Under review as a conference paper at ICLR 2025

WHAT MATTERS IN HIERARCHICAL SEARCH FOR COM-
BINATORIAL REASONING PROBLEMS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial reasoning problems, particularly the notorious NP-hard tasks, re-
main a significant challenge for Al research. A common approach to addressing
them combines search with learned heuristics. Recent methods in this domain
utilize hierarchical planning, executing strategies based on subgoals. Our goal
is to advance research in this area and establish a solid conceptual and empirical
foundation. Specifically, we identify the following key obstacles, whose presence
favors the choice of hierarchical search methods: hard-to-learn value functions,
complex action spaces, presence of dead ends in the environment, or training data
collected from diverse sources. Through in-depth empirical analysis, we establish
that hierarchical search methods consistently outperform standard search methods
across these dimensions, and we formulate insights for future research. On the prac-
tical side, we also propose a consistent evaluation guidelines to enable meaningful
comparisons between methods and reassess the state-of-the-art algorithms.

1 INTRODUCTION

The ability to solve discrete tasks that require so-
phisticated reasoning, particularly those involv-
ing NP-hard problems, is essential for advancing

Al (Bengio et all,[2021)). These include complex
problems like theorem proving 2021}
Trinh et al.L 2024]), constraint satisfaction prob-
lem (Achiam et al}[2017), molecule alignment
(Needleman and Wunsch|, [1970; [Smith and Wa!
terman), [1981), social network analysis (Kipf and
Welling, [2017), or navigation (LaValle| 2006
Choset et al.,[2003). Even driving a car, which
typically involves continuous control of steering
and speed, requires high-level discrete decision-

. AdaSubS

. kSubS

p-BestFS

@
@ »-McTs

Dead Ends

making, e.g., when to overtake, when to change Coﬁ\?\e’k

lanes, or how to navigate through traffic

et all 2022).

acC
Aoio®

Addressing that kind of tasks, known as combi-

natorial reasoning problems, requires efficient Figure 1: Performance comparison of hierarchical
planning strategies due to the vast and com- methods (AdaSubS, kSubS) and low-level methods (p-
plex search spaces involved BestFS, p-A*, p-MCTS) across five dimensions: han-
. A promising approach to this chal- dling data collected from diverse sources, avoiding dead
lenge, inspired by how humans plan their actions ~ends, performance under high value approximation er-
@’ [Fishbach and Dhar| 2003} [Kool and 707 sol\fing out—of—disfributiqn tasks, and handli(tg com-
Botvinick} 2014), is hierarchical search. This plex action space. Hlerarchlcal methods consistently
method breaks down a problem into manageable perform better in all listed areas.

subproblems, or subgoals, making the overall

task more tractable, in contrast to low-level methods that rely on atomic actions for planning. Hi-
erarchical search has been successfully applied to a variety of combinatorial reasoning tasks, as
evidenced by methods like Subgoal Search (kSubS) (Czechowski et all,[2021), and further advanced

Under review as a conference paper at ICLR 2025

by approaches such as Adaptive Subgoal Search (AdaSubS) (Zawalski et al., 2023)), Hierarchical
Imitation Planning with Search (HIPS) (Kujanpii et al.l 2023a)), and HIPS-¢ (Kujanpai et al.,[2023b)).

Even though there is growing interest in applying subgoal methods to combinatorial problems and
other complex domains, knowledge about their true advantages remains fragmented. As a result,
standard low-level algorithms continue to be the default choice for most applications, regardless of
the domain. Our goal in this paper is to advance research in hierarchical planning and establish a
solid conceptual and empirical foundation. We identify four key challenges whose presence highly
favors the use of hierarchical search methods: high value function approximation errors, complex
action spaces, presence of dead ends in the environment, or data collected from diverse sources.
Through comprehensive empirical analysis, we demonstrate that hierarchical methods consistently
outperform standard search techniques in overcoming these critical obstacles. Furthermore, we
propose a consistent evaluation methodology to facilitate meaningful comparisons between methods
and reassess current state-of-the-art algorithms. Our findings offer a clearer understanding of when
hierarchical approaches should be preferred over low-level methods.

In summary, our contributions are as follows:

* We present a comprehensive empirical analysis comparing the performance of hierarchical
search methods against low-level search methods across diverse problem settings.

* We identify problem characteristics that influence performance, providing insights into when
hierarchical methods should be favored over low-level methods.

* We propose a standardized evaluation guidelines that facilitate meaningful and consistent
comparisons across different types of search methods.

2 RELATED WORKS

Now moved after Analysis, but this placeholder is kept for preserving the numbering.

3 COMBINATORIAL ENVIRONMENTS

Our study targets solving combinatorial environments — domains in which the number of possible
configurations or decisions grows exponentially with the problem size, making them highly chal-
lenging to solve. This class includes several NP-hard problems, such as the Traveling Salesman
Problem (Applegate et al.l |2006), the Rubik’s Cube (Singmaster, |1981), Sokoban (Culberson, |1997),
or solving non-linear inequalities (Sahni, |1974). To efficiently solve combinatorial problems an
algorithm should have the following key properties:

1. Learning from offline data. Since combinatorial reasoning environments are characterized
by a large space of possible configurations, learning without priors or handcrafted dense
rewards is infeasibld' [Thus, the algorithm has to be able to learn from additional offline data,
such as demonstrations.

2. Combinatorial space abstraction. The space complexity significantly restricts the fraction
of observable states. As a result, it is unrealistic to expect repeated visits to nearby states, an
assumption that some approaches implicitly rely on.

3. Planning. The algorithm needs a planning module. In contrast, methods that don’t use search
and follow a single action trajectory are inherently limited by computational complexity,
since they can perform only a constant number of operations before choosing an action.
Solving NP-hard problems within a fixed computation budget is computationally infeasible
(Bruck and Goodman, [1987)).

Many hierarchical methods have not been designed for combinatorial problems, so they fail to meet
the listed conditions and cannot be expected to be efficient in these applications. For instance,

'For instance, we tested PPO (Schulman et al.| 2017) on the Rubik’s Cube, but, unsurprisingly, it failed to
make any progress due to never reaching the goal in the haystack of 4.3 x 109 states, hence never observing a
positive reward.

Under review as a conference paper at ICLR 2025

(Chen et al.,|2024; [Yang et al., [2018) require continuous state or action space, (Ghavamzadeh and
Mahadevan, |2003) learns only from online interactions, (Eysenbach et al.l 2019; Huang et al.l 2019;
Lee et al.,2022) assume a good coverage of the whole state space, and (Nachum et al.| 2018; [Levy,
et al.| 2019) do not use planning to determine actions.

4 SUBGOAL METHODS

Subgoal methods, or hierarchical methods, are a family of algorithms designed to solve complex
decision-making tasks by breaking down the overall objective into smaller, more manageable subgoals
(Sutton et al.| [1999)). Instead of searching for a sequence of low-level actions that directly lead from
the initial state to the goal, the agent first identifies high-level intermediate targets — subgoals — that
guide the trajectory toward the final goal. The use of subgoals is widely considered as a method
that scales better to longer horizons (Chen et al., [2024} |Lee et al.,|2022), mitigates errors in value
approximations (Czechowski et al., [2021)), and reduces overall complexity by decomposing the
problem into smaller subproblems (Sutton et al.| |1999; [Zawalski et al.| |2023). The process of
searching involves the following components:

* Subgoal generator that, given a state within the search tree, outputs subgoals to be achieved.
For instance, a subgoal may be a future state (Czechowski et al., [2021; |Zawalski et al.; 2023))
or a class of desired outcomes (Jiang et al.,|2019; Panov and Skrynnik} 2018)). The generator
is used by the planner to construct a search tree of subgoals.

* Low-level policy that determines a path of low-level actions between subgoals. For instance,
it may be a trained goal-reaching policy (Czechowski et al.| [2021; [Zawalski et al., [2023)), a
local search (Czechowski et al.|, 2021; |[Kujanpaa et al., 2023al), or a stored path from previous
episodes (Eysenbach et al., 2019; [Lee et al., [2022).

* Planner that determines the order in which the search tree nodes are expanded. Standard
planning algorithms like BestFS (Czechowski et al.l 2021), PHS (Kujanpai et al.| [2023a), or
their modified forms (Zawalski et al., 2023)), are typically used.

* Value function that estimates the distance between the given state and the goal state. The
planner uses this information to select the next node to expand with the subgoal generator.
In some works it is also called heuristic value.

In our experiments, we use kSubS [Czechowski et al.|(2021) and AdaSubS |Zawalski et al.| (2023)) as
subgoal methods well-suited for combinatorial problems, as they satisfy the conditions formulated
in Section E} We also experimented with HIPS and HIPS-¢ (Kujanpii et al., [2023ajb), but these
methods generally fail to solve the problems within a reasonable computational budget. Therefore,
their results are omitted from the main text and discussed in see Appendix [I|

We compare the performance of the selected subgoal approaches against three popular low-level
methods: BestFS, A*, and MCTS. To ensure a fair comparison and improve efficiency, we augment
these algorithms by using a trained policy to select the top actions before each node expansion. We
refer to them as p-BestFS, p-A*, and p-MCTS. A detailed description, analysis, and pseudocode for
each of these algorithms can be found in Appendix [See also Appendix [H]for diagrams explaining
different search methods.

4.1 TRAINING COMPONENTS

In our experiments, the models for both subgoal methods and low-level searches were trained
using imitation learning, following standard practice (Nair et al.| 2018} |Czechowski et al.| 2021).
Specifically, we collected a dataset of approximately 500 000 trajectories for each environment.
Trajectories are sequences of consecutive states and actions leading to the goal state. We used various
methods of dataset collection, like hand-crafted algorithms, trained policies, reversed random shuffles,
and others, which let us to study the influence of training data characteristics on the performance of
search methods.

To ensure a fair comparison, all methods shared common components whenever applicable (e.g.,
each method uses the same value function). This allows us to focus on the differences between
the search algorithms, rather than heuristic biases. No additional heuristics were used, ensuring

Under review as a conference paper at ICLR 2025

that performance differences arise solely from the algorithmic approaches. While hand-designed
heuristics often yield superior results in specific cases, our goal is to provide a broader understanding
of the strengths and limitations of different planning methods. Training components directly from
data allows us to draw conclusions that are more likely to generalize across diverse environments
compared to using hardcoded components.

More details on training the components, including specific objectives, are provided in Appendix D]

4.2 PERFORMANCE METRIC

Our performance metric is the success rate, defined as the percentage of problem instances solved
within a given complete search budget. The complete search budget is the total number of visited
states in the search tree. In particular, for subgoal methods, the budget includes both the generated
subgoals and the states visited by the low-level policy used to connect these subgoals.

By accounting for the total number of visited states, this metric provides a unified and fair comparison
of search efficiency across different methods. We argue that reporting only the number of visited
subgoal nodes would unfairly favor subgoal methods (see Appendix |I| for details).

5 ANALYSIS

We investigate how environmental properties and training data influence the performance of hierar-
chical methods compared to low-level search approaches in combinatorial reasoning tasks. While
previous works (Czechowski et al., [2021} |[Zawalski et al.l [2023; [Kujanpii et al., |2023aib) show a
considerable advantage of hierarchical methods, our experiments reveal that this advantage is not
consistent across all scenarios (see Figures [or [5| for specific examples). Specifically, we answer the
following research questions:

Q1. Is hierarchical search more effective than low-level search for solving combinatorial reason-
ing problems?

Q2. What environmental properties and characteristics of the training data amplify performance
differences? When hierarchical search should be preferred over low-level search?

Q3. What pitfalls should be avoided when interpreting experimental results?

To address these questions, we conducted a wide range of experiments comparing subgoal and low-
level search algorithms across a variety of combinatorial reasoning tasks. Below, in each subsection
we summarize the key findings that reveal the most significant factors affecting performance, followed
by a brief discussion. For each finding, we link it to the relevant research questions. The extended
analysis of these factors can be found in Appendix [B]

We present our findings using the Rubik’s Cube, Sokoban, N-Puzzle, and Inequality Theorem Proving
(INT) (Wu et al., |2021) environments. These classical benchmarks are widely used in planning
research (McAleer et al.,2019; /Czechowski et al.l[2021)) and are known to be NP-hard (Demaine et al.}
2018; |Culbersonl [1997; Ratner and Warmuthl [1986)). Detailed descriptions of these environments can
be found in Appendix [Al

All methods in our study were trained using imitation learning, with each approach sharing the
same value function, as outlined in Section In particular, no domain knowledge is used in
any experiment. To ensure fair comparisons, we measured complete search budgets, in contrast to
counting only high-level search nodes, to avoid giving any unfair advantage to subgoal methods, as
discussed in Section@] (which contributes to the research question Q3).

5.1 SUBGOAL METHODS BENEFIT FROM DIVERSE SOURCES OF DATA

Achieving superhuman performance in complex tasks often involves large-scale datasets of demon-
strations obtained from agents with varying skill levels and strategies (Silver et al., 2016). By training
models on data collected from a variety of solvers and testing them in the Rubik’s Cube and N-Puzzle
environments, we show that the variability in training data has a significant impact on the performance
of search algorithms.

Under review as a conference paper at ICLR 2025

1.0 . AdaSubS 1.0 . AdaSubS
. kSubS . kSubS
0.8 p-BestFS 0.8 p-BestFS
@ @
o 06 @ p-McTS o 06 @ p-MCTS
S 04 % 04
Q o
= =
w1 v
0.2 0.2
_— gy
0.0 0.0
2 3
10 10 102 108

Complete search budget Complete search budget

Figure 3: Solving the N-Puzzle. Components are
trained on data from 2 different solvers.

Figure 2: Solving the Rubik’s Cube. Components
are trained on data from 4 different solvers.

As shown in Figures [2}f3] subgoal methods consistently outperform low-level methods by a wide mar-
gin (Q1). However, when the training dataset is limited to a single source of demonstrations — whether
the demonstrations are long and structured or short and direct — this performance gap disappears (see
Figures [A}{6). Notably, subgoal methods, particularly AdaSubS, maintain stable performance across
all training setups, while low-level methods are highly sensitive to the characteristics of the training
data.

10 @ Adasubs 10| @ Adasubs 10| @ Adasubs
@ ksubs @ suvs @ Ksuvs
08 @) p-BestFS 08 p-BestFS 08 | @) p-Bestks
[IS @ @
5 00 @pmcTs 2 "0 g@omets B 06 @ -vcTs
§ 0.4 § 0.4 g 04
a a a
0.2 0.2 0.2
0.0 0.0 0.0
107 10° 107 10° 102 10°

Complete search budget

Complete search budget

Complete search budget

Figure 6: Solving N-Puzzle. Com-
ponents are trained on an algorith-
mic solver.

Figure 4: Solving the Rubik’s
Cube. Components are trained on
reversed random shuffles.

Figure 5: Solving the Rubik’s
Cube. Components are trained on
the Beginner algorithmic solver.

To explain those results, we found that value functions trained on diverse data often fail to assign
consistently low values to the initial states of tasks. For instance, in the Rubik’s Cube, we used a
mixture of solvers: Beginner, CFOP, Kociemba, and random shuffles. The first two usually provide
solutions with over 200 steps, while the last two usually range between 20 and 40 steps. When
demonstrations differ significantly in their length or execution style, the value function learns this
variation, leading to inconsistent value predictions. The value estimates for fully scrambled cubes
reflect the diversity of training data.

Hierarchical methods can overcome this issue by relying on subgoals. Subgoals enable the agent
to make long steps toward the solution, effectively bypassing regions of the state space where the
value function is inconsistent or noisy, as it does not need to assess every small step along the way
(this property is further studied in Section [5.2). In contrast, low-level methods operate on a finer,
step-by-step level, executing small, atomic actions. This makes them more sensitive to the variability
in the value function because they must evaluate each intermediate state on the way.

More detailed analysis of the experiments involving diverse data sources is provided in Appendix[B.1]

Takeaway Subgoal methods successfully leverage diverse demonstrations (Q2), while
low-level search performs better when trained on homogeneous trajectories (Q2).

Under review as a conference paper at ICLR 2025

5.2 SUBGOAL METHODS ARE VALUE NOISE FILTERS

We found that the classical search algorithms are highly sensitive to the quality of the value function.
To show this in a controlled setting, we added Gaussian noise to the value estimates and observed
how different noise levels impacted the success rate of solving tasks.

