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Abstract

Federated Learning (FL) is a distributed learning
paradigm that allows multiple clients to learn a
joint model by utilizing privately held data at each
client. Significant research efforts have been de-
voted to develop advanced algorithms that deal
with the situation where the data at individual
clients have heterogeneous distributions. In this
work, we show that data heterogeneity can be
dealt from a different perspective. That is, by
utilizing a certain overparameterized multi-layer
neural network at each client, even the vanilla
FedAvg (a.k.a. the Local SGD) algorithm can
accurately optimize the training problem: When
each client has a neural network with one wide
layer of size N (where N is the number of total
training samples), followed by layers of smaller
widths, FedAvg converges linearly to a solution
that achieves (almost) zero training loss, without
requiring any assumptions on the clients’ data dis-
tributions. To our knowledge, this is the first work
that demonstrates such resilience to data hetero-
geneity for FedAvg when trained on multi-layer
neural networks. Our experiments also confirm
that, neural networks of large size can achieve bet-
ter and more stable performance for FL problems.

1. Introduction
In Federated Learning (FL), multiple clients collaborate
with the help of a server to learn a joint model (McMa-
han et al., 2017). The privacy guarantees of FL has made
it a popular distributed learning paradigm, as each client
holds a private data set and aims to learn a global model
without leaking its data to other nodes or the server. The
performance of FL algorithms is known to degrade when
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training data at individual nodes originates from different
distributions, referred to as the heterogeneous data setting
(Yu et al., 2019a; Woodworth et al., 2020a). In the past few
years, a substantial research effort has been devoted towards
developing a large number of algorithms that can better deal
with data heterogeneity, (Karimireddy et al., 2020b; Zhang
et al., 2021; Li et al., 2018; Acar et al., 2020; Khanduri et al.,
2021). However, in practice it has been observed by a num-
ber of recent works, that in spite of the data heterogeneity,
the simple vanilla FedAvg algorithm (a.k.a. the Local SGD)
still offers competitive performance in comparison to the
state-of-the-art. For example, see Table 2 in (Karimireddy
et al., 2020a), Table 1 in (Reddi et al., 2020), and Table 2 in
(Yang et al., 2021) for performance comparison of FedAvg
on popular FL tasks.

Motivated by these observations, we ask: Is it possible to
handle the the data heterogeneity issue from a different per-
spective, without modifying the vanilla FedAvg algorithm?
To answer this question, in this work we show that FedAvg
can indeed perform very well regardless of the heterogene-
ity conditions, if the models to be learned are nice enough.
Specifically, FedAvg finds solutions that achieve almost
zero training loss (or almost global optimal solution) very
quickly (i.e., linearly), when the FL model to be trained is
certain overparameterized multi-layer neural network. To
the best of our knowledge, this is the first result that shows
(linear) convergence of FedAvg in the overparameterized
regime for training multilayer neural networks. The major
contributions of our work are listed below.

• Under certain assumptions on the neural network architec-
ture, we prove some key properties of the clients’ (stochas-
tic) gradients during the training phase (Lemmas 1 and
2). These results allow us to establish convergence of
FedAvg for training overparameterized neural networks
without imposing restrictive heterogeneity assumptions
on the gradients of the local loss functions.

• We design a special initialization strategy for training the
network using FedAvg. The initialization is designed such
that the singular values of the model parameters and the
outputs of the first layer of local and aggregated model
parameters stay positive definite during the training. This
property combined with overparameterization enables Fe-
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dAvg to converge linearly to a (near) optimal solution.

• We conduct experiments on CIFAR-10 and MNIST
datasets in both i.i.d. and heterogeneous data settings
to compare the performance of FedAvg on various net-
work architectures of different sizes.

To our knowledge, this is the first work that shows the linear
convergence of FedAvg (both SGD and GD versions) to the
optimal solution when training a overparameterized multi-
layer neural networks.

Related Work: Federated Learning (FL). FL algorithms
were first proposed in (McMahan et al., 2017), where within
each communication round the clients utilize their private
data to update the model parameters using multiple SGD
steps. Earlier works analyzed the performance of FedAvg
for the case of homogeneous data setting (Zhou & Cong,
2018; Stich, 2018; Lin et al., 2020; Woodworth et al., 2020b;
Wang & Joshi, 2021), i.e., when the local data at each client
follows the same underlying distribution. Motivated by prac-
tical applications, recent works have analyzed FedAvg for
heterogeneous client data distributions (Yu et al., 2019b;a;
Haddadpour & Mahdavi, 2019; Woodworth et al., 2020a)
and it was observed that the performance of FedAvg de-
grades as the data heterogeneity increases. To address the
data heterogeneity issue among clients, many works have fo-
cused on developing sophisticated algorithms (Karimireddy
et al., 2020b; Zhang et al., 2021; Acar et al., 2020; Li et al.,
2018; Khanduri et al., 2021; Karimireddy et al., 2020a; Das
et al., 2020).

Overparameterized Neural Networks. The surprising
performance of overparameterized neural networks1 has
raised significant research interest in the ML community to
analyze the phenomenon of overparameterization (Belkin
et al., 2019). Consequently, many works have analyzed
the performance of centralized (stochastic) gradient descent
(S)GD on overparameterized neural network architectures
under different settings (Jacot et al., 2018; Li & Liang, 2018;
Arora et al., 2019; Du et al., 2018; 2019; Allen-Zhu et al.,
2019; Zou & Gu, 2019; Nguyen & Mondelli, 2020; Nguyen,
2021).

However, there are only a handful of works that have at-
tempted to analyze the performance of overparameterized
neural networks in the distributed setting (Li et al., 2021;
Huang et al., 2021; Deng & Mahdavi, 2021). The works
most closely related to our work are (Huang et al., 2021)
and (Deng & Mahdavi, 2021). (Huang et al., 2021) ana-
lyzed the performance of FedAvg on a single hidden-layer
neural network for the case when each client utilizes GD

1A model is generally referred to as overparameterized if the
number of (trainable) parameters are more than the number of
training samples N .

for the local updates. The authors established linear con-
vergence of FedAvg using the NTK parameterization and
showed that it suffices to design the neural network of width
Ω(N4) to achieve this performance (where N is the number
of training samples). Similarly, (Deng & Mahdavi, 2021)
analyzed the performance of FedAvg on a ReLU neural
network but when each client utilizes SGD (or GD) for the
local updates. The authors proved convergence of FedAvg
under the standard parameterization while requiring the very
large network width of Ω(N18). Note that since individual
clients can be devices with limited computational capabili-
ties, in realistic settings it is undesirable to have networks
of such large widths. In contrast to both these works, we
focus on the more practical setting of a multi-layer neural
network (Nguyen & Mondelli, 2020) and establish linear
convergence of FedAvg even for the case when each client
utilizes SGD for the local updates. Importantly, we show
that with proper initialization, it only requires a network of
width N at each client, which is much smaller compared to
the unrealistic requirements of (Huang et al., 2021; Deng &
Mahdavi, 2021).

2. Problem Setup
In this section, we define the multi-layer neural network
and formalize the problem we aim to solve. We consider
a distributed system of K clients with each client having
access to a privately held data set. We assume that each
client k ∈ {1, . . . ,K } has Nk training samples denoted
as {(Xk, Yk)}, with Xk ∈ RNk×din and Yk ∈ RNk×dout .
Note that each row of Xk and Yk represents the feature vec-
tor and its corresponding label, and din and dout denote the
feature (input) and label (output) dimensions, respectively.

We further denote N =
K∑

k=1

Nk as the total samples across

all clients.

Suppose each client trains a fully-connected neural network
with L layers, and with activation function σ : R → R.
We denote the vectorized parameters at each node k ∈
{1, . . . ,K} as θk = [vec (W1,k) , . . . , vec (WL,k)] ∈ RD,
where Wl,k ∈ Rnl−1×nl represents the weight matrix of
each layer l ∈ {1, . . . , L} and nl represents the width of
each layer. Note that each layer inputs a (feature) vector of
dimension nl−1 and outputs a (feature) vector of dimension
nl. For simplicity, define n0 = din and nL = dout as the
input and the output dimensions of the neural network. We
define Fl,k as the local output of each layer l at client k,
then using the above notations, we have

Fl,k =


Xk l = 0

σ (Fl−1,kWl,k) l ∈ {1, 2, . . . , L}
FL−1,kWL,k l = L

. (1)

We further define the vectorized output of each layer and
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the labels at each client as fl,k = vec(Fl,k) ∈ RNknl and
yk = vec(Yk) ∈ RNknL .

Similar to the above setup, we also define the notations to
describe a single network, with the full data (X,Y ) with
X ∈ RN×din and Y ∈ RN×dout as input. This “centralized"
network will be useful later to perform the analysis. Then
given parameter θ = [vec (W1) , . . . , vec (WL)], the output
at each layer of the network is defined as

Fl =


X l = 0

σ (Fl−1Wl) l ∈ {1, 2, . . . , L}
FL−1WL l = L

. (2)

Next, we define the local and global loss functions. First,
each client k ∈ {1, . . . ,K} has a local loss function given
by: Φk(θ) := 1

2Nk
∥fL,k(θ) − yk∥22, where ∥ · ∥2 denotes

the standard ℓ2-norm. Then the global loss function is the
sum of weighted local loss functions, given by:

Φ(θ) :=

K∑
k=1

Nk

N
Φk(θ) =

1

2N
∥FL(θ)− y∥2F . (3)

Additionally, define the gradient of (3) as g :=
[vec(∇W1

Φ(θ)), . . . , vec(∇WL
Φ(θ))], which is the stacked

gradient of the loss w.r.t. the 1st to Lth layer’s parameters;
define the gradient of the losses at each client k ∈ [K] as:
gk := [g1,k, . . . , gL,K ] with gl,k := vec(∇Wl,k

Φ(θ)) for
all l ∈ [L].

Next, we define the optimality criteria to solve (3) using an
overparameterized neural network.

Definition 1 (ϵ-optimal solution). Consider an overparam-
eterized problem minθ Φ(θ), where there exist θ∗ such that
Φ(θ∗) = 0. A solution θ is called an ϵ-optimal solution if
it satisfies Φ(θ) ≤ ϵ. Moreover, if θ is a random variable,
then we use E[Φ(θ)] ≤ ϵ to denote an ϵ-optimal solution,
where the expectation is taken w.r.t. the randomness of x.

3. The FedAvg Algorithm
A classical algorithm to solve problem (3) is the FedAvg
(McMahan et al., 2017). In FedAvg, each client performs
multiple local updates before sharing their updated parame-
ters with the server. We refer the algorithm as FedAvg-SGD
(resp. FedAvg-GD) if the clients employ SGD (resp. GD)
for the local updates.

Algorithm 1 The FedAvg-SGD Algorithm

Initialize: Parameters θ0k = θ0, Step-size η, # of commu-
nication rounds, local updates T , r
for t = 0, 1, . . . , T − 1 do

for each client k ∈ {1, . . . ,K} do
Set θrtk = θ̄rt

for v = 0, 1, . . . , r − 1 do
Sample mini-batch of size m, (X̃rt+v

k , Ỹ rt+v
k )

Compute stochastic gradient g̃rt+v
k using (5)

Update: θrt+v+1
k = θrt+v

k − ηg̃rt+v
k .

end for
end for

Aggregation: θ̄r(t+1) =
K∑

k=1

Nk

N θrt+r
k

end for
Return: Parameters, θ̄rT

The detailed steps to implement FedAvg-SGD are listed
in Algorithm 1. We execute the algorithm for a total of T
communication rounds, within each communication round
every client performs r local updates. In each commu-
nication round t the server aggregates the local parame-
ters and constructs θ̄rt from each client’s local parameters
θrt+r
k and shares it with the clients. The clients use the

aggregated parameter, θ̄rt+r
k , as the initial parameter value

for computing the next round of local updates. For each
v ∈ {0, 1, . . . , r − 1}, to update the local parameters the
clients compute the (unbiased) stochastic gradient using
m-samples drawn form their private data set (Xk, Yk). We
denote the random sample drawn at vth local step in the
tth communication round as (X̃rt+v

k , Ỹ rt+v
k ). Using the

stochastic gradient estimate, the clients update their parame-
ters locally by employing the SGD step. After r local SGD
steps, each client shares its updated parameters with the
server and gets back the aggregated parameters before start-
ing the next round of updates. Note that if we choose the
batch size m = Nk, for all k ∈ {1, . . . ,K}, FedAvg-SGD
becomes FedAvg-GD.

