 0.37 0.34 0.27
HRAG 0.14 0.05 0.03 0.07 0.01

(a) FewShotSGD

BLEU ↑ 1 2 3 4 5 6 7

E2E T5 21.46 37.47 41.17 45.31 45.09 45.42 46.40
HRAG 28.00 39.04 43.89 45.64 45.61 45.62 46.68

BLEURT ↑ 1 2 3 4 5 6 7

E2E T5 -0.32 0.08 0.13 0.22 0.21 0.22 0.23
HRAG -0.20 0.11 0.19 0.24 0.23 0.23 0.25

MER ↓ 1 2 3 4 5 6 7

E2E T5 22.81 23.80 19.48 19.32 20.72 20.10 19.54
HRAG 8.21 5.58 1.75 0.98 0.52 0.24 0.35

(b) FewShotWeb

BLEU ↑ 0.1% 0.5% 1% 5% 10% 20%

E2E T5 3.34 25.90 41.27 48.77 50.65 52.56
HRAG 14.13 31.69 40.39 48.72 49.71 50.34

BLEURT ↑ 0.1% 0.5% 1% 5% 10% 20%

E2E T5 -1.29 -0.39 -0.16 -0.08 -0.07 0.00
HRAG -0.74 -0.33 -0.18 -0.12 -0.10 -0.09

MER ↓ 0.1% 0.5% 1% 5% 10% 20%

E2E T5 4.85 5.79 5.76 2.86 2.44 2.10
HRAG 7.45 3.53 1.64 0.75 0.70 0.86

(c) Reduced MultiWoZ

Table 2: Automatic evaluation results.

BLEURT score been much lower. Examples of 446

such cases are provided in Appendix C. 447

Table 3 shows results on FewShotWoZ; models 448

are trained and tested separately on each domain. 449

Similarly to the results shown in Table 2, HRAG 450

excels in terms of slot error, missing on average 5% 451

less values compared to E2E T5. However, while 452

on average E2E T5 outperforms HRAG in BLEU 453

and BLEURT scores, there is no consistently better 454

system. Unfortunately, only one reference per MR 455

is provided making multi-reference scoring impos- 456

sible and in extension BLEU more unreliable. In 457

Section 4.4, we perform human evaluation to better 458

assess systems performance on FewShotWoZ. 459

6



BLEU ↑ Restaurant Laptop Taxi Tv Train Hotel Attraction AVG

E2E T5 25.73 25.94 17.62 26.25 15.04 28.34 19.41 22.62
HRAG 25.55 22.95 18.55 24.70 19.31 29.96 14.44 22.21

BLEURT ↑ Restaurant Laptop Taxi Tv Train Hotel Attraction AVG

E2E T5 -0.08 0.03 -0.43 0.02 -0.32 -0.07 -0.44 -0.18
HRAG -0.12 -0.11 -0.40 -0.09 -0.34 -0.04 -0.47 -0.22

MER ↓ Restaurant Laptop Taxi Tv Train Hotel Attraction AVG

E2E T5 7.43 6.73 16.87 3.80 18.76 3.75 21.41 11.25
HRAG 4.21 2.58 7.23 4.15 13.47 1.39 9.20 6.03

Table 3: Automatic evaluation results on FewShotWoZ. AVG is the macro-average score across all domains.