Sokoban N Puzzle Rubik's Cube

1.0

AdaSubS MM 0.76 M 0.61 '
0.8
-0.6

pears e O
o

p_A* 0.48 0.35 0.28 [0.27 0.79 0.76

0.2
picrs o2 0 (D]
0.0

0.2 0.5 2.0 100.0 0.2 0.5 2.0 100.0 0.2 0.5 2.0 100.0
Noise variance o

Succes rate

Figure 7: Success rate of low-level and subgoal methods as the approximation errors of the value function
increase. Outputs of the value function are normalized to the interval [0; 1]. Hence, 0 = 0.2 corresponds to
perturbing the distance estimates on average by 16, 32, and 4 steps, respectively. o = 100 results in completely
random value estimates.

While p-BestFS is able to solve nearly all instances under ideal conditions, its performance signif-
icantly declines as value function errors increase, even to 0% (see Figure . p-A* and p-MCTS
behave similarly. In contrast, the subgoal methods show remarkable resilience. Particularly AdaSubS,
which maintains nearly unchanged success rate, despite high value errors (Q2).

- low-level trajectory

=8~ subgoal trajectory

=
S
i

w
[
Normalized Advancement
\.
\

-
&
|

Estimated distance
to the goal state

Step number Subgoal Distance

Figure 8: Value estimates along a solving trajectory Figure 9: Normalized advancement E 44,/ k for a sin-
generated by p-BestFS. Even small approximation er- gle search iteration, according to Theorem[I] The value
rors cause non-decreasing values, slowing down the for each subgoal is divided by its length to represent the
search. In contrast, the subgoal path mitigates these advancement per atomic action for easier comparison.
errors, leading to mostly monotonic values along the

trajectory.

These results align with our findings in Section [5.1I] where using diverse training data naturally
introduced value estimation errors. As observed by [Zawalski et al.| (2023), the search process of
subgoal methods is guided by subgoal generators, which reduces reliance on the value function.
Subgoal generators and the conditional policies connecting subgoals are not directly influenced by
the value approximation errors. The value function is used only in high-level nodes, which represent
only a fraction of the search tree.

Interestingly there is one case where adding noise to the value function improved performance. This
rare effect arises from the exploration-exploitation tradeoff, as noising value estimates can promote
exploration. It can be particularly useful in the Sokoban domain, where overly exploiting the value
can lead to getting stuck in dead ends.

In hierarchical methods, the distance between high-level nodes spans multiple steps, increasing
the likelihood that value estimates for subsequent high-level nodes along the solution path will be
monotonic (see Figure 8] for an illustrative example), which makes planning more efficient. This
supports the claim by [Czechowski et al.| (2021)) that subgoals effectively mitigate the impact of value
noise. To further ground that result, we prove the following theorem:

Under review as a conference paper at ICLR 2025

Theorem 1 (Search advancement formula). Let gy, : S — P(.S) be a stochastic k-subgoal generator
that, given a state s € S samples a set of b subgoals {s;} such that the distances d(s;, s) are
independent, uniformly distributed in the interval [—k; k]. Let V : S — R be a value function with
approximation error uniformly distributed in the interval [—o; o].

Then, after n iterations of search, the expected total progress toward the goal is:

E ”b/k /a a(x+ h)P~1dh) d (1
Adv*4o_k 7}61' 7qu X,

where t(x) is CDF of the sum of two uniform variables U(—k, k) + U(—o, o). Additionally, if we

approximate that sum as U(—k — o,k + o), we get

n ((k: + 0)b(bk? + bko — 2ko — 202) + 0°(2ko + bko + 20?) — kb(bk:Q))
(b+1)(b+2)ko(k + o)1

Eado & @

Proof. See Appendix [K]for the proof. O

Theorem [I] quantifies the expected progress of the search at each step, with Equation [T] giving an
exact formula and Equation [2| providing a useful approximation. To compare subgoal methods with
low-level methods in theory, under different levels of value approximation error, we model low-level
search by setting k& = 1, which represents a single action. Figure [9] shows the expected search
progress with a branching factor of b = 3, normalized by the number of actions leading to a subgoal.

When value estimates are perfect (i.e., o = 0), both subgoal and low-level searches perform similarly.
However, as value approximation errors increase, subgoal methods become significantly more
resilient. At high noise levels (o = 20), single-step searches make very little progress, advancing
only 0.025 per action. In contrast, subgoals of length 8 achieve much greater progress — 1.4 for the
entire subgoal, which is 0.175 per action. This 7-fold increase in theoretical efficiency explains why
subgoal methods outperform low-level methods in our experiments.

High approximation errors can be a result of poor-quality data, such as multimodal data, limited data,
or lack of diversity in the data. In such case, not only the value function, but all components may
suffer from high approximation errors. Therefore, to ensure the completness of our analysis, we
analyzed also the impact of low-quality data on subgoal generators.

We evaluate the impact of poor-quality data on subgoal generators through two ablations. In the
first experiment, we randomly sample subgoals from an expanded candidate pool, forcing the use of
suboptimal subgoals. Results show that subgoal methods are highly resilient, maintaining over 70%
performance even with significantly expanded pools, thanks to the value function compensating for
generator errors.

In the second experiment, we simulated low-quality training data by randomly corrupting subgoals
with varying probabilities, rendering them invalid. Subgoal methods demonstrated strong tolerance,
solving most instances even with 50% corruption. These findings emphasize the robustness of subgoal
methods, driven by the complementary roles of the generator and value function. That contrasts with
low-level methods that rely solely on the value function’s accuracy.

Further analysis of these experiments can be found in Appendix [B.2]

Takeaway Subgoal methods successfully handle value approximation errors. Thus, they
should be used when estimating the value is hard, for instance, when learning from diverse
and suboptimal demonstrations (Q2).

5.3 SUBGOAL METHODS HANDLE COMPLEX ACTION SPACES

In environments with large action spaces, search methods often struggle due to the exponential
increase in the number of choices (Sutton and Barto, |1998). As shown in Figure |10} subgoal methods
demonstrate a clear advantage over low-level search methods in the INT environment (Wu et al.|
2021)), a benchmark on proving mathematical inequalities (Q1). The INT environment is particularly
challenging because of its highly complex observation and action spaces, making it the most difficult

Under review as a conference paper at ICLR 2025

benchmark among those used in (Czechowski et al.l 2021} |[Zawalski et al., [2023} |Kujanpiai et al.}
2023agb)).

Baseline

. Complex Action Space

1.0

@ Adasubs

@ Ksubs
p-BestFS

o

0.6 . p-MCTS

0.8

v

. aull

Success rate
kS

0.0

0.0 p-MCTS p-BestFS p-A* AdaSubS kSubS
102 10°
Complete search budget
Figure 10: Solving INT. Components are trained Figure 11: Solving the Rubik’s cube with ex-
on randomly generated proofs. panded action space, compared with the standard
setup. Components are trained on reverse random
shuffles.

The primary difference between low-level methods and subgoal methods is that the former predicts
the next action, and the latter — the next state. In many environments, the action space is as simple as a
few bits, allowing for iterating over all possible actions, and sampling them. At the same time, states
may be considerably larger, up to the extreme of image observations. However, in some environments,
the action space is comparable to the state space, or even more complex.

Given a complex action space, in low-level methods, each node expansion involves executing many
similar actions, limiting their ability to efficiently search through the space. In contrast, subgoal
methods compute actions only to connect subgoals, which is a much simpler task. This targeted
approach reduces the negative impact of a large action space, allowing subgoal methods to maintain
their efficiency even as the action space grows (Q2).

To confirm this explanation, we conducted experiments on a modified version of the Rubik’s Cube,
where the action space was artificially inflated by giving the agent access to 100 copies of each action.
As shown in Figure|[IT] this simple modification drastically reduces the success rates of all low-level
methods, even below 35%. In contrast, subgoal methods remain largely unaffected, performing
similarly to the standard setup. We can explain that result with the following theorem:

Theorem 2 (Densification of the action space). Fix any state s from the state space S. Let f : A —
[0, 1] be the action distribution induced by the data-collecting policy for the state s. Assume that f is
continuous and has a unique maximum. For clarity, assume A = [0, 1].

Consider a sequence of increasingly dense discrete action spaces A,, = {i/n}l, C A. Let
pn 2 S X A, — [0,1] be a family of policies that learn the distribution f|a, over actions, with
uniform approximation error U(—E, E), where E € R. Let 1, be the range of the top K actions
according to the probabilities estimated by p,,. Then

lim E[r,] =0.

n—oo

Intuitively, this theorem states that as the action space become more dense and complex, the actions
sampled for search become increasingly less diverse, which strongly impedes successful planning.
Note that this analysis is strictly more general than the last experiment, where we simply copied the
available actions. Here we model the complexity by adding dense intermediate actions. While we
assume a one-dimensional action domain for clarity, it is straightforward to generalize the proof to
cover arbitrarily high-dimensional action spaces.

Further analysis of the experiments involving large action spaces is provided in Appendix

Under review as a conference paper at ICLR 2025

Takeaway When facing a problem with a complex action space, subgoal methods should
outperform low-level search (Q2).

5.4 SUBGOAL METHODS AVOID DEAD ENDS

Search algorithm Dead ends rate

p-MCTS 22.0%
p-BestFS 18.5%
p-A* 13.7%
kSubS (4 steps) 12.7%
kSubS (8 steps) 10.0%
AdaSubS 8.86%

Figure 13: Fraction of dead ends encountered
during search between hierarchical and low-

Figure 12: An example dead-end in Sokoban. level methods in Sokoban.

Once an agent encounters a dead end, reaching the goal becomes impossible, leading to wasted
computational effort. Our results, presented in Figure[I3] show that subgoal methods tend to enter
dead ends less often than low-level methods. Using longer subgoals improves the ability to bypass
those areas.

Among low-level methods, p-A* performs the best at minimizing dead ends rate, as its node selection
regularizes values by depth in the search tree, preventing it from over-committing to dead ends.
However, even p-A* is outperformed by subgoal methods, which rely on greedy value estimates and
subgoals.

Deciding whether a state is a dead end can be NP-hard. Hence, it is much harder for the value function
to penalize dead ends compared to the policy, which only ranks the available actions and does not have
to identify dead ends 2022)). Furthermore, demonstrations used for imitation learning
lead to the goal state, hence they contain no dead ends. Therefore the value function trained this way
is never directly instructed to penalize dead ends. At the same time, during training of the policy the
actions leading to dead ends are never reinforced. Our experiments show that hierarchical search
relies much less on the value guidance compared to low-level search (Section [5.2)), which further
supports our conclusions. For a more detailed analysis, see Appendix [B.4]

Takeaway Subgoal methods are more effective at avoiding dead ends compared to low-level
search (Q2).

5.5 SUBGOAL METHODS GENERALIZE OUT-OF-DISTRIBUTION

Planners that can generalize to out-of-distribution (OOD) instances are essential for robust decision-
making (Kirk et al}, 2023} [Shen et al.,[2021]). We tested two types of generalization in the Sokoban
environment: by significantly changing the layout of the board and by using extremely difficult

boards from the DeepMind dataset [2018) (see Figure[T4]for examples).

In both cases, subgoal methods show better performance than low-level methods, with the gap
increasing as the distribution shift become more visible (see Figures [I3}{I6). However, we found
that kSubS, when using twice longer subgoals, collapses in OOD evaluations, despite outperforming
p-BestFS and other low-level methods on in-distribution tasks. As the subgoal distance increases,
predicting the distant future becomes more challenging, making it less likely for the generated
subgoals to be valid and reachable, especially in OOD tasks. In contrast, low-level methods avoid this
issue, as selecting an action from a limited set always results in a valid move. Thus, while subgoal
methods can be effective in OOD scenarios, excessively long subgoals can degrade performance

(Q2).

Under review as a conference paper at ICLR 2025

DeepMind
Board from the testing set OOD 10-box board hard-difficulty board

Figure 14: Examples of Sokoban boards used in OOD experiments

Success rate

. AdaSubS
04| @ ksubs 0.5
p-BestF'S
02 | @opA*
@ »-vcTs
0.0
4 5 6 7 8 9 10 00 _@»
Number of boxes p-MCTS p-BestFS p-A* AdaSubS kSubS
Figure 15: Averaged OOD results on Sokoban Figure 16: Performance on DeepMind extra hard
boards with OOD layouts. These instances were boards.

generated by systematically varying all parameters
of the instance generator.

When evaluated on extremely challenging instances (see Figure 1) introduced by 2018),
all methods required a significantly higher search budget but maintained the same performance
order as in the previous experiment (Q1). Solving these instances requires more advanced strategies
than those learned during training. Subgoal methods are better equipped to handle this increased
complexity because selecting subgoals is closely related to choosing a broader strategy because of
their longer horizon. In contrast, low-level methods must assess each individual action, which limits
their ability to foresee the long-term consequences of their choices.

Takeaway Subgoal methods can scale better than low-level methods on OOD instances,
provided the subgoals are not too long (Q2).

6 RELATED WORK

Solving Decision-Making Problems Decision-making problems are often framed as Markov
Decision Processes (MDPs) (Sutton et al.,[1999), which can be solved using Reinforcement Learning
(RL) algorithms like PPO (Schulman et al.| 2017) or DQN 2015). These methods learn
policies through interaction with the environment. An alternative to learning from trial and error is
Imitation Learning (IL), training models directly from offline demonstrations. The availability of

large-scale datasets (Walke et al.,[2023}; [Collaboration et al.,[2023}; [Grauman et al., [2022; [Dosovitskiy
et al.l[2017), make it applicable to the most complex domains like robotics (Mandlekar et al., 2018}

Edmonds et al.}[2017; [Kim et al.}, [2024)), autonomous driving (Kelly et al., 2019; [Li et al., 2022} [Zhang
and Chol 2017), and physics-based control (Kim et al.,2020; [Fickinger et al., 2022). Key foundational

methods such as Behavioral Cloning (BC) (Sutton and Bartol [1998), Inverse Reinforcement Learning

(IRL) (Baker et al.,[2009), or DAgger (Ross et al.| [2011) have been instrumental in advancing IL
for complex environments where direct exploration is less practical. In this work, we use IL to train

components for the search methods, such as the policy and value function.

10

Under review as a conference paper at ICLR 2025

Subgoal Methods Hierarchical Reinforcement Learning methods tackle complex decision-making
tasks by breaking them into subgoals. HIRO (Nachum et al.| 2018) reuses past data by goal relabeling.
HAC (Levy et al.,2019) builds a multi-layer hierarchy of policies trained with hindsight. Hierarchical
Diffuser (Chen et al., [2024) learns to predict future states with diffusion models. Graph-based
methods, such as SORB (Eysenbach et al.,|2019) or DHRL (Lee et al.,|2022) build a high-level graph
of states, which then allow for efficient shortest path finding. GCP (Pertsch et al., [2020) learns to
predict middle states between two given observations. Algorithms such as HPG (Ghavamzadeh
and Mahadevan, [2003) or H-DDPG (Yang et al., [2018)) extend the classical RL algorithms to the
hierarchical setting.

In the area of combinatorial reasoning, there has been growing interest in applying HRL techniques.
kSubS (Czechowski et al.,2021) introduces a hierarchical search algorithm that iteratively generates
subgoals to construct a search tree. Building on this, AdaSubS (Zawalski et al.||2023)) incorporates
multiple subgoal generators, each trained to predict subgoals at different distances from the target,
allowing for dynamic adaptation of the planning horizon based on problem complexity. HIPS
(Kujanpaa et al.| 2023a) and HIPS-¢ (Kujanpéi et al.,[2023b)) perform search using subgoals generated
by VQ-VAE models (van den Oord et al., 2017).

Low-level Search Algorithms Traditional search algorithms like Best-First Search (BestFS), A*
(Cormen et al., [2009; Russell and Norvig, 2009), and Monte Carlo Tree Search (MCTS) (Veness
et al.|[2009; James et al.,2017) have long been the foundation for solving complex decision-making
problems. Recent advancements have improved these methods by integrating neural network-based
heuristics, improving their efficiency in large search spaces (Silver et al.l 2018 [Yonetani et al., 2021)).
A variant of p-BestFS used in (Czechowski et al., 2021} Zawalski et al., 2023)), leverage heuristics
learned through behavioral cloning to guide search. More recent algorithms, like PHS (Orseau and
Lelis, [2021)) or LevinTS (Orseau et al., 2023)), combine policy-driven and value-based approaches,
offering both theoretical guarantees and strong empirical performance. Additionally, PDDL planners
(Haslum et al., |2019) solve decision-making problems by using predefined action models and goals,
with domain-independent planners offering broad applicability, while domain-specific ones achieve
higher performance in specialized tasks.