Algorithm 1 summarizes the above description. For each
communication round t ∈ {0, 1, . . . , T − 1} and local
step v ∈ {0, 1, . . . , r − 1}, we define the vector θrt+v

k :=
[vec(W rt+v

1,k ), . . . , vec(W rt+v
L,k )]. For FedAvg-SGD, define

F̃ rt+v
l,k and f̃rt+v

l,k as the output and the vectorized output of
each hidden layer l, respectively, when the input to the client
k’s local network is the stochastic (mini-batch) samples
(X̃rt+v

k , Ỹ rt+v
k ). Using the notation ỹrt+v

k = vec(Ỹ rt+v
k )

as the vectorized labels of the stochastic samples at each
local step, we define the mini-batch stochastic loss as:

Φ̃k(θ
rt+v
k ) :=

1

2m
∥f̃rt+v

L,k − ỹrt+v
k ∥22, (4)

and the stochastic gradient as g̃rt+v
k := [g̃rt+v

1,k , . . . , g̃rt+v
L,k ],

where g̃rt+v
l,k is the stochastic gradient w.r.t. the lth layer of
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the network evaluated at the kth client:

g̃rt+v
l,k := vec

(
∇Wl,k

Φ̃k(θ
rt+v
k )

)
∈ Rnl−1nl . (5)

For each communication round, let us define the aggregated
parameters as:

θ̄rt :=
[
vec(W̄ rt

1 ), · · · , vec(W̄ rt
L )
]
, W̄ rt

l =

K∑
k=1

Nk

N
W rt

l,k.

(6)

For FedAvg-GD, we denote grt+v
k := [grt+v

1,k , . . . , grt+v
L,k ] as

the full gradient of kth client’s loss function, where similar to
(5) grt+v

1,k defines the gradient of the loss function w.r.t. the
lth layer’s parameters. Throughout, we make the following
standard assumption (Ghadimi & Lan, 2013).

Assumption 1. The stochastic gradients at each client are
unbiased, i.e., we have E[g̃rt+v

k ] = grt+v
k ∀k ∈ [K].

Next, we analyze the performance of the FedAvg for an
overparameterized neural network.

4. Convergence Analysis
In the following section, we present the convergence guaran-
tees of FedAvg when training an overparameterized neural
network with width O(N). We first present a set of assump-
tions on the network architecture, and activation functions.

Assumption 2. The width of each hidden layer satisfies:
n1 ≥ N, n2 ≥ n3 ≥ . . . ≥ nL ≥ 1.

Assumption 3. The activation function σ(·) in (1) satisfies
the following: 1) σ′(x) ∈ [γ, 1]; 2) |σ(x)| ≤ |x|; ∀ x ∈
R; 3) σ′ is β-Lipschitz, with γ ∈ (0, 1) and β > 0.

Remark 1. Assumptions 2 and 3 play an important role in
our analysis. They help ensure that the local and global loss
functions and their (stochastic) gradients are well behaved.
Note that Assumption 2 only requires the first layer to be
wide while the rest of the layers can be of constant width.
Assumption 2 is required to establish a PL like property for
the global and local loss functions (Nguyen & Hein, 2018;
Nguyen & Mondelli, 2020). Assumption 3 is also standard in
the analysis of overparameterized neural networks. Similar
assumptions on the smoothness of the activation functions
have been made in the past (Jacot et al., 2018; Du et al.,
2019; Nguyen & Mondelli, 2020; Huang & Yau, 2020) and
are utilized to manage the behavior of the gradients of the
loss functions. Importantly, examples that safisfiy the above
two assumptions have been given in Section 2 in (Nguyen &
Mondelli, 2020).

Remark 2. We do not impose any assumptions on the dis-
tribution of individual clients’ local data sets. In contrast,
a majority of works on FL impose restrictive assumptions
on the gradients (and/or the Hessians) of each client’s local
loss functions to guarantee algorithm convergence (Yu et al.,

2019b; Li et al., 2018; Yu et al., 2019a; Karimireddy et al.,
2020a). Below, we list two most popular heterogeneity as-
sumptions (from (Yu et al., 2019a) and (Koloskova et al.,
2020), respectively):

∥∇Φk(θ)−∇Φ(θ)∥ ≤ δ, ∀θ ∈ RD,∀ k ∈ [K], for δ > 0.

1

K

K∑
k=1

∥∇Φk(θ)∥ ≤ δ1 + δ2∥∇Φ(θ)∥,∀θ ∈ RD, for

(7)

δ1, δ2 > 0.

Both conditions impose strong restrictions on the gradients
of the local clients, and they do not hold for even simple
quadratic loss (Khaled et al., 2019; Zhang et al., 2021).
We will see shortly that, our results will indicate that as
long as the neural network is large enough, then the local
(stochastic) gradients will be well-behaved, thereby elimi-
nating the need to impose any additional assumptions on
the data distributions.

In the following, we show the convergence guarantees
achieved by FedAvg. Our analysis roughly follows the
four steps presented below:
[Step 1] We first show a key result, that the ratio of the
local stochastic gradients and the local full gradients stays
bounded (Lemma 1). This result is crucial for the FedAvg-
SGD analysis, as it allows us to work with the full local
gradients directly, and it helps to bound the gradient drift
across local updates within each communication round.
[Step 2] Using the result of Step 1, we bound the summation
of (stochastic) gradients and the gradient drift during the
local updates within each communication round (Lemma 2).
This result ensures that irrespective of the data heterogene-
ity, the gradients size will not change too much from their
initial values at the beginning of each round.
[Step 3] We then show that adopted network architecture
allows us to derive bounds on the size of the gradients and
ensure the loss function to be PL during the each commu-
nication round (Lemma 3). Utilizing this and the results
derived in Steps 1 and 2, we show that the expected loss (3)
converges linearly to zero (Proposition 1).
[Step 4] Finally, we find a special initialization strategy so
that all the conditions imposed on the network properties
are satisfied during the entire training process.

Next, let us begin with Step 1. We need the following
definition.

Definition 2. Given parameter θrt+v
k , we define the follow-

ing quantity for each k ∈ [K], t ∈ {0, 1, . . . , T − 1} and
v ∈ {0, 1, . . . , r − 1}: ρ(θrt+v

k ) := ∥g̃rt+v
k ∥2/∥grt+v

k ∥2.

Clearly, ρ(θrt+v
k ) measures the ratio of the norm of stochas-

tic and full gradients of the local loss functions. In the

4



FedAvg Converges to Zero Training Loss Linearly for Overparameterized Multi-Layer Neural Networks

following, we show that if the model parameters at each
client satisfy certain conditions, then ρ(θrt+v

k ) is uniformly
bounded. Define σmax(·) and σmin(·) as the largest and
smallest singular value of a matrix, respectively.

Lemma 1. Let Assumptions 2 and 3 hold. Suppose in
any iteration rt + v, v ∈ {0, 1, · · · , r − 1}, for θrt+v

k =

[vec(W rt+v
1,k ), . . . , vec(W rt+v

L,k )], there exists constant Λ̄l,
Λl, ΛF > 0 such that the singular values of W rt+v

l,k and
F rt+v
1,k satisfy


σmax(W

rt+v
l,k ) ≤ Λ̄l, l ∈ [L], k ∈ [K],

σmin(W
rt+v
l,k ) ≥ Λl, l ∈ {3, . . . , L}, k ∈ [K],

σmin(F
rt+v
1,k ) ≥ ΛF , k ∈ [K].

(8)

where λi→j :=
j∏

l=i

λl for given layer-wise parameter λl,

then: ρ(θrt+v
k ) ≤

LN
Λ̄1→L
min
l∈[L]

Λ̄l

mγL−2Λ3→LΛF
.

As discussed earlier in Step 1, this lemma is crucial to
our analysis as it allows us to work with full gradients of
individual clients. Before proceeding to Step 2, we need the
following definitions:

ḡrt+v :=

K∑
k=1

Nk

N
grt+v
k and ¯̃grt+v :=

K∑
k=1

Nk

N
g̃rt+v
k .

Here ḡrt+v and ¯̃grt+v are the weighted averages of the
full and stochastic gradients, respectively. Next, in Step
2 (Lemma 2) we first bound the size of the sum of ¯̃grt+v

over the local updates within each communication round.
Then we bound the change in ḡrt+v from v = 0 to any
v ∈ {0, 1, . . . , r − 1}. Note that this quantity measures
the drift in the averaged gradients from the start of each
communication round.

Lemma 2. For FedAvg-SGD, given step size η > 0, v ∈
{0, 1, . . . , r − 1} and q ∈ {0, 1, . . . , v − 1}. Suppose there
exists constants Λ̄l, ρ, and A > 0 such that the following
conditions hold:

Λ̄l ≥ sup
k∈[K]

σmax

(
W rt+q

l,k

)
, ρ ≥ sup

k∈[K]

ρ
(
θrt+q
k

)
,

Φk(θ
rt+q) ≤ Aq · Φk(θ̄

rt), k ∈ [K].

Then we have

∥∥ v∑
q=0

¯̃grt+q
∥∥
2
≤ ρL∥X∥F

N

A
v+1
2 − 1√
A− 1

Λ̄1→L

min
l∈[L]

Λ̄l
∥fL(θ̄rt)− y∥2.

(9)

Further, for all k ∈ [K], ∃Qk > 0, such that we have

∥∥ḡrt+v − ḡrt
∥∥
2
≤ ηρL

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

·

√√√√ K∑
k=1

Q2
k ∥Xk∥2F ∥fL(θ̄

rt)− y∥2. (10)

Next, we show Step 3, that the averaged parameter θ̄rt

defined in (6), after tth communication round, will have
good performance. Towards this end, we define the full
gradient given parameter θ̄rt as

grt := [vec(∇W1
Φ(θ̄rt), . . . , vec(∇WL

Φ(θ̄rt)]. (11)

Lemma 3. Let Assumptions 2 and 3 hold. At each commu-
nication round rt, suppose there exists constant Ω̄l,Ωl,ΩF ,
such that 

σmax(W̄
rt
l ) ≤ Ω̄l, l ∈ [L],

σmin(W̄
rt
l ) ≥ Ωl, l ∈ {3, . . . , L},

σmin(F1(θ̄
rt)) ≥ ΩF ,

(12)

where θ̄rt and W̄l
rt are defined in (6). Then we have

∥g(θ̄rt)∥2 ≥ ∥ vec
(
∇W2Φ

(
θ̄rt

))
∥2 ≥ γL−1

N
Ω3→LΩF

×
∥∥fL(θ̄rt)− y

∥∥
2
, (13)

∥g(θ̄rt)∥2 ≤ L

N

Ω̄1→L

min
l∈[L]

Ω̄l

∥∥fL(θ̄rt)− y
∥∥
2
. (14)

Remark 3. Note that (13) is a PL-type inequality (Karimi
et al., 2016), and requires the special structure of the net-
work that satisfies Assumption 2. Also, (14) can be proven
using Assumption 3.

