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Abstract

Simulation-based inference (SBI) aims to find the probabilistic inverse of a non-linear function
by fitting the posterior with a generative model on samples. Applications demand accurate
uncertainty quantification, which can be difficult to achieve and verify. Since the ground
truth model is implicitly defined in SBI, we cannot compute likelihood values nor draw
samples from the posterior. This renders two-sample testing against the posterior impossible
for any practical use and calls for proxy verification methods such as expected coverage
testing. We introduce a differentiable objective that encourages coverage in the generative
model by parameterizing the dual form of the total variation norm with neural networks.
However, we find that coverage tests can easily report a good fit when the approximant
deviates significantly from the target distribution and give strong empirical evidence and
theoretical arguments why the expected coverage plot is, in general, not a reliable indicator
of posterior fit. To address this matter, we introduce a new ratio coverage plot as a better
alternative to coverage, which is not susceptible to the same blind spots. It comes at the
price of estimating a ratio between our model and the ground truth posterior, which can be
done using standard algorithms. We provide experimental results that back up this claim,
and provide multiple algorithms for estimating ratio coverage.

1 Introduction

We are concerned with a perennial question in Simulation-Based Inference (SBI): How do we determine if
our learned approximation to the posterior accurately represents the ground truth?

Recall that the necessary ingredients for deep learning-based SBI include: a non-linear function, known
as a simulator, that takes in parameters θ and returns a simulated observation x; a prior distribution
over all possible parameters p(θ); and a method that infers the distribution over parameters that would
plausibly generate xo if they were passed to the simulator. This target distribution is called the posterior
p(θ | x) := p(x|θ)

p(x) p(θ) evaluated at observation xo, namely p(θ | xo). In SBI, we typically cannot evaluate the
likelihood p(x | θ), so we need to estimate the posterior using a generative model.

The inference method produces an approximation to the posterior q(θ | x). Since the true posterior p(θ | x)
is unknown for any practical use case, it is not straightforward to determine whether our approximation
accurately represents the ground truth using two-sample testing (Gretton et al. (2006); Lopez-Paz & Oquab
(2017); Friedman (2004)). An ideal algorithm would compare q(θ | xo) to p(θ | xo) without evaluating or
sampling the posterior. Since such a comparison is impossible in practice, recent papers instead demonstrate
a proposed inference method using two-sample tests on toy problems with known solutions Lueckmann et al.
(2021). This does not help practitioners who need to know whether their specific posterior approximation can
be trusted, not the performance of the inference algorithm on a toy problem.

In lieu of this ideal, fictional algorithm, practitioners typically test the expected conditional coverage of their
approximation (Miller et al. (2021); Hermans et al. (2022); Talts et al. (2020); Zhao et al. (2021)). Intuitively,
expected conditional coverage tests whether the approximation’s credible region cover the ground truth’s
credible region, at all credible levels, averaged over x ∼ p(x). Although this sounds promising as a criterion to
determine whether two distributions agree, there are issues with expected conditional coverage. One known
limitation is that the prior p(θ) has exact expected conditional coverage at all credibility levels Delaunoy
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Figure 1: A one-dimensional example highlighting the problem of classical coverage, which cannot separate the
very different model and true distribution. The classical coverage is calculated using 1D normal distributed
data p(z) and different models q(z). Subplot a) shows the histogram of the data as well as the learned model
distribution q(z). The true data distribution p(z) is not shown since it is not available in practice. In subplot
b), some of the original 1D data points z ∼ p(z) are shown, where orange points are selected by the threshold
q(z) ≥ t and blue data are not. To calculate the classical coverage, first a threshold t is chosen on the model
distribution q(z), which leads to the super-level set Cq(t) illustrated in subplot c). Then for subfigure d), the
distribution p(z) is integrated in the region of the super-level set P (Cq(t)) (using the histogram data) and
plotted against the integrated distribution Q(Cq(t)) for many different super-level sets with corresponding
thresholds t. Since the model q(z) closely matches the histogram p(z), the coverage correctly shows a diagonal
line. In the top row, the model and data distribution agree. In the middle row, the model is shifted to the
side and in the bottom row the model has two peaks, which also creates perfect coverage.

et al. (2023); Lemos et al. (2023), i.e. this method cannot distinguish between p(θ) and p(θ | x). Despite this
limitation, many works have proposed algorithms aimed at improving the expected conditional coverage of
learned posteriors through regularization (Delaunoy et al. (2022; 2023); Dey et al. (2022); Falkiewicz et al.
(2023)). We will propose another one.

We find an additional, significant blind spot in expected conditional coverage that has gone hithertofore
unmentioned in literature: Coverage does not always penalize the approximant for putting mass in regions
where the ground truth has none! Note that this limitation is quite deep in the notion of coverage itself,
extending to the so-called unconditional coverage, i.e. coverage testing between arbitrary distributions p(z)
and q(z) that is not averaged over a conditional variable. We visualize an example of such a failure mode
in Figure 1. In addition to this pathological example, we create a differentiable objective that encourages
unconditional coverage on q(θ | x) for every x, and thereby expected conditional coverage, and find that we
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can produce distributions with good expected conditional coverage, even though the approximation and the
posterior significantly disagree.

To address this issue, we propose a generalized version of coverage that (a) discriminates between distributions
q and p, i.e. it only returns the typical diagonal line when q = p, (b) does not require samples from the
ground truth posterior, and (c) does not suffer from either blind spot mentioned above. However, it comes at
the cost of estimating the ratio q(θ|x)p(x)

p(θ,x) = q(θ|x)
p(θ|x) .

Contribution (1) We formulate a rigorous definition for both unconditional and expected conditional
coverage. We relate coverage tests to divergences between probability measures and show that the typical
learning objective for Neural Posterior Estimation (NPE) penalizes a lack of coverage. (2) Propose a
differentiable and adversarial regularization objective based on the total variation distance that encourages
coverage and show that unconditional coverage is not discriminative, i.e., when q has unconditional coverage
w.r.t. p that does not imply p = q. We thereby address a commonly held misconception that issues with
expected conditional coverage only stem from the necessity to average over p(x). (3) Present an alternative
form of coverage called the ratio coverage which is discriminative. We formulate it both unconditionally,
over the joint distribution of θ and x, and as expected conditional ratio coverage. (4) Provide experimental
evidence for (2) and (3).

Related Work We addressed the relevant two-sample tests and coverage testing for SBI above; however,
we specifically mention the work ℓ-C2ST Linhart et al. (2023) and for sequential processes SSNL Dirmeier
et al. (2024). ℓ-C2ST, which is more precise and computationally efficient than local-HPD Zhao et al. (2021),
is similar to ratio coverage because we also estimate a ratio between q(θ | x) and p(θ | x) using the likelihood
ratio trick (Hermans et al. (2020); Durkan et al. (2020); Miller et al. (2022); Gutmann & Hyvärinen (2010);
Oord et al. (2018); Dalmasso et al. (2020)) or other methods (Miller et al. (2023); Federici et al. (2023);
Nguyen et al. (2010); Yao & Domke (2023)). Their method does not specifically address coverage, instead
focusing on training a ratio estimator between joint distributions and evaluating the performance at xo. An
estimator with ratio coverage would pass ℓ-C2ST for all xo.