Empirical Studies on Algorithmic Performance Our work aligns with recent empirical studies
that investigate the conditions under which various algorithmic approaches excel. For instance,
(Andrychowicz et al., [2020) investigates how specific design choices influence the performance of
PPO, while other research compares offline reinforcement learning with behavioral cloning (Kumar
et al.,2022) or explores design choices for language-conditioned robotic imitation learning (Mees
et al., 2022). In this paper, we focus on hierarchical search in combinatorial reasoning problems,
specifically studying the conditions where hierarchical methods outperform low-level planners. To
the best of our knowledge, this is the first systematic study of the relationship between hierarchical
and low-level search in this context.

7 OPEN QUESTIONS AND FUTURE DIRECTIONS

While we identified several features that facilitate the performance of subgoal methods, that list is
not exhaustive. Thus, it is essential to study this topic further, expand the analysis to more subgoal-
based and low-level algorithms, and include even more types of environments. While most of our
takeaways were confirmed in multiple environments, extending the evaluation to more domains would
strengthen our conclusions. Additionally, our work provides mostly experimental validation of the
claims. Finding theoretical foundations for the observed properties, such as Theorem [I would also
be a valuable direction.

In our experiments, we focused on measuring the performance of the tested methods based on the
search tree size — an objective, algorithmic metric that is independent of the hardware or optimizations
used, can be measured precisely, and is fully reproducible, unlike the wall time. However, in many
practical applications computational complexity is also essential. We used the architectures proposed
by the authors, as our aim for each method was to optimize performance instead of time. To optimize
execution time, we can tune the number of parameters or use other architectures that are known to
work well for generating subgoals, such as VQ-VAEs (Kujanpii et al. [2023a)), diffusions (Black
et al., [2024), or MLPs (Park et al.,|2023)).

11

Under review as a conference paper at ICLR 2025

8 CONCLUSIONS

We conducted a thorough comparison of hierarchical and low-level search methods for combinatorial
reasoning tasks. Our experiments provides empirical and some theoretical evidence that hierarchical
approaches should be preferred in environments where value estimation is challenging and learned
estimates face significant uncertainty, particularly when learning from diverse suboptimal data.
Furthermore, subgoal methods demonstrate better scalability in complex action spaces and are more
effective at avoiding dead ends than low-level methods. Thus, in environments characterized by those
properties, it is advisable to consider subgoal methods as an alternative to low-level search. While
these properties are not sufficient conditions, they serve as useful indicators.

Based on our results, we propose guidelines for future research in this area. According to our
experiments, the best-performing low-level search was usually p-BestFS with a confidence threshold
(see Appendix [F). Although it is rather sensitive to the threshold value, which has to be optimized
for each domain separately, we advocate using this simple method as a standard baseline for further
research in hierarchical search. Our guidelines are further discussed in Appendix [J}

Additionally, we identified easy-to-overlook mistakes in reporting the results that may lead to
misleading conclusions. Most importantly, the reported complete search budget of hierarchical
methods must include all the visited states and not only the high-level nodes as used in some prior
works.

9 BROADER IMPACT

Our study has broader implications for other complex domains. For example, advancements in
robotics often face significant challenges due to limited data, leading many methods to rely on collec-
tive datasets like Open X-Embodiment (Collaboration et al.,|2023)). As shown in our experiments,
hierarchical search methods benefit substantially from training on diverse expert data (Section[5.I)).
Furthermore, the data bottleneck increases the need for the models to generalize to out-of-distribution
scenes and tasks, which is also an advantage of hierarchical methods (Section @ Finally, an
essential aspect of robotics involves preventing the robot from becoming stuck or losing a manipu-
lated object, events that can be seen as dead-end scenarios (Section [5.4). Successful applications of
hierarchical methods in robotics include models such as SuSIE (Black et al., |2024) and HIQL (Park|
et al., [2023).

Additionally, our experiments indicate that hierarchical methods scale well in long-horizon tasks,
as evidenced by their performance in the N-Puzzle and the Rubik’s Cube (using Beginner-level
demonstrations), where the average sequence of steps often exceeds 200. Interestingly, while low-
level methods can still perform well in these scenarios, we observed that they tend to be much more
sensitive to hyperparameter tuning.

It is important to note that we do not claim hierarchical methods are universally superior to low-level
approaches in all complex domains. Instead, the properties highlighted in our analysis suggest cases
where they should be considered.

10 REPRODUCIBILITY STATEMENT

The code used to run all our experiments is available at https://github.com/subgoalse
archmatters/what-matters—in-hierarchical-search. We also link there datasets
used for training our models. Hence, all our results are fully reproducible.

REFERENCES

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In D. Precup and
Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pages 22-31. PMLR, 2017. URL http://proceedings.mlr.press/v70/ac
hiaml7a.htmll

12

https://github.com/subgoalsearchmatters/what-matters-in-hierarchical-search
https://github.com/subgoalsearchmatters/what-matters-in-hierarchical-search
http://proceedings.mlr.press/v70/achiam17a.html
http://proceedings.mlr.press/v70/achiam17a.html

Under review as a conference paper at ICLR 2025

M. Andrychowicz, A. Raichuk, P. Stanczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot, M. Geist,
O. Pietquin, M. Michalski, S. Gelly, and O. Bachem. What matters in on-policy reinforcement
learning? A large-scale empirical study. CoRR, abs/2006.05990, 2020. URL https://arxiv,
org/abs/2006.05990.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman Problem: A
Computational Study. Princeton University Press, 2006.

C. L. Baker, R. Saxe, and J. B. Tenenbaum. Action understanding as inverse planning. Cognition,
113(3):329-349, 2009.

Y. Bengio, A. Lodi, and A. Prouvost. Learning combinatorial optimization algorithms over graphs.
In Advances in Neural Information Processing Systems, 2021.

K. Black, M. Nakamoto, P. Atreya, H. R. Walke, C. Finn, A. Kumar, and S. Levine. Zero-shot robotic
manipulation with pre-trained image-editing diffusion models. In The Twelfth International Confer-
ence on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=cOchJTSbcil

J. Bruck and J. W. Goodman. On the power of neural networks for solving hard problems. In D. Z.
Anderson, editor, Neural Information Processing Systems, Denver, Colorado, USA, 1987, pages
137-143. American Institue of Physics, 1987. URL http://papers.nips.cc/paper/7
O-on-the-power-of-neural-networks—-for—-solving-hard-problems.

R. Brunetto and O. Trunda. Deep heuristic-learning in the rubik’s cube domain: An experimental
evaluation. In J. Hlavacova4, editor, Proceedings of the 17th Conference on Information Tech-
nologies - Applications and Theory (ITAT 2017), Martinské hole, Slovakia, September 22-26,
2017, volume 1885 of CEUR Workshop Proceedings, pages 5S7-64. CEUR-WS.org, 2017. URL
https://ceur-ws.orqg/Vol-1885/57.pdf.

M. Campbell, A. J. H. Jr., and F. Hsu. Deep blue. Artif. Intell., 134(1-2):57-83, 2002. doi:
10.1016/S0004-3702(01)00129-1. URL https://doi.org/10.1016/S0004-3702 (01
)00129-1.

C. Chen, F. Deng, K. Kawaguchi, C. Giilgehre, and S. Ahn. Simple hierarchical planning with
diffusion. CoRR, abs/2401.02644, 2024. doi: 10.48550/ARXIV.2401.02644. URL https:
//doi.org/10.48550/arXiv.2401.02644.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mor-
datch. Decision transformer: Reinforcement learning via sequence modeling. In M. Ranzato,
A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurlPS 2021, December 6-14, 2021, virtual, pages 15084-15097, 2021. URL
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb102
72b5c31057f00663-Abstract.html.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge,
MA, 2005. ISBN 978-0-262-03327-5.

0. X.-E. Collaboration, A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Poo-
ley, A. Gupta, A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky,
A. Rai, A. Gupta, A. Wang, A. Singh, A. Garg, A. Kembhavi, A. Xie, A. Brohan, A. Raf-
fin, A. Sharma, A. Yavary, A. Jain, A. Balakrishna, A. Wahid, B. Burgess-Limerick, B. Kim,
B. Scholkopf, B. Wulfe, B. Ichter, C. Lu, C. Xu, C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang,
C. Chan, C. Agia, C. Pan, C. Fu, C. Devin, D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak,
D. Shah, D. Biichler, D. Jayaraman, D. Kalashnikov, D. Sadigh, E. Johns, E. Foster, F. Liu, F. Ceola,
F. Xia, F. Zhao, F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi,
G. Berseth, G. Kahn, G. Wang, H. Su, H.-S. Fang, H. Shi, H. Bao, H. B. Amor, H. I. Christensen,
H. Furuta, H. Walke, H. Fang, H. Ha, I. Mordatch, I. Radosavovic, I. Leal, J. Liang, J. Abou-Chakra,
J. Kim, J. Drake, J. Peters, J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu, J. Gao, J. Hu, J. Wu,
J. Wu, J. Sun, J. Luo, J. Gu, J. Tan, J. Oh, J. Wu, J. Lu, J. Yang, J. Malik, J. Silvério, J. Hejna,

13

https://arxiv.org/abs/2006.05990
https://arxiv.org/abs/2006.05990
https://openreview.net/forum?id=c0chJTSbci
http://papers.nips.cc/paper/70-on-the-power-of-neural-networks-for-solving-hard-problems
http://papers.nips.cc/paper/70-on-the-power-of-neural-networks-for-solving-hard-problems
https://ceur-ws.org/Vol-1885/57.pdf
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.48550/arXiv.2401.02644
https://doi.org/10.48550/arXiv.2401.02644
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html

Under review as a conference paper at ICLR 2025

J. Booher, J. Tompson, J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao, K. Pertsch,
K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund, K. Kawaharazuka,
K. Black, K. Lin, K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Srinivasan, K. Fang,
K. P. Singh, K.-H. Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. J.
Fan, L. Ott, L. Lee, L. Weihs, M. Chen, M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. G.
Castro, M. Spero, M. Du, M. Ahn, M. C. Yip, M. Zhang, M. Ding, M. Heo, M. K. Srirama,
M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf, N. Liu,
N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer, O. Bastani, P. R. Sanketi, P. T. Miller,
P. Yin, P. Wohlhart, P. Xu, P. D. Fagan, P. Mitrano, P. Sermanet, P. Abbeel, P. Sundaresan, Q. Chen,
Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Mart’in-Mart’in, R. Baijal, R. Scalise, R. Hendrix,
R. Lin, R. Qian, R. Zhang, R. Mendonca, R. Shah, R. Hoque, R. Julian, S. Bustamante, S. Kirmani,
S. Levine, S. Lin, S. Moore, S. Bahl, S. Dass, S. Sonawani, S. Song, S. Xu, S. Haldar, S. Karam-
cheti, S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari,
S. Belkhale, S. Park, S. Nair, S. Mirchandani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao,
T. Kollar, T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung, V. Jain,
V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Wang, X. Zhu, X. Geng, X. Liu,
X. Liangwei, X. Li, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Wu, Y. Xu, Y. Wang,
Y. Bisk, Y. Cho, Y. Lee, Y. Cui, Y. Cao, Y.-H. Wu, Y. Tang, Y. Zhu, Y. Zhang, Y. Jiang, Y. Li,
Y. Li, Y. Iwasawa, Y. Matsuo, Z. Ma, Z. Xu, Z. J. Cui, Z. Zhang, and Z. Lin. Open X-Embodiment:
Robotic learning datasets and RT-X models. https://arxiv.org/abs/2310.08864,
2023.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009. ISBN 0262033844.

J. C. Culberson. Sokoban is pspace-complete. 1997. URL https://api.semanticscholar,
org/CorpusID:61114368.

K. Czechowski, T. Odrzygbézdz, M. Zbysinski, M. Zawalski, K. Olejnik, Y. Wu, L. Kucinski, and
P. Milos. Subgoal search for complex reasoning tasks. In M. Ranzato, A. Beygelzimer, Y. N.
Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 624-638, 2021. URL https://proceedings.neurips.cc/p
aper/2021/hash/05d8cccb5f47e5072f0a05b5f514941a-Abstract.htmll

E. D. Demaine, S. Eisenstat, and M. Rudoy. Solving the rubik’s cube optimally is np-complete.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2018. doi: 10.4230/LIPICS.STACS.2018.24.
URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.S
TACS.2018.24.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423|

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1-16, 2017.

G. Dulac-Arnold, R. Evans, P. Sunehag, and B. Coppin. Reinforcement learning in large discrete
action spaces. CoRR, abs/1512.07679, 2015. URL http://arxiv.org/abs/1512.07679.

M. Edmonds, F. Gao, X. Xie, H. Liu, S. Qi, Y. Zhu, B. Rothrock, and S.-C. Zhu. Feeling the force:
Integrating force and pose for fluent discovery through imitation learning to open medicine bottles.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3530-3537, 2017. doi: 10.1109/IROS.2017.8206196.

B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging planning

and reinforcement learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran

14

https://arxiv.org/abs/2310.08864
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://proceedings.neurips.cc/paper/2021/hash/05d8cccb5f47e5072f0a05b5f514941a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05d8cccb5f47e5072f0a05b5f514941a-Abstract.html
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.24
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.24
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1512.07679

Under review as a conference paper at ICLR 2025

Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/p
aper/2019/file/5c48ff18e0ad7baaf81d8b8eableec92-Paper.pdfl

M. Fatemi, T. W. Killian, J. Subramanian, and M. Ghassemi. Medical dead-ends and learning to
identify high-risk states and treatments. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurlPS 2021, December 6-14, 2021,
virtual, pages 4856-4870, 2021. URL https://proceedings.neurips.cc/paper/2
021/hash/26405399c51ad7b13b504e74eb7c696c—Abstract.htmll

D. Feng, C. P. Gomes, and B. Selman. Left heavy tails and the effectiveness of the policy and
value networks in DNN-based best-first search for sokoban planning. In A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=b6to5kfFhQh.

A. Fickinger, S. Cohen, S. Russell, and B. Amos. Cross-domain imitation learning via optimal
transport. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=xP3cPg2hQC.

A. Fishbach and R. Dhar. Goals as excuses or guides: The liberating effect of perceived goal progress
on choice. Journal of Consumer Research, 32(3):370-377, 2005.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets for deep data-driven
reinforcement learning. CoRR, abs/2004.07219, 2020. URL https://arxiv.org/abs/20
04.07219.

M. Ghavamzadeh and S. Mahadevan. Hierarchical policy gradient algorithms. In T. Fawcett and
N. Mishra, editors, Machine Learning, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 226-233. AAAI Press, 2003.
URL http://www.aaal.orqg/Library/ICML/2003/1icml03-032.php.

K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang,
M. Liu, X. Liu, M. Martin, T. Nagarajan, I. Radosavovic, S. K. Ramakrishnan, F. Ryan, J. Sharma,
M. Wray, M. Xu, E. Z. Xu, C. Zhao, S. Bansal, D. Batra, V. Cattillier, S. Crane, T. Do, M. Doulaty,
A. Erapalli, C. Feichtenhofer, A. Fragomeni, Q. Fu, A. Gebreselasie, C. Gonzalez, J. Hillis,
X. Huang, Y. Huang, W. Jia, W. Khoo, J. Kolar, S. Kottur, A. Kumar, F. Landini, C. Li, Y. Li,
Z. Li, K. Mangalam, R. Modhugu, J. Munro, T. Murrell, T. Nishiyasu, W. Price, P. R. Puentes,
M. Ramazanova, L. Sari, K. Somasundaram, A. Southerland, Y. Sugano, R. Tao, M. Vo, Y. Wang,
X. Wu, T. Yagi, Z. Zhao, Y. Zhu, P. Arbelaez, D. Crandall, D. Damen, G. M. Farinella, C. Fuegen,
B. Ghanem, V. K. Ithapu, C. V. Jawahar, H. Joo, K. Kitani, H. Li, R. Newcombe, A. Oliva, H. S.
Park, J. M. Rehg, Y. Sato, J. Shi, M. Z. Shou, A. Torralba, L. Torresani, M. Yan, and J. Malik.
Ego4d: Around the world in 3,000 hours of egocentric video, 2022.

A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racaniere, T. Weber, D. Raposo, A. Santoro, L. Orseau,
T. Eccles, G. Wayne, D. Silver, T. Lillicrap, and V. Valdes. An investigation of model-free planning:
boxoban levels. https://github.com/deepmind/boxoban-levels/, 2018.