Now, we utilize the results of Steps 1 - 2 and Lemma 3 to
derive the convergence of FedAvg.

Proposition 1. Use Algorithm 1 to minimize (3). Suppose
Assumptions 1, 2 and 3 are satisfied, and for each iteration
rt+v, v ∈ {0, 1, · · · , r−1}, θrt+v

k satisfies the conditions
in Lemmas 1 and 2; and for each communication round rt,
θ̄rt satisfies conditions in Lemma 3, then ∃ η > 0 such that

E[Φ
(
θ̄rt
)
] ≤

(
1− rη

N
γ2(L−2)Ω2

3→LΩ
2
F

)t
Φ
(
θ0
)
. (15)

Remark 4. Proposition 1 above shows that, if the con-
ditions in Lemmas 1, 2 and 3 are satisfied, i.e., we have
well-behaved gradients (Lemmas 1 and 2) and PL condition
(Lemma 3), we achieve linear convergence of expected loss
function for solving (3) with FedAvg-SGD.

We outline the major steps in the proof of Proposition 1.
Proof Sketch. Consider the tth communication round, and
suppose the singular values of the parameters satisfy (12),
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then it is easy to show that Φ(θ̄rt) is Lipschitz smooth with
some constant Q > 0. Then using the Lipschitz smoothness
of Φ(θ̄rt), we get

Φ(θ̄r(t+1)) ≤ Φ(θ̄rt)− η
〈
grt, ¯̃grt + . . .+ ˜̃grt+r−1

〉
+

Q

2
η2
∥∥¯̃grt + . . .+ ¯̃grt+r−1

∥∥2
2
.

Taking expectation on both sides and conditioning on θ̄rt

and the past, we get the following
E[Φ(θ̄r(t+1))] ≤ E

[
Φ(θ̄rt)− η⟨grt, ḡrt + . . .+ ḡrt+r−1⟩+

Q

2
η2

∥∥¯̃grt + . . .+ ¯̃grt+r−1
∥∥2

2

]
= E

[
Φ
(
θ̄rt

)
− η

〈
grt, rḡrt

〉
− η⟨grt,

r−1∑
v=1

ḡrt+v − ḡrt⟩+

Q

2
η2

∥∥¯̃grt + . . .+ ¯̃grt+r−1
∥∥2

2

]
≤ E

[
Φ
(
θ̄rt

)
− ηr∥grt∥22 + η∥grt∥2∥

r−1∑
v=1

ḡrt+v − ḡrt∥2+

Q

2
η2

∥∥¯̃grt + . . .+ ¯̃grt+r−1
∥∥2

2

]
. (16)

Now we bound each term in (16) using Lemmas 2 and 3.
We first use the upper and lower bounds in Lemma 3 to
bound the gradient norm. First, to bound the second term
on the right hand side (rhs) of (16) we use the PL-inequality
in (13) of Lemma 3

∥grt∥2 ≥ γL−1

N
Ω3→LΩF

∥∥fL(θ̄rt)− y
∥∥
2
. (17)

We bound gradient norm in the third term using the upper
bound of gradient in (14) of Lemma 3

∥grt∥2 ≤ L

N

Ω̄1→L

min
l∈[L]

Ω̄l

∥∥fL(θ̄rt)− y
∥∥
2
:= T1 (18)

Additionally, we use (10) in Lemma 2 to bound the gradient
drift in the third term, we get

∥
r−1∑
v=1

ḡrt+v − ḡrt∥2 ≤ η
ρL

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

×

√√√√ K∑
k=1

Q2
k ∥Xk∥2F ∥fL(θ̄

rt)− y∥2 := T2 (19)

Next, using (9) in Lemma 2 to bound fourth term on the rhs,
the sum of stochastic gradient as

∥∥¯̃grt + . . .+ ¯̃grt+r−1
∥∥
2
≤ ρL∥X∥F

N

A
v+1
2 − 1√
A− 1

Λ̄1→L

min
l∈[L]

Λ̄l

× ∥f(θ̄rt)− y∥2 := T3.

Finally, plugging the bounds for each term in (16), using
the definition of loss function Φ(θ̄rt) = 1

2N ∥fL(θ̄rt)− y∥22

along with the choice of step-size η <
γ2(L−1)

N2 Ω2
3→LΩ2

F

2T1T2+QT 2
3

, we
get

E[Φ(θ̄r(t+1))] ≤
(
1− rη

N
γ2(L−1)Ω2

3→LΩ
2
F

)
E[Φ(θ̄rt)].

(20)

Using the above inequality recursively, we get the statement
of Proposition 1.
Now Step 3 is complete and we move on to define the ini-
tialization strategy of Step 4. It is important to note that
Proposition 1 utilized Lemmas 1 – 3, all of which impose
some conditions on the singular values of the model param-
eters and the outputs of the first layer at each client during
the entire training phase. Next, we define the initialization
strategy that ensures that the conditions of Lemmas 1 – 3
are satisfied almost surely.

Next, we go to Step 4, and discuss the initialization strategy.
Define λl := σmin

(
W 0

l

)
and

λ̄l :=

{
2
3

(
1 + σmax(W

0
l )
)
, for l ∈ {1, 2},

σmax(W
0
l ), for l ∈ {3, . . . , L}

. (21)

We also define the largest and smallest singular values of
the output of the first layer at initialization for each client
as α0,k := σmin

(
σ
(
XkW

0
1,k

))
. Similarly, for the central-

ized setting when all the clients share the same parameter
and full data, we define α0 := σmin

(
σ
(
XW 0

1

))
.

Initialization Strategy: Given any ϵ < Φ(θ0), we ini-
tialize the model weights such that for some constants
M1,M2,M3 > 0, the following are satisfied

M1 min
l∈[L]

λ̄l

∥X∥F λ̄1→L

· Φ(θ
0)

3
2

ϵ
≤

{
1
2
λ, l ∈ {3, . . . , L},

1, l ∈ {1, 2},
, (22)

M2 min
l∈[L]

λ̄l

λ̄1→L

· Φ(θ
0)

3
2

ϵ
≤ min

(
α0, min

k∈[K]
α0,k

)
,

×M3λ3→Lα0 ≥ λ̄1→L

min
l∈[L]

λ̄l

. (23)

To satisfy the required initialization, we follow the initial-
ization strategy of (Nguyen & Mondelli, 2020). First, ran-
domly initialize

[
W 0

1

]
ij
∼ N (0, 1/d2in). Broadcast [W 0

1 ]ij
to each client and collect F1,k, which is the output of the
first layer of each client, as well as the norm of local data
∥Xk∥F . With F1,k, α0 and α0,k can be computed. For (22),
since we have n1 > N , α0 and α0,k are strictly positive.
Then it is easy to verify that given ϵ > 0, (22) and the
second relation in (23) will be satisfied if we choose large
enough λ̄1→L

min
l∈[L]

λ̄l
. This can be realized by choosing arbitrar-

ily large λ̄l, l ∈ {3, · · · , L}. In order to satisfy the first
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relation in (23), we need to make λ̄l and λl close to each
other. Intuitively, one way is to construct

(
W 0

l

)L
l=3

such that
λl = λ̄l = ζ > 1, where ζ can be chosen to be any large
number such that (22) and the second relation in (23) are
satisfied. We also need to upper bound Φ(θ0). This can be
done by choosing small W 0

2 . Randomly initialize W 0
2 such

that
[
W 0

2

]
ij
∼ N (0, κ). We can set κ to be arbitrarily small,

then Φ(θ0) is bounded by 2
N ∥y∥22 with high probability (see

(10) in (Nguyen & Mondelli, 2020)). Note that the desired
error ϵ is another key constant in the initialization. When
we expect the error to be small, (22) and the second relation
in (23) will be more strict. But this is not an issue since
we can choose a larger ζ such that the initial conditions are
satisfied. The detailed initialization strategy that ensures
that the conditions of Lemmas 1, 2 and 3 are satisfied is
given in the Appendix B.2.

Next, let us state our main result, which indicates the linear
convergence of local SGD to any ϵ-optimal solution (see
Definition 1). The proof is attached in Appendix B.3.

Theorem 1. Using FedAvg-SGD to minimize (3) with Al-
gorithm 1. Suppose Assumptions 1, 2 and 3 are satis-
fied, then there exists an initialization strategy such that
for any ϵ < Φ(θ0), there exists step-size η > 0 such that
we have (where µ′ := r

2N γ2(L−2)
(
1
2

)2(L−1)
λ2
3→Lα

2
0, and

ηµ′ < 1)

E[Φ(θ̄r(t+1))] ≤ (1− µ′η)
t
Φ(θ0), t ∈ {0, . . . , T − 1}.

Theorem 1 shows that, for any ϵ > 0, we can always find
an initialization, such that FedAvg-SG achieves an ϵ accu-
racy within O

(
log( 1ϵ )

)
rounds of communication. Notice

that there is no heterogeneity assumption on the data (see
Remark 2), and no assumption on the Lipschitz gradient of
the loss function.

Remark 5. We comment on the key novelties of this work
compared to (Nguyen & Mondelli, 2020).
(1) Our work requires a careful analysis to deal with mul-
tiple local updates at each client. Note that in contrast to
(Nguyen & Mondelli, 2020), for our algorithm there is no
guarantee that the overall objective will always decrease
during local updates. In fact, our analysis demonstrates
that the overall objective can increase after each local itera-
tion, we show that this increase will be compensated by the
descent in the objective value between each communication
round.

(2) Our algorithm and analysis can deal with the stochastic
gradients for conducting local updates, while (Nguyen &
Mondelli, 2020) only considered gradient descent in a cen-
tralized setting. A key step in our analysis is to characterize
the relationship between the stochastic and full gradient
updates, which is illustrated in Lemma 1.

Remark 6. We comment on the choice of parameters and

the convergence rate. As will be shown in Appendix B.3,
by utilizing our initialization strategy, we can choose η =
c/µ′ = O(ϵ2) for some constant c ∈ (0, 1) (independent of
ϵ). This implies that µ′η = c < 1, which further implies
that we have (1− µ′η) < 1 in Theorem 1, ensuring linear
convergence of FedAvg-SGD.

Finally, we present the convergence guarantees for the case
when FedAvg-GD is utilized.

Corollary 1. Using FedAvg-GD to minimize (3) with Algo-
rithm 1. Suppose Assumptions 2 and 3 are satisfied, then
there exists an initialization strategy and step-size η > 0,
such that we have

Φ(θ̄r(t+1)) ≤ (1− µ′η)
t
Φ(θ0), ∀t ∈ {0, . . . , T − 1}.

(24)
Remark 7. Corollary 1 implies that FedAvg-GD achieves
linear convergence when optimizing (3). We note that the
result of Corollary 1 is much stronger compared to Theorem
1 as the initialization for FedAvg-GD is independent of ϵ
compared to the one for FedAvg-SGD (shown in Appendix
B.2).