4.3 Zero-Shot Evaluation460

We perform zero-shot analysis on SGD and461

WebNLG testsets; Figure 4 shows the results of462

the systems presented in Section 4.2 with reported463

performances split into seen and unseen cases.3464

In both datasets, HRAG achieves slot errors465

in unseen cases lower than even E2E T5’s seen466

scores, further validating the generalisation abil-467

ity of HRAG when little to no resources are avail-468

able. Overall, HRAG achieves higher BLEU and469

BLUERT scores than E2E T5 as well, with the ex-470

ception of BLEURT scores for FewShotSGD. How-471

ever, similarly to what has been found in Section472

4.2, HRAG’s outputs do not appear to necessarily473

be more disfluent than E2E T5 outputs.474

Interestingly, HRAG’s slot error for unseen Few-475

ShotWeb is lower than the corresponding seen one.476

We observe that HRAG tends to avoid generating477

complex sentence structures when dealing with478

unseen inputs, and simply concatenates the lexi-479

calisation sub-phrases (e.g. “liselotte grschebina,480

born in the german empire, attended the school of481

applied arts in stuttgart, israel.”). This strategy ben-482

efits FewShotWeb as HRAG focuses on copying483

elements from the input and effectively avoids in-484

troducing noise. Such behaviour is not observed485

for FewShotSGD, but seen/unseen slot errors are486

still comparable and in close proximity to 0%.487

4.4 Human Evaluation488

To account for the shortcomings of automatic eval-489

uation, we employed the human evaluation frame-490

work Direct Assessment (Graham et al., 2017)491

to setup tasks on the Amazon Mechanical Turk492

(AMT) platform and assess the fluency and ade-493

quacy of various models’ outputs. We created sepa-494

rate tasks to assess the fluency and adequacy of the495

3Full results tables are shown in Appendix D.
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Figure 4: Zero-shot automatic evaluation results.

texts on two distinct subsets, in order to minimise 496

correlation between the criteria. Specifically, we 497

sampled 750 MRs from each test set of 5-shot SGD 498

and FewShotSGD, and collected the corresponding 499

outputs of HRAG, E2E T5, and the ground truth 500

(GOLD); we include the latter to provide context to 501

the evaluation. We picked the 5-shot subset of SGD 502

to observe how the systems behave when exposed 503

to the least amount of in-domain data. The pool 504

of crowd-workers was limited to those residing in 505

English-speaking countries, and who had a high 506

acceptance rate; every text was evaluated by at least 507

3 crowd-workers on a 1 to 100 Likert scale. After 508

consulting the crowd-workers’ reliability based on 509
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Fluency Adequacy
raw z-score raw z-score

5S
-S

G
D GOLD 80.502 0.103 78.690 0.044

E2E T5 76.355 -0.033 76.864 -0.017
HRAG 77.245 -0.012 77.508 0.041

FS
-W

O
Z GOLD 76.936 0.018 80.210 0.066

E2E T5 75.845* 0.016* 78.609 0.042
HRAG 75.824* 0.014* 79.096 0.043

Table 4: Human Evaluation results; * denotes no statis-
tically significant difference between assessments.