P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise. An Introduction to the Planning Domain
Definition Language. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2019. ISBN 978-3-031-00456-8. doi: 10.2200/SO0900ED2V01Y201902A
IM042. URL https://doi.org/10.2200/S00900ED2V01Y201902AIM042.

Z. Huang, F. Liu, and H. Su. Mapping state space using landmarks for universal goal reaching. In
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
1940-1950, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/3
b712ded48137572£3849%aabd5666ad4e3-Abstract.html.

C. L. Hull. The goal gradient hypothesis and maze learning. Psychological Review, 39(1):25-43,
1932.

15

https://proceedings.neurips.cc/paper_files/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper/2021/hash/26405399c51ad7b13b504e74eb7c696c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/26405399c51ad7b13b504e74eb7c696c-Abstract.html
https://openreview.net/forum?id=b6to5kfFhQh
https://openreview.net/forum?id=xP3cPq2hQC
https://openreview.net/forum?id=xP3cPq2hQC
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
http://www.aaai.org/Library/ICML/2003/icml03-032.php
https://doi.org/10.2200/S00900ED2V01Y201902AIM042
https://proceedings.neurips.cc/paper/2019/hash/3b712de48137572f3849aabd5666a4e3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3b712de48137572f3849aabd5666a4e3-Abstract.html

Under review as a conference paper at ICLR 2025

S. James, G. Konidaris, and B. Rosman. An analysis of monte carlo tree search. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1), Feb. 2017. doi: 10.1609/aaai.v31i1.11028. URL
https://0ojs.aaai.org/index.php/AAAI/article/view/11028l

Y. Jiang, S. Gu, K. Murphy, and C. Finn. Language as an abstraction for hierarchical deep reinforce-
ment learning. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. B. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 9414-9426, 2019. URL https://proceedings.neurips.cc/pap
er/2019/hash/0af787945872196b42c9f73ead2565c8-Abstract.htmll

M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. Hg-dagger: Interactive imitation
learning with human experts. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8077-8083, 2019. doi: 10.1109/ICRA.2019.8793698.

K. Kim, Y. Gu, J. Song, S. Zhao, and S. Ermon. Domain adaptive imitation learning. In H. D. III and
A. Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 5286-5295. PMLR, 13-18 Jul 2020.
URLhttps://proceedings.mlr.press/v119/kim20c.htmll

M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster, G. Lam,
P. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine, P. Liang, and
C. Finn. Openvla: An open-source vision-language-action model. arXiv preprint arXiv:2406.09246,
2024.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.n
et/forum?id=SJU4ayYqgl.

B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. K. Yogamani, and P. Pérez. Deep
reinforcement learning for autonomous driving: A survey. IEEE Trans. Intell. Transp. Syst., 23(6):
4909-4926, 2022. doi: 10.1109/T1TS.2021.3054625. URL https://doi.org/10.1109/
TITS.2021.3054625.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktidschel. A survey of zero-shot generalisation in deep
reinforcement learning. J. Artif. Intell. Res., 76:201-264, 2023. doi: 10.1613/JAIR.1.14174. URL
https://doi.orqg/10.1613/jair.1.14174.

W. Kool and M. Botvinick. A labor/leisure tradeoff in cognitive control. Journal of Experimental
Psychology: General, 143(1):131-141, 2014.

K. Kujanpii, J. Pajarinen, and A. Ilin. Hierarchical imitation learning with vector quantized models.
In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pages 17896-17919. PMLR, 2023a. URL
https://proceedings.mlr.press/v202/kujanpaa23a.htmll

K. Kujanpii, J. Pajarinen, and A. Ilin. Hybrid search for efficient planning with completeness
guarantees. CoRR, abs/2310.12819, 2023b. doi: 10.48550/ARXIV.2310.12819. URL https:
//doi.org/10.48550/arXiv.2310.128109.

A. Kumar, J. Hong, A. Singh, and S. Levine. When should we prefer offline reinforcement learning
over behavioral cloning? CoRR, abs/2204.05618, 2022. doi: 10.48550/ARXIV.2204.05618. URL
https://doi.org/10.48550/arXiv.2204.05618.

S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

S. Lee, J. Kim, I. Jang, and H. J. Kim. DHRL: A graph-based approach for long-horizon and sparse
hierarchical reinforcement learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurlPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper

16

https://ojs.aaai.org/index.php/AAAI/article/view/11028
https://proceedings.neurips.cc/paper/2019/hash/0af787945872196b42c9f73ead2565c8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0af787945872196b42c9f73ead2565c8-Abstract.html
https://proceedings.mlr.press/v119/kim20c.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1613/jair.1.14174
https://proceedings.mlr.press/v202/kujanpaa23a.html
https://doi.org/10.48550/arXiv.2310.12819
https://doi.org/10.48550/arXiv.2310.12819
https://doi.org/10.48550/arXiv.2204.05618
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html

Under review as a conference paper at ICLR 2025

/2022/hash/58b286aca34a9la3d33e58af0586fad0-Abstract-Conferencel
html.

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. CoRR, abs/2005.01643, 2020. URL https://arxiv.org/
abs/2005.01643.

A. Levy, G. D. Konidaris, R. P. Jr., and K. Saenko. Learning multi-level hierarchies with hindsight.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=ry
zECOACY /L

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle-
moyer. BART: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, editors,
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
7871-7880, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020
.acl-main.703. URL https://aclanthology.org/2020.acl-main.703.

Q. Li, Z. Peng, and B. Zhou. Efficient learning of safe driving policy via human-ai copilot optimization.
In International Conference on Learning Representations, 2022. URL https://openreview
.net/forum?id=0cqU-BZp2ky.

A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta, E. Orbay,
S. Savarese, and L. Fei-Fei. ROBOTURK: A crowdsourcing platform for robotic skill learning
through imitation. In 2nd Annual Conference on Robot Learning, CoRL 2018, Ziirich, Switzerland,
29-31 October 2018, Proceedings, volume 87 of Proceedings of Machine Learning Research,
pages 879-893. PMLR, 2018. URL http://proceedings.mlr.press/v87/mandle
karl8a.html.

S. McAleer, F. Agostinelli, A. Shmakov, and P. Baldi. Solving the rubik’s cube with approximate
policy iteration. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net
/forum?id=Hyfn2jCcKm.

O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation
learning over unstructured data. IEEE Robotics Autom. Lett., 7(4):11205-11212, 2022. doi:
10.1109/LRA.2022.3196123. URL https://doi.org/10.1109/LRA.2022.3196123.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015.

O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning. In
S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 3307—
3317,2018. URL https://proceedings.neurips.cc/paper/2018/hash/e6384
711491713d29%bc63fcS5eebbbadf-Abstract.html.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. In 2018 IEEE International Conference on Robotics
and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages 6292—-6299. IEEE,
2018. doi: 10.1109/ICRA.2018.8463162. URL https://doi.org/10.1109/ICRA.201
8.8463162.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of molecular biology, 48(3):443-453, 1970.

L. Orseau and L. H. S. Lelis. Policy-guided heuristic search with guarantees. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innova-
tive Applications of Artificial Intelligence, TAAI 2021, The Eleventh Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages

17

http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://aclanthology.org/2020.acl-main.703
https://openreview.net/forum?id=0cgU-BZp2ky
https://openreview.net/forum?id=0cgU-BZp2ky
http://proceedings.mlr.press/v87/mandlekar18a.html
http://proceedings.mlr.press/v87/mandlekar18a.html
https://openreview.net/forum?id=Hyfn2jCcKm
https://openreview.net/forum?id=Hyfn2jCcKm
https://doi.org/10.1109/LRA.2022.3196123
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162

Under review as a conference paper at ICLR 2025

12382-12390. AAAI Press, 2021. doi: 10.1609/AAAI.V35114.17469. URL https:
//doi.org/10.1609/aaai.v35114.17469.

L. Orseau, M. Hutter, and L. H. S. Lelis. Levin tree search with context models. In E. Elkind, editor,
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-
23, pages 5622-5630. International Joint Conferences on Atrtificial Intelligence Organization, 8
2023. doi: 10.24963/ijcai.2023/624. URL https://doi.org/10.24963/1jcai.2023/
624\ Main Track.

A.1. Panov and A. Skrynnik. Automatic formation of the structure of abstract machines in hierarchical
reinforcement learning with state clustering. CoRR, abs/1806.05292,2018. URL http://arxi
v.org/abs/1806.05292.

S. Park, D. Ghosh, B. Eysenbach, and S. Levine. HIQL.: offline goal-conditioned RL with latent
states as actions. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/6
d7c4a0727e089%9edocdd3151cbe8d8ba-Abstract-Conference.htmll

K. Pertsch, O. Rybkin, F. Ebert, S. Zhou, D. Jayaraman, C. Finn, and S. Levine. Long-horizon visual
planning with goal-conditioned hierarchical predictors. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/c8d
3a760ebab631565f8509d84b3b3fl1-Abstract.htmll

D. Ratner and M. K. Warmuth. Finding a shortest solution for the N x N extension of the 15-puzzle
is intractable. In T. Kehler, editor, Proceedings of the 5th National Conference on Artificial
Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, pages 168—172.
Morgan Kaufmann, 1986. URL http://www.aaai.org/Library/AAAI/1986/aaai8
6—-027.php.

S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In G. J. Gordon, D. B. Dunson, and M. Dudik, editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort
Lauderdale, USA, April 11-13, 2011, volume 15 of JMLR Proceedings, pages 627-635. IMLR.org,
2011. URLhttp://proceedings.mlr.press/vl5/rosslla/rosslla.pdf.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, USA, 3rd
edition, 2009. ISBN 0136042597.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (4th Edition). Pearson, 2020.
ISBN 9780134610993. URL http://aima.cs.berkeley.edu/.

S. Sahni. Computationally related problems. SIAM J. Comput., 3(4):262-279, 1974. doi: 10.1137/02
03021. URL/https://doi.org/10.1137/0203021l

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017.

Z. Shen, J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui. Towards out-of-distribution generalization:
A survey. CoRR, abs/2108.13624, 2021. URL https://arxiv.org/abs/2108.13624,

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
L. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of go with deep neural networks and tree search. Nat., 529(7587):484-489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/naturel6961.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-
maran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140-1144,

18

https://doi.org/10.1609/aaai.v35i14.17469
https://doi.org/10.1609/aaai.v35i14.17469
https://doi.org/10.24963/ijcai.2023/624
https://doi.org/10.24963/ijcai.2023/624
http://arxiv.org/abs/1806.05292
http://arxiv.org/abs/1806.05292
http://papers.nips.cc/paper_files/paper/2023/hash/6d7c4a0727e089ed6cdd3151cbe8d8ba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6d7c4a0727e089ed6cdd3151cbe8d8ba-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
http://www.aaai.org/Library/AAAI/1986/aaai86-027.php
http://www.aaai.org/Library/AAAI/1986/aaai86-027.php
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://aima.cs.berkeley.edu/
https://doi.org/10.1137/0203021
https://arxiv.org/abs/2108.13624
https://doi.org/10.1038/nature16961

Under review as a conference paper at ICLR 2025

2018. doi: 10.1126/science.aar6404. URL https://www.science.org/doi/abs/10.1
126/science.aar6404l

D. Singmaster. Notes on Rubik’s Magic Cube. Enslow Publishers, 1981.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of
molecular biology, 147(1):195-197, 1981.

P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon,
A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov. Scalability in perception for
autonomous driving: Waymo open dataset. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 2443-2451.
Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00252. URL
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalabi
lity_in_Perception_for_ Autonomous_Driving Waymo_Open_Dataset_ CVP
R_2020_paper.html.

R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive computation and
machine learning. MIT Press, 1998. ISBN 978-0-262-19398-6. URL https://www.worldc
at.org/oclc/37293240.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artif. Intell., 112(1-2):181-211, 1999. doi: 10.1016/S000
4-3702(99)00052-1. URL https://doi.org/10.1016/50004-3702 (99) 00052 1!

T. Trinh, Y. Wu, Q. Le, H. He, and T. Luong. Solving olympiad geometry without human demonstra-
tions. Nature, 2024. doi: 10.1038/s41586-023-06747-5.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 6306-6315,2017. URL https://proceedings.neurips.cc/paper/2017/ha
sh/7a98af17e63a0ac09ce2e96d03992fbc—-Abstract.html!l

J. Veness, D. Silver, A. Blair, and W. Uther. Bootstrapping from game tree search. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc., 2009. URL https://proceedings,
neurips.cc/paper_files/paper/2009/file/38%c7bblelc2ab5e7e1477032
32a88f6-Paper.pdf.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai,
J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden,
Y. Sulsky, J. Molloy, T. L. Paine, C. Giilgehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama,
D. Wiinsch, K. McKinney, O. Smith, T. Schaul, T. P. Lillicrap, K. Kavukcuoglu, D. Hassabis,
C. Apps, and D. Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning.
Nat., 575(7782):350-354, 2019. doi: 10.1038/S41586-019-1724-Z. URL https://doi.org/
10.1038/s41586-019-1724—-2z!

H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch, Q. Vuong,
A. He, V. Myers, K. Fang, C. Finn, and S. Levine. Bridgedata v2: A dataset for robot learning at
scale. In Conference on Robot Learning (CoRL), 2023.

Y. Wu, A. Jiang, J. Ba, and R. B. Grosse. {INT}: An inequality benchmark for evaluating generaliza-
tion in theorem proving. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?1d=06LPudowNQm.

Z. Yang, K. E. Merrick, L. Jin, and H. A. Abbass. Hierarchical deep reinforcement learning for
continuous action control. I[EEE Trans. Neural Networks Learn. Syst., 29(11):5174-5184, 2018.
doi: 10.1109/TNNLS.2018.2805379. URL https://doi.org/10.1109/TNNLS.2018.2
8053709l

19

https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1016/S0004-3702(99)00052-1
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2009/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://openreview.net/forum?id=O6LPudowNQm
https://doi.org/10.1109/TNNLS.2018.2805379
https://doi.org/10.1109/TNNLS.2018.2805379

Under review as a conference paper at ICLR 2025

R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, and A. Kanezaki. Path planning using
neural a* search. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 12029-12039. PMLR, 2021. URL http!
//proceedings.mlr.press/v139/yonetani2la.html.

M. Zawalski, M. Tyrolski, K. Czechowski, T. Odrzyg6zdz, D. Stachura, P. Piekos, Y. Wu, L. Kucinski,
and P. Milos. Fast and precise: Adjusting planning horizon with adaptive subgoal search. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=7JsGYV]JE
88d.

J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end simulated driving. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, page 2891-2897.
AAAI Press, 2017.

20

http://proceedings.mlr.press/v139/yonetani21a.html
http://proceedings.mlr.press/v139/yonetani21a.html
https://openreview.net/pdf?id=7JsGYvjE88d
https://openreview.net/pdf?id=7JsGYvjE88d

Under review as a conference paper at ICLR 2025

A ENVIRONMENTS

Sokoban Sokoban is a classic puzzle game where the objective is to push boxes onto target locations
within a confined space. It is a popular testing ground for classical planning methods and deep-learning
approaches due to its combinatorial complexity and difficulty in finding solutions. Recognized as
a PSPACE-hard problem, Sokoban is used to evaluate different computational strategies. Our
experiments use 12 x 12 Sokoban boards with four boxes to assess the performance of our proposed
models. An illustrative example of a simple Sokoban search tree with a solving path is shown in

Figure[T7]

Figure 17: Hierarchical Search applied to solving Sokoban. This tree, depicted in figures, employs
bolded green arrows to highlight selected subgoals within a hierarchical search framework earmarked
for subsequent exploration. The illustration demonstrates that these intermediate goals exhibit
variability in terms of both their spatial distance and the methodology by which a planning algorithm
may leverage them.

Rubik’s Cube The Rubik’s Cube, a renowned 3D puzzle, has over 4.3 X 1019 possible configurations,
highlighting the huge search space and the computational challenge it poses. Recent advancements in
solving the Rubik’s Cube with neural networks underscore the potential of deep learning methods
in navigating complex, high-dimensional puzzles. For the exact representation of the Rubik’s Cube
state, see Figure[T§]

N-Puzzle The N-Puzzle, a classic sliding puzzle game, comes in various sizes, including the 3x3
(8-puzzle), 4x4 (15-puzzle), and 5x5 (24-puzzle). The goal is to rearrange a frame of numbered
square tiles into a specific pattern, a task that tests the algorithm’s ability to plan and execute a
sequence of moves efficiently. Figure[T9]shows a visualization of a trajectory in 24-puzzle.