5. Numerical Experiments
In this section, we analyze the effect of increasing the
network sizes on popular image classification tasks with
MNIST, Fashion MNIST and CIFAR-10 data sets. We
compare the performance of FedAvg in both homogeneous
(i.i.d.) and heterogeneous (non-i.i.d.) data settings. Through
our experiments we establish that larger sized networks uni-
formly outperform smaller networks under different settings.
Next, we discuss the data and the model setting for our ex-
periments.
Data set: For MNIST, Fashion MNIST and CIFAR-10 data
sets, we split the data set among K = 100 clients. For the
homogeneous (i.i.d.) setting, we randomly distribute the
complete data set with 60, 000 samples to each client. To
model the heterogeneous (non i.i.d.) setting, we split the
clients into two sets. One set of clients receive randomly
drawn samples while the second set of clients receive data
from only two out of ten labels (McMahan et al., 2017). For
our experiments on MNIST and Fashion MNIST data, 70%
of the users receive non-i.i.d samples, while for CIFAR-10
data, the fraction is 20%.
Results and Discussion For each setting, we compare the
training loss and testing accuracy of FedAvg on smaller
and larger sized networks. To analyze the effect of network
sizes on the stability of FedAvg, we also plot the perfor-
mance of FedAvg averaged over 10 iterations for non-i.i.d.
client data setting for all the network architectures. From
our experiments, we make a few observations. First, we
observe from Figures 1 and 2 that in all the cases, the i.i.d
setting has more stable performance (lower variance) than
non-i.i.d setting. Second, we note that the larger network
uniformly outperforms the smaller network under all the

7



FedAvg Converges to Zero Training Loss Linearly for Overparameterized Multi-Layer Neural Networks

Figure 1. CIFAR-10 with CNN: FedAvg-SGD on large and small size CNN.

Figure 2. CIFAR-10 with ResNet: Comparison of FedAvg-SGD on ResNet18 and ResNet50.

Figure 3. Test accuracy for MNIST (left) and Fashion MNIST (right) datasets. We compare the performance with (standard) random
initialization and the proposed initialization strategy for both iid and noniid settings. Legends ‘iid_ini’ and ‘noniid_ini’ represent the
proposed initialization strategy.

settings. Third, we note from the box plots in Figures 1 and
2 that the performance of the larger networks have lower
variance, hence more stable performance compared with
what can be achieved by the smaller networks. Finally,
we compare the random initialization with special initial-
ization strategy which satisfies (22), (23). We can conclude
from Figure 3 that these two initialization are similar in test
performance.

6. Conclusion
In this work, we deploy a specific neural network structure
with O(N) neurons and vanilla FedAvg (local SGD) to ac-

curately optimize the federated learning training problem.
Our theoretical result shows that near optimal solution can
be achieved with proposed method with proper initialization.
Our experiment result verifies the effectiveness of large neu-
ral networks: wide networks have better and more stable
performance. In the future work, we will consider the pri-
vacy during the feature sharing in our work. We can add
a differential private (DP) mechanism to ensure privacy of
the shared content. For example, we can add carefully calli-
brated noise along with clipping operation before sharing
data to ensure privacy guarantees.
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Appendix

A. Related Work
Overparameterized Neural Networks. The surprising performance of overparameterized neural networks has raised
significant research interest in the ML community to analyze the phenomenon of overparameterization (Belkin et al., 2019).
Consequently, a number of works have analyzed the performance of centralized (stochastic) gradient descent (S)GD on
overparameterized neural network architectures under different settings (Jacot et al., 2018; Li & Liang, 2018; Arora et al.,
2019; Du et al., 2018; 2019; Allen-Zhu et al., 2019; Zou & Gu, 2019; Nguyen & Mondelli, 2020; Nguyen, 2021). The
authors in (Jacot et al., 2018), showed that an infinite width neural network when trained using gradient descent (GD)
behaves like a kernel method with the kernel defined as neural tangent kernel (NTK). Using this NTK parameterization (Li &
Liang, 2018) showed that deep neural networks trained using GD require Ω(N4) width to find the global optimal. This result
was later improved to Ω(N3) in (Huang & Yau, 2020). The authors in (Du et al., 2018) and (Du et al., 2019) also analyze
the performance of GD on overparameterized neural networks under different settings. Under standard parameterization,
the work (Allen-Zhu et al., 2019) studied the convergence of SGD and showed that network width of Ω(N24) suffices to
guarantee linear convergence. Recently, (Nguyen & Mondelli, 2020) and (Nguyen, 2021) have improved the dependence on
the width and have shown that GD requires only Ω(N) width to achieve linear convergence. All the works mentioned above
focus on the centralized setting, and therefore, do not deal with data heterogeneity problem.

B. Proof of Main Result
B.1. Proof of Lemmas

We define some additional notations before we state some lemmas which are needed in the proof. Let ⊗ denote the Kronecker
product, and denote Σl := diag [vec (σ′ (Fl−1Wl))] ∈ RNnl×Nnl , Σl,k := diag [vec (σ′ (Fl−1,kWl,k))] ∈ RNknl×Nknl

and Σ̃l,k := diag
[
vec
(
σ′
(
F̃l−1,kWl,k

))]
∈ Rmnl×mnl . Define frt+v

L,k := fL,k(θ
rt+v
k ), F rt+v

L,k := FL,k(θ
rt+v); frt

L :=

fL(θ̄
rt), F rt

L := FL(θ̄
rt+v), fL(θ

rt+v) := vec(F rt+v
L ).

Lemma 4. (Nguyen & Mondelli, 2020) Suppose Assumptions 2 and Assumption 3 are satisfied. Then for l ∈ [L] the
following holds:

1. gl,k =
1

Nk

(
Inl

⊗ FT
l−1,k

) L∏
p=l+1

Σp−1,k (Wp,k ⊗ INk
) (fL,k − yk),

(25)

2.
∂fL,k

∂ vec(Wl,k)
=

L−l−1∏
p=0

(
WT

L−p,k ⊗ INk

)
ΣL−t−1

(
Inl,k

⊗ Fl−1,k

)
, (26)

3. ∥g2,k∥2 ≥ 1

Nk
σmin (F1,k)

L∏
p=3

σmin (Σp−1,k)σmin (Wp,k) ∥fL,k − yk∥2 , (27)

4. ∥Fl,k∥F ≤ ∥Xk∥F
l∏

p=1

σmax(Wp,k), (28)

5.
∥∥∇Wl,k

Φk

∥∥
F
≤ 1

Nk
∥Xk∥F

L∏
p=1
p ̸=l

σmax(Wp,k) ∥fL,k − yk∥2 , (29)

6. ∥gk∥2 ≤ L∥Xk∥F
N

L∏
l=1

σmax(Wl,k)

min
l∈[L]

σmax(Wl,k)

L∏
l=2

σmax (Σl−1,k) ∥fL,k − yk∥2. (30)
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Furthermore, given with θak and θbk, if Λ̄l ≥ max
(
σmax

(
W a

l,k

)
, σmax

(
W b

l,k

))
for some scalars Λ̄l. Let R =

L∏
p=1

max
(
1, Λ̄p

)
. Then, for l ∈ [L],

7.
∥∥F a

L,k − F b
L,k

∥∥
F
≤

√
L∥Xk∥F

L∏
l=1

Λ̄l

min
l∈[L]

Λ̄l

∥∥θak − θbk
∥∥
2
, (31)

8.

∥∥∥∥∥ ∂fL (θak)

∂ vec (W a
l )

−
∂fL

(
θbk
)

∂ vec
(
W b

l

)∥∥∥∥∥
2

≤
√
L∥Xk∥FR (1 + Lβ∥Xk∥FR)

∥∥θak − θbk
∥∥
2
.e (32)

The above Lemma follows Lemma 4.1 (Nguyen & Mondelli, 2020): (25) gives the expression of the vectorized gradient;
(26) provides the vectorized Jacobian matrix of the output of the network; (27) gives a lower bound on the norm of the
gradient, which holds under Assumption 2. (28) provides an upper bound on the norm of output of each layer while (29)
gives an upper bound on the norm of gradient of each layer; (31) derives the Lipschitz constant of the networks and (32)
provides the Lipschitz constant for the Jacobian of each layer. Similar results can be derived in centralized optimization
problem, so we do not include the results here.

Lemma 5. (Nguyen & Mondelli, 2020, Lemma 4.3) Let f : Rn → R be a C2 function. Let x, y ∈ Rn be given, and assume
that ∥∇f(z)−∇f(x)∥2 ≤ C∥z − x∥2 for every z = x+ t(y − x) with t ∈ [0, 1]. Then,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ C

2
∥x− y∥2.

Lemma 6. For constant C, µ, ρ, if η → 0, we have

lim
η→0

√
1 + 3ρCη

1

log 1
1−µCη = e

3ρ
2µ (33)

Furthermore, given ϵ < Φ(θ0), let T =

⌊
log(Φ(θ0)/ϵ)
log( 1

1−µCη )
+ 1

⌋
, then there exists constant ξ, such that

sup
0<η<min( 1

ρC , 1
µC )

(√
1 + 3ρCη

)T
≤ ξΦ(θ0)

ϵ
, (34)

where ξ ≥ e
3ρ
2µ is a constant dependent on ρ and µ.

Proof. Take logarithm on both sides, we get

log

(√
1 + 3ρCη

1

log 1
1−µCη

)
= − log(

√
1 + 3ρCη)

log(1− µCη)
= −1

2
· log(1 + 3ρCη)

log(1− µCη)
(35)

Now let η → 0, by L’Hôpital’s rule, take derivative over η, we have

lim
η→0

−1

2
· log(1 + 3ρCη)

log(1− µCη)
= lim

η→0

1

2
· 3ρC
µC

1− µCη

1 + 3ρCη
=

3ρ

2µ
. (36)

Next, if we can show the function of η, which is
√
1 + 3ρCη

1

log 1
1−µCη , has a limit when η → min( 1

ρC , 1
µC ), then by the

continuity, it has an upper bound in
(
0,min( 1

ρC , 1
µC )

)
, denote it as ξ. It is easy to derive that

lim
η→min( 1

ρC , 1
µC )

√
1 + 3ρCη

1

log 1
1−µCη = lim

η→min( 1
ρ ,

1
µ )

√
1 + 3ρη

1

log 1
1−µη

 2

1

log 1
1−µ

ρ , ρ > µ,
1, ρ ≤ µ.
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Then by the continuity of the function,
(√

1 + 3ρCη
) 1

log 1
1−µCη is bounded by some constant ξ. Then we can derive

sup
η∈(0,min( 1

ρC , 1
µC ))

√
1 + 3ρCη

T
≥ lim

η→0

√
1 + 3ρη

log(Φ(θ0)/ϵ)
log 1

1−µη = e
3ρ
2µ · Φ(θ

0)

ϵ
(37)

then we have there exists some constant ξ ≥ e
3ρ
2µ , such that

sup
η∈(0,min( 1

ρC , 1
µC ))

√
1 + 3ρCη

T
≤

ξΦ
(
θ0
)

ϵ
. (38)

Lemma 7. Let Assumption 2 and Assumption 3 hold. For θk, suppose there exists constant Λ̄l, Λl, ΛF such that and
σmax(Wl,k) ≤ Λ̄l, l ∈ [L], k ∈ [K],

σmin(Wl,k) ≥ Λl, l ∈ {3, . . . , L}, k ∈ [K],

σmin(F1,k) ≥ ΛF , k ∈ [K].

(39)

then we have

ρ(θk) ≤
LN Λ̄1→L

min
l∈[L]

Λ̄l

mγL−2Λ3→LΛF

(40)

Proof. By definition, we have

ρ(θk) =
∥g̃k∥2
∥gk∥2

≤ ∥g̃k∥2
∥g2,k∥2

. (41)

Since by (30) and (27) in Lemma 4, we have

∥g̃k∥2 ≤ L∥X̃k∥F
m

Λ̄1→L

min
l∈[L]

Λ̄l
∥f̃L,k(θ)− ỹ∥2, (42)

∥g2,k∥2 ≥ 1

Nk
γL−2Λ3→LΛF ∥fL,k(θ)− y∥, (43)

where Xk is the sampled data at θk. So we can derive

ρ(θk) ≤

L∥X̃k∥F

m
Λ̄1→L

min
l∈[L]

Λ̄l
∥f̃L,k(θ)− ỹk∥2

1
Nk

γL−2Λ3→LΛF ∥fL,k(θ)− yk∥2
≤

LN∥X∥F Λ̄1→L

min
l∈[L]

Λ̄l

mγL−2Λ3→LΛF

, (44)

where the last inequality is because ∥X̃k∥F ≤ ∥X∥F and ∥f̃L,k(θ)− ỹk∥2 ≤ ∥fL,k(θ)− yk∥2.