2 Preliminaries

Since this paper deals with the fundamental properties of coverage as a measurement of similarity between
probability distributions, we treat the problem from a fundamental perspective. In particular, we will treat
the properties of unconditional coverage using on a general probability space Z, which we take to be the joint
space of parameters and data Θ×X in the SBI case. Furthermore, critical to many of our practical results
for SBI is the asymmetry between ground truth posterior p and approximation q. We typically assume we
can neither evaluate nor sample from p(θ | x), but we can do both with q(θ | x). This is the normal situation
for expected coverage testing.

Throughout, we deal with comparing distributions and we seek to formalize this using the following divergences
and measures.
Definition 2.1 (Kullback-Leibler divergence). Let (Z,BZ) be a measurable space and P and Q two probability
measures on (Z,BZ) with densities p and q. The Kullback-Leibler divergence is then:

KL(P∥Q) := EP

[
log

(
p

q

)]
. (1)

The Kullback-Leibler divergence is a common statistical distance, often used as an NPE training objective
and also forms the foundation for our regularizer (see Section 5).
Definition 2.2 (Total variation distance/norm). Let (Z,BZ) be a measurable space and P and Q two
probability measures on (Z,BZ). We then define their total variation distance/norm by the formula:

TV(P∥Q) := sup
A∈BZ

|P (A)−Q(A)|, (2)

which is always a number in the interval [0, 1].
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Theorem 2.3 (For a proof see Theorem A.9). We have the following identities for the total variation norm:

TV(P∥Q) = 1
2

∫
Z
|p(z)− q(z)| ν(dz) = 1

2 sup
f :Z→[−1,1]
measurable

|EP [f ]− EQ[f ]|, (3)

where p and q are densities for P and Q, resp., w.r.t. any fixed joint dominating measure ν, e.g. ν = 1
2 (P +Q).

Furthermore, the supremum on the rhs is attained for the map f⋆ given as follows:

f⋆(z) := sgn log
(

q(z)
p(z)

)
=


1 if q(z) > p(z),
0 if q(z) = p(z),
−1 if q(z) < p(z).

(4)

The Total variation distance is also a statistical distance between probability distributions, which we can
relate to an optimality condition on the classical coverage and subsequently results in the adversarial total
variation norm regularizer (see Section 5).

3 Generalized Coverage Plots

We define the fundamental terms analogous to the choice from Hermans et al. (2022), but split the derivation
into two steps: first introducing the mathematical simpler case of unconditional coverage and then extending
to the more widely used definition of expected conditional coverage. This generalized framework allows us to
investigate different kinds of coverage plots, e.g. the classical coverage plot in Example 3.2.

3.1 Generalizing Unconditional Coverage Plots

We start with a generalized definition of coverage for unconditional probabilities, then explain the specific
choice leading to the classical coverage and finally focuses on estimating these coverage plots.
Definition 3.1 (Unconditional coverage plots and coverage gap). Let (Z,BZ) be a measurable space, P
and Q two probability measures on that space, and, let g : Z → R̄ := R ∪̇ {±∞} be a measurable map. The
(unconditional) coverage plot of P and Q w.r.t. discriminating function g is defined to be (an estimate) of
the following graph:

Γg(P, Q) :=
{

(Q(Cg(t)), P (Cg(t)))
∣∣ t ∈ R̄

}
⊆ [0, 1]× [0, 1], (5)

where Cg(t) is the super-level set of g for threshold t ∈ R̄:

Cg(t) := {z ∈ Z | g(z) ≥ t} = g−1([t,∞]). (6)

Furthermore, we define the (unconditional) coverage gap between P and Q w.r.t. g as follows:

∆g(P∥Q) := sup
t∈R̄
|P (Cg(t))−Q(Cg(t))| ∈ [0, 1]. (7)

For further information, see Proposition A.7.

The coverage gap ∆g(P∥Q), more intuitively, measures the maximal distance between the coverage plot
Γg(P, Q) and the diagonal ∆[0,1] = {(r, r) | r ∈ [0, 1]} of the square [0, 1]× [0, 1].
Example 3.2 (Classical coverage plot). We regain the classical coverage plot for the function g(z) := q(z),
the probability density of the model distribution Q. Then, the super-level sets correspond to the highest
probability confidence regions of q(z). This choice for g(z) comes however with a severe blind spot, because it
cannot generally distinguish between P and Q, i.e., it does not detect any probability mass in a region where
q(z) has small probability. Figure 1 shows that the classical coverage gap vanishes: ∆q(P∥Q) = 0, although
P ̸= Q. A more rigorous proof can be found in Example A.12.
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Algorithm 1 Generalized unconditional coverage plot
Require: simulator p(x|θ), prior p(θ), surrogate model q(θ|x), discriminating function g(θ, x), sample size

numbers N , M ;
Ensure: list of confidence level pairs {(γn, γ′

n) |n ∈ [N ]};
for m = 1 to M do

θm ∼ p(θ)
xm ∼ p(x|θm)
θ̂m ∼ q(θ|xm)

end for
for n = 1 to N do

θn ∼ p(θ)
xn ∼ p(x|θn)
γn ← 1

M

∑M
m=1 1[g(θ̂m, xm) ≥ g(θn, xn)]

end for
for all γk in sort({γn |n ∈ [N ]}) do

(γk, γ′
k)← (γk, k

N )
end for

3.2 Generalizing Expected Conditional Coverage Plots

Next, we follow again three steps for the expected conditional coverage: giving a generalized definition,
discuss the expected conditional classical coverage widely used in literature and finally talk about practical
implications for optimization.
Definition 3.3 (Expected conditional coverage plots and coverage gap). Let (Θ,BΘ) and (X ,BX ) be
measurable spaces, let P = P (Θ, X) and Q = Q(Θ, X) be two probability measures on Z := Θ ×X with the
same marginal P (X) = Q(X)1, and let g : Θ ×X → R̄ := R ∪̇ {±∞} be a measurable map. First, consider
the conditional survival function S of g w.r.t Q, which is on t ∈ R̄, x ∈ X and θ ∈ Θ given by:

S(t|x) := Q(g(θ, x) ≥ t|X = x), (8)

Its partial inverse, the threshold function is given for γ ∈ [0, 1] and x ∈ X as follows:

tγ(x) := sup
{

t ∈ R̄
∣∣ S(t|x) ≥ γ

}
∈ R̄. (9)

With this we define the set:

Cg(γ) := {(θ, x) ∈ Θ ×X | g(θ, x) ≥ tγ(x)} . (10)

The expected conditional coverage plot of P and Q w.r.t. g is defined to be (an estimate) of the following
graph:

Γ̄g(P, Q) := {(Q(Cg(γ)), P (Cg(γ))) | γ ∈ [0, 1]} ⊆ [0, 1]× [0, 1]. (11)

Furthermore, we define the expected conditional coverage gap between P and Q w.r.t. g as follows:

∆̄g(P∥Q) := sup
γ∈[0,1]

|P (Cg(γ))−Q(Cg(γ))| ∈ [0, 1]. (12)

Example 3.4 (Expected conditional classical coverage plot). Analogue to Example 3.2, we regain the classical
coverage for the choice g(θ, x) = log q(θ|x). In contrast to the previous Example, this plot first determines
the coverage conditioned on x over θ, before then averaging the result over all x. Hence, the expected
conditional coverage plot compares p(θ|x) to q(θ|x) while the unconditional coverage plot compares p(θ|x)p(x)
to q(θ|x)p(x).