INT INT (INequality Theorem proving) is an automated theorem-proving benchmark for high school
algebraic inequality proofs. 2021)) provides a generator of mathematical inequalities and a
proof verification tool. Each action in INT maps to a proof step, which specifies a chosen axiom and
its input entities - which makes action space very high-dimensional, enabling up to a million valid
actions at a step. This large action space makes INT a desirable but challenging environment for
expanding HRL paradigms to vast action spaces.

21

Under review as a conference paper at ICLR 2025

wbrwyggwwoboybygbryrorroboygrbggbggbwybrooogrywrowywwy S0 Initial State
wbrwyggggobwybwgbgooyrroyrbrrbwgbygbwybrooogroyrowywwy s1 One Action (= single rotation)
wbywyoggbobwybwgbgoorrryyryywrggrbbbgybgoorgroyoowrwww Sa
gyowyoggbwbwwbwwbgoorrryyryywwggbbbyboryogggroyoowrbrr S3
YYYYyyyyybbbbbbrrrrrrrrrgggggggggo00000000bbbwwwwwwwww Sp—1
yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggo00000000WWWWWWWWW Sn Solving State

Figure 18: Example trajectory of Rubik starting from initial state sy leading to the final solution s,,.

1123 21 1,234 |2 1 2|3 |4]21 12|34 s
15 18| 5 | 4 |13 |15|18| 5 | | |13 |15 18—+ 5 | 13 6 7|89 10
6 |7 |12 9|22 6 | 7 |12] 9 |22 6 7|12 9|22/000 11 [12|13|14 15
19 10 |24 |17 |16 | |19 |10 |24 [17 |16 | |19 10|24 [17 | 16 16 | 17 | 18 | 19 | 20
238 1411 |20 [23] 8 [14/11]|20| |23 8 |14 |11 20 21|22 23|24

Figure 19: Example trajectory of n-puzzle starting from initial state sy leading to the final solution
$,. Red arrows indicate low-level actions.

We used 25-step proofs for this paper, representing an uplift from 15 considered in (Czechowski
et al.l 2021} |[Zawalski et al.| 2023)) (the latter used longer proofs, but only for evaluating 15-trained
models). Each step is an application of an axiom to an axiom-specific number of entities (entities are
bracketed or bracketable parts of the theorem’s goal).

Example Theorems for INT environment

Theorem 1 Premises: ((c+ ¢) + d) > a;
(d+e) =05
((e+e)+f) 2 (0+a);
(b+g) > 0;
Goal: ((((((c+c¢)+(c+e)-4e)+((c+e)+d)+(d+e))+((c+e)+)+ (b+9)
> ((((0+a)+0)+ (0+a))+0)
Theorem 2 Goal: (((0+b) +c¢)+a) > (04 (04 (b+ (c+ a))))
Theorem 3 Premises: (a + d) > 0;
(ate) > (c-o);
(e+f)>0;
(c+9g) >0
(c+h) > (c+9);
(e+1) > 0;
Goal: (((((((c+0) - (a+d) + (a+e) - (e+) (c+9) +(c+h) - (c+1)
2 (((((O-(a+d) +(c-c))-(e+) (c+9) + (c+9) (c+1i))

Figure 20: A comprehensive representation of theorems pertaining to goal achievement in mathemati-
cal expressions, showcasing the logical structure and underlying premises leading to the formulated
goals.

22

Under review as a conference paper at ICLR 2025

B KEY FACTORS FOR HIERARCHICAL SEARCH

According to our experiments, the attributes pivotal for leveraging the advantages of high-level search
include:

* learning from diverse data sources,
¢ hard-to-learn value function,
* complex action space,

* presence of dead ends

In Section[5} we show our main experiments that support our findings. In this appendix, we present
an extended analysis of each property.

B.1 LEARNING FROM DIVERSE DATA SOURCES

Achieving superhuman performance in complex tasks, as demonstrated by AlphaGo [Silver et al.
(2016)), often involves large-scale datasets of demonstrations obtained from agents with varying
skill levels and strategies. However, this diversity introduces challenges such as inconsistencies in
demonstrations and variations in quality (Fu et al.,[2020; |Chen et al.l [2021} [Levine et al., [2020).
Widely used datasets like D4RL (Fu et al.,|2020), Open X-Embodiment (Collaboration et al.l 2023)),
or Waymo Open Dataset (Sun et al., 2020) reflect this diversity, highlighting the need to address these
challenges effectively. We want to answer the question whether such setting is handled better by
high-level or low-level search algorithms.

Experiment setup For this analysis, we focus on the Rubik’s cube environment. We collected a
dataset of 500 000 trajectories, computed with four different solvers for the Rubik’s cube:

* Beginner — the simplest human-oriented solving algorithm. It aims to order the cube layer
by layer with a few primitive tactics. Because of that the solutions are structured, but also
very long (typically between 150 and 200 moves).

* CFOP - an algorithm designed for speedcubers. It is based on the same principle as
Beginner, but employs many advanced tactics that make the solutions faster (typically about
100 moves).

» Kociemba — a computational solver that finds near-optimal solutions (usually between 20
and 40 moves) in short time. It is heavily optimized based on the algebraic properties of the
Rubik’s cube.

* Random - solutions obtained by scrambling an ordered cube with random moves and
reversing the trajectory.

Figure [31] shows example solutions generated with each solver. Clearly, the algorithmic solvers
(Beginner and CFOP) generate much longer solutions that the other methods. They are also more
structured, as they are based on building patterns. The computational solver Kociemba on the other
hand go directly towards the solution because its moves are carefully optimized to ensure maximal
advantage. Because of that, this dataset represent a truly diverse set of demonstrations.

Results As shown in Figure |2| the subgoal methods outperform the low-level methods by a wide
margin. While p-BestFS is comparable on small budgets, it struggles with solving most of the
instances. Also, it should be noted that the performance of the subgoal methods changes only slightly
compared to training on a single Random solver (Figure d) while the low-level searches are heavily
affected.

Learned values To find the sources of that outcome, we checked the values learned by the heuristic
function. Because of the diversity introduced by combining the experts, we should expect that the
estimates are subject to high uncertainty and possibly high variance.

Figure|21|shows the distribution of the learned heuristic for random fully shuffled cubes. Although
most instances can be solved optimally within 20-26 moves, the estimates range from 14 to 90
steps. Furthermore, the distribution is clearly bimodal — one mode correspond to a typical length of
Kociemba solution, the other to CFOP.

23

Under review as a conference paper at ICLR 2025

Distribution of shuffled cubes value estimates

0.16

0.14 4

0124

Frequency
=4 o =
[=) o =
(=] (= o

| | |

0.04 4

0.02 4

0.00 -
14 19 23 27 31 34 38 42 46 50 54 59 63 66 70 74 77 81 85 90
Value estimate

Figure 21: Value distribution for fully scrambled cubes, learned on data coming from diverse experts.
The values are rescaled so that the x-axis represent the estimated number of steps to the solution. The
values represent the mean of each interval.

Furthermore, Figure 26| shows the distribution of value estimates throughout the solutions for each
solver. We observe that for the algorithmic solvers the initial distance is considerably underestimated.
After about 20% moves the value network recognizes the pattern of layers built by the solvers and
expect a long solution by assigning values close to 100. On the other hand, the values learned for the
states visited by the computational solvers start as overestimated, but steadily decrease towards 0.

While it is a reasonable strategy for the value to fit to the provided dataset, it creates a challenge for
the search. If a search algorithm aims to imitate Beginner or CFOP, it has to reach the layer pattern,
characteristic of those solvers. However, the random states tend to have very low distance estimate,
compared to the initial layer patterns. Because of that, for tens of steps the heuristic estimates would
be actually increasing, making the reached states less and less probable to expand.

In practice, the low-level searches usually fail to cross this gap. On the other hand, the high-level
methods are partially guided by the subgoal generators that ignore the values. The value gap that
spans across about 30 steps can be crossed with as few as 5 subgoals of length 6. Because of that
both kSubS and AdaSubS can successfully leverage the schematic algorithmic solutions.

To finally confirm that conclusion, we must answer the question whether the performance of low-level
searches would increase if they could leverage the algorithmic solutions as well. For that purpose,
we trained the components for each method using data only from the Beginner solver. This way
we remove the challenge of noisy initial values. As shown in Figure [5] the low-level searches
indeed perform much better. BestFS even matches the performance of AdaSubS. That confirms our
observation that low-level searchas fail to utilize multimodal data because they rely too much on the
value function and seek monotonic slopes.

At the same time we observe that since BestFS and AdaSubS show nearly identical performance
on Beginner solutions, it is questionable that hierarchical methods handle long-horizon tasks better,
which is a common belief (Nachum et al., 2018} [Eysenbach et all, 2019} [Chen et al.,[2024).

B.2 VALUE APPROXIMATION ERRORS

In many practical scenarios, value function estimates are based on either limited data samples or
handcrafted heuristics (Campbell et all, 2002} [Mnih et al.} 2015}, [Walke et al.} 2023)). This often leads
to high approximation errors. If search algorithms rely too heavily on these imperfect estimates,
they can make poor decisions, especially in large and complex environments where accurate value
estimates are even harder to obtain (Collaboration et al 2023}, [Vinyals et al. [2019).

Section [B.T] hints that when value estimates are subject to high uncertainty, subgoal methods should
outperform low-level searches. To confirm that intuition, we run an experiment in a Rubik’s cube,
N-Puzzle, and Sokoban environments (Section @ During inference, we add additional noise to the

24

Under review as a conference paper at ICLR 2025

Learned value estimate
175 —— Ground truth value

Estimated steps to solution
5
g

50

0.00 0.07 013 020 027 033 0.40 047 053 0.60 067 073 0.80 0.87 093 1.00
Part of the trajectory

Figure 22: Beginner solver

Learned value estimate

= % ’l‘ ’l‘ —— Ground truth value

100

80

%
44

Estimated steps to solution

0.00 0.07 013 020 027 033 0.40 047 053 0.60 067 073 0.80 0.87 093 1.00
Part of the trajectory

Figure 23: CFOP solver

Learned value estimate
80 —— Ground truth value

Estimated steps to solution

0.00 0.07 013 020 027 033 0.40 047 053 0.60 067 073 0.80 0.87 093 1.00
Part of the trajectory

Figure 24: Kociemba solver

Learned value estimate

80 —— Ground truth value
s
3
3 60
2
a
2
» a0
s
2
E
& 20

P
0 —_—
0.00 0.07 013 0.20 0.27 033 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00

Part of the trajectory

Figure 25: Reversed random 20-move trajectories

Figure 26: The learned value estimates distribution for various solvers. For each plot 100 episodes were solved
using the respective solver. The boxes represent the distribution of value estimates for the consecutive points
of the solution. The x-axis denotes the relative part of the trajectory (i.e., 0.5 denotes the middle point in each
trajectory, regardless of its length). The blue line indicates the true number of steps to the solution.

value estimates. That is, whenever a node is added to the search tree and its value estimate equals 0,
we add it with the value of ¥ + A/(0, o) instead.

Figure [/ shows that as the amount of noise increases, each low-level method gets less and less
efficient. On the extreme, when using fully random values (¢ = 100), they struggle to solve any
instance.

On the other hand, subgoal methods are much more resilient to noise in the value. Adaptive Subgoal
Search is nearly not affected by the presence of noise. kSubS is able to retain as much as 40% — 90%
success rate, even with completely random values.

25

Under review as a conference paper at ICLR 2025

Figure 30: Random

Figure 29: Kociemba

Figure 28: CFOP

Figure 27: Beginner

Figure 31: Example solutions computed by each solver. Because the algorithmic solvers typically
require over 100 steps, we use a tiny font to display it.

Observe that the search performed by low-level methods is guided mainly by the value function.
Hence, if the computed estimates are subject to high variance, low-level search struggles to make
any progress. On the other hand, the subgoal search is guided both by the value function and the
subgoal generator. Both the subgoal generator and the conditional policy that connects subgoals do
not depend on the values. Hence, the value function is used only in the high-level nodes, which is
only a fraction of the search tree.

An extreme case of that behavior is demonstrated by Adaptive Subgoal Search. Because in our
configuration each generator outputs a single subgoal, the value is nearly not used at all for search.
Only when the search is stuck, the secondary generators select the highest-ranked node to expand,

26

Under review as a conference paper at ICLR 2025

which in this case is simply a random node of the tree. To summarize, given random value estimates,
AdaSubS reduces to the following strategy:

1. Start from the root node,

2. Move from the current node to the subgoal until possible,

3. If the search is stuck, expand a random node in the search tree with a secondary generator

and return to (2).

The experiments show that this simple strategy is surprisingly competitive to the greedy best-first
approach, even without noise. Interestingly, it could be implemented in low-level search as well. We
leave that promising experiment for future work.

B.2.1 SUBGOAL GENERATION ERRORS

Since subgoal methods are resilient to the value noise due to the guidance of subgoal generators,
a natural question arises: how robust are these methods to errors of the subgoal generators? To
investigate this, we conduct two ablation studies in the Rubik’s Cube environment.

Suboptimal subgoals Corrupting subgoals

] [1.0
. a "
[& R 0.99 0.99 | 0.97 UNFAEN 0.01 T
Adasubs -[UEFM B 0.84 0.78 i e . : - : 3
n 2 -05 %
s s
= A
s _ﬁ o 8 ; i i o o 2
A 2 l I}
| |] 0 | 0 f l 0.0 n I I 0 | 0 0.0
2 3 4 5 6 7 a) 0.0 0.1 0.2 0.5 0.75
number of candidates 1 corrupting probability

Figure 32: Performance of subgoal methods with ablated sub- Figure 33: Performance of subgoal meth-

goal generators. Instead of choosing top n subgoals, the genera- ods with ablated subgoal generators. After

tor firstly samples n’ candidates and then randomly chooses n. sampling a subgoal, with probability p it is
additionally corrupted, becoming invalid.

In the first experiment, we simulate suboptimal generator decisions, as might occur due to low-quality
training data. Specifically, instead of selecting the top n subgoals based on computed probabilities,
we firstly expand the candidate pool to n’ > n subgoals and then randomly sample n subgoals from
this expanded set. This approach forces the method to use suboptimal subgoals during the search
process. Notably, even in situations where the optimal subgoal could directly lead to the goal state, it
may be excluded from the final selection.

As shown in Figure [32] subgoal methods demonstrate significant resilience to suboptimal generators.
Even when the candidate pool increases to include as many as 8 samples, the methods maintain
strong performance. As discussed in Section[5.2} subgoal methods balance the influence of subgoal
generators with that of the value function. This interplay allows the value function to compensate for
generator errors and vice versa. In practice, it suffices if at least one subgoal contributes to positive
progress, as the value function can recognize and leverage such progress.

In the second experiment, we simulate low-quality training data by deliberately corrupting some of
the generated subgoals. Specifically, each sampled subgoal is rendered invalid with a probability p,
making it unreachable. Consequently, not only resources are wasted on attempting to expand these
corrupted subgoals, which fail to contribute to the search progress, but also the diversity of the whole
search tree is strongly limited due to creating fewer nodes.

Figure [33]shows that subgoal-based methods exhibit tolerance to a considerable degree of corruption.
Even with a corruption probability of 50%, both algorithms successfully solve most instances.
However, when the corruption rate increases to 75%, the search process fails, as the lack of valid
nodes to expand leads to stagnation.

Together with our analysis of value approximation errors, these experiments highlight that subgoal
methods benefit from the complementary roles of subgoal generators and the value function. Errors

27

Under review as a conference paper at ICLR 2025

in one component can often be mitigated by the other. In contrast, low-level methods inherently rely
on the value function, making its quality a critical factor for their success.

B.3 COMPLEX ACTION SPACES

In environments with large action spaces, search methods often struggle due to the exponential
increase in the number of choices at each decision point (Sutton and Barto, [1998). This complex-
ity makes it difficult to efficiently identify optimal actions, slowing down decision-making and
exploration (Dulac-Arnold et al., 2015 [Silver et al., [2016)).

The primary difference between low-level methods and subgoal methods is that the former predicts
the next action, and the latter — the next state. In many environments, the action space is as simple
as a few bits, allowing for iterating over all possible actions, and sampling them. At the same time,
states may be considerably larger, up to the extreme of image observations. However, in some
environments, the action space is comparable to the state space, or even more complex. A classic
example is the AntMaze environment, in which actions are 8-dimensional, while the goal space is
only 2-dimensional (Fu et al.,[2020).