Lemma 8. For the FedAvg-SGD algorithm, given step size η > 0, v ∈ {0, 1, . . . , r−1} and q ∈ {0, 1, . . . , v−1}. Suppose
the following conditions hold:

1.Λ̄l ≥ sup
k∈[K]

σmax

(
W rt+q

l,k

)
,

(45)

2.ρ ≥ sup
k∈[K]

ρ
(
θrt+q
k

)
, (46)

3.Φk(θ
rt+q) ≤ Aq · Φk(θ

rt), k ∈ [K], (47)
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then we have ∥∥ v∑
q=0

¯̃grt+q
∥∥
2
≤

v∑
q=0

∥∥¯̃grt+q
∥∥
2
≤ ρL∥X∥F

N

A
v+1
2 − 1√
A− 1

Λ̄1→L

min
l∈[L]

Λ̄l
∥frt

L − y∥2. (48)

Further, there exists constant Qk, such that ∀k ∈ [K] we have∥∥∥grt+q+1
k − grt+q

k

∥∥∥
2
≤ ρQk

∥∥∥θrt+q+1
k − θrt+q

k

∥∥∥
2
,

(49)

and

∥∥ḡrt+v − ḡrt
∥∥
2
≤

v−1∑
q=0

∥∥ḡrt+q+1 − ḡrt+q
∥∥
2
≤ ηρL

N

Λ1→L

min
l∈[L]

Λl

A
v+1
2 − 1√
A− 1

√√√√ K∑
k=1

Q2
k ∥Xk∥2F ∥f

rt
L − y∥2. (50)

Proof. First, let us show (48).

∥∥ v∑
q=0

¯̃grt+v
∥∥
2

(i)

≤
v∑

q=0

∥∥¯̃grt+v
∥∥
2

(ii)

≤
v∑

q=0

K∑
k=1

Nk

N
∥g̃rt+v

k ∥2
(iii)

≤ ρ

v∑
q=0

K∑
k=1

Nk

N
∥grt+v

k ∥2 (51)

(iv)

≤ ρL

N

v∑
q=0

K∑
k=1

∥Xk∥F
Λ̄1→L

min
l∈[L]

Λ̄l
∥frt+q

L,k − y∥2 (52)

=
ρL

N

Λ̄1→L

min
l∈[L]

K∑
k=1

∥Xk∥F
v∑

q=0

∥frt+q
L,k − yk∥2 (53)

(v)

≤ ρL

N

Λ̄1→L

min
l∈[L]

Λ̄l

K∑
k=1

∥Xk∥F
v∑

q=0

A
q
2 ∥frt+q

L,k − yk∥2 (54)

=
ρL

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

K∑
k=1

∥Xk∥F ∥frt+q
L,k − yk∥2 (55)

(vi)

≤ ρL

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

√√√√ K∑
k=1

∥Xk∥2F

√√√√ K∑
k=1

∥frt+q
L,k − yk∥2F (56)

=
ρL∥X∥F

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

∥frt
L − y∥2, (57)

So we can derive (48). Next, we show (49). Let us denote Jfrt+q
L,k :=

[
∂frt+q

L,k

∂ vec(W1,k)
, . . . ,

∂frt+q
L,k

∂ vec(WL,k)

]
. By triangle inequality,

we have ∥∥∥grt+q+1
k − grt+q

k

∥∥∥
2
=
∥∥∥Jfrt+q+1

L,k

(
frt+q+1
L,k − yk

)
− Jfrt+q

L,k

(
frt+q
L,k − yk

)∥∥∥
≤
∥∥∥frt+q+1

L,k − frt+q
L,k

∥∥∥
2

∥∥∥Jfrt+q+1
L,k

∥∥∥
2
+
∥∥∥Jfrt+q+1

L,k − Jfrt+q
L,k

∥∥∥
2

∥∥∥frt+q
L,k − yk

∥∥∥
2

(58)

Now we find the bound for each term in (58). Since max
(
σmax

(
W rt+q+1

l,k

)
, σmax

(
W rt+q

l,k

))
≤ Λ̄l, by (31) in Lemma

4, we get ∥∥∥frt+q+1
L,k − frt+q

L,k

∥∥∥
2
≤

√
L ∥Xk∥F

Λ̄1→L

min
l∈[L]

Λ̄l

∥∥∥θrt+q+1
k − θrt+q

k

∥∥∥
2

(59)
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Further, by (26) we have

∥∥∥Jfrt+q+1
L,k

∥∥∥
2
≤

L∑
l=1

∥∥∥∥∥ ∂Jf
rt+q+1
L,k

∂vec (Wl,k)

∥∥∥∥∥
2

≤ L ∥Xk∥F
Λ̄1→L

min
l∈[L]

Λ̄l
. (60)

Using (32) in Lemma 4, we have

∥Jfrt+q+1
L,k − Jfrt+q

L,k ∥2 ≤
L∑

l=1

∥∥∥∥∥ ∂Jf
rt+q+1
L,k

∂vec (Wl,k)
−

∂Jfrt+q
L,k

∂ vec (Wl,k)

∥∥∥∥∥
2

≤ L
3
2 ∥Xk∥F R′ (1 + Lβ ∥Xk∥F R′)

∥∥∥θrt+q+1
k − θrt+q

k

∥∥∥
2
, (61)

where R′ =
∏L

p=1 max
(
1, Λ̄l

)
. So plug the above bounds into (58). Set Lipschitz constant

Qk =
L
√
L

Nk
∥Xk∥2F

Λ̄2
1→L

min
l∈[L]

Λ̄2
l

+
L
√
L

Nk
∥Xk∥F (1 + Lβ ∥Xk∥F R′)R′ ∥∥f0

L,k − yk
∥∥
2
, (62)

then we derive ∥∥∥grt+q+1
k − grt+q

k

∥∥∥
2
≤ Qk∥θrt+q+1

k − θrt+q
k ∥2. (63)

Now (49) is proved. Last, we prove (50). We have

∥∥ḡrt+v − ḡrt
∥∥
2
≤

v−1∑
q=0

∥∥ḡrt+q+1 − ḡrt+q
∥∥
2

(i)

≤
v−1∑
q=0

K∑
k=1

Nk

N

∥∥∥grt+q+1
k − grt+q

k

∥∥∥
2

(ii)

≤
v−1∑
q=0

K∑
k=1

Nk

N
Qk

∥∥∥θrt+q+1
k − θrt+q

k

∥∥∥
2
=

v−1∑
q=0

K∑
k=1

Nk

N
Qk · η

∥∥g̃rt+q
k

∥∥
2

(iii)

≤
v−1∑
q=0

K∑
k=1

Qk

N
L ∥Xk∥F

Λ̄1→L

min
l∈[L]

Λ̄l

∥∥frt+q
L − yk

∥∥
2

(iv)

≤ ηL

N

Λ̄1→L

min
l∈[L]

Λ̄l

K∑
k=1

Qk ∥Xk∥F
v−1∑
q=0

A
q
2

∥∥frt+q
L − yk

∥∥2
2

≤ ηL

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

K∑
k=1

Qk ∥Xk∥F
∥∥frt+q

L − yk
∥∥2
2

(v)

≤ ηL

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

√√√√ K∑
k=1

Q2
k ∥Xk∥2F

√√√√ K∑
k=1

∥∥frt+q
L − yk

∥∥2
2

=
ηL

N

Λ̄1→L

min
l∈[L]

Λ̄l

A
v+1
2 − 1√
A− 1

√√√√ K∑
k=1

Q2
k ∥Xk∥2F · ∥frt+q

L − y∥2,

where (i) uses triangle inequality; (ii) uses the Lipschitz gradient assumption in condition 2; (iii) comes from (30) in Lemma
4; (iv) uses condition 3; (v) is from Cauchy-Schwartz inequality.
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B.2. Initialization Strategy

Detailed Initialization for FedAvg-SGD: Denote

P :=
L∥X∥F

N

(
7

4

)L−1

(2r − 1),

C := PL∥X∥F
(
3

2

)L−1
λ̄2
1→L

min
l∈[L]

λ̄2
l

, (64)

ρ :=

LN∥X∥F 7L−1 λ̄1→L

min
l∈[L]

λ̄l

mγL−2λ3→L min

(
α0, min

k∈[K]
α0,k

) , (65)

µ :=
r

2N2 γ
2(L−2)

(
1
2

)2(L−1)
λ2
3→Lα

2
0

C
. (66)

Suppose given any small ϵ such that ϵ < Φ(θ0), the initialized weights satisfies the following conditions:

2N
3
2

L∥X∥F ( 32 )L−1 λ̄1→L

min
l∈[L]

λ̄l

· ξΦ(θ
0)

ϵ

√
2Φ(θ0) ≤

{
1
2λl, l ∈ {3, · · · , L},
1, l ∈ {1, 2}. (67)

2N
3
2

L( 32 )
L−1 λ̄1→L

min
l∈[L]

λ̄l

· ξΦ(θ
0)

ϵ

√
2Φ(θ0) ≤ 1

2
min

(
α0, min

k∈[K]
α0,k

)
. (68)

where ξ ≥ e
3ρ
2µ is some constant dependent on ρ and µ.

Now we provide a detailed way to realize the above initialization condition. To satisfy the required initialization, we follow
the initialization strategy of (Nguyen & Mondelli, 2020). First, randomly initialize

[
W 0

1

]
ij

∼ N (0, 1/d2in). Broadcast
[W 0

1 ]ij to each client and collect F1,k, which is the output of the first layer of each client, as well as the norm of local data
∥Xk∥F and norm of local label ∥yk∥2. With F1,k, α0 and α0,k can be computed. For (22), since we have n1 > N , α0 and
α0,k are strictly positive with probability 1. Then it is easy to verify that given ϵ > 0, (22) and the second relation in (23)
will be satisfied if we choose large enough λ̄1→L

min
l∈[L]

λ̄l
. This can be realized by choosing arbitrarily large λl, l ∈ {3, · · · , L}.

However, notice that by Lemma 6, the constant ξ, which is defined in (38), is only dependent on ρ and µ and ξ ≥ e
3ρ
2µ . So if

we can fix ρ and µ as some constants, ξ is a bounded constant. Notice in (65) and (66), for l ∈ {3, · · · , L}, if we can make
λ̄l and λl close to each other, then ρ and µ are also close, so 3ρ

2µ is not large. This is equivalent to the first relation in (23) in

main text. In order to satisfy the above conditions, one way is to construct
(
W 0

l

)L
l=3

in such way that λl = λ̄l = ζ > 1,
where ζ can be chosen to be any large number such that (22) and the second relation in (23) are satisfied. Specifically, we
can utilize the following construction: Initialize W 0

l such that its top block is a scaled identity matrix and rest of entries are
zero

W 0
l =

[
ζ · Inl

0

]
∈ Rnl×nl−1 , l = 3, . . . , L. (69)

We also need to upper bound Φ(θ0). This can be done by choosing small W 0
2 . Randomly initialize W 0

2 such that[
W 0

2

]
ij
∼ N (0, κ). We can set κ to be arbitrarily small, similar to (10) in (Nguyen & Mondelli, 2020),we can find a bound

for Φ(θ0) with high probability: √
2NΦ(θ0) = ∥FL(θ

0)− y∥F (70)

≤ ∥y∥2 +
∥∥FL

(
θ0
)∥∥

F

≤ ∥y∥2 +
L∏

l=1

σmax(W
0
l )∥X∥F

≤ 2∥y∥2 (71)
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Then the loss function at initialization can be bounded by constant
√
2NΦ(θ0) ≤ 2∥y∥2.