1In SBI, the simulated data P (X) and the input data to the model Q(X) are both generated in the same way: θ ∼ P (Θ) and
then x ∼ P (X|Θ = θ), hence P (X) = Q(X).
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Remark 3.5.

1. We always have the trivial inequality:

∆̄g(P∥Q) ≤ sup
C∈BΘ×X

|P (C)−Q(C)| = TV(P∥Q), (13)

where the supremum ranges over all measurable subsets C of the product space Θ ×X .

2. Because we assumed that the marginals agree: P (X) = Q(X), we also have the following tighter
inequalities (full proof see Remark A.5):

∆̄g(P∥Q) ≤ EP (X)
[
KS(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
(14)

≤ EP (X)
[
TV(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
(15)

= 1
2 sup

f : R̄×X →[−1,1]
measurable

|EP [f ]− EQ[f ]| , (16)

with the push-forward probability measures gX
# Q(Θ|X) and gX

# P (Θ|X) (Tao (2021)), KS the
Kolmogorov–Smirnov divergence (Definition A.1) and f = f(g(Θ, X), X) where for x ∈ X we
abbreviate the partially evaluated map:

gx : Θ → R̄, gx(θ) := g(θ, x). (17)

Algorithm 2 Generalized expected conditional coverage plot
Require: simulator p(x|θ), prior p(θ), surrogate model q(θ|x), discriminating function g(θ, x), sample size

numbers N , M ;
Ensure: list of confidence level pairs {(γn, γ′

n) |n ∈ [N ]};
for n = 1 to N do

θn ∼ p(θ)
xn ∼ p(x|θn)
for m = 1 to M do

θn,m ∼ q(θ|xn)
end for
γn ← 1

M

∑M
m=1 1[g(θn,m, xn) ≥ g(θn, xn)]

end for
for all γk in sort({γn |n ∈ [N ]}) do

(γk, γ′
k)← (γk, k

N )
end for

4 The Ratio Coverage

As we pointed out that classical coverage tests cannot in general discriminate different distributions, we propose
the ratio coverage, which does not have this deficiency, but still shares valuable properties with the classical
coverage, e.g. does not require samples from the ground truth posterior. The ratio coverage is motivated by
the supremum found in Theorem 2.3 which is f⋆(z) = sgn g(z) with the choice g(θ, x) := log q(z)/p(z) (see
Remark A.6 and Figure 2).
Theorem 4.1 (The ratio coverage plots are discriminating). Let P = P (Θ, X) and Q = Q(Θ, X) be two
probability measures on Z = Θ × X with the same marginal Q(X) = P (X) and with densities p and q.
Consider the (log) ratio function g given as follows:

g(θ, x) := log q(θ, x)
p(θ, x) = log q(θ|x)

p(θ|x) . (18)
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Then both, the unconditional coverage plot Γg(P∥Q) and the expected conditional coverage plot Γ̄g(P∥Q)
each can discriminate between P and Q:

∆g(P∥Q) = 0 =⇒ P = Q, ∆̄g(P∥Q) = 0 =⇒ P = Q. (19)

Furthermore, we have the following (in)equalities for the coverage gaps and TV norms:

∆g(P∥Q) ≤ TV(g#P∥g#Q) = TV(P∥Q); (20)
∆̄g(P∥Q) ≤ EP (X)

[
TV(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
= TV(P∥Q). (21)

Proof. See Theorem A.10, Corollary A.11 and Figure 2.

However, in a practical setting the ratio coverage cannot be calculated directly, because it requires the model
distribution q(z) as well as the true posterior distribution p(z). Therefore, we propose to train a classifier to
approximate the ratio q(z)/p(z). This approach must be distinguished from Neural Ratio Estimation (NRE),
which instead learns the likelihood-to-evidence ratio. Additionally, a single value metrics can also be obtained
by calculating the total variation norm between both distributions directly using the learned ratio.

This ratio training is also a limitation of the ratio coverage, because of potentially large parameter space
spanned by Θ × X . The training requires additional computational cost, and the ratio coverage directly
depends on an accurate estimation. However, the additional effort is justified by the full discriminating power,
specifically in comparison to the classical coverage, which also requires intensive computing resources.

In summary, we proofed that the ratio coverage preserves full discriminating power for both plots, the
unconditional coverage plot and the expected conditional coverage plot. The unconditional coverage plot
calculates the coverage symmetrically over the joined space Θ × X . In contrast, the expected conditional
coverage plot first determines the coverage conditioned on x over θ, before then averaging the result over
all x. Hence, the expected conditional coverage plot compares p(θ | x) to q(θ | x) while the unconditional
coverage plot compares p(θ | x)p(x) to q(θ | x)p(x). The unconditional coverage plot is much more simpler in
regards of derivation as well as in terms of computational cost, since it requires far fewer samples from the
model. Although the expected conditional coverage has been mainly used throughout literature (Hermans
et al. (2022)), the unconditional coverage has clear advantages in terms of simplicity and computing cost.
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Figure 2: An example illustrating the problem of classical coverage for conditional probabilities. The true
and model dist. given by p(θ|x) and q(θ|x) are shown in the first image and the cross section for x = 0 is
presented in the second plot (black dotted line). Similar to the unconditional case, these distributions exhibit
one and two Gaussian peaks, whose mean value is shifted by x. The third plot show the approximated
classical and ratio coverage based on the Algorithm 2 for a finite data sets drawn from the distributions.

Looking at ratio coverage from the point of view of hypothesis testing, we consider a sample z drawn from P
or Q, and our test should determine from which distribution it most likely originates. For some (summary)
test statistic g and threshold t, we decide for P , if g(z) < t and decide for Q if g(z) > t. In other words,
the null hypothesis corresponds to H0 : P while the alternative hypotheses is HA : Q. Our unconditional
ratio coverage plot directly plots the following test quantities against each other: P (g > t) = typeIerror and
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Q(g > t) = 1− typeIIerror =: power. So our coverage plot has direct statistical interpretation and by the
classical Neyman-Pearson lemma the unique uniformly most powerful test is the ratio test. So, with our
approach, we learn the most powerful summary statistic.