Among the combinatorial reasoning environments we consider, INT has the most complex action
space. In INT, actions correspond to proof steps and are represented as the chosen axiom, specification
of its input entities, and the required premises (Wu et al.,2021)). Thus, the complexity of the action
is at least comparable to the states. Moreover, solving the INT inequalities is based on constant
simplification of the given expression, so the state is getting even smaller with each step.

Our experiments, shown in Figure[I0] clearly confirm the advantage of using subgoal methods in the
INT environment. To further verify the source of that advantage, we conducted another experiment, in
a modified Rubik’s cube environment. Recall that the experiment presented in Section[5.1] shows that
subgoals offer no significant advantage in the original Rubik’s cube (with a single data source). Now,
we want to check whether the outcome would be different if the action space were more complex.
For that purpose, we extended the action space 100 times. That is, the new action space consists of
1200 possible moves to choose from — 100 copies of each original action.

As shown in Figure the subgoal methods are barely affected by the change, while the low-level
searches are unable to exceed 20% success rate. That result confirms our proposition that when facing
a complex action space, hierarchical methods offer considerably better performance.

According to our analysis, the primary issue with low-level searches in the augmented Rubik’s cube
is the lack of diversity of visited states. When for each state there are hundreds of actions that lead
to a similar outcome, they are rated similarly by the policy. Hence, all the top actions essentially
lead to the same outcome, which strongly limits the branching factor and trivializes the search trees.
On the other hand, subgoal methods are not affected because subgoal generation does not depend
on the action space. The conditional policy that connects the generated subgoals does not build a
search tree, but always follows the single best action. Because of that, subgoal methods maintain
their performance, even though the action space is much more complex.

It is also important to note that even though some state spaces may seem complex, the underlying
manifold of possible configurations is in fact low-dimensional. For instance, we use 12x12 Sokoban
boards, where each square is encoded as one-hot of 7 possible items, so technically the state space is
1008-dimensional, while there are only 4 actions. However, in practice the subgoal is defined by the
positions of agent and boxes, which is at most 10-dimensional, hence rather simple to generate.

B.4 DEAD ENDS

Dead-end states present a major challenge in decision-making and planning tasks. Once an agent
encounters a dead end, reaching the goal becomes impossible, leading to wasted computational effort
as the algorithm may continue exploring parts of the search space that do not contribute to solving the
problem (Russell and Norvig, [2020). Failing to identify dead-ends may even lead to unsafe behavior
(Fatemi et al., 2021} Sutton and Barto, |1998)). At the same time, identifying dead-ends is NP-complete
in many environments.

Specifically, a dead-end state s is one from which there exists no feasible sequence of actions that
leads to the goal state. Figure [34] shows an illustrative example of a dead-end state.

28

Under review as a conference paper at ICLR 2025

Figure 34: An example dead-end in Sokoban — a box that is pushed to the corner cannot be moved
anymore, so the objective is not possible to achieve.

Examples of dead-ends in kSubS vs. BestFS In this subsection, we present examples of how each
method handles dead-end situations during the search process.

For this presentation, we analyzed 128 search trees initiated from identical starting boards for both
algorithms. The kSubS algorithm encountered dead-ends in 3 instances. To resolve these, it navigated
through 13 high-level nodes and 105 low-level nodes within the corresponding subtrees. In contrast,
the BestFS algorithm encountered dead-ends in 18 instances, requiring the traversal of 4431 nodes.
Note that BestFS does not distinguish between high-level and low-level nodes in its search.

Examples of dead-end handling are shown in Figure [33]for kSub$S and Figure 36| for BestFS. Observe
that in the case showed in Figure [33]expanding the parent node resulted in adding two more dead-ends
to the search tree. Because they have higher values, they were immediately expanded. However, the
subgoal generator understood that the only way to reach solution is to make an invalid transition of
releasing the blocked box. Such subgoals cannot be achieved by the conditional policy, hence no
more subgoal was created in that branch. On the other hand, low-level search is unable to propose
invalid transitions, so it stays in dead-end until the value estimates are higher than for other branches.

value = -0.0875

no more expansions

subgoal 1 (k=8)
value = -0.1692

value = -0.0977

subgoal 2 (k=8
no more expansions

) &

Figure 35: We illustrate a scenario where the kSubS algorithm encounters dead-ends, hindering the
search process. The figure shows a case where the algorithm generates two subgoals at an expected
distance (k=8), but both lead to dead-ends, wasting a portion of the search budget (18 nodes). As a
result, the kSubS algorithm backtracks from this subtree and continues searching elsewhere within
the tree.

29

Under review as a conference paper at ICLR 2025

value = -0.2154

Search being
continued for
21 nodes more

low level
value = -0.212 value = -0.2065 step

low level
step

3 lowlevel yglue = -0.1987
step

Search being
continued for
296 nodes more

Figure 36: The figure shows BestFS expanding two nodes from a dead-end. This resulted in the
exploration of over 300 additional nodes from that state, ultimately failing to find a solution within
the given search budget.

30

Under review as a conference paper at ICLR 2025

C NETWORK ARCHITECTURES & TRAINING DETAILS

We used BART (Lewis et al., 2020) and BERT (Devlin et al., 2019)) architectures from HuggingFace
Transformers for all components. Subgoal generators and INT’s policies (CLLP and baseline policy)
use BART. The remaining policies and value functions use BERT. Following the practice in (Zawalski
et al.,[2023)), we’ve reduced model size parameters, as detailed in Table

INT As states in INT are complex objects, we prefer to use their string representations and avoid
mapping arbitrarily generated strings into complex states. Requisite modifications to the component
definition are best illustrated analogously to Appendix [D.I] A generator is redefined as follows:

gint . \&S;/ — P (T)

state to expand set of proposed subgoals (in string format)

and conditional level policy:

Pim : S X T — A
~~ ~~ ~~~

current state subgoal representation action

Sokoban Unlike prior work (Zawalski et al., 2023} |Czechowski et al., 2021)), which used convolu-
tional networks for all components, we work on tokenized representations of Sokoban boards and use
BERT/BART architectures instead. This modification did not adversely impact our ability to replicate
AdaSubS and kSubS results.

Training pipeline We trained our models from scratch using the HuggingFace Transformer pipeline.
Detailed training parameters, which varied across environments, can be found in Table E}

Infrastructure For training, we used a single NVIDIA A100 40GB GPU node, and each component’s
training took up to 48 hours. Because we used pre-trained trajectories, we did not need to use more
than one core during training. We ran an evaluation using 24-core CPU jobs on Xeon Platinum 8268
nodes with 192GB of memory.

Environment Hyperparameter Generator CLLP Value Policy
learning rate 0.0001 0.0001 0.0003 0.0001
learning rate scheduling linear linear linear linear

INT warmup steps 4000 4000 2000 4000
batch size 32 32 128 32
weight decay le-05 le-05 le-05 le-05
dropout 0.1 0.1 0 0.1
learning rate 0.0001 0.0005 3e-7 0.0001
learning rate scheduling linear linear linear linear

Rubik’s Cube warmup steps 5000 50000 50000 1000
batch size 512 5000 5000 2048
weight decay 0.0001 0.001 0.00001 0.0001
dropout 0.1 0 0 0
learning rate 0.00001 0.0001 0.0001 0.0001
learning rate scheduling linear linear linear linear

Sokoban warmup steps 2500 1000 1000 1000
batch size 512 2048 2048 2048
weight decay 0.0001 0.0001 0.0001 0.000001
dropout 0 0.1 0 0
learning rate 0.0001 0.0001 0.0001 0.0001
learning rate scheduling linear linear linear linear

N-Puzzle warmup steps 5000 2000 2000 2000
batch size 4096 4096 512 4096
weight decay 0.00001 0.00001 0.00001 0.0001
dropout 0.1 0 0 0

Table 1: Training-related hyperparameter values

31

Under review as a conference paper at ICLR 2025

Environment ~ Hyperparameter Generator CLLP Value Policy
d model 512 512 - 512
decoder layers 6 6 - 6
INT intermediate size - - 256 -
encoder attention heads 8 8 - 8
hidden size - - 128 -
num hidden layers - - 2 -
decoder ffn dim 2048 2048 - 2048
encoder ffn dim 2048 2048 - 2048
encoder layers 6 6 - 6
decoder attention heads 8 8 - 8
d model 256 - - -
decoder layers 3 - - -
Sokoban intermediate size - 512 128 512
encoder attention heads 4 - - -
hidden size - 512 128 512
num hidden layers - 6 1 6
encoder ffn dim 2048 - - -
decoder ffn dim 1024 - - -
encoder layers 3 - - -
decoder attention heads 4 - - -
d model 64 - - -
decoder layers 3 - - -
N-Puzzle intermediate size - 128 128 256
encoder attention heads 4 - - -
hidden size - 128 128 256
num hidden layers - 2 1 3
encoder ffn dim 64 - - -
decoder ffn dim 64 - - -
encoder layers 3 - - -
decoder attention heads 4 - - -
d model 256 - - -
decoder layers 3 - - -
Rubik’s Cube intermediate size - 512 128 512
encoder attention heads 4 - - -
hidden size - 512 128 512
num hidden layers - 2 1 6
encoder ffn dim 2048 - - -
decoder ffn dim 1024 - - -
encoder layers 3 - - -
decoder attention heads 4 - - -

Table 2: Model-related hyperparameter values

32

Under review as a conference paper at ICLR 2025

D OFFLINE PRETRAINING

Models are pretrained using an offline imitation learning approach. Specifically, given a set of
solution trajectories {(s, S1, ..., Sn,) }2*; produced by an expert M, or multiple experts { M} j]‘/il
in cases where offline trajectories are collected from multiple experts, the objective is to learn from
these trajectories. It is important to note that these trajectories are not required to be optimal; they
may include loops or numerous redundant actions. Description of all components can be found in
section[D.T]and supervised training objectives in section[D.2]

D.1 COMPONENTS

During the pretraining phase, models undergo an offline imitation learning process. Specifically, they
are trained on a set of solution trajectories {(sg, 51, - - - , $n,) } X1, which are collected to facilitate
the learning of decision-making strategies.

Generator The generator component is responsible for generating subgoal propositions upon receiv-
ing a state. These propositions are designed to facilitate progress toward the solution by suggesting
intermediate steps that direct the search process more efficiently.

G: S, - P(S)

state to expand set of subgoal propositions

Conditional Low-Level Policy The Conditional Low-Level Policy (CLLP) plays a crucial role in
node expansion by evaluating each subgoal proposition. For a given current state and a subgoal, the
CLLP recommends actions that lead toward achieving the subgoal. A path from the current node to
the subgoal is constructed through the iterative execution of these actions. Subgoals reached within a
predefined number of steps, k, are incorporated into the graph, while those that are not are discarded.

P: S x S - A
<~ <~ <~

current state subgoal state action

Value The value function estimates the distance from a current state to the final solution. This
estimation is used to guide the selection and expansion of nodes, influencing the overall search
strategy.
V: S — R
—~— ~~

state to evaluate value of the state

Behavioral Cloning Policy The policy Ilpc is a decision-making function that maps the current
state to an action. It encapsulates the strategy derived from the learning process, guiding the agent’s
actions towards achieving the final goal.
Ogc: & — A
~—~ <~

current state action

D.2 SUPERVISED OBJECTIVES

Each expert trajectory is defined as a sequence of states and corresponding actions
(80,a0)s -+ (Sn—1,an—1), Sn, that delineate a path to a solution. The training methodology leverages
this data through several key self-supervised imitation mappings:

* A k-subgoal generator that maps a state s; to a future state s;, simulating the achievement
of intermediate goals.

* A value function that estimates the remaining steps to the solution by mapping state s; to a
numerical value (i — n), representing the estimated distance from the goal.

* A policy that maps each state-action pair (s;, $;+4), with d < k, to the corresponding action
a;, thereby guiding the decision-making process towards the solution.

33

Under review as a conference paper at ICLR 2025

E OFFLINE PRETRAINING: TRAJECTORIES

E.1 RUBIK’S CUBE
E.1.1 RANDOM

To construct a random successful trajectory, we performed 20 random permutations on an initially
solved Rubik’s Cube and took the reverse of this sequence, replacing each move with its reverse. Such
solutions are usually sub-optimal since random moves are not guaranteed to increase the distance
from the solution. They can even make loops in the trajectories. However, a cube scrambled with 20
moves is usually close to a random state, so such trajectories give a decent space coverage.

E.1.2 BEGINNER, CFOP

Beginner and CFOP are algorithms commonly used by humans. They solve the cube by ordering
the stickers layer by layer. Because of that, the solutions are highly structured and long — usually
between 100 and 200 moves. Both algorithms are composed of several subroutines that help building
the consecutive layers. Thus, the structure of such solutions highly resembles the subgoal search.

E.1.3 KOCIEMBA

The Kociemba two-stage solver leverages the algebraic structure of the Rubik’s Cube. In the first
stage, its goal is to enter a specific subgroup. Since that subgroup is much smaller than the whole
space, completing the solution may be done efficiently. Kociemba finds reasonably short solutions
(usually between 20 and 40 moves) and works reasonably fast.

E.1.4 SIZE OF DATASETS

For training the components on a dataset collected by a single solver, we generate 100 000 trajectories.
For the experiment with diverse experts, each solver generates 25000 trajectories for a total of
100 000.

E.2 INT

Trajectories are constructed from sequences of axiom applications, similarly to (Zawalski et al.,
2023)), who followed (Wu et al.,[2021). A set of up to 15 (out of 18) axioms is first selected, and
then a random axiom order is set and validated. Finally, a proof is converted to a relevant trajectory.
Approximately 500,000 trajectories were generated for model pre-training.

We capped the number of axioms at 15 because some pairs of axioms (eg. terminal axioms) cannot
be in one trajectory.

E.3 N-PUZZLE
To collect data for N-puzzles, we utilized an algorithm that initially arranges block number 1, followed

by block number 2, and so forth, as depicted in Figure[I9] The training set comprises approximately
10, 000 trajectories.

E.4 SOKOBAN

To collect trajectories for Sokoban, we used a trained MCTS agent that gathered approximately
100, 000 trajectories.

34

Under review as a conference paper at ICLR 2025

F ALGORITHMS

F.1 BEST-FIRST SEARCH

Overview Best-First Search greedily prioritizes node expansions with the highest heuristic esti-
mates, aiming for paths that likely lead to the goal. While not ensuring optimality, BestFS provides a
simple yet efficient strategy for navigating complex search spaces. The high-level pseudocode for
BestFS is outlined in Algorithm[I] and the detailed pseudocode is presented in Algorithm [2]

Algorithm 1 Pseudocode for Best-First Search

while has nodes to expand do
Take node N with the highest value
Select children n; of N
Compute values v; for the children
Add (n;, v;) to the search tree

end while

Heuristic In our implementation, we adhere to the Best-First Search principle by utilizing the
learned value function, a common practice in the planning domain (Brunetto and Trundal 2017}
Czechowski et al.l 2021; [Zawalski et al., [2023} [Kujanpai et al.||2023a)). It should be noted that in
each of our experiments, all the compared algorithms use the same value function network. This way
we ensure that the differences come solely from the algorithmic part.

Selecting children When expanding a node during search, the standard BestFS algorithm adds all
its children. However, in our implementation, we aimed to reduce the search tree size by selecting only
the most promising children. We achieve this by sorting the children according to their probability
distribution predicted by the policy network. For choosing the final subset of children, we employ
two approaches. In the simpler variant, we always select the top k actions. In the second variant, we
add top children until their cumulative probability exceeds a fixed threshold Zcop f.

This pruning does not adversely affect the standard algorithm, as nodes are still chosen based on their
heuristic values, while the threshold sets a practical limit on the search space. Our results demonstrate
that BestFS tends to perform much better with a confidence threshold (Figure 37). However, its
performance is highly sensitive to this threshold as it balances exploration and exploitation, illustrating
the impact of different confidence thresholds on success rates.

BestFS-0.1 BestFS-0.4 === BestFS-0.7 === BestFS-0.9

BestFS-0.2 BestFS-0.5 === BestFS5-0.8 === BestFS-0.99

BestFS-0.3 === BestFS-0.6

1.04

o
o

Success Rate
I
>

Success rate

°
N

o
=3
n

fta 10 02 04 0'6 0’8 10
Graph size Value of the threshold

Figure 37: Comparison of success rates for the BestFS algorithm on the Rubik’s Cube with various
confidence threshold values. BestFS-X represents the BestFS algorithm with the confidence threshold
set to X. Left: The plot displays the achieved success rate relative to the graph size. Right: The plot
illustrates the success rate for a budget of 500 nodes.