the Direct Assessment platform analysis, we had510

to filter out 39.5% of the participants.511

Table 4 gathers the raw and mean standardised z-512

scores of the evaluation. Both models of course are513

considered worse than the ground truth, but HRAG514

performs better than E2E T5 in both fluency and515

adequacy, with the exception of fluency in Few-516

ShotWoZ where the systems exhibit no statistically517

significant difference (according to Wilcoxon rank518

sum tests). These results further support the effi-519

cacy of HARG for few-shot settings.520

5 Related work521

Despite being an important research topic with522

real-life applications, domain adaptation for low-523

resource/few-shot concept-to-text NLG has not524

been extensively researched. Wen et al. (2016)525

leveraged the scarcity of target in-domain data by526

augmenting it with synthetic data, Tran and Nguyen527

(2018) used variational autoencoders in conjunc-528

tion with text similarity and domain critics to bet-529

ter guide the fine-tuning process, while Mi et al.530

(2019) tackled the problem by defining domain531

adaptation as an optimisation meta-learning task.532

Most recently, Peng et al. (2020) and Kale and Ras-533

togi (2020) have proposed the use of pretrained534

language models to tackle few-shot and zero-shot535

learning in concept-to-text NLG, achieving signif-536

icant gains over strong non-pretrained baselines.537

Specifically, Peng et al. (2020) proposed SC-GPT,538

a semantically conditioned GPT-2 model, wherein,539

prior to few-shot learning, the GPT-2 model is fur-540

ther fine-tuned on a number of task-oriented dia-541

logue datasets in order to mitigate the problem of542

representation bias. On the other hand, in Kale543

and Rastogi (2020), a set of human-authored tem-544

plates are used to generate high-quality sentences 545

corresponding to each unit of information in an 546

MR. These are then concatenated and given as in- 547

put to a T5 model (T2G2) to form a coherent sen- 548

tence. In this paper’s evaluation, we opt to compare 549

our approach against the naive T5 baseline intro- 550

duced by Kale and Rastogi (2020), as it is shown to 551

overly outperform SC-GPT by basically replacing 552

the underlying GPT-2 model for T5, and SC-GPT 553

was outperform all previous non-pretrained base- 554

lines. We do not compare against T2G2, as access 555

to human authored templates or other such manu- 556

ally annotated resources, which are by nature very 557

domain-specific and costly to create, and not nec- 558

essarily guaranteed in low-resource settings. 559

In our proposed system, the hierarchy emerges 560

from modelling the lexicalisation and aggregation 561

sub-tasks on separate layers. Previous attempts 562

in exploring hierarchical structures for text genera- 563

tion tasks instead focused on modelling different as- 564

pects of the input or output. In concept-to-text NLG 565

for task-oriented dialogues, Su et al. (2018) pro- 566

posed a multi-layered decoding process where each 567

layer was responsible for generating words associ- 568

ated with specific part-of-speech tags. Chen et al. 569

(2019) and Tseng et al. (2019) took advantage of 570

the intrinsically hierarchical structure of dialogue 571

acts to create better input representations and ease 572

domain adaptation. Our approach is also related 573

to coarse-to-fine approaches, as they have been ex- 574

plored in other generation tasks, like story (Fan 575

et al., 2018), review (Li et al., 2019) and keyphrase 576

(Chen et al., 2020) generation. However, in these 577

tasks, the output is not necessarily restricted to be 578

an exact realisation of the input, and as such, it 579

can initially be loosely prompted or drafted, and 580

subsequently elaborated upon. 581

6 Conclusion 582

We proposed Hierarchical Recurrent Aggregative 583

Generation, a three-moduled jointly trained archi- 584

tecture, designed to exploit the different extents to 585

which lexicalisation and aggregation can benefit 586

from transfer learning. Due to the lack of explicit 587

training signal for HRAG’s modules, we also show 588

how module-specific targets can be inferred from 589

the available output targets. Extensive automatic 590

metric experiments and analysis across 4 datasets, 591

as well as accompanying human evaluation, shows 592

that HRAG outperforms previous state-of-the-art, 593

especially on the outputs’ slot error and adequacy. 594
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A WebNLG few-shot splits791

Table 5 details how many of the total data were kept792

in our WebNLG 3.0 few-shot splits (FewShotWeb);793

as the triple length grows, most property combina-794

tions are unique which results to a bigger portion of795

the data being included. Interestingly, the 1-triple796

subset covers 346 out of 372 occurring properties,797

which makes it particularly suited for supervised798

learning of our lexicalisation module.799

B Configurations800

Fine-tuning is performed with Adafactor (Shazeer801

and Stern, 2018) as optimiser, with learning rate802

set to 1e−3 and Huggingface (Wolf et al., 2020)’s803

default parameters; gradient accumulation is used804

with a batch size of 256 for all the datasets except805

FewShotWoZ where the batch size is set to 1 as in806

(Peng et al., 2020); early-stopping is adopted with807

patience set to 30 and a combined loss between808

BLEU and slot error rate as the scoring function.809

Reranking is performed as described in Sec-810

tion 2.5, with 5 lexicalisation and aggregation hy-811

potheses generated at each time step. However, at812

training time, for computational reasons, only the813

lexicalisation outputs are reranked. At inference814

time, reranking is performed for both the baseline815

and HRAG’s post-edit module, with 10 hypotheses816

generated and reranked. Each system is fine-tuned817

with 5 different seeds. Section 4 reports the average818

performance of each system.819

C Examples820

Table 6 shows example of outputs produced by821

systems trained on 20% MultiWoZ where BLEURT822

score does not correlate.823

Table 7 shows examples from FewShotWoZ824

where E2E T5 suffers from hallucinations.825

# Triples Few-shot data Full data

1-triple 346 7686
2-triple 619 6948
3-triple 813 7610
4-triple 898 7061
5-triple 704 5084
6-triple 191 536
7-triple 168 501

Table 5: WebNLG 3.0 few-shot splits

D Full results 826

Table 8 and 9 shows the full results presented in 827

Section 4.3. 828
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MR: hotel [ inform ( stars = 4 ) ] BLEURT
E2E T5: it has a 4 star rating . 0.21
HRAG: it ’s a 4 star hotel . -0.79

MR: attraction [ request ( name ) | inform ( area = city centre ; choice-1 = many ] BLEURT

E2E T5:
there are many attractions in the city centre . what is the name of the attraction
you are looking for ?