5 Classical Coverage Regularization Can Be Deceptive

Because the classical coverage is widely viewed as a key performance metric, usually a next step would be
to develop a regularizer to emphasize well calibrated models. In this section we focus on finding such a
regularization objective to exemplify how this goes wrong because of the blind spot of the classical coverage.
As shown in Figure 1, the classical coverage can be optimal, although the model did not learn the true
distribution. We develop the Adversarial Total Variation (TV) Regularization as a differentiable upper
bound to the coverage gap, which will lead to improved classical coverage in Section 6, but simultaneously
create great disagreement between the learned and the true posterior distributions. This problem is then
exacerbated by the fact that the classical coverage is unable to detect this specific kind of misalignment,
because of its blind spot. The same phenomenon can also be observed when regularizing with techniques
from the literature (Section 6.3).

By using that the expected conditional coverage gap for general choice of g is bounded by the total variation
norm, we derive an adversarial regularizer for minimizing the coverage gap.

Equation (16) provides us with an adversary regularization bound for minimizing the coverage gap:

∆̄g(P∥Q) ≤ 1
2 sup

f : R̄×X →[−1,1]
measurable

|EP [f ]− EQ[f ]| (22)

with f = f(g(Θ, X), X).

Under certain regularity assumptions on the densities p and q we can restrict the model class F for the
discriminator f : R̄×X → [−1, 1] to sufficiently flexible neural network classes with tanh-outputs such that
the corresponding Universal Approximation Theorem holds, see Kurt Hornik (1991). We thus arrive at the
regularizing adversarial objective for such neural network classes f ∈ F :

Rg(Q, f) = |EP [f ◦ g]− EQ[f ◦ g]|. (23)

We can now combine this regularizer with the usual NPE training objective, the Kullback-Leibler divergence
(Papamakarios et al. (2017)), resulting in the adversarial loss function with Lagrange multiplier λ ≥ 0:

Lg(Q, f) = KL(P∥Q) + λ · Rg(Q, f), (24)

where we maximize w.r.t. the parameters of f and minimize w.r.t. the parameters of Q.

For the expected conditional classical coverage, i.e. Z = Θ×X and g(θ, x) := log q(θ|x), we get the adversarial
loss (written with densities and arguments):

L(q, f) =− Ep(θ,x)[log q(θ|x)] + λ · |Ep(θ,x)[f(log q(θ|x), x)]− Eq(θ,x)[f(log q(θ|x), x)]|, (25)

where we, again, maximize w.r.t. the parameters of f and minimize w.r.t. the parameters of q(θ|x).

Analogously to the adversary TV regularizer for the classical coverage, we could also investigate an adversarial
ratio regularizer. But for the NPE objective Equation (24) it is important to note that for the log ratio
g = log q

p we have the chain of inequalities (Pinsker’s inequality) for the coverage gap:

∆g(P∥Q)2 ≤ TV(g#P∥g#Q)2 = TV(P∥Q)2 ≤ 1
2 KL(P∥Q). (26)

So, the usual NPE objective (the KL divergence) already closely upper bounds the adversarial ratio regularizer
(Remark A.8), which can thus be dropped from the NPE training objective in this case. Similar arguments
hold for the expected conditional version.
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6 Experiments

In this section we present the empirical evidence for the problem with the TV regularization, the superior
discrimination power of the ratio coverage and the comparison between expected conditional and unconditional
coverage plots. In our experiments, we follow the procedure from Hermans et al. (2022) for evaluating SBI
models on the SLCP. Specifics about the implementation and computational setup can be found in Section A.2
and additional results for the two moons benchmark task can be found in Section A.3.

6.1 Results
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Figure 3: These plots indicate improvements due to the TV regularization for the simulation budgets 210, 216

but this originates from the lack of discriminating power of the expected conditional classical coverage. The
coverage plots are determined using Algorithm 2 (M = N = 1024).

The first aspect of the evaluation of the models is the expected conditional classical coverage in Figure 3 for
simulation budgets 210 and 216 with and without TV regularization. There is a clear correlation between
better coverage and larger simulation budget. In the regularized case, this trend is not as clearly visible
since the initial coverage is already close to the optimal diagonal and therefore does not leave much space
for improvement. Comparing the approach with and without regularization, the coverage appears clearly
improved by regularization, especially for the smaller training budgets. This signals a great success for the
regularized approach, if one relies only on the classical coverage.

To investigate the performance of these models more deeply, we utilize the reference posterior, which is
provided by the sbibm package for this benchmark task. For a fixed measurement x̂, 10 000 samples are
drawn from estimated posterior q(θ|x̂) and the true posterior p(θ|x̂), respectively. Based on those samples,
Figure 4 shows the parameter regions with the highest probability of the true (orange) and estimated (blue)
probability density corresponding to the same models shown in the previous figure.

The models without regularization show the expected trend of better agreement between the true and approx-
imated distribution for larger simulation budgets. However, the regularized models show no improvement for
larger training sizes and, in general, have less conformance with the true posterior. This is especially visible
for the diagonal plots in Figure 4. The models without regularization perform better than the models with
regularization, which confirms that the regularizer harms the optimization (see Section 4). This stands in
opposition to the result of the classical coverage performed before.

This apparent contradiction corresponds to the general blind spot of the classical coverage, which allows for
two different distributions to achieve perfect coverage (compare Example 3.2). The model distribution learned
by the regularized model, resembles the prior very closely, which has been identified in the literature, e.g.
Delaunoy et al. (2023), and can also be shown in the simple 1D case (Figure 8). With this experiment, we
show that this mathematical case occurs in practice, specifically when using a training method that optimizes
for perfect classical coverage. Hence, we show empirically that distributions close to the prior also have
perfect classical coverage. In this example, we are only able to detect this by using true posterior samples,
which is however not possible in practical applications.
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Figure 4: These plots reveal the devastating effect of the TV regularization despite its apparent positive effect
on the classical coverage. They show the true and model posterior distribution for the SLCP benchmark
task with simulation budgets 210, 216 with and without TV regularization as contour plot of the three
specified probability levels. The distributions are shown for the same fixed observation x̂, therefore only the 5
dimensional θ dependence is depicted.
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6.2 The Ratio Coverage
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Figure 5: In contrast to the classical coverage, the ratio coverage can detect negative effect of the TV
regularization and favors the unregularized models. These plots show the direct comparison between the
classical and ratio coverage based on the same models shown previously for simulation budgets 210, 216 with
and without TV regularization. The coverage’s are determined using Algorithm 2 (M = N = 1024). The TV
and KL norm is calculated over the same data.

Therefore, we propose the ratio coverage, which can discriminate these models correctly without using samples
from the true posterior. In Figure 5 the ratio coverage plots based on the trained ratio estimation are
compared with the classical coverage plots, for the same models. The models themselves are identically and
have not been retrained, hence the expected conditional classical coverage is identical to Figure 3.

The expected conditional ratio coverage plots also show an improvement when comparing the step from low to
high simulation budget. But in contrast to the classical coverage, the ratio coverage favors the unregularized
over the regularized model for all simulation budgets. The same conclusion follows from the values of the total
variation norm, calculated from the same trained ration estimation. For comparison, also the Kullback-Leibler
divergence is calculated using the ratio estimation and supports previous findings. Specifically, using the TV
regularizer hinders the performance of the models.