Initialization for FedAvg-GD: The initialized weight matrices satisfy the following conditions:

2N
((

3
2

)L−1
+ 2L−1(r − 1)

)
∥X∥F

rγ2(L−2)
(
1
2

)2(L−1)2 2
3→Lα

2
0

· λ̄1→L

λ̄l
≤
{

1
2λl, l ∈ {3, · · · , L}
1, l ∈ {1, 2} (72)

2N
((

3
2

)L−1
+ 2L−1(r − 1)

)
∥X∥2F

rγ2(L−2)
(
1
2

)2(L−1)2
λ2
3→Lα

2
0

· λ̄2→L ≤ 1

2
α0. (73)

The initialization strategy is similar to FedAvg-SGD, so we omit the discussion here.

B.3. Proof of Theorem 1

Theorem 1. Using FedAvg-SGD to minimize (3) with Algorithm 1. Suppose Assumptions 1, 2 and 3 are satisfied, then there
exists an initialization strategy such that for any ϵ < Φ(θ0), there exists step-size η > 0 such that we have

E[Φ(θ̄r(t+1))] ≤ (1− µ′η)
t
Φ(θ0), t ∈ {0, . . . , T − 1} (74)

where µ′ = r
N γ2(L−2)

(
1
2

)2(L−1)
λ2
3→Lα

2
0.

Proof. First, we provide a structure of our proof. We will show the following recursively at each communication round: 1)
The averaged weights are bounded at each communication round; 2) The divergence of loss function (3) is bounded at each
communication round; 3) The expected loss function (3) decreases linearly at each communication round. Further, we will
show that in each local epoch within a fixed communication round, we have: 1) The weights of each client are bounded; 2)
The divergence of loss function Φk of each client is bounded.

Now let us set T =
⌊
log(Φ(θ0)/ϵ)
log( 1

1−µCη )
+ 1
⌋

. If we can show (74) holds for t = 0, . . . , T , then it is easy to show that

E[Φ(θ̄rT )] ≤ (1− µCη)
T
Φ(θ0) ≤ ϵ.

We prove Theorem 1 by induction. Define

ρrt+v := sup
k∈[K]

q∈{0,1,...,v}

ρ(θrt+q
k )

ρ :=

Lm∥X∥F 7L−1 λ̄1→L

min
l∈[L]

λ̄l

NγL−2λ3→L min

(
α0, min

k∈[K]
α0,k

) ,

(75)

We show that ∀t ≤ T , we have

σmax

(
W̄ ru

)
≤ 3

2 λ̄l u ∈ {0, . . . , t}, l ∈ [L],

σmin

(
W̄ ru

)
⩾ 1

2λl, u ∈ {0, . . . , t}, l ∈ {3, . . . , L},
σmin (F

ru
1 ) ⩾ 1

2α0, u ∈ {0, . . . , t},
σmin

(
F ru
1,k

)
≥ 1

2α0,k, u ∈ {0, . . . , t}, k ∈ [K],

ρrt ≤ ρ,

Φ
(
θ̄ru
)
⩽ (1 + 3ρCη)

u
Φ
(
θ0
)
, u ∈ {0, . . . , t}

E
[
Φ
(
θ̄ru
)]

≤ (1− µCη)uΦ
(
θ0
)
, u ∈ {0, . . . , t}

. (76)

where λ̄l is defined in (21) and λl is the smallest eigen value of the weight matrix, C, µ, ρ defined in B.2 and µC = µ′.
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The above recursive equation describes the weight matrix and loss function in each communication round. To prove (76),
we decompose the recursive equation into two steps, as follows
Step1: For a fixed t and v ∈ [r − 1], given

σmax

(
W̄l

ru
)
⩽ 3

2 λ̄l, u ∈ {0, . . . , t}, l ∈ [L],

σmin

(
W̄l

ru
)
⩾ 1

2λl, u ∈ {0, . . . , t}, l ∈ [L],

σmin (F
ru
1 ) ⩾ 1

2α0, u ∈ {0, . . . , t},
ρrt ≤ ρ;

Φ
(
θ̄ru
)
≤ (1 + 3ρCη)uΦ

(
θ0
)
, u ∈ {0, . . . , t}

E
[
Φ
(
θ̄ru
)]

≤ (1− µCη)uΦ
(
θ0
)
, u ∈ {0, . . . , t}

Φk

(
θrt+q
k

)
≤ (1 + 3ρC ′η)qΦk (θ

rt
k ) , q ∈ {0, . . . , v − 1}, k ∈ [K],

σmax

(
W rt+q

l,k

)
≤ 7

4 λ̄l, q ∈ {0, . . . , v − 1}, l ∈ [L], k ∈ [K],

σmin

(
W rt+q

l,k

)
≤ 1

4λl, q ∈ {0, . . . , v − 1}, l ∈ [L], k ∈ [K],

σmin

(
F rt+q
1,k

)
≥ 1

4α0,k, q ∈ {0, . . . , v − 1}, k ∈ [K],

ρrt+v−1 ≤ ρ,

. (77)

we aim to show 

σmax

(
W rt+q

l,k

)
≤ 7

4 λ̄l, q ∈ {0, . . . , v}, l ∈ [L], k ∈ [K],

σmin

(
W rt+q

l,k

)
≥ 1

4λl, q ∈ {0, . . . , v}, l ∈ [L], k ∈ [K],

σmin

(
F rt+q
1,k

)
≥ 1

4α0,k, q ∈ {0, . . . , v}, k ∈ [K]

ρrt+v ≤ ρ,

Φk

(
θrt+q
k

)
≤ (1 + 3ρC ′η)qΦk (θ

rt
k ) , q ∈ {0, 1, . . . , v}, k ∈ [K].

, (78)

where C ′ = maxk

(
1
Nk

(
7
4

)2(L−1) λ̄2
1→L

minl∈[L] λ̄
2
l

)
.

Step 2: Given (77) and (78), we show

σmax

(
W̄l

ru
)
⩽ 3

2 λ̄l, u ∈ {0, . . . , t+ 1}, l ∈ [L],

σmin

(
W̄l

ru
)
⩾ 1

2λl, u ∈ {0, . . . , t+ 1}, l ∈ [L],

σmin (F
ru
1 ) ⩾ 1

2α0, u ∈ {0, . . . , t+ 1},
σmin (F1,k) ≥ 1

2α0,k, u ∈ {0, . . . , t+ 1}, k ∈ [K],

ρr(t+1) ≤ ρ,

Φ
(
θ̄ru
)
≤ (1 + 3ρCη)uΦ

(
θ0
)
, u ∈ {0, . . . , t+ 1},

E
[
Φ
(
θ̄ru
)]

≤ (1− µCη)uΦ
(
θ0
)
, u ∈ {0, . . . , t+ 1}.

. (79)

Now we show Step 1 first.
(1) We first show σmax

(
W rt+q

l,k

)
⩽ 7

4 λ̄l, q ∈ {0, . . . , v}, l ∈ [L], k ∈ [K],

σmin

(
W rt+q

l,k

)
⩾ 1

4λl, q ∈ {0, . . . , v}, l ∈ [L], k ∈ [K].
. (80)

We have∥∥∥W rt+v
l,k − W̄ rt

l

∥∥∥
F
≤

v−1∑
q=0

∥∥∥W rt+q+1
l,k −W rt+q

l,k

∥∥∥
F
≤ η

∥∥∥∥ v−1∑
q=0

g̃rt+q
l,k

∥∥∥∥
2

(i)

≤ η

v−1∑
q=0

∥∥g̃rt+q
k

∥∥
2

(ii)

≤ ηρ

v−1∑
q=0

∥∥grt+q
k

∥∥
2

(81)

(iii)

≤ ηρL

Nk
∥Xk∥F (

7

4
)L−1 λ̄1→L

min
l∈[L]

λ̄l

v−1∑
q=0

∥∥∥frt+q
L,k − yk

∥∥∥
2

(82)

(iv)

≤ ηρL

Nk
∥Xk∥F (

7

4
)L−1 λ̄1→L

min
l∈[L]

λ̄l

v−1∑
q=0

(1 + 3ρC ′η)q
∥∥frt

L,k − yk
∥∥
2
, (83)
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where (i) is because the norm of concentated gradient is no smaller than norm of one-layer gradient; (ii) results from Lemma
(1); (iii) comes from (30) in Lemma 4; (iv) is because of the induction assumption. Let us choose some constant U , such
that η < 1

3ρC′U . There exists large enough U (irrelevant to r) such that we have

∥∥∥W rt+v
l,k − W̄ rt

l

∥∥∥
F
≤ ηρL

Nk
∥Xk∥F (

7

4
)L−1 λ̄1→L

min
l∈[L]

λ̄l

v−1∑
q=0

(1 + 3ρC ′η)q
∥∥frt

L,k − yk
∥∥
2

(84)

≤ ηρL

Nk
∥Xk∥F (

7

4
)L−1 λ̄1→L

min
l∈[L]

λ̄l
r · (1 + 3ρC ′η)r

∥∥frt
L,k − yk

∥∥
2

≤ 1

3ρC ′U
· ρL
Nk

∥Xk∥F (
7

4
)L−1 λ̄1→L

min
l∈[L]

λ̄l
r · (1 + 1

rU
)r
∥∥frt

L,k − yk
∥∥
2

(85)

≤ 1

3C ′U
· L

Nk
∥Xk∥F (

7

4
)L−1 λ̄1→L

min
l∈[L]

λ̄l
r · e 1

U

∥∥frt
L,k − yk

∥∥
2

≤ Lre
1
U

3C ′UNk
∥Xk∥F

(
7

4

)L−1
λ̄1→L

min
l∈[L]

λ̄l
∥f0

L − y∥2 ·
ξNΦ

(
θ0
)

ϵ

≤

{
1
4λl, l ∈ {3, . . . , L},
1
6 , l ∈ {1, 2}

.

where (i) uses η < 1
3ρC′U ; (ii) is because ∥frt

L,k − yk∥2 ≤ ∥frt
L − y∥2; the last inequality holds if we choose small enough

η,i.e, large enough U . By Weyl’s inequality, we have

σmin

(
W rt+v+1

l,k

)
⩾ σmin

(
W rt

l,k

)
− 1

4λl =
1
4λl, l ∈ {3, . . . , L}, k ∈ [K],

σmax

(
W rt+v+1

l,k

)
≤ σmax

(
W rt

l,k

)
+ 1

4 λ̄l ⩽ 7
4 λ̄l, l ∈ {3, . . . , L}, k ∈ [K],

σmax

(
W rt

1,k

)
≤ 1

6 + 1 + ∥W rt
1,k∥2 ≤ 7

4 λ̄l, k ∈ [K],

σmax

(
W rt

2,k

)
≤ 1

6 + 1 + ∥W rt
2,k∥2 ≤ 7

4 λ̄l, k ∈ [K].