Completeness In the Rubik’s Cube environment with random trajectories, the subgoal methods
solve more instances than BestFS given a low search budget, but with more resources, BestFS
takes the lead (see Figure). Also, in other experiments, we may observe that BestFS typically

35

Under review as a conference paper at ICLR 2025

requires higher computational budget to solve the simplest instances, but its performance increases
considerably with more resources.

That behavior is related to the fact that the search trees built by hierarchical methods are much
sparser because the branching occurs only in the high-level nodes. On the other hand, the low-level
algorithms can cover a higher fraction of the space. On the extreme, if we used all the available
actions for every expansion, the low-level search would be guaranteed to find a solution if one
exists. Our mechanism of selecting the actions removes that guarantee. However, at the same time, it
drastically improves performance (compare BestFS-0.7 with BestFS-0.99 which is complete), which
makes it a much better choice for our study.

We note that the high-level algorithms could be made complete, as proposed in (Kujanpai et al.}
2023bj Zawalski et al.| 2023). However, to maximize the efficiency we choose to keep the tested
algorithms in their original form. The ability to search with sparse trees not only lets the methods
advance fast, but also withdraw quickly if the branch does not lead to the solution (is a dead end).

Hyperparameters To identify the most suitable solving parameters, we used grid search. Initially we
grid over coarse values (namely 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9, and 0.99). Then we check
finer values (with precision of 0.05) around the best-performing threshold. The best-performing
thresholds range from 0.6 to 0.85, depending on the environment and the components that are used.

For determining the best number of top actions k for the simpler variant, we simply check every
possible number of actions. Usually selecting 2 actions is by far the best choice.

Details regarding hyperparameters of the networks are listed in Appendix

Algorithm 2 Complete pseudocode for Best-First Search
Require:
value function network V/,

policy pFrs
predicate of solution SOLVED

function SEARCH(sg)

T <) {priority queue}
T.pusH((V (s0), s0))
parents < {}

seen.ADD(so) {seen is a set}

while 0 < LEN(T") and LEN(seen) < max_budget do
_, 8 + T.EXTRACTMAX() {select node with the highest value}
actions < pprs(s)

for a in actions do
s’ < ENVSTEP(s,a)

if s’ in seen then
continue
end if

seen.ADD(s")
parents[s'] < s
T.pusH((V (s'),5"))

if SOLVED(s’) then
{solution found}
return EXTRACTLOWLEVELTRAJECTORY(s', parents)
end if
end for
end while

return False {solution not found}

36

Under review as a conference paper at ICLR 2025

F.2 MONTE CARLO TREE SEARCH

Overview Our Monte Carlo Tree Search (MCTS) solver, designed for a single-player setting, is
based on the AlphaZero framework (Silver et al., |2018). The high-level workflow of MCTS is
illustrated in Figure[38] and detailed pseudocode is provided in Algorithm 3]

The algorithm’s operation consists of four primary stages:

* Selection: The most promising node is selected using Polynomial Upper Confidence Trees
(PUCT), augmented with an exploration weight to strike a balance between exploiting
known strategies and investigating new pathways.

» Expansion: The selected node is expanded, generating new child nodes that correspond to
prospective future actions. This expansion widens the search tree and enables the exploration
of various outcomes.

e Simulation: Following the AlphaZero approach (Silver et al., 2018)), policy and value
networks replace traditional simulations. The policy network suggests favorable moves,
while the value network predicts their probability of success, directing the algorithm towards
beneficial trajectories.

* Backpropagation: The insights derived from the networks are used to update node values,
improving future decision-making.

SELECTION EXPANSION SIMULATION BACKPROPAGATION

o & & ©

o)) S o

o @, @, @, o
\\ \\‘ \\‘ v
Y N N s
Vo & e v e o
S

oQ 0Q O Q 00

~/\o ~/\o °
ol ° . N
\
N b Q ’ Q / Q
5 o

DN PN AN
o 7S Y I
L/ N\ {036 | {0 | {036 { 074

Figure 38: Schematic diagram of the MCTS algorithm in our implementation. Arrows show policy
network probabilities and node values are valued network predictions. Q values, calculated via PUCT,
integrate these with exploration-exploitation balance.

Hyperparameters In the MCTS algorithm, the parameters were set as follows: sampling tem-
peratures were chosen from [0, 0.5, 1]. The number of steps varied between 200 and 1000, and
the number of simulations ranged from 5 to 300. The discount factor and exploration weight were
consistently set at 1.

37

Under review as a conference paper at ICLR 2025

Algorithm 3 MCTS Solver

Require:
Number of simulations: N,
Discount factor:
Exploration weight: cpuct
Sampling temperature: 7
Value function: V'
Environment model: M
Initial state: initial_state from env

function SEARCH((initial_state))
root < initial_state
iteration < 0
while iteration < N, do
node < root
while node is not a leaf do
node +— SELECTCHILD(node), according to PUCT formula
end while
leaf < node
Expand the leaf using the environment model M, policy 7, value function V', and discount factor ~y
Backpropagate results through the path to update N, W, Q
iteration < iteration + 1
end while
best_child < Sample child of the root according to 7 and N
return action leading to best_child

38

Under review as a conference paper at ICLR 2025

F.3 A* SEARCH

Overview Like Best-First Search, A* prioritizes the exploration of promising nodes. However, A*
strategically guides its search by incorporating both the actual cost to reach a node and a heuristic
estimate of the remaining distance to the goal. This way it balances the greedy exploitation and
conservative exploration. The high-level pseudocode for A* is outlined in Algorithm |4} and the
detailed pseudocode is presented in Algorithm [5]

Algorithm 4 Pseudocode for A*

while has nodes to expand do
Take node N with the highest value
Select children n; of N
Compute values v; for the children
Compute depth d; for the children
Add (n;, Md; + v;) to the search tree
end while

Heuristic A* guidance is achieved through the following cost function:
g g g
f(node) = Ag(node) + h(node)

where:

* g(node): The cost to reach node from the start state, in our case its depth in the search tree.
* h(node): A heuristic estimate of the cost from node to the goal state.

* ! A scaling factor balancing the influence of actual cost and heuristic estimate.

For heuristic h, we used a value network, like for BestFS (see Appendix . If the heuristic used
for A* is admissible, i.e. it never overestimates the cost of reaching the goal, A* is guaranteed to
find an optimal solution. For instance, if we used h(node) = 0, A* would reduce to the Dijkstra
algorithm. The heuristic that we learn is not guaranteed to be admissible. Firstly, it estimates the
distance according to the demonstrations, which is always an upper bound for the optimal distance.
Secondly, the approximation errors introduce additional uncertainty. However, our main focus is on
finding any solution, not necessarily an optimal one.

Selecting children During the search, A* maintains a priority queue of nodes to be explored.
Similarly to BetsFS (Appendix for reducing the search tree size, we select the most promising
children. At each iteration, the node with the lowest f(node) value is selected for expansion. The
algorithm proceeds until the goal state is reached or the computational budget is exceeded.

— AK-0] o AR0.5 A*-2 A*-10
— AK0.2 e AR] A*5

Success Rate
° o ° ° o
o o < ® ©
f L

Success rate

°
IS
f

°

°
o
W

4 6 10
Graph size Value of the threshold

Figure 39: Figures presented above illustrate the impact of depth cost scaling on the overall success
rate of the A* algorithm on Sokoban, employing a confidence threshold of 0.85. In most experiments,
the smaller the depth scaling factor is, the better is the final success rate. The left figure shows the
success rate curves for different choices of cost weight A, while the right plot compares those variants
for a fixed budget of 500 computation nodes.

39

Under review as a conference paper at ICLR 2025

Hyperparameters The key parameter for A* is the cost weight A. On the extreme, setting A = 0
reduces A* to greedy BestFS, while setting A = co makes it equivalent to Breadth-First Search. By
tuning that parameter, we control the trade-off between exploration and exploitation of the search.

To tune the depth parameter for our experiments, we grided over values [0.1,0.2,0.5,1, 2, 5, 10].
However, usually the best choice was to keep the cost weight low (0.1 or 0.2, see Figure [39). While
conservative search allows A* avoid more dead-ends than BestFS (see Figure[I3)), usually greedy
steps lead to finding the solution much faster.

Algorithm 5 Complete pseudocode for A* Search
Require:

value function network V'

policy pBFs

predicate of solution SOLVED

depth scaling factor A

function SEARCH(sq)

T «+ O {priority queue}
T.PusH((V (so0), s0))
parents < {}

seen.ADD(so) {seen is a set}

while 0 < LEN(T") and LEN(seen) < max_budget do
_, 8 < T.EXTRACTMAX() {select node with the highest value}
actions < pprs(s)

for a in actions do
s’ < ENVSTEP(s,a)

if s’ in seen then
continue
end if

seen.ADD(s")
parents[s'] + s
T.pusH((V (s") — X - depth(s'),s))

if SOLVED(s’) then
{solution found}
return EXTRACTLOWLEVELTRAJECTORY(s', parents)
end if
end for
end while

return False {solution not found}

40

Under review as a conference paper at ICLR 2025

F.4 KSUBS AND ADASUBS

Overview AdaSubS is a hierarchical search algorithm designed to solve combinatorial problems by
operating on high-level nodes, which represent multiple steps rather than single actions. It employs
multiple generators Gy, , G, , - - - , Gk, to generate subsequent subgoals, a value function V to estimate
the distance from a given state to the solution, and a conditional low-level policy P to execute a series
of actions leading from one subgoal to the next. kSubS is a special case of AdaSubS, where only
a single generator is used. These methods are introduced and studied in (Czechowski et al., 2021}
Zawalski et al.,[2023).

Stages The method begins by adding m initial nodes (one per each generator) to a priority queue,
where each initial node ¢ is assigned a priority (k;,V(so)). Here, k; is the length of the generator
used during the node’s expansion, and V() estimates the distance (in low-level actions) between s
and the solution. The following steps are repeated until a solution is found or the budget is exhausted:

* Selection for expansion: The node ((k,V(s), s) with the highest priority is extracted from
the queue. This priority structure ensures that the algorithm prioritizes expanding the longest
subgoals whenever possible.

* Generating subgoals: The current state s is passed to the selected generator Gy, which
produces multiple subgoal propositions represented as states sy, $5, ..., S,.

* Verifying reachability: Since G, can produce invalid or unreachable subgoals, each pro-
posed subgoal must be verified. The conditional low-level policy P begins an iterative

process, taking single steps from s towards the proposed subgoal s. If s7 is reached within

k steps, the subgoal is accepted, and new high-level nodes {((kl7 V(s7))s s;) bieg1...my are
added to the priority queue as potential future subgoals to expand.

For a graphical overview of how AdaSubS works, see Appendix

Algorithm 6 Complete pseudocode for Adaptive Subgoal Search

Require:
C'1 max number of nodes,
V value function network,
Pkos - -+ » Pk, SUbgoal generators,
SOLVED predicate of solution

function SOLVE((s0))
T < {priority queue with lexicographic order}
parents < {}
for k in ko, ...,k do
T.push((k, V (s0)), s0)
end for
seen.add(so) {seen is a set}
while 0 < len(T") and len(seen) < C do
(k,_), s « T.extract_mazx()
subgoals < pi(s)
for s’ in subgoals do
if s notin seen then
if IS_VALID(s, s’) then
seen.add(s")
parents[s’] + s
for kin ko, ..., kn do
T.push((k,V(s")),s)
end for
if SOLVED(s’) then
return EXTRACTLOWLEVELTRAJECTORY(S’, parents)
end if
end if
end if
end for
end while
return False

41

Under review as a conference paper at ICLR 2025

F.5 HIPS AND HIPS-¢

Here we show a pseudocode for HIPS and HIPS-¢ methods. For details see Alg.

Algorithm 7 Complete pseudocode for HIPS with BestFS-PHS* and VQ-VAE

Require:
(C'1 max number of nodes,
V AE Variational Autoencoder for subgoal generation,
SOLVED predicate of solution,
€ exploration parameter for balancing,
V' value function for PHS* cost estimation

function EXTENDED_HIPS_SOLVE((s¢))
Initialize search data structures, including priority queues.
seen.add(so) {Track seen states}
while search conditions are met do
Use PHS* search strategy to select a state s.
Generate subgoals subgoals < VAE(s).
for each s’ in subgoals do
if s’ not seen and is valid then
Evaluate s’ using V for PHS* cost.
Update priority queue based on PHS* cost.
if SOLVED(s’) then
return Construct solution path.
end if
end if
end for
end while
return False {Solution not found}

42

Under review as a conference paper at ICLR 2025

G STATISTICAL ANALYSIS OF HIGH-LEVEL AND LOW-LEVEL ALGORITHMS

Environment Algorithm Tree size Number Branching Solution Solution
of leaves factor length length
(subgoals)
BestFS 354.43 1.34 1.0 354.08 -
A* 354.09 1.34 1.0 353.56 -
N-Puzzle MCTS 742.04 371.52 2.0 347.43 -
kSubS-8 353.66 1.0 1.0 353.66 45.67
BestFS 185.24 36.88 1.22 48.98 -
A* 85.04 12.22 1.43 45.68 -
Sokoban MCTS 255.0 128.0 2.0 45.1 -
kSubS-8 101.92 6.6 1.06 46.88 7.23
BestFS 152.25 58.02 1.65 48.92 -
A* 185.23 69.57 1.64 45.46 -
Rubik’s Cube MCTS 716.46 358.73 2.0 33.32 -
kSubS-4 303.52 133.44 1.12 73.58 26.65

Table 3: Average values of tree size, number of leaves, branching factor (average number of children),
and solution length were calculated for 100 boards solved by all presented algorithms. Additionally,
for the subgoal method, the average number of subgoals on the winning path was determined.

Solution length

Distribution of solution lengths, compared to optimal
150
100
50 ‘

Optimal vs Bestrs Optimal vs A* Optimal vs MCTS Optimal vs Ksubs

Method

Figure 40: The distribution of solution length in Sokoban.

The right part of each plot illustrates the distribution for
the methods that we used. The left part corresponds to the
optimal solutions for the tested instances obtained using
Breadth-First Search. These algorithms were evaluated on
494 commonly solved instances.

43

Average difference with optimal solution

Average Difference

Figure 41: The average difference be-
tween the solutions found by each al-
gorithm and the optimal solutions for
the Sokoban environment. These al-
gorithms were evaluated on 494 com-
monly solved instances.

Under review as a conference paper at ICLR 2025

H HIERARCHICAL SEARCH

Linear trajectory with Behavioral Cloning Policy Best-First Search (variant with fixed number of action)

.
Policy selects 1 action o /" Policy produce k actions

I

1

i

1

A |
o O i

|

\

@) \ (Planner @) P

O

+7 Policy produces actions
until probability treshold

1
1
1
1
1
I
1
1
1
1
1
\

g > 'I:ow-Level Policy
= \IO

Figure 42: Overview of the search methods under consideration, accompanied by illustrative examples
depicted in various plots for each method. Specifically, straight blue lines are utilized to represent
low-level actions that occur within the search space. In contrast, long skip connections are used to
symbolize subgoals within the search process.

44

Under review as a conference paper at ICLR 2025

I FURTHER DISCUSSION ON HIPS RESULTS

HIPS and HIPS-¢ (Kujanpaa et al., [2023aib) are recent hierarchical search algorithms proposing to
generate subgoals with variational autoencoders. We attempted to use HIPS and HIPS-¢ in greedy
and prior-informed variations, and for all HIPS methods, the cost of inference was prohibitively high.

To compare these methods, we used A*-generated data from HIPS papers, in contrast to all other
experiments (which use data generated by us).

Our evaluation, illustrated in Figure 3] shows that HIPS uses 100x more low-level nodes in search
than comparable subgoal search methods and baselines - despite relatively similar subgoal efficiency
as calculated in relevant papers. These findings informed our decision not to evaluate HIPS in the
rest of the paper.

1.0{ == AdaSubs 1.04 = kSubs
HIPS = AdaSubS

w= HIPS-€ HIPS

081 087 —— Hips-e

BestFS

2061 206 — Policy (80)

8 I+
50.41 50.44

@ @

0.2 0.2

0.04 0.04

T, o LI A2 s e e o e e e sy
10t 102 10° 104 10t 102 10° 10%
High-level node budget Low-level node budget

Figure 43: A comparison of high-level and low-level node budgets for considered methods: HIPS,
subgoal search methods, and baselines on N-Puzzle. The low-level node budget represents the number
of all states that have ever been visited during the search. The bimodal distribution indicates that
HIPS methods use disproportionately (over 100x) more low-level nodes than comparable subgoal
search methods and baselines. This directly translates to prohibitively slow solving time.