Hence, we have shown that also in practice the ratio coverage has improved discriminating capabilities
compared to the classical coverage and the TV norm can be evaluated as a single value performance metric.
Additionally, this performance metric offers the same benefits as the classical coverage, easy to interpret,
easy to use without access to the true posterior samples. But there is the additional computational cost of
learning the ratio from a set of samples.

6.3 Classical Coverage Regularization

This section extends the previously shown blind spot problem of the classical coverage using other regularization
techniques from the literature. In accordance with Figures 4 and 5, Figure 6 additionally shows models trained
using the CalNPE (Falkiewicz et al. (2023)) and BNPE (Delaunoy et al. (2023)) method. All presented
regularized models show the blind spot behavior where the classical coverage plot gives ideal results while the
posterior plot clearly deviates from the ground truth. In contrast, the ratio coverage favors the unregularized
model, which is in agreement with the observation of the distribution plots.

This underlines the problem of the lacking discriminating power of the classical coverage in scenarios where the
true posterior distribution is not available and a direct comparison between the learned and true posterior is
therefore impossible. Additionally, it shows that it is not a problem of the specific regularization technique, but
is related to the general blind spot problem of the classical coverage, which disqualifies it as a regularization
objective.

6.4 Unconditional Coverage

Lastly, we compare the unconditional with the expected conditional coverage plot from the previous section.
Figure 7 visualizes the same models as Figure 5 using the classical and ratio coverage, but calculates the plots
using the unconditional coverage plots. Although this method is mathematically and computationally simpler,
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Figure 6: The classical (orange line) and ratio coverage (blue line) are shown for the SLCP task with a
simulation budget of 210 for standard NPE (KL divergence), CalNPE (Falkiewicz et al. (2023)), BNPE
(Delaunoy et al. (2023)) and TV (Section 5) regularized models using Algorithm 2 (M = N = 1024).

the plots are very similar and show overall the same features. Although these results look very promising, a
limitation of this example is small number of parameter. The joint parameter space of SLCP only consist
of 13 parameter and going to higher dimensional problems might not work so well. In Section A.4 in the
Appendix, we further compare both methods and also investigate their dependents on the number of samples,
i.e. parameters N and M).
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Figure 7: Using the unconditional coverage plot instead of the expected conditional coverage plot reduces
the number of required samples, is mathematically simpler and reproduces identical results for classical and
ratio coverage. Reproducing Figure 5 for simulation budgets 210, 216 with and without TV regularization, but
using the unconditional coverage plot (Algorithm 1 with N = M = 1024).

7 Conclusion

The motivation for this work originates from the blind spots of the classical coverage and its limited explanatory
power. Specifically training objectives tuned to improve the coverage can very easily work in the opposite
way and hinder the successfully training. Additionally in these situations, the expected conditional classical
coverage plot is not able to detect the failure but instead signals a perfect performance.

We develop an adversary total variation objective function, derived from base principles, to optimize for
the classical coverage. Although the expected coverage can be substantially improved, we provide empirical
evidence and theoretical arguments that the quality of the surrogate model has actually been decreased.
Since this deterioration remains undetected by the classical coverage, we propose the ratio coverage with
increased discriminatory capabilities. At the same time, the ratio coverage is easy to use and interpret and
does not require access to the true posterior. Lastly, we propose the unconditional coverage as an alternative
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to the expected conditional coverage, which reduces the computational cost of the calculation while also being
mathematical more intuitive. To summarize, we showed that the KL divergence optimizes for the coverage
without additional objective, instead we encourage to improve diagnostics by using the ratio coverage.

Broader Impact Statement

The implications of SBI are similar to other SBI methods and are primarily scientific, but one must be
careful to use an accurate generative model and to carefully test results. We emphasize the importance of the
diagnostics in our paper, because untested inference can lead to incorrect conclusions, which can be missed by
practitioners doing inference in any field. Special care applies to results that may influence human behavior
or factors responsible for climate change.
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A Appendix

A.1 Proofs and further Results

Definition A.1 (Kolmogorov–Smirnov divergence). We also highlight the Kolmogorov–Smirnov divergence
between probability measures P and Q on R̄ = R ∪̇ {±∞}, which is described by:2

KS(P∥Q) := sup
t∈R̄
|P ([t,∞])−Q([t,∞])| . (27)

Remark A.2.

1. Note that for every x ∈ X and γ ∈ [0, 1] we always have:

Q(g(Θ, x) ≥ tγ(x)|X = x) ≥ γ, Q(Cg(γ)) ≥ γ, (28)
2Note that, for the definition of the Kolmogorov-Smirnov divergence, we took the intervals [t, ∞] instead of (the equivalent

choice of) [−∞, t] or corresponding (half-)open intervals, which can also be found in the literature.
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with equalities under suitable continuity/positivity conditions on the conditionals Q(Θ|X = x). In
those cases we are thus just plotting P (Cg(γ)) against γ ∈ [0, 1]. See Remark A.4 and Algorithm 2
for more details.

2. Note that we have the following equivalence for t ∈ R̄ and γ ∈ [0, 1]:

S(t|x) < γ ⇐⇒ t > tγ(x). (29)

Under suitable continuity/positivity conditions we even have:

S(t|x) ≤ γ ⇐⇒ t ≥ tγ(x). (30)

Remark A.3 (Estimating the coverage plot with samples). Assume that we have an i.i.d. sample {z1, . . . , zN}
from P and an i.i.d. sample {z′

1, . . . , z′
M} from Q. Then we can approximate the coverage plot Γg(P, Q) as

follows. First consider the set of all relevant thresholds:

T := {g(zn) |n ∈ [N ]} ∪̇ {g(z′
m) |m ∈ [M ]} . (31)

Then for every t ∈ T we compute:

p̂(t) := # {n ∈ [N ] | g(zn) ≥ t} /N, q̂(t) := # {m ∈ [M ] | g(z′
m) ≥ t} /M, (32)

and plot the corresponding points for all t ∈ T :

Γ̂g(P, Q) := {(q̂(t), p̂(t)) | t ∈ T } . (33)

See Algorithm 1 for more information.
Remark A.4 (Estimating the expected conditional coverage plot with samples). For n ∈ [N ] sample θn ∼
P (Θ) and xn ∼ P (X|Θ = θn) and put tn := g(θn, xn). For m ∈ [M ] further sample θn,m ∼ Q(Θ|X = xn).
Then put:

γn := 1
M

M∑
m=1

1[g(θn,m, xn) ≥ tn] ≈ Q(g(Θ, xn) ≥ tn|X = xn) = S(tn|xn). (34)

Further define for γ ∈ [0, 1]:

F̂ (γ) := 1
N

N∑
n=1

1[γn ≤ γ]
(34)
≈ 1

N

N∑
n=1

1[S(tn|xn) ≤ γ] (35)

(30)
≈ 1

N

N∑
n=1

1[tn ≥ tγ(xn)] (36)

= 1
N

N∑
n=1

1[g(θn, xn) ≥ tγ(xn)] (37)

≈ P (g(Θ, X) ≥ tγ(X)). (38)

With these approximations and the argument in (28) we can thus estimate the expected conditional coverage
plot as:

