
MobileSeg3D: A Lightweight Framework for
Multi-Modality 3D Medical Image Segmentation

Viraj Aher1, Eliana Salas Villa2, Laura García3[0009−0004−0709−8028], Luis
Torres2[0009−0001−0706−0626],

Vinay K Verma5[0009−0009−4650−9666], and Sebastián A. Cajas
Ordóñez1[0000−0003−0579−6178]

1 Ireland’s Centre for Applied AI (CeADAR), University College Dublin, Belfield,
Dublin, D04 V2N9, Ireland

2 Université Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000
Rennes, France

3 Bioengineering Department, NeuroCo Research Group, Universidad de Antioquia,
Medellín, Colombia

4 Department of Computer Science and Engineering, IIIT Delhi, India
{viraj.aher}@ucd.ie

Abstract. The growing availability of complex 3D medical imaging
data, including CT, MRI, PET, ultrasound, and microscopy, has in-
creased the demand for segmentation models that are accurate, efficient,
and robust across imaging modalities. Although recent 3D architectures
such as SAM-Med3D, SegVol, and VISTA3D have shown promising re-
sults, they often struggle with modality generalization, interactive re-
finement, and input variability. In this work, we present a lightweight
and modular segmentation framework designed to address these chal-
lenges. The architecture integrates encoder variants and bottleneck by-
pass connections to better preserve spatial and modality-specific informa-
tion. To handle weak or missing annotations, we introduce an intensity-
based thresholding strategy that generates bounding box prompts in
the absence of detailed labels. We also explore MobileNet-based back-
bones, which have been underutilized in 3D medical segmentation, and
demonstrate that they outperform heavier models such as SegVol in low-
resource and modality-diverse scenarios. Our approach achieves compet-
itive segmentation accuracy while remaining computationally efficient
and well-suited for interactive refinement. Experiments on the CVPR
BiomedSegFM dataset confirm the model’s strong generalization across
modalities and robust performance during iterative use. On the official
validation leaderboard, our method achieved an average DSC score of
0.50 and ranked 4th overall among participating teams. Our code is pub-
licly available here: https://github.com/lexorcvpr/lexor-cvpr-2025

Keywords: Multi-Modality Learning · Lightweight Architectures · Prompt-
based Segmentation · 3D Medical Image Segmentation



2 V. Aher et al.

1 Introduction

The rapid advancement of biomedical imaging technologies has led to the gen-
eration of increasingly complex 3D medical datasets, driving the demand for
accurate, efficient, and scalable segmentation tools. These datasets—spanning
modalities such as CT, MRI, PET, ultrasound, and microscopy—pose substan-
tial challenges for existing segmentation algorithms due to their heterogeneity
and the high cost of acquiring annotated volumetric data. While deep learning-
based models such as Fully Convolutional Networks (FCNs) [7] and nnUNet [4]
have demonstrated strong performance in specific tasks, they often fall short
when applied across diverse imaging modalities. This is particularly evident
when anatomical structures differ significantly or when datasets exhibit inconsis-
tent resolution, contrast, or annotation standards. In both clinical and research
workflows, the ability to generalize across modalities is increasingly critical, yet
remains largely unsolved.

In parallel, recent breakthroughs in 2D interactive segmentation—most no-
tably through foundational models like SAM and SAM2—have not translated
effectively to the 3D domain. The increased spatial complexity of volumetric
data, the limited availability of large-scale annotated 3D datasets, and the high
computational cost of 3D processing all present significant hurdles. Consequently,
many existing solutions either specialize in a single modality or compromise on
interactivity, limiting their applicability in real-world medical scenarios.

Recent efforts to adapt foundational models to the medical domain include
SAM-Med3D [13], SegVol [1], and VISTA3D [2], which have shown promise in
multi-organ and tumor segmentation. However, these models still face notable
limitations. They often lack robust mechanisms for dynamic user interaction
and exhibit limited generalization to unseen modalities or partially annotated
data. Interactive refinement approaches such as nnInteractive [5] and ProtoSAM-
3D [12] incorporate user prompts like clicks or bounding boxes, but their effec-
tiveness is often sensitive to prompt sparsity and requires fine-tuning. Simi-
larly, text-guided models like BioMedParse [15], CAT [3], and SAT [16] leverage
anatomical priors through language, but remain constrained by modality-specific
training and the variability of prompt quality in clinical practice.