. (86)

(2) We next show that

σmin

(
F rt+q
1,k

)
⩾

1

4
α0,k, q ∈ {0, . . . , v}, k ∈ [K]. (87)

It is sufficient to show σmin

(
F rt+v
1,k

)
⩾ 1

4α0,k, k ∈ [K]. If we choose large enough U (irrelevant to r) and set η < 1
3ρC′U ,

we have ∥∥∥F rt+v
1,k − F rt

1,k

∥∥∥
F
=
∥∥∥σ (XkW

rt+v
1,k

)
− σ

(
XkW̄

rt
1,k)

)∥∥∥
F

(88)

(i)

≤ σmax(Xk)∥W rt+v
1,k −W rt

1,k∥F (89)

(ii)

≤ σmax(Xk)
Lre

1
U

3C ′UNk
∥Xk∥F

(
7

4

)L−1
λ̄1→L

min
l∈[L]

λ̄l
∥f0

L − y∥2 ·
ξNΦ

(
θ0
)

ϵ
(90)

≤ 1

4
α0,k (91)

where (i) results from the Lipschitz gradient of σ in Assumption 3 and (ii) comes from (85).
If we choose large enough U , and let

η <
1

3ρC ′U
(92)

then we have ∥∥∥F rt+v
1,k − F rt

1,k

∥∥∥
F
≤ 1

4
α0,k (93)

20



FedAvg Converges to Zero Training Loss Linearly for Overparameterized Multi-Layer Neural Networks

(3) Next, we show that

ρrt+v ≤ ρ. (94)

Since we have already shown in (80) that σmax(W
rt+v
l,k ) ≤ 7

4 λ̄l, σmin(W
rt+v
l,k ) ≥ 1

4 λ̄l and we have shown in (87) that
σmin(F

rt+v
1 ) ≥ 1

4α0,k. By lemma 1, we have

ρ(θrt+v
k ) ≤

( 74 )
L−1LN∥X∥F λ̄1→L

min
l∈[L]

λ̄l

( 14 )
L−1mγL−2λ3→L min

k∈[K]
α0,k

≤ ρ. (95)

(4) Next, we prove

Φk

(
θrt+q
k

)
⩽ (1 + 3ρC ′η)qΦk

(
θrtk
)
, q ∈ {0, . . . , v}, k ∈ [K]. (96)

We show
Φk

(
θrt+v
k

)
⩽ (1 + 3ρC ′η)vΦk

(
θrtk
)
. (97)

First, we need to show Φk has Lipschitz gradient within [θrt+v−1, θrt+v]. This is similar to the proof of (49) in Lemma
8. So we don’t include the details here. It is easy to show that, for θrt+v−1,s

k := θrt+v−1
k + s(θrt+v

k − θrt+v−1
k ), there is

max
(
σmax

(
W rt+v−1,s

l,k

)
, σmax

(
W rt+v−1

l,k

))
≤ 7

4 λ̄l. So similarly we can derive the Lipschitz constant

Qk =
L
√
L

Nk

(
7

4

)2(L−1)

∥Xk∥2F
λ̄2
1→L

min
l∈[L]

λ̄2
l

+
L
√
L

Nk
∥Xk∥F (1 + Lβ ∥Xk∥F R′)R′ ∥∥f0

L,k − yk
∥∥
2
, (98)

such that ∀s ∈ [0, 1], ∥∥∥grt+v−1,s
k − grt+v−1

k

∥∥∥
2
≤ Qk∥θrt+v−1,s

k − θrt+v−1
k ∥2. (99)

With Lipschitz gradient within [θrt+v−1
k , θrt+v

k ], by Lemma 5, we have

Φk

(
θrt+v
k

)
≤ Φk

(
θrt+v−1
k

)
+ ⟨∇Φk

(
θrt+v−1
k

)
, θrt+v

k − θrt+v
k

〉
+

Qk

2

∥∥θrt+v−1
k − θrt+v−1

k

∥∥2
2

(100)

= Φk

(
θrt+v−1
k

)
+
〈
grt+v−1
k ,−ηg̃rt+v−1

k

〉
+

Qk

2

∥∥ηg̃rt+v−1
k

∥∥2
2

(101)

≤ Φk

(
θrt+v−1
k

)
+ η

∥∥grt+v−1
k

∥∥
2

∥∥g̃rt+v−1
k

∥∥
2
+

Qk

2
η2
∥∥g̃rt+v−1

k

∥∥2
2

(102)

≤ Φk

(
θrt+v−1
k

)
+ ηρ

∥∥grt+v−1
k

∥∥2
2
+

Qk

2
η2ρ2

∥∥grt+v−1
k

∥∥2
2

(103)

Let η < 1
Qkρ

, we have the above inequality

Φk

(
θrt+v
k

)
≤ Φk

(
θrt+v−1
k

)
+ ηρ

∥∥grt+v−1
k

∥∥2
2
+

Qk

2
η2ρ2

∥∥grt+v−1
k

∥∥2
2

(104)

≤ Φk

(
θrt+v−1
k

)
+

3

2
ρη
∥∥grt+v−1

k

∥∥2
2

(105)

≤ Φk

(
θrt+v
k

)
+

3ρηL

Nk

(
7

4

)2(L−1)
λ̄2
1→L

min
l∈[L]

λ̄2
l

Φk

(
θrt+v−1
k

)
, (106)

where the third inequality comes from (30) in Lemma 4. Recall C ′ := max
k

( 1
Nk

(
7
4

)2(L−1) λ̄2
1→L

min
l∈[L]

λ̄2
l

), we have

Φk

(
θrt+v+1
k

)
≤ Φk

(
θrt+v
N

)
(1 + 3ρC ′η). (107)
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Now Step 1 is proved. Next we show Step 2.
(1) Show {

σmax

(
W̄ ru

l

)
⩽ 3

2 λ̄l, u ∈ {0, 1, . . . t+ 1}, l ∈ [L]

σmin

(
W̄ ru

l

)
⩾ 1

2 λ̄l u ∈ {0, 1, . . . t+ 1} l ∈ {3, . . . , L}
. (108)

Define ∇̃Wl,kΦk(θ
rt
k ) be the stochastic gradient over layer l of each client. Denote ¯̃gl,rt+v :=

K∑
k=1

Nk

N ∇̃Wl,kΦk(θ
rt+v
k ) We

have ∥∥∥W̄ r(t+1)
l −W 0

l

∥∥∥
F
= η

t∑
u=0

∥∥¯̃gl,ru + ¯̃gl,ru+1 + . . .+ ¯̃gl,rt+r−1
∥∥
2

(109)

≤ η

t∑
u=0

r−1∑
v=0

∥¯̃gl,ru+v∥2 (110)

≤ η

t∑
u=0

r−1∑
v=0

∥¯̃gru+v∥2 (111)

By Step 1, we know for v ∈ {0, 1, . . . , r − 1}, we have ρrt+v ≤ ρ. So by definition of ρrt+v, we have ∥g̃ru+v∥2 ≤
ρ∥gru+v∥2. Then it is easy to verify that the assumptions in Lemma 8 are satisfied, where Λ̄l =

7
4 λ̄l, Qk is defined in (62)

and A = 1 + 3ρC ′η. Then by Lemma 8, if η < 1
ρC′ , we have

η

t∑
u=0

r−1∑
v=0

∥¯̃gru+v∥2 ≤ η

t∑
u=0

ρL∥X∥F
N

(
7

4

)L−1

(2r − 1)
λ̄1→L

min
l∈[L]

λ̄l
∥frt

L − y∥2 (112)

Using the definition of P = L∥X∥F

N

(
7
4

)L−1
(2r − 1), we have

η

t∑
u=0

r−1∑
v=0

∥¯̃gru+v∥2 ≤ η

t∑
u=0

ρL∥X∥F
N

(
7

4

)L−1

(2r − 1)
λ̄1→L

min
l∈[L]

λ̄l
∥frt

L − y∥2 (113)

≤ ηρP
λ̄1→L

min
l∈[L]

λ̄l

t∑
u=0

∥frt
L − y∥2 (114)

≤ ηρP
λ̄1→L

min
l∈[L]

λ̄l

t∑
u=0

(1 + 3ρCη)
u
2 ∥f0

L − y∥2, (115)

(116)

where the last inequality comes from the induction assumption. Now let S =
√
1 + 3ρCη, if we choose η < 1

ρC , we get

η

t∑
u=0

r−1∑
v=0

∥¯̃gru+v∥2 ≤ ηρP
λ̄1→L

min
l∈[L]

λ̄l

t∑
u=0

(1 + 3ρCη)
u
2 ∥f0

L − y∥2

= ηρP
λ̄1→L

min
l∈[L]

λ̄l

t∑
u=0

Su∥f0
L − y∥2

≤ ηρP
λ̄1→L

min
l∈[L]

λ̄l

ST+1

S2 − 1
(S + 1)∥f0

L − y∥2

= ηρP
λ̄1→L

min
l∈[L]

λ̄l

ST+1 · 3
3ρCη

∥f0
L − y∥2 (117)
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By Lemma 6, we have ST ≤ ξΦ(θ0)
ϵ . Additionally, S ≤ 2, therefore, we have

η

t∑
u=0

r−1∑
v=0

∥¯̃gru+v∥2 ≤ ηρP
λ̄1→L

min
l∈[L]

λ̄l

2ST · 3
3ρCη

∥f0
L − y∥2 (118)

≤ P

C

λ̄1→L

min
l∈[L]

λ̄l
·
2ξΦ

(
θ0
)

ϵ
∥f0

L − y∥2

=
2

L∥X∥F
(
3
2

)L−1 λ̄1→L

min
l∈[L]

λl

·
ξΦ
(
θ0
)

ϵ
∥f0

L − y∥2 (119)

≤
{

1
2λl, l ∈ {3, . . . , L},
1, l ∈ {1, 2}. ,

where the last inequality is from (67). So by Weyl’s ineuality, we have


σmin

(
W̄

r(t+1)
l

)
⩾ σmin

(
W̄ rt

l

)
− 1

2λl =
1
2λl, l ∈ {3, . . . , L}, k ∈ [K],

σmax

(
W̄

r(t+1)
l

)
≤ σmax

(
W̄ rt

l

)
+ 1

2 λ̄l ⩽ 3
2 λ̄l, l ∈ {3, . . . , L}, k ∈ [K],

σmax

(
W̄ rt

1

)
≤ 1 + σmax

(
W̄ rt

1

)
≤ 3

2 λ̄l, k ∈ [K],

σmax

(
W̄ rt

2

)
≤ 1 + σmax(W̄

rt
2,k) ≤ 3

2 λ̄l, k ∈ [K].

. (120)

(2) Show

σmin (F
ru
1 ) ⩾

1

2
α0, u ∈ {0, . . . , t+ 1} l ∈ [L]. (121)

Similarly, we have

∥∥∥F r(t+1)
1 − F 0

1

∥∥∥
F
=
∥∥∥σ (XW̄

r(t+1)
1

)
− σ

(
XW 0

1

)∥∥∥
F

(122)

(i)

≤ σmax(X)
∥∥∥W̄ r(t+1)

1 −W 0
1

∥∥∥
F

(123)

(ii)

≤ σmax(X)
2

L∥X∥F
(
3
2

)L−1 λ̄1→L

min
l∈[L]

λ̄l

·
ξΦ
(
θ0
)

ϵ
∥f0

L − y∥2 (124)

≤ ∥X∥F
2

L∥X∥F
(
3
2

)L−1 λ̄1→L

min
l∈[L]

λ̄l

·
ξΦ
(
θ0
)

ϵ
∥f0

L − y∥2 (125)

(iii)

≤ 1

2
α0, (126)

where (i) is because σ is 1−Lipschitz; (ii) comes from (119), and (iii) is because (68) in B.2. So similarly by Weyl’s
inequality, we have σmin

(
F

r(t+1)
1

)
≥ σmin

(
F 0
1

)
= α0 − 1

2α0 = 1
2α0.