0.01

HRAG: there are many attractions in the city centre . do you have a name ? -0.37

MR:
train [ offerbook ( none ) | inform ( leave = 05:59 ; arrive-1 = 07:27 ; depart = cambridge ;
dest-1 = london ; dest-2 = liverpool street ; day = saturday ; id-1 = tr2895 ) ]

BLEURT

E2E T5:
tr2895 leaves cambridge at 05:59 and arrives in london at 07:27 on saturday .
would you like me to book you a ticket ?

0.05

HRAG:
i have tr2895 that leaves at 05:59 and arrives at 07:27 from cambridge to liverpool street
london on saturday . would you like me to book it for you ?

-0.20

Table 6: 20% MultiWoZ output examples.

MR: inform count ( count = 11 ; near = nob hill ; type = restaurant )
E2E T5: there are 11 restaurants near nob hill in the north hill area . it is a nice restaurant
HRAG: there are 11 restaurants near nob hill area

MR: inform ( memory = 4 gb;; type = laptop ; name = satellite nereus 81 ; IsForBusiness = true )
E2E T5: the satellite nereus 81 laptop is not for business computing and has 4 gb memory and a 4 gb memory

HRAG:
the satellite nereus 81 laptop has 4 gb of memory with a good battery rating , and is
for business computing

MR: inform ( price = 10.10 gbp ; id = tr5433 ) | book ( none )
E2E T5: tr5433 will cost 10.10 gbp per ticket and leaves at tr5433 . can i book it for you ?
HRAG: tr5433 price is 10.10 gbp payable at the station . can i book it for you ?

Table 7: FewShotWoZ output examples.
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BLEU ↑ 1 2 3 4 5 6 7

E2E T5 20.44 39.79 44.75 50.01 50.48 51.06 51.13
HRAG 27.29 41.63 47.68 50.16 50.17 50.40 51.14

BLEURT ↑ 1 2 3 4 5 6 7

E2E T5 -0.32 0.14 0.21 0.29 0.29 0.31 0.31
HRAG -0.19 0.17 0.27 0.32 0.31 0.32 0.32

MER ↓ 1 2 3 4 5 6 7

E2E T5 25.54 24.52 19.78 19.86 19.95 20.21 19.65
HRAG 10.76 6.78 2.28 1.20 0.76 0.29 0.43

(a) Seen

BLEU ↑ 1 2 3 4 5 6 7

E2E T5 22.65 34.74 36.95 39.77 38.73 38.73 40.70
HRAG 28.84 35.99 39.40 40.31 40.23 40.23 41.41

BLEURT ↑ 1 2 3 4 5 6 7

E2E T5 -0.33 0.00 0.03 0.13 0.11 0.12 0.14
HRAG -0.21 0.04 0.10 0.16 0.14 0.14 0.17

MER ↓ 1 2 3 4 5 6 7

E2E T5 18.83 22.77 19.04 18.53 21.85 19.95 19.39
HRAG 4.49 3.82 0.99 0.50 0.18 0.17 0.23

(b) Unseen

Table 8: Full automatic evaluation results for FewShot-
WoZ.

BLEU ↑ 5 10 20 40 80

E2E T5 52.37 57.78 63.26 65.01 65.94
HRAG 55.47 59.61 63.64 64.96 66.11

BLEURT ↑ 5 10 20 40 80

E2E T5 -0.21 -0.12 -0.05 -0.05 -0.01
HRAG -0.16 -0.09 -0.05 -0.02 -0.01

MER ↓ 5 10 20 40 80

E2E T 5 0.69 0.64 0.39 0.24 0.23
HRAG 0.12 0.05 0.04 0.01 0.01

(a) Seen

BLEU ↑ 5 10 20 40 80

E2E T5 41.10 47.50 48.59 52.46 54.14
HRAG 43.13 46.11 49.91 52.70 55.20

BLEURT ↑ 5 10 20 40 80

E2E T5 -0.35 -0.25 -0.23 -0.18 -0.20
HRAG -0.37 -0.30 -0.25 -0.23 -0.19

MER ↓ 5 10 20 40 80

E2E T5 1.55 0.68 0.29 0.84 0.45
HRAG 0.23 0.09 0.00 0.03 0.00

(b) Unseen

Table 9: Full automatic evaluation results for Few-
ShotSGD.
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