In this work, we introduce a lightweight yet robust segmentation framework
that addresses these key challenges by enhancing cross-modality generalization,
reducing dependency on dense annotations, and improving inference efficiency.
Our main contributions are:

1. MobileNet-Based Lightweight Encoder: We develop a compact seg-
mentation model using a MobileNet-2.5D backbone, offering strong perfor-
mance with reduced computational cost compared to transformer-based en-
coders.

2. Intensity-Based Prompt Generation: To support weakly supervised and
annotation-sparse settings, we introduce an intensity-driven thresholding
strategy that automatically generates bounding box prompts in the absence
of explicit annotations.
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3. Optimized Inference Speed: We implement and benchmark a fast infer-
ence pipeline, reducing runtime while maintaining competitive segmentation
accuracy, thereby enabling practical deployment in interactive and clinical
environments.

2 Method

We propose a novel lightweight adaptation of the SegVol framework by replac-
ing the computationally expensive 3D Vision Transformer image encoder with
an efficient MobileNet3D architecture. Our modified SegVol consists of four
key components: (1) a MobileNet3D image encoder that processes 3D med-
ical volumes using depthwise separable convolutions with spatial dimensions
[32×256×256] and patch size [4×16×16], (2) a frozen CLIP text encoder that
enables universal segmentation through natural language prompts using the tem-
plate "A computerized tomography of a [text prompt]", (3) a prompt encoder
that handles spatial prompts (points and bounding boxes) via positional encod-
ing, and (4) the original SAM mask decoder with cross-attention mechanisms
for multi-scale feature fusion. The MobileNet3D encoder follows a hierarchical
design with an initial 3D convolution (1→32 channels, kernel 3×3×3, stride 2)
followed by depthwise separable blocks that progressively increase channel di-
mensions (32→64→128→256→512) while maintaining spatial efficiency through
group convolutions and pointwise operations. Each block incorporates batch
normalization and ReLU6 activation for stable training dynamics. The encoder
concludes with adaptive global average pooling and a fully connected layer to
produce 768-dimensional embeddings compatible with the downstream SAM ar-
chitecture. This design preserves the universal segmentation capabilities of the
original SegVol while reducing computational complexity from the O(n²) atten-
tion operations of Vision Transformers to the O(n) operations of convolutional
networks, enabling real-time inference for clinical deployment without sacrificing
segmentation quality across diverse medical imaging modalities.

2.1 Network Architecture

Our modified SegVol framework replaces the original 3D Vision Transformer
with a lightweight MobileNet3D encoder designed for efficient 3D medical vol-
ume processing. The architecture follows a hierarchical design optimized for 3D
medical imaging with input dimensions of 32×256×256 (depth×height×width).
Figure 1 shows the overall architecture of SegVol with MobileNet3D Backbone

2.2 Prompt Encoder and Interaction Simulation

Prompt Encoding Strategy. Our system supports three types of interactive prompts
for universal medical segmentation: Box Prompt Encoding:
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Fig. 1. SegVol Model with MobileNet Backbone

Bounding box coordinates (x1,y1,z1,x2,y2,z2) are encoded using positional
encoding 3D coordinate normalization relative to volume dimensions Gaussian
positional encoding matrix for spatial relationship preservation

Point Prompt Encoding:
Positive and negative point coordinates processed through learnable embed-

dings Point embeddings (4 learnable embeddings: 2 positive, 2 negative points)
Spatial coordinates encoded with positional encoding for 3D localization

Training Simulation:
Random box generation: Simulate bounding boxes around ground truth re-

gions with ±10Point sampling: Random sampling of positive points within tar-
get regions and negative points outside Multi-prompt training: Combination of
box and point prompts during training for robust interaction learning Prompt
dropout: 20

2.3 Decoder Architecture

We adopt the original Segment Anything Model (SAM) mask decoder, adapting
it to suit 3D medical imaging and multi-modal inputs. These modifications pre-
serve the decoder’s ability to integrate prompt information while extending its
utility to volumetric data.