(3) Show

σmin

(
F ru
1,k

)
⩾

1

2
α0,k, u ∈ {0, . . . , t+ 1} l ∈ [L]. (127)
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Similarly, we have ∥∥∥F r(t+1)
1,k − F 0

1,k

∥∥∥
F
=
∥∥∥σ (XkW̄

r(t+1)
1

)
− σ

(
XkW

0
1

)∥∥∥
F

(128)

(i)

≤ σmax(Xk)
∥∥∥W̄ r(t+1)

1 −W 0
1

∥∥∥
F

(129)

(ii)

≤ σmax(Xk)
2

L∥X∥F
(
3
2

)L−1 λ̄1→L

min
l∈[L]

λ̄l

·
ξΦ
(
θ0
)

ϵ
∥f0

L − y∥2 (130)

≤ ∥Xk∥F
2

L∥X∥F
(
3
2

)L−1 λ̄1→L

min
l∈[L]

λ̄l

·
ξΦ
(
θ0
)

ϵ
∥f0

L − y∥2 (131)

(iii)

≤ 1

2
α0,k, (132)

where (i) is because σ is 1−Lipschitz; (ii) comes from (119), and (iii) is because (68) in B.2. So similarly by Weyl’s
inequality, we have σmin

(
F

r(t+1)
1,k

)
≥ σmin

(
F 0
1,k

)
= α0,k − 1

2α0,k = 1
2α0,k.

(3) Show

ρr(t+1) ≤ ρ. (133)

Since we have already shown in (80) that σmax

(
W

r(t+1)
l,k

)
≤ 3

2 λ̄l, σmin

(
W

r(t+1)
l,k

)
≥ 1

2 λ̄l, and we have shown in (87)

that σmin(F
r(t+1)
1 ) ≥ 1

2α0. By Lemma 1, we have

ρr(t+1) ≤
( 32 )

L−1LN λ̄1→L

min
l∈[L]

λ̄l

( 12 )
L−1mγL−2λ3→L min

k∈[K]
α0

< ρ. (134)

(4) Show
Φ
(
θ̄ru
)
⩽ (1 + 3ρCη)uΦ

(
θ0
)
, u ∈ {0, . . . , t+ 1}, l ∈ [L].

First, similar to the proof of (49), we can derive

Q =
L
√
L

N
·
(
3

2

)2(L−1)

∥X∥2F
λ̄2
1→L

min
l∈[L]

λ̄2
l

+
L
√
L

N
∥X∥F (1 + Lβ∥X∥FR)R∥f0

L − y∥2, (135)

where R =
L∏

p=1
max

(
1, 3

2 λ̄p

)
, such that ∀θ̄rt,s = θ̄rt + s(θ̄r(t+1) − θ̄rt), s ∈ [0, 1], we have

∥∥∥gr(t+1),s − gr(t+1)
∥∥∥
2
≤ Q

∥∥∥θ̄r(t+1),s − θ̄rt
∥∥∥
2
. (136)

Then by Lemma 5 we have

Φ
(
θ̄r(t+1)

)
= Φ

(
θ̄rt − η¯̃grt − . . .− η¯̃grt+r−1

)
≤ Φ

(
θ̄rt
)
− η

〈
grt, ¯̃grt + . . .+ ¯̃grt+r−1

〉
+

Q

2
η2
∥∥∥¯̃grt + . . .+ g̃

rt+r−1
∥∥∥2
2

(137)

≤ Φ
(
θ̄rt
)
+ η

∥∥grt∥∥
2

∥∥¯̃grt + . . .+ ¯̃grt+r−1
∥∥
2
+

Q

2
η2
∥∥¯̃grt + . . .+ ¯̃grt+r−1

∥∥2
2

By (48) in Lemma 8, if η < 1
ρC , we have A = 2, and we have

∥∥¯̃grt + . . .+ ¯̃grt+r−1
∥∥
2
≤ ρL∥X∥F

N

(
7

4

)L−1

(2r − 1)
λ̄1→L

min
l∈[L]

λ̄l
∥frt

L − y∥2 = ρP
λ̄1→L

min
l∈[L]

λ̄l
∥frt

L − y∥2. (138)
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Then we have

Φ
(
θ̄r(t+1)

)
≤ Φ

(
θ̄rt
)
+ η

∥∥grt∥∥
2

∥∥¯̃grt + . . .+ ¯̃grt+r−1
∥∥
2
+

Q

2
η2
∥∥¯̃grt + . . .+ ¯̃grt+r−1

∥∥2
2

(139)

≤ Φ
(
θ̄rt
)
+ η

∥∥grt∥∥
2
· ρP λ̄1→L

min
l∈[L]

λ̄l
∥frt

L − y∥2 +
Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22 (140)

≤ Φ
(
θ̄rt
)
+ η

∥∥grt∥∥
2
· ρP λ̄1→L

min
l∈[L]

λ̄l
∥frt

L − y∥2 +
Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22 (141)

(i)

≤ Φ
(
θ̄rt
)
+

ηρPL∥X∥F
N

(
3

2

)L−1
λ̄2
1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22 +

Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22, (142)

where (i) comes from (30) in Lemma 4. Let η <
L∥X∥F ( 3

2 )
L−1

QρPN =
( 6
7 )

L−1

Qρ(2r−1) , we get

Φ
(
θ̄r(t+1)

)
≤ Φ

(
θ̄rt
)
+

ηρPL∥X∥F
N

(
3

2

)L−1
λ̄2
1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22 +

Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22 (143)

≤ Φ
(
θ̄rt
)
+

3

2
· ηρPL∥X∥F

N

(
3

2

)L−1
λ̄2
1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22

≤ Φ
(
θ̄rt
)1 + 3

ηρPL∥X∥F
N

(
3

2

)L−1
λ̄2
1→L

min
l∈[L]

λ̄2
l


Recall C = PL∥X∥F

(
3
2

)L−1 λ̄2
1→L

min
l∈[L]

λ̄2
l

, then we have

Φ
(
θ̄r(t+1)

)
≤ (1 + 3ρCη) Φ

(
θ̄rt
)
. (144)

(5) Show

E
[
Φ(θ̄r(t+1))

]
≤ (1− µCη)uΦ

(
θ0
)
, u ∈ {0, 1, . . . , t+ 1}

By (137), we have

Φ(θ̄r(t+1)) ≤ Φ
(
θ̄rt
)
− η

〈
grt, ¯̃grt + . . .+ ˜̃grt+r−1

〉
+

Q

2
η2
∥∥∥¯̃grt + . . .+ g̃

rt+r−1
∥∥∥2
2

(145)

Given θ̄rt, take expectation of the stochastic gradient on both sides conditioned on θ̄rt and the past, we get

E[Φ(θ̄r(t+1))] ≤ E
[
Φ
(
θ̄rt
)
− η

〈
grt, ḡrt + . . .+ ḡrt+r−1

〉
+

Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22

]

≤ E
[
Φ
(
θ̄rt
)
− η

〈
grt, rḡrt

〉
− η⟨grt,

r−1∑
v=1

ḡrt+v − ḡrt⟩+ Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22

]

≤ E
[
Φ
(
θ̄rt
)
− ηr∥grt∥22 + η∥grt∥2 × ∥

r−1∑
v=1

ḡrt+v − ḡrt∥2 +
Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22

]
(146)

Now it is easy to verify the assumptions in Lemma 1 are satisfied. Let Λ̄l =
7
4 λ̄l, Q defined in (135), A = 1 + 3ρC ′η ≤ 2,

by (50) in Lemma 8:, we have∥∥∥∥∥
r−1∑
v=1

ḡrt+v − ḡrt

∥∥∥∥∥
2

≤ ηρL(2r − 1)

N

(
7

4

)L−1
λ̄1→L

min
l∈[L]

λ̄l

√√√√ K∑
k=1

Q2
k ∥Xk∥2F ∥f

rt
L − y∥2 (147)
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Plug (147) into (146), we get:

E
[
Φ(θ̄r(t+1))

]
≤ E

[
Φ
(
θ̄rt
)
− ηr∥grt∥22 + η∥grt∥2 × ∥

r−1∑
v=1

ḡrt+v − ḡrt∥2 +
Q

2
η2ρ2P 2 λ̄2

1→L

min
l∈[L]

λ̄2
l

∥frt
L − y∥22

]
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Φ
(
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7
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× λ̄1→L

min
l∈[L]

λ̄l
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(i)
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Φ
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(ii)

≤ E

[
Φ
(
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)
− η

r

N2
γ2(L−2)

(
1

2

)2(L−1)
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3→Lα

2
0︸ ︷︷ ︸

:=µ′
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η2
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k ∥Xk∥2F
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Q

2
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]
,

where (i) uses (30) to provide an upperbound for ∥grt∥, (ii) uses (27) to provide a lower bound for ∥grt∥. Let η < µ′

2B , we
have

E[Φ(θ̄r(t+1))] ≤ E
[
Φ
(
θ̄rt
)
− ηµ′∥frt

L − y∥22 + η2B∥frt
L − y∥22

]
(148)

≤ E
[
Φ
(
θ̄rt
)
(1− ηµ′)

]
(149)

= E[Φ
(
θ̄rt
)
]

(
1− η

r

N
γ2(L−2)

(
1

2

)2(L−1)

λ2
3→Lα

2
0

)
(150)

Let µ =
r
N γ2(L−2)( 1

2 )
2(L−1)

λ2
3→Lα2

0

C , we have

E
[
Φ(θ̄r(t+1))

]
≤ (1− µCη)E[Φ

(
θ̄rt
)
], (151)

where µC = µ′.

Now we summarize the choice of η, it should be smaller than all the following quantities:

1

ρmax(Qk)
,
1

ρC
,

1

µC
,

1

3ρC ′U
, (152)

where U is some constant.

Remark 8. To satisfy the initialization assumptions defined in (68) and (67), we initialize the neural network coefficients
such that we have λ̄1→L ∼ O(1/ϵ). Note from the definition of µ′ in (151) that this implies µ′ ∼ O(λ2

3→L) = O(λ̄2
1→L) =

O(1/ϵ2). Also, note from the choice of step-size in (152) that, we have η ∼ O(ϵ× 1/λ̄1→L) = O(ϵ2). Note that this follows
from the fact that η is smaller than each quantity defined in (152) above. Thus, we have µ′η = O(1) and we can always
choose η = c/µ′ for some c ∈ (0, 1), which guarantees linear convergence of the objective in each communication round
(see Theorem 1).
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C. Experiment Setting and Result
C.1. Model and Parameter Settings:

To analyze the performance of FedAvg-SGD on the MNIST data set, we use a single hidden-layer fully-connected neural
network (MLP) with ReLU activation. We set the hidden-layer size to be 32 (resp. 1, 000) for the small (resp. large) network.
We choose the mini-batch size m = 10 and choose the number of local steps to be r = 10. Using the above network,
we also compare the random initialization with the special initialization strategy in (22),(23) with MNIST and Fashion
MNIST dataset. For the CIFAR-10 data set, we analyze the performance of FedAvg-SGD on two network architectures –
convolutional neural network (CNN) and ResNet. We design the smaller CNN using two 5× 5 convolutional layers followed
by 2× 2 max pooling, each has 6 and 16 channels, connected by 2 fully-connected layers with 120 and 84 hidden neurons.
For larger CNN, we use three 3 × 3 convolutional layers each with 128 channels followed by 2 × 2 max pooling. The
ReLU activation function is used after each hidden layer for small/large CNN. For ResNet, we compare the performance on
ResNet18 with ResNet50 architectures. For both the CNN and ResNet, we use a mini-batch size of m = 32 and number of
local steps to be r = 5. We randomly sample 10 clients in each epoch and perform FedAvg-SGD for more efficient training.

C.2. Experiment Result for MNIST

Figure 4. MNIST with MLP: Comparison of FedAvg on large and small size MLP.

Figure 5. Log-scale loss.
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