Γ̂g(P∥Q) :=
{(

γ, F̂ (γ)
) ∣∣∣ γ ∈ [0, 1]

}
⊆ [0, 1]× [0, 1]. (39)

See Algorithm 2 for more information.
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Remark A.5. Because we assumed that the marginals agree: P (X) = Q(X), we also have the following
tighter inequalities:

∆̄g(P∥Q) = sup
γ∈[0,1]

|P (Cg(γ))−Q(Cg(γ))| (40)

≤ sup
γ∈[0,1]

EP (X)
[∣∣P (Θ ∈ CX

g (γ)|X)−Q(Θ ∈ CX
g (γ)|X)

∣∣] (41)

≤ EP (X)

[
sup

γ∈[0,1]

∣∣P (Θ ∈ CX
g (γ)|X)−Q(Θ ∈ CX

g (γ)|X)
∣∣] (42)

= EP (X)

[
sup

γ∈[0,1]
|P (g(Θ, X) ≥ tγ(X)|X)−Q(g(Θ, X) ≥ tγ(X)|X)|

]
(43)

≤ EP (X)

[
sup
t∈R̄
|P (g(Θ, X) ≥ t|X)−Q(g(Θ, X) ≥ t|X)|

]
(44)

= EP (X)
[
KS(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
(45)

≤ EP (X)
[
TV(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
(46)

= TV
(
(gX

# P (Θ|X))⊗ P (X)
∥∥(gX

# Q(Θ|X))⊗ P (X)
)

(47)

= 1
2 sup

f : R̄×X →[−1,1]
measurable

|EP [f(g(Θ, X), X)]− EQ[f(g(Θ, X), X)]| , (48)

where for x ∈ X we abbreviate the partially evaluated map:

gx : Θ → R̄, gx(θ) := g(θ, x). (49)

Remark A.6.

1. Note that the supremum in Equation (16) is by Theorem 2.3 attained for:

f⋆(y, x) := sgn log q(y|x)
p(y|x) , (50)

where q(y|x) and p(y|x) denote the probability densities of the push-forward probability measures
gx

#Q(Θ|X = x) and gx
#P (Θ|X = x), resp., on R̄.

2. If we choose g either to be:

g(θ, x) = log q(θ|x)
p(θ|x) or g(θ, x) = sgn log q(θ|x)

p(θ|x) , (51)

then by Theorem 4.1 the bound in Equation (16) equals:

EP (X)
[
TV(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
= EP (X) [TV(P (Θ|X)∥Q(Θ|X))] (52)
= TV(P∥Q) (53)

= 1
2 sup

f : Θ×X →[−1,1]
measurable

|EP [f ]− EQ[f ]| , (54)

and the supremum is by Theorem 2.3 attained with f⋆ given by:

f⋆(θ, x) = sgn log q(θ, x)
p(θ, x) = sgn log q(θ|x)

p(θ|x) . (55)

Proposition A.7. Let the notation be like in Definition 3.1.
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1. We can rewrite the occurring quantities with help of the push-forward measures g#P and g#Q from
Equation 7 as follows:

P (Cg(t)) = (g#P )([t,∞]), Q(Cg(t)) = (g#Q)([t,∞]). (56)

2. With this we see that the coverage gap between P and Q w.r.t. g can be identified with the Kolmogorov-
Smirnov divergence between their corresponding push-forward probability measures:

∆g(P∥Q) = sup
t∈R̄
|(g#P )([t,∞])− (g#Q)([t,∞])| = KS(g#P∥g#Q). (57)

3. We then directly get the following upper bound with the total variation norm (see Remark A.8):

KS(g#P∥g#Q) ≤ sup
B∈BR̄

|(g#P )(B)− (g#Q)(B)| = TV(g#P∥g#Q) (58)

= 1
2 sup

f :R̄→[−1,1]
measurable

|EP [f ◦ g]− EQ[f ◦ g]| , (59)

where the first supremum ranges over all measurable subsets B of R̄, and, the second supremum over
all measurable maps f from R̄ to [−1, 1].

Remark A.8. We have the following well-known inequalities:

1. KS(P∥Q) ≤ TV(P∥Q) Kelbert (2023).

2. Pinsker-Bretagnolle-Huber inequality (see Bretagnolle & Huber (1978)):

TV(P∥Q)2 ≤ min
(

1
2 KL(P∥Q), 1− exp (−KL(P∥Q))

)
. (60)

Theorem A.9 (See Iosif Pinelis (2023)). We have the following identities:

2 · TV(P∥Q) =
∫

Z
|p− q| dν = sup

f :Z→[−1,1]
measurable

|EP [f ]− EQ[f ]|, (61)

and the supremum on the rhs is attained for:

f := 1Z>
− 1Z<

= sgn log
(

p

q

)
, (62)

where

Z> := {z ∈ Z | p(z) > q(z)} =
{

z ∈ Z
∣∣∣∣ log p(z)

q(z) > 0
}

(63)

Z< := {z ∈ Z | p(z) < q(z)} =
{

z ∈ Z
∣∣∣∣ log p(z)

q(z) < 0
}

, (64)

where p and q are densities for P and Q, resp., w.r.t. any fixed joint dominating measure ν, e.g. ν = P + Q.
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Proof. For a measurable subset A ⊆ Z we get:

|P (A)−Q(A)| =
∣∣∣∣∫

A

p(z) ν(dz)−
∫

A

q(z) ν(dz)
∣∣∣∣ (65)

=
∣∣∣∣∫

A

(p(z)− q(z)) ν(dz)
∣∣∣∣ (66)

=

∣∣∣∣∣∣∣∣∣
∫

A>

(p(z)− q(z)) ν(dz)︸ ︷︷ ︸
≥0

−
∫

A<

(q(z)− p(z)) ν(dz)︸ ︷︷ ︸
≥0

∣∣∣∣∣∣∣∣∣ (67)

≤ max
(∫

A>

(p(z)− q(z)) ν(dz),
∫

A<

(q(z)− p(z)) ν(dz)
)

(68)

≤ max
(∫

Z>

(p(z)− q(z)) ν(dz),
∫

Z<

(q(z)− p(z)) ν(dz)
)

. (69)

Note that the maximum on the rhs can be achieved by either putting A = Z> or A = Z<, depending on
which set maximizes the rhs. Also note that for A = Z we have P (Z) = 1 = Q(Z), so the lhs vanishes. The
above equality then shows: ∫

Z>

(p(z)− q(z)) ν(dz) =
∫

Z<

(q(z)− p(z)) ν(dz). (70)

So both values in the maximum above are the same and the maximium can thus also be written as the convex
combination:

TV(P∥Q) = max
(∫

Z>

(p(z)− q(z)) ν(dz),
∫

Z<

(q(z)− p(z)) ν(dz)
)

(71)

= 1
2

(∫
Z>

(p(z)− q(z)) ν(dz) +
∫

Z<

(q(z)− p(z)) ν(dz)
)

(72)

= 1
2

(∫
f(z) · p(z) ν(dz)−

∫
f(z) · q(z) ν(dz)