Decoder Components:

– Transformer Decoder: A 2-layer transformer module that incorporates
both self-attention and cross-attention mechanisms to effectively capture
contextual dependencies.



MobileSeg3D 5

– Cross-Attention Fusion: Enables bidirectional attention between image
embeddings and prompt embeddings, facilitating precise spatial alignment
and semantic conditioning.

– Multi-scale Processing: Combines transposed convolutions and bilinear
interpolation to upsample features across scales, improving both global con-
sistency and local detail preservation.

– Output Head: Includes multiple mask prediction branches along with an
IoU prediction head to assess segmentation quality and confidence.

To optimize segmentation performance, we use a compound loss function that
combines Dice loss and focal loss. This formulation has been proven to enhance
robustness in medical image segmentation by addressing class imbalance and
improving boundary sensitivity [8].

2.4 Post-processing

When explicit bounding box annotations are unavailable, we apply an intensity-
based strategy to generate bounding box prompts. The 3D image is first smoothed
with a Gaussian filter, followed by adaptive thresholding using the image’s mean
and standard deviation. The resulting binary mask undergoes morphological
closing and connected component analysis to isolate the largest structure. From
this, a 3D bounding box is extracted and used as a prompt for segmentation.
This approach enables weakly supervised inference and ensures robustness in the
absence of manual annotations.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [10], including more 3D cases from public datasets5 and covering
commonly used 3D modalities, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound,
and Microscopy images. The hidden testing set is created by a community effort
where all the cases are unpublished. The annotations are either provided by the
data contributors or annotated by the challenge organizer with 3D Slicer [6] and
MedSAM2 [11]. In addition to using all training cases, the challenge contains a
coreset track, where participants can select 10% of the total training cases for
model development.

For each iterative segmentation, the evaluation metrics include Dice Simi-
larity Coefficient (DSC) and Normalized Surface Distance (NSD) to evaluate
the segmentation region overlap and boundary distance, respectively. The final
metrics used for the ranking are:

5 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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– DSC_AUC and NSD_AUC Scores: AUC (Area Under the Curve) for DSC
and NSD is used to measure cumulative improvement with interactions. The
AUC quantifies the cumulative performance improvement over the five click
predictions, providing a holistic view of the segmentation refinement process.
It is computed only over the click predictions without considering the initial
bounding box prediction as it is optional.

– Final DSC and NSD Scores after all refinements, indicating the model’s final
segmentation performance.

In addition, the algorithm runtime will be limited to 90 seconds per class. Ex-
ceeding this limit will lead to all DSC and NSD metrics being set to 0 for that
test case.

3.2 Implementation Details

Preprocessing Following the MedSAM [9] protocol, all images were converted
to NumPy .npz format and normalized to an intensity range of [0, 255]. For CT
scans, we applied modality-specific windowing based on clinical practice to map
Hounsfield units into soft-tissue–specific intensity windows. The applied window
width (W) and level (L) values were: soft tissues (W: 400, L: 40), lung (W: 1500,
L: -160), brain (W: 80, L: 40), and bone (W: 1800, L: 400). After windowing,
intensities were linearly rescaled to the range [0, 255].

For all other modalities—including MRI, PET, ultrasound, and microscopy—we
clipped intensity values between the 0.5th and 99.5th percentiles to reduce out-
lier effects, followed by linear normalization to the [0, 255] range. If an image was
already within the desired intensity range, no further processing was applied.

To enable scalable handling of large datasets, all preprocessing was performed
offline and stored in .npz format, allowing for efficient loading during training and
inference. This design reduced I/O overhead and memory usage during runtime.

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Red Hat Enterprise Linux 8.6
CPU 2× Intel Xeon Gold 6338 (32 cores, 64 threads, 2.00–3.20 GHz)
RAM 96 GB DDR4-3200 ECC
GPU (number and type) 2× NVIDIA H100 PCIe 80GB
CUDA version 12.5
Programming language Python 3.11.11
Deep learning framework PyTorch 2.0.0
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Training protocols In this work, we focused on efficient model development
and selection. No additional data augmentation or sampling strategies were ap-
plied during training. Instead, we prioritized optimal model selection by balanc-
ing performance and inference speed. Specifically, we evaluated multiple encoder
variants and selected the MobileNet-2.5D backbone based on its strong perfor-
mance on validation metrics and faster runtime compared to heavier transformer-
based encoders. This trade-off enabled us to maintain high segmentation accu-
racy while ensuring suitability for real-time or resource-constrained deployment
scenarios.