45

Under review as a conference paper at ICLR 2025

J COMMON PITFALLS IN HIERARCHICAL SEARCH EVALUATIONS

In this study, one of our primary goals is to identify common but often overlooked pitfalls in evaluating
hierarchical search methods, which can lead to misleading conclusions. Based on our findings, we
propose a set of guidelines that help ensure meaningful and consistent comparisons across different
methods. We observed that the nature of hierarchical search makes it easy, whether intentionally
or not, to present results in a way that favors certain methods, often without readers being aware.
In this section, we present key insights on this issue, with an emphasis on the following evaluation
guidelines:

* Report results using a complete search budget.
* Include p-BestFS with a confidence threshold as a baseline.
* Ensure careful tuning of the confidence threshold.

* Use up-to-date code for running experiments.

J.1 COMPLETE SEARCH BUDGET

We define the performance metric in terms of success rate, which is the percentage of problem
instances solved within a specified complete search budget. This budget refers to the total number of
states visited during the search process. For hierarchical methods, this includes both the subgoals
generated and the states visited by the low-level policies connecting those subgoals.

Reporting the complete search budget is crucial, as opposed to the sparse search budget, which counts
only the high-level nodes in the search tree. As discussed in Appendix [I} Kujanpai et al.|(2023a) rely
on the sparse search budget for their evaluations. This creates a misleading impression that HIPS
outperforms low-level baselines, while in reality, it requires significantly more computational effort
to solve the same problems.

To illustrate this issue, consider a simple environment where an agent must navigate a 100x100 empty
room to reach a goal on the opposite side. In this case, a hierarchical method may require only a single
subgoal — directly corresponding to the goal state — while a low-level method, even if following the
optimal path, would require at least 100 steps. A sparse search budget would misleadingly indicate
that the hierarchical method solves the task in one step, while the low-level approach requires 100
steps, implying a 100x higher cost. However, both methods traverse the same path, making this
comparison inaccurate. Using the complete search budget, both methods would be assigned the same
cost, providing a much more meaningful comparison.

This issue arises in practical settings as well. Figure 44] compares subgoal methods and low-level
BestFS on the Sokoban environment. The dashed line represents the same runs but evaluated with the
sparse search budget instead of the complete search budget. For BestFS, both budget measures are
equivalent. The figure clearly demonstrates that while kSubS and p-BestFS visit a similar number of
states to solve an instance, the sparse search budget falsely amplifies the difference between the two
methods.

1.01

Success rate

=== kSubS-8 - all states
kSubs-8 - high-level

=== AdaSubS-8+4+1 - all states
AdaSubS-8+4+1 - high-level

BestFS-85%

10° 10! 10? 10°
Graph size

Figure 44: Solving Sokoban. Solid lines correspond to using complete search budger as the search tree size
metric. Dashed lines correspond to the same runs, but using sparse search budget as the search tree size metric.
For BestFS, both methods are equivalent.

46

Under review as a conference paper at ICLR 2025

J.2 BASELINES

A common evaluation practice in hierarchical search studies is to compare hierarchical methods
against the search algorithm used as the planner (Czechowski et al., 2021}, [Zawalski et al., 2023}
Kujanpai et al.,[2023a3b). While this is generally a good approach, it is critical to ensure that baseline
methods are properly tuned to allow for fair comparisons.

Our study shows that the most effective low-level method is p-BestFS with a confidence threshold.
This simple greedy search often performs significantly better than other low-level methods and,
in some cases, is competitive with subgoal methods. However, if we were to follow prior works
such as (Czechowski et al.| 2021}, [Zawalski et al.} [2023)) and restrict our comparisons to variants of
BestFS that select a fixed number of actions in each node expansion, without employing a confidence
threshold (see Appendix [FI]for detailed definitions and analysis), we would artificially widen the gap
between BestFS and subgoal methods. As noted in Appendix [FI] the performance of p-BestFS is
highly sensitive to the confidence threshold, and proper tuning is essential. Nevertheless, we advocate
for using p-BestFS with a confidence threshold as a standard baseline in evaluations of hierarchical
methods.

1.04 == kSubS-6
= KSubS-4
kSubSs-2
087 —— AdaSubS-6+4+2
0.6 BestFS-70%

BestFS-top-2
m— MCTS
0.4 A¥

Success rate

0.0+

T LA B S e e e T LI B S B i o | T
1 1

Graph size

Figure 45: Solving the Rubik’s Cube. The light orange line represents the best-preforming variant of BestFS
that selects a fixed number of actions for each expansion. The solid orange line represents BestFS with actions
confidence threshold, which is much more efficient.

J.3 CODE QUALITY

While our results generally align with the findings of (Czechowski et al.} 2021} [Zawalski et al, 2023)),
we observed some notable differences. Most strikingly, when components were trained on reverse
random shuffles of the Rubik’s Cube, our models demonstrated significantly better performance. In
particular, (Zawalski et al.| [2023) reports that both kSubS and AdaSubS substantially outperform
p-BestFS. However, in our experiments, these methods perform similarly, with only minor differences
between them (see Figure [46).

1.0 . AdaSubS
BestFs 3
@ Ksubs BF-kSubS mmm
0.8 p-BcleS Adasubs [0989 0.938
. p-A* 10-
o 06 @ -McTs @ 08- 068
E : 0.6
% g 06"
g 04 g 0.32
! é 0.4- -
0.2 0.2- 0.12 0.095
: 0 0.002 0.008
oo 00027
100 500 6000
0.0 Graph size

10? 10*
Complete search budget

Figure 46: Solving the Rubik’s Cube. Components are trained on reverse random shuffles. The left chart
present our results, while the right presents results of the same experiment from (Zawalski et al.} [2023).

47

Under review as a conference paper at ICLR 2025

For this study, we re-implemented all algorithms from scratch, using up-to-date libraries and carefully
tuning hyperparameters. Our experiments revealed that low-level methods are highly sensitive to the
quality of the value function, whereas subgoal-based methods are more resilient (Section[5.2). We
hypothesize that the discrepancy in performance compared to (Czechowski et al., [2021} |[Zawalski
et al.| [2023) may stem from insufficient training of the value function in their implementation, leading
to the observed performance gap.

Using the original implementations of kSubS and AdaSubS, which is a common practice, would
replicate the same limitation. This shows the importance of re-implementing algorithms indepen-
dently and carefully tuning their components, ensuring that evaluations are not biased by potential
shortcomings in the original implementations.

48

Under review as a conference paper at ICLR 2025

K PROOF OF THE SEARCH ADVANCEMENT FORMULA

Theorem 3 (Search advancement formula, complete statement). Let g : S — P(S) be a stochastic
k-subgoal generator that, given a state s € S samples a set of b subgoals {s;} such that the distances
d(s;, s) are independent, uniformly distributed in the interval [—k; k). Let V : S — R be a value
function with approximation error uniformly distributed in the interval [—o; o).

Then, after n iterations of search, the expected total progress toward the goal is:

E "b/k /a i(z+ h)~1dh) d 3)
Adv—4o_k 7}61’ Uuaz Z,

where @(z) is CDF of the sum of two uniform variables U(—k, k) + U(—o, o). Additionally, if we

approximate that sum as U(—k — o,k + o), we get

n ((k + o)b(bk? 4 bko — 2ko — 20?) + 0®(2ko + bko + 20?) — kP(bk?))
(b+1)(b+ 2)ko(k + o)b—1

“

EAdv ~

Proof. Let Ay, ..., Ay be independent and identically distributed (i.i.d.) random variables sampled
from U(—k, k), and let By, ..., By be i.i.d. random variables sampled from U(—o,). Denote
the CDF of the sum A; + B; as 4(x), and its corresponding probability density function (PDF) as
p(z) = @/ (x). Let I = argmax;(4; + B;).

We now define the cumulative likelihood of selecting the largest sum among the subgoals:
CLS(xz) =P (Vici<p A; + B; < x) .

Since the A;’s and B;’s are independent, it follows that C LS(x) = (), which represents the
cumulative distribution of the largest sum A; + B;. Differentiating this expression gives the PDF of
the largest sum:

PLS(z) = CLS (z) =b-a(z)*" ! - p(x).

Now, consider the event that A; = =, which is equivalent to the event that the maximum max; (A4; +
B;) = x + h for some h € [—0,0] and By = h. Given that max;(A; + B;) = = + h, there are
p(x + h) - 4ok possible values of By, since A; € [—k, k] and B; € [0, o]. Therefore, the PDF of
this variable is

o e Y b—1
o(z) = / PLS(x + h) dh — b-u(x+ h) dh,

o p(x+h)-dok dok

Thus, the expected value of A, which represents the progress in each step, is given by

E[A[] = /k zq(x)dz = b T (/U a(a:+h)b‘1dh> de.

—k 4ok —k —o

If we model the search process as advancing to the best subgoal in each iteration, the total expected
progress after n iterations is

k o
Eago = nE[A;] = % x </ @(x + h)bt dh) de.
—k —0c

Finally, by approximating the PDF p(z) =~ ﬁ]l[, k—o,k+o]» and substituting this approximation

into the previous expression, we arrive at the closed-form approximation:

n ((k+ o)’ (bk* + bko — 2ko — 202) + o®(2ko + bko + 202) — kP (bk?))
(b+1)(b+2)ko(k + o)1 '

EAdv ~

49

Under review as a conference paper at ICLR 2025

L PROOF OF THE DENSIFICATION OF THE ACTION SPACE THEOREM

In Section[5.3] we showed experimentally that both in the mathematical INT environment and Rubik’s
Cube with multiplied action space the advantage of subgoal methods is significant. We attributed
those benefits to the ability of subgoal methods to use states as actions and the reduced diversity in
low-level search. And indeed, we can prove in general that as the action space gets more complex,
the diversity of top actions drops.

To give an illustrative example, in the Rubik’s Cube experiment, to model the increasingly complex
action space, for an arbitrary state we can view the training data as a ground-truth density function f
over an interval [0, 1], that is split evenly between the actions (i.e. into 12 intervals of length 1/12).
Then, we can define arbitrarily dense action spaces A,, consisting of n points distributed evenly in
the domain. For instance, A5 corresponds to the standard Rubik’s Cube action space, while A5
corresponds to the variant multiplied 100 times. Our theorem confirms that the actions selected by
the policy gets less diverse as the complexity of the action space increases, up to the extreme of
converging to a single point as n approaches infinity. In practice, it is even more general, since the
data-driven action distribution f may also model smooth interpolation between actions.

While this is rather intuitive when the learned distributions are perfect, it may seem that approximation
errors, induced both by the limited training data and the policy network can actually improve diversity.
We show that the result holds even in presence of arbitrarily large approximation errors, which is a
bit counter-intuitive.

Formally, the theorem is as follows:

Theorem 4 (Densification of the action space). Fix any state s from the state space S. Let f : A —
[0, 1] be the action distribution induced by the data-collecting policy for the state s. Assume that f is
continuous and has a unique maximum. For clarity, assume A = [0, 1].

Consider a sequence of increasingly dense discrete action spaces A, = {i/n}}l, C A. Let
pn S X A, — [0,1] be a family of policies that learn the distribution f|a, over actions, with
uniform approximation error U(—E, E), where E € Ry. Let 1, be the range of the top K actions
according to the probabilities estimated by p,,. Then

lim E[r,] =0.
n—o0
Intuitively, this theorem states that as the action space become more dense and complex, the actions
sampled for search become increasingly less diverse, which strongly impedes successful planning.
Note that this analysis is strictly more general than the experiment in Section[5.3| with the Rubik’s
Cube environment, where we simply copied the available actions. Here we model the complexity by
adding dense intermediate actions, which leads to a similar conclusion.

While we assume a one-dimensional action domain for clarity, it is straightforward to generalize the
proof to cover arbitrarily high-dimensional action spaces.

Firstly, we shall prove the following key lemma.

Lemma 1. Let f : [0,1] — R be a continuous function with a unique maximum. Let {a,} be a
partition of the interval [0, 1] into n uniformly spaced points, i.e., an; = ;- fori = 0,1,...,n.
Define ey, ; as i.i.d. samples from a uniform distribution U(—E, E). For a fixed n, let r,, € R

denote the smallest interval length such that the points in {a,} corresponding to the top K values of
f(an,i) + en,; are contained within this interval. Then

lim E[r,] =0.

n— o0
Proof. Define p,, ; 1, as the probability that f(a,, ;) + e, ; is the k-th highest value among all points

in {a, }. Let m be the unique point such that f(m) is maximal. Without loss of generality, we may
assume that m = 0.

Let d,, 1, denote the expected distance of the k-th highest point from 0, expressed as

n
dn,k = E Pn,ikQn -
=0

50

Under review as a conference paper at ICLR 2025

For sufficiently large n, it holds that 7, < d,, 1 + ... + dp, xk < Kd,, k. Thus, it suffices to prove
that lim,, o0 dy, x = 0.

Fix a € (0, 1) such that f(an,an) > f(@nan) for each o/ > a. Since f is continuous and m = 0
is the unique maximum of f, there exist such « arbitrarily close to 0. Let g, o be the probability
that f(an,an) + €n,an is among the top K values. Since m is a unique maximum, there exists
0 < B < « such that f(angn) > f(a@n,an). Therefore, if at least K points a,, ; with i/n < 3
satisfy e, ; > E — (f(an,gn) — f(@n,an)), then f(an,an) + €n,an cannot be among the top K. The
probability of this event is a strict upper bound on gy, 4.

The events e, ; > E — (f(angn) — f(an,an)) are pairwise independent, each occurring with

probability
- f(a”ﬂn) B f(an,an)
€= 5E > 0.

For sufficiently large n, the probability that at most K of the Sn trials succeed is bounded by

1- K(i?) (1—¢)"m.

Using the asymptotic behavior of binomial coefficients and exponential terms, it follows that

lim n2¢,.q =0, 5)

n—oo
with convergence that is exponential.

Using the definition of d,, i, decompose it as

n an n
dn,x = E Dn,i, K On,i = E Dn,i,) On,i + E Dn i, K Qi
=0 i=0

i=an

For i > an, since we know that f(an an) > f(an,am) for each o/ > «, we can bound p,, ; x by
Dn,an, i for sufficiently large n. Therefore

n
E Pn,i,KQGn i < (1 - O‘)”pn,om,K-

i=an
Since pn an,k < Gn,a» it follows that

(1 - a)nQpn,an,K S (1 - a)n2Qn,oc~
According to Equation 3] this term converges to 0.

For i < an, observe that a,, ; < o and the probabilities p,, ; x sum to at most 1. Thus
an
an,i,Kan,i <.
i=0

Combining these bounds, we have

lim dn,K < a.
n—00

Since o > 0 was an arbitrarily small constant, it follows that lim,, ;oo dy,, x = 0.
By the relation r, < Kd,, x and the fact that lim,,_, . d,, k = 0, we conclude that

lim E[r,] =0.

n—oo

O

Now, Theorem @] is a straightforward implication of Lemmal[I] applied to the sequence of policies py,
and increasingly dense action spaces A,,.

51

	Introduction
	Related Works
	Combinatorial environments
	Subgoal methods
	Training Components
	Performance Metric

	Analysis
	Subgoal methods benefit from diverse sources of data
	Subgoal methods are value noise filters
	Subgoal methods handle complex action spaces
	Subgoal methods avoid dead ends
	Subgoal methods generalize out-of-distribution

	Related Work
	Open questions and future directions
	Conclusions
	Broader Impact
	Reproducibility statement
	Environments
	Key factors for Hierarchical Search
	Learning from diverse data sources
	Value approximation errors
	Subgoal generation errors

	Complex action spaces
	Dead ends

	Network architectures & training details
	Offline pretraining
	Components
	Supervised Objectives

	Offline pretraining: trajectories
	Rubik's Cube
	Random
	Beginner, CFOP
	Kociemba
	Size of datasets

	INT
	N-Puzzle
	Sokoban

	Algorithms
	Best-First Search
	Monte Carlo Tree Search
	A* Search
	kSubS and AdaSubS
	HIPS and HIPS-

	Statistical analysis of high-level and low-level algorithms
	Hierarchical search
	Further discussion on HIPS results
	Common pitfalls in hierarchical search evaluations
	Complete search budget
	Baselines
	Code quality

	Proof of the search advancement formula
	Proof of the Densification of the action space Theorem