)
(73)

= 1
2 (EP [f ]− EQ[f ]) , (74)

where:

f := 1Z> − 1Z< = sgn log
(

p

q

)
. (75)

Note that we can also write:

TV(P∥Q) = max
(∫

Z>

(p(z)− q(z)) ν(dz),
∫

Z<

(q(z)− p(z)) ν(dz)
)

(76)

= 1
2

(∫
Z>

(p(z)− q(z)) ν(dz) +
∫

Z<

(q(z)− p(z)) ν(dz)
)

(77)

= 1
2

(∫
Z>

|p(z)− q(z)| ν(dz) +
∫

Z<

|p(z)− q(z)| ν(dz)
)

(78)

= 1
2

∫
Z
|p(z)− q(z)| ν(dz). (79)
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Now if h : Z → [−1, 1] is any measurable map, we get:

|EP [h]− EQ[h]| =
∣∣∣∣∫ h(z) · p(z) ν(dz)−

∫
h(z) · q(z) ν(dz)

∣∣∣∣ (80)

=
∣∣∣∣∫ h(z) · (p(z)− q(z)) ν(dz)

∣∣∣∣ (81)

≤
∫
|h(z)|︸ ︷︷ ︸

≤1

·|p(z)− q(z)| ν(dz) (82)

≤
∫
|p(z)− q(z)| ν(dz) (83)

= 2 · TV(P∥Q). (84)

So we finally get:

TV(P∥Q) = 1
2 sup

h:Z→[−1,1]
measurable

|EP [h]− EQ[h]|. (85)

So all claims are shown.

Theorem A.10. We now consider the functions given by the log-ratio between the corresponding probability
densities and its sign function:

glr(z) := log q(z)
p(z) , gs(z) := sgn log q(z)

p(z) . (86)

Both corresponding coverage plots Γg(P∥Q) are able to distinguish P and Q. Furthermore, we have for those
two g’s the identity:

TV(g#P∥g#Q) = TV(P∥Q). (87)

Proof. We first show the last claim. It is clear that:

TV(g#P∥g#Q) ≤ TV(P∥Q). (88)

For the reverse, note that by Theorem 2.3 we have with g(z) = sgn log q(z)
p(z) :

TV(P∥Q) = 1
2 |EZ∼P [g(Z)]− EZ∼Q[g(Z)]| (89)

≤ 1
2 sup

h:R̄→[−1,1]
|EZ∼P [h ◦ g(Z)]− EZ∼Q[h ◦ g(Z)]| (90)

≤ 1
2 sup

h:R̄→[−1,1]

∣∣EY ∼(g#P )[h(Y )]− EY ∼(g#Q)[h(Y )]
∣∣ (91)

= TV(g#P∥g#Q). (92)

This shows the claim. Similarly, for g(z) = log q(z)
p(z) .

Now assume that:

0 = ∆g(P∥Q) = KS(g#P∥g#Q), (93)

then g#P = g#Q as KS is a proper divergence. In particular, we get:

0 = TV(g#P∥g#Q) = TV(P∥Q), (94)

which implies P = Q, as TV is a proper divergence.
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Theorem 4.1 together with Equation (14) now show the following:

Corollary A.11. Assume that the marginals are equal: P (X) = Q(X), and, that we use the log ratio
g(θ, x) = log q(θ|x)

p(θ|x) . Then we get the following inequalities:

∆̄g(P∥Q) ≤ EP (X)
[
KS(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
(95)

≤ EP (X)
[
TV(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
(96)

= EP (X) [TV(P (Θ|X)∥Q(Θ|X))] (97)
= TV(P∥Q). (98)

Furthermore, if ∆̄g(P∥Q) = 0 then we have: P = Q.

Proof. The chain of inequalities follows from Theorem 4.1 together with Equation (14).

If now ∆̄g(P∥Q) = 0, then also EP (X)
[
KS(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
= 0. Since KS is a proper divergence,

we have that for P (X)-almost-all x ∈ X the equality:

gx
#P (Θ|X = x) = gx

#Q(Θ|x), (99)

which implies:

[
TV(gx

#P (Θ|X = x)∥gx
#Q(Θ|X = x))

]
= 0. (100)

By the above identities we thus get:

0 = EP (X)
[
TV(gX

# P (Θ|X)∥gX
# Q(Θ|X))

]
= TV(P∥Q). (101)

Since TV is a proper divergence, this implies P = Q.

Example A.12 (Superlevel sets cannot discriminate probability measures). Let q be a probability density
supported on [−2,−1] and p be the probability density given by:

p(z) := 1
2q(z) + 1

2q(z − 3), (102)

which is supported on [−2,−1] ∪̇ [1, 2]. Let Q and P be the corresponding probability measures of R w.r.t. q
and p, resp. Now consider the superlevel set for p for thresholds t > 0:

Cp(t) := {z ∈ R | p(z) ≥ t} (103)
= {z ∈ [−2,−1] | p(z) ≥ t} ∪̇ {z ∈ [1, 2] | p(z) ≥ t} (104)

=
{

z ∈ [−2,−1]
∣∣∣∣ 1

2q(z) ≥ t

}
∪̇

{
z ∈ [1, 2]

∣∣∣∣ 1
2q(z − 3) ≥ t

}
(105)

= q−1 ([2t,∞)) ∪̇
(
q−1 ([2t,∞)) + 3

)
(106)

=: I1 + I2, (107)
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with I1 := q−1 ([2t,∞)) ⊆ [−2,−1] and I2 := I1 + 3 ⊆ [1, 2]. With this we get:

P (Cp(t)) = P (I1) + P (I2) (108)

=
∫

I1

p(z) dz +
∫

I1+3
p(z) dz (109)

=
∫

I1

(
1
2q(z) + 1

2 q(z − 3)︸ ︷︷ ︸
=0 on I1

)
dz +

∫
I2

(
1
2 q(z)︸︷︷︸

=0 on I2

+1
2q(z − 3)

)
dz (110)

= 1
2

( ∫
I1

q(z) dz +
∫

I1+3
q(z − 3︸ ︷︷ ︸

=:z′

) dz

)
(111)

= 1
2

( ∫
I1

q(z) dz +
∫

I1

q(z′) dz′
)

(112)

=
∫

I1

q(z) dz (113)

= Q(I1) (114)

= Q(I1) +
=0︷ ︸︸ ︷

Q(I2) (115)
= Q(Cp(t)). (116)

This shows that P and Q agree on all superlevel sets of P , but clearly P ̸= Q. Note that for t = 0 we have
Cp(t) = R and P (Cp(t)) = 1 = Q(Cp(t)) as well.
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Figure 8: Analog to Figure 2, this example extends the same scenario but uses 10 peaks in the model
distribution instead of two. As such, the model distribution becomes quite flat and resembles what we see
in the contour plots in the experiment. The true and model dist. given by p(θ|x) and q(θ|x) are shown
in the first image and the cross section for x = 0 is presented in the second plot (black dotted line). The
model distribution does not depend on x in contrast to the previous figure and the 10 peaks are equally
distributed between −4 and 4. The third plot show the approximated classical and ratio coverage based on
the Algorithm 2 for a finite data sets drawn from the distributions.