Table 2. Training protocols.

Pre-trained Model MobileNet-2.5D (initialized from scratch)
Batch size 2
Patch size 256×256×3
Total epochs 3000
Optimizer Adam
Initial learning rate (lr) 1e-5
Lr decay schedule Manual decay (halved every 200 epochs)
Training time ∼3 hours (2× H100 GPUs, estimated)
Loss function Dice + Focal Loss
Number of model parameters ∼14M6

Number of flops ∼22.1G7

4 Results and discussion

Our encoder analysis highlights that MobileNet-based backbones outperform
heavier and transformer-based encoders like ViT and FastViT when integrated
into the SegVol framework. MobileNet’s efficiency, inductive biases (e.g., local-
ity), and pretrained initialization enable better generalization across modalities,
especially in low-data regimes. In contrast, ViT struggles due to its lack of spa-
tial priors and higher data demands, often leading to underfitting or unstable
training in patch-based 3D segmentation. FastViT offers a middle ground but re-
mains less effective than MobileNet, likely due to its hybrid structure not aligning
well with 3D spatial continuity. Overall, lightweight convolutional encoders like
MobileNet offer a strong balance of performance, stability, and computational
efficiency for multimodal volumetric segmentation.

Our method was evaluated on the CVPR BiomedSegFM validation set using
the coreset track (10% of training data). We report both quantitative and quali-
tative results, and compare with baseline methods. The quantitative metrics are
DSC AUC, NSD AUC, DSC Final, and NSD Final.
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4.1 Performance Analysis

Our lightweight segmentation framework, built with a MobileNet-2.5D encoder
and an intensity-based bounding box prompt generator, performs particularly
well on imaging modalities that exhibit high contrast and consistent anatomi-
cal boundaries. Specifically, we observe strong results on CT and PET images,
where large organs or high-uptake regions are distinctly separable from the back-
ground. Ultrasound scans with coherent intensity distributions also benefit from
the model’s ability to localize targets effectively. This is supported by our quanti-
tative results in Table 3, where the MobileNet_2_5D model achieves its highest
performance at epoch 50, reaching an average Dice score (DSC) of 0.50. The cor-
responding CT and PET Dice scores of 0.73 and 0.74 respectively, underscore
the model’s strength in these high-contrast modalities.

The MobileNet backbone’s parameter efficiency makes it particularly effective
in low-data regimes, and the use of intensity-based prompt generation allows the
model to remain functional in cases lacking explicit annotations. However, when
bounding boxes are poorly aligned or cannot be reliably generated—such as in
MRI or microscopy—segmentation quality suffers. In these scenarios, fallback to
full-volume prompts leads to over-segmentation and inflated false positives due to
lack of spatial constraints. Additionally, the limited anatomical diversity within
the 10% coreset reduces generalizability to rare or complex cases, particularly in
modalities with high intra-class variability or subtle anatomical boundaries.

Our ablation study reveals that variants with skip connections performed
worse than the base MobileNet architecture (DSC 0.38 vs. 0.50), suggesting
that a streamlined encoder architecture without added skip complexity is more
effective in this setting. Meanwhile, the variant with intensity-based inference
and the FM10% coreset achieves a DSC of 0.47, validating the effectiveness of
intensity cues even in reduced supervision regimes.

4.2 Quantitative Results on Validation Set

Table 3 summarizes the performance of baseline and MobileNet-based variants
across four imaging modalities. CT and PET modalities consistently show the
highest segmentation quality, with CT scores peaking at 0.73 and PET at 0.74.
In contrast, segmentation of MRI and microscopy images remains challenging,
with Dice scores hovering around 0.30–0.34, due to the lower intensity contrast
and more variable anatomical structures. These results reinforce the importance
of modality-aware preprocessing and better prompt alignment strategies.