A.2 Setup

In our experiments, we follow the procedure from Hermans et al. (2022) for evaluating SBI models and
also use the implementations from the sbi 0.21.0 package (Tejero-Cantero et al. (2020)), in order to be
comparable to literature. All calculations are performed on a Windows Server 2019 with a AMD Ryzen
Threadripper 3970X processor with 32 cores (3693 MHz, 64 logical processors) and NVIDIA GeForce RTX
2070 SUPER. The total available physical memory is 128 GB (3200 MHz).
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We conducted two kinds of experiments. First, using the the NPE class from sbi package, we use normalizing
flow networks together with the standard Kullback-Leibler training objective to create a base line results close
to the literature reference. We chose different simulation budgets 210, 216 and train each model for 50 epochs.
After each epoch, the validation set of 211 elements is evaluated and the model with the lowest validation
loss is restored after the training. We observe similar results for different batches sizes, if the learning rate
is scaled accordingly, and therefore chose a batch size of 512 for maximal efficiency. The data is simulated
using the standard benchmark SLCP implemented in the sbibm 1.1.0 package (Lueckmann et al. (2021)). It
simulates a fictive problem with 5 parameters and 8 observables sampled from a multivariate Gaussian whose
mean and covariance matrix are parameterized.

Second, the TV regularized case is trained with the additional adversary optimization performed on the
same data as the training of the surrogate model. To ensure good comparability with the reference models,
the starting conditions are the same with and without regularization. Custom implementations were only
necessary for the adversary training part of the TV regularizer using the PyTorch 2.2.0 (Paszke et al.
(2019)) and LAMPE 0.8.2 (Rozet et al. (2021)) package. The adversary network consists of a dense neuronal
network with ReLU activation functions and a tanh final layer. It receives 10 update steps for each update to
the surrogate model, to ensure good convergence. The regularization coefficient (Equation (24)) was set to
λ = 102, which roughly aligns both loss contribution in strength at the beginning of the training.

For the evaluation of the ratio coverage, another classifier is trained. It uses an AdamW optimizer with a
batch size of 512 and a dense network with 5× 64 hidden features and ELU activation trained for 32 epochs.
An architecture search was performed to find these values. However, for our experiments, the training of the
NPE model far surpassed the training of the classifier in terms of computational cost and amount of required
training data. Hence, we selected a classifier architecture that is sufficiently flexible, but did not optimize it
extensively. It is trained using a binary cross entropy loss on a total of 1000 data points consisting of (θ, x)
and (θ̂, x) with θ being generated from the simulator θ ∼ p(θ|x) and θ̂ from the surrogate model θ̂ ∼ q(θ̂|x).
Then the optimal classifier is the probability ratio as discussed in Theorem 4.1.

The main challenge when using the TV objective function is the adversary training, which is unstable. Using
the hyper-parameter λ, it can be controlled at the cost of reducing the regularization effect.

All code to reproduce the results presented in this paper is available: https://anonymous.4open.science/
r/ratio_coverage-E777/.

A.3 Two Moons

In the main manuscript we present results based on the SLCP benchmark test, that show improved discrim-
inating power of the ratio coverage. In this section, we present analog findings based on the two moons
benchmark test, which is lower dimensional compared to SLCP, but its shape is more difficult to learn.

Figure 9 and 10 confirm the findings of the main paper for the two moons task. First, Figure 9 clearly shows
improved performance for the regularized based on the classical coverage, but Figure 10 shows that the
performance should actually be worse. Hence, the same blind spot problem arises here as discussed for SLCP,
but the ratio coverage was again not effected.

A.4 Variance of Coverage plots

In this section we investigate the stability of the expected conditional and unconditional coverage plot (see
Algorithm 2 and 1). The stability and computational cost of these coverage plots depends on the number
of samples n and m, where n is related to the granularity of the coverage plot and m is associated with
the stability. In terms of computational simulation cost, the expected conditional coverage generates n×m
simulations while the unconditional coverage only requires n+m samples. To investigate the stability between
both methods, we keep n = 1024 the same and consider m = 128 and m = 512.

In Figure 11 we show the standard deviation across 10 reevaluations of the classical coverage and ratio
coverage using the expected conditional and unconditional coverage plot. The evaluated model was previously
shown in Figure 5 and 7 in the main text. The expected conditional and unconditional coverage plot agree in
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Figure 9: This figure compare the classical coverage (orange) and the ratio coverage (blue) for TV regularized
and unregularized models trained with simulation budgets of 27, 210. This plot is analog to Figure 5 in the
main paper.
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Figure 10: These plots reveal the devastating effect of the TV regularization despite its apparent positiv
effect on the classical coverage. They show the true and model posterior distribution for the two moons
benchmark task with simulation budgets 27, 210 with and without TV regularization. This plot is analog to
Figure 4 in the main paper.

all cases, which shows the unconditional coverage as a more cost efficient alternative. The standard deviation
of both methods also roughly agrees, while the standard deviation is significantly decreased for the 512 sample
case.

A.5 Simple illustration for coverage

In this section we illustrate the interpretability of the classical and the ratio coverage plot expanding on the
blind-spot problem shown in Figure 1. Fundamentally, the coverage plot is a statistical tool to measure the
similarity between a true and a model distribution without direct access to the true distribution. However,
for easier visualization we considering simple one-dimensional normal distributions p and q (shown in blue
and red).
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Figure 11: Plotting the standard deviation of 10 independent coverage plots of the unregularized models
depicted in Figure 5 and Figure 7 with a budget of 1024 estimated over 128 and 512 test samples. The
surrogate model has not been retrained. The blue line corresponds to the expected conditional coverage plot
using Algorithm 2 and the red line corresponds to the conditional coverage plot using Algorithm 1.

Figure 12 consists of 5 sub-figures that each investigate a different true distribution, but have the same model
distribution. The top, center figure considers the case where both distributions perfectly agree and we observe
the expected perfect coverage from the ratio and the classical coverage plot. The second row considers a shift
between both distributions and both coverage plots show a deformation below the optimal diagonal, while
the ratio coverage exhibits higher sensitivity, i.e., more distance to the diagonal. The bottom row investigates
a change in the width of the distribution and for the wider model distribution the classical and the ratio
coverage show mirrored behavior. However, both coverages detect the disagreement between the distributions,
because the distance from the diagonal is the similar, but the direction is different. Although, in these simple
cases both coverages are able to detect the difference between the distributions, this does not hold in general,
because of the blind spot of ratio coverage illustrated in Figure 1.
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Figure 12: Plotting multiple simple cases to illustrate how the coverage behaves in comparison to the classical
coverage plot. One can observe that for the left and right shifted case, the ratio coverage behaves similar
to the classical coverage but is more sensitives. For the sharper and wider distribution example one can
observe that the classical and ratio coverage agree almost perfect, except for the wider model where the ratio
coverage gives the rotated result, which corresponds to the choice of the ration p

q versus q
p .
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