4.3 Qualitative Results on Validation Set

Visual inspection of model predictions further supports the quantitative findings.
Figure 2 shows the predicted segmentation on a CT scan, demonstrating accurate
delineation of muscle groups, while Figure 3 shows the corresponding ground
truth. These results illustrate the model’s ability to accurately capture large,
high-contrast anatomical structures.
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Table 3. Quantitative evaluation results of different models and variants on the vali-
dation set (coreset track).

Method / Variant Avg DSC CT DSC MRI DSC PET DSC US DSC
Baseline Architectures
Ultra Fast ViT 0.49 0.72 0.33 0.73 0.42
MobileNet_3D 0.49 0.72 0.32 0.72 0.45
SegVol_FastEnc (Fast ViT) 0.48 0.71 0.32 0.67 0.44
Hybrid CNN-ViT 0.49 0.72 0.33 0.73 0.42
Fast ResNet3D 0.49 0.72 0.33 0.72 0.42
MobileNet_2_5D Training Progression
MobileNet_2_5D Epoch 50 0.50 0.68 0.30 0.59 0.68
MobileNet_2_5D Epoch 100 0.49 0.70 0.34 0.70 0.42
MobileNet_2_5D Epoch 150 0.49 0.70 0.34 0.70 0.42
MobileNet_2_5D Epoch 200 0.49 0.70 0.33 0.70 0.42
Other Variants
Skip Connections Variant 0.38 0.55 0.31 0.51 0.35
Validation Score (10% FM + Intensity prediction) 0.47 0.73 0.30 0.74 0.31

Fig. 2. Predicted segmentation of CT scan, different muscle groups are labeled in color.

Fig. 3. Ground truth segmentation of the CT scan.

In more challenging settings, the model’s limitations become evident. For
instance, Figure 4 illustrates the segmentation predicted on a T1c-weighted MRI
scan containing a brain tumor. Compared to the ground truth in Figure 5, the
predicted mask fails to fully capture the lesion, underscoring the difficulty of
segmenting small, low-contrast structures in MRI.
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Fig. 4. Segmentation predicted by the model on a T1c-weighted MR image.

Fig. 5. Ground truth tumor segmentation on the corresponding T1c-weighted MR
image.

Common sources of error include misaligned or missing bounding box prompts,
insufficient diversity in training data (10% coreset), and modality-specific nor-
malization limitations—particularly in microscopy, where texture complexity
and low signal-to-noise ratios further degrade performance. These observations
indicate areas where future work can enhance robustness through improved
prompt generation, augmented coreset sampling, and tailored preprocessing pipelines.

4.4 Limitation and Future Work

While our approach achieves efficient inference and strong generalization across
modalities, several challenges remain. Performance declines in low-contrast set-
tings and for fine-grained structures, especially in microscopy and certain MRI
cases, indicating the need for more robust feature representations and modality-
specific preprocessing. Our current prompt generation strategy, based on inten-
sity heuristics, is not universally reliable across anatomical contexts.

We initially explored skip connections to improve the fused vector embed-
dings, but the results were suboptimal. In future work, we plan to investigate
hierarchical mixtures of features at multiple levels, which may enhance segmen-
tation quality and scoring robustness.
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5 Conclusion

In this work, we proposed a lightweight and modality-agnostic framework for
interactive 3D medical image segmentation. Our method leverages a MobileNet-
based encoder to reduce computational overhead while maintaining competi-
tive accuracy across multiple imaging modalities. To support weakly annotated
settings, we introduced an intensity-based thresholding strategy for automatic
prompt generation, enabling segmentation even when explicit bounding boxes
are unavailable.

Preliminary results on the CVPR BiomedSegFM dataset demonstrate that
our method achieves an average DSC of 0.50 and ranks 4th on the official vali-
dation leaderboard, showcasing the effect of our method in both generalization
and runtime efficiency. Our results highlight that when combined with robust
prompt strategies, lightweight architectures can offer an improved and scalable
3D segmentation system for clinical and research use. In future work, we aim to
expand this framework to support text-guided interaction and further improve
cross-modality robustness.
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