Under review as a conference paper at ICLR 2022

UNDERSTANDING THE GENERALIZATION GAP IN VI-
SUAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Reinforcement Learning (RL) agents have achieved superhuman performance
on several video game suites. However, unlike humans, the trained policies fail
to transfer between related games or even between different levels of the same
game. Recently several techniques have been proposed to close the generalization
gap such as data augmentation, domain invariant feature learning, separation of
actor and critic networks, etc. However, the transfer performance of RL agents still
remains unsatisfactory. In this work, we conduct a large scale empirical study using
procedurally generated video games to understand why the generalization gap still
exists. We also show that simple auxiliary tasks can improve generalization of
policies. Furthemore, contrary to the belief that adaptation to new levels requires
finetuning all layers of the policy network, we find that features in the visual
trunk can be kept fixed and only the parameters that use visual features to predict
actions require finetuning. Finally, to inform fruitful avenues for future research,
we construct simple oracle methods that close the generalization gap.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has achieved tremendous success on several video game
suites (Mnih et al., 2013; Vinyals et al., 2019; Berner et al., 2019). However, state-of-the-art
(SOTA) RL agents are usually trained and tested on the same game. It turns out that the learned
policy fails to transfer to different games or even unseen levels of the same game (Cobbe et al., 2018;
2019). In contrast, humans are remarkable at transferring to new tasks and environments. Behavior
studies (Dubey et al., 2018) show that humans make extensive use of visual priors such as object
permanence, sub-goals, and intuitive physics when learning new games. Without these priors, data
efficiency of humans drops an order of magnitude (Dubey et al., 2018). (Sax et al., 2018) learns
visual priors with supervised learning on datasets with manual annotations of several semantically
meaningful features. In practice however, acquiring such datasets is challenging.

In the absence of labelled datasets and human supervision, past works have explored three main
ways to incorporate visual priors to improve generalization. The first paradigm is data augmenta-
tion (Michael et al., 2020; Kostrikov et al., 2020) where invariance in the learned representations
is induced by training the agent on a large set of task-irrelevant variations of the observed data.
Since the distinction between what is relevant vs irrelevant is task-dependent, the optimal choice
of data augmentation is also task dependent. To avoid manual selection of data augmentations,
UCB-DrAC (Raileanu et al., 2020) used upper confidence bound (UCB) algorithm (Auer, 2002) for
choosing optimal augmentations. However, it remains unclear whether choosing one out of many
task-agnostic data augmentations, such as cropping, helps in closing the generalization gap. In this
paper, we show that set of transformations used in state-of-the-art methods are insufficient at closing
the generalization gap. On the other hand, we also show that task-informed data augmentations close
the generalization gap, but require task variation information during training. How to construct task
sensitive data augmentations remains an open question and an avenue of future research. We discuss
this finding in Section 4.

The second paradigm for transfer learning is to leverage domain confusion (Tzeng et al., 2014;
2015; Hoffman et al., 2013), technique commonly used in computer vision to make the source data
distribution indistinguishable from the target distribution. The main idea is to discourage learning
of spurious domain/level-specific features by enforcing the constraint that it should not be possible

Under review as a conference paper at ICLR 2022

(a) Jumper Levels (b) Climber Levels

Figure 1: Visualization of different levels of (a) Jumper and (b) Climber. In both the games, the first
and second level differ in theme whereas the first and third level differ in both theme and layout.

to predict the identity of the domain/level from the policy features. iDAAC (Raileanu & Fergus,
2021) used this technique to improve policy generalization. However, our investigation reveals that
even policies that generalize well contain domain/level specific information. In hindsight, this is not
surprising. On image classification tasks, the identity of the object doesnot change based on factors
such as background clutter, size, etc. However, small changes in the size of obstacles or platforms
can drastically change the optimal policy. Therefore, the policy must encode information about
level-specific game layout, making application of domain invariance to policy learning challenging.
Details of this investigation are provided in Section 5.

The third paradigm of improving generalization involves using auxiliary prediction tasks (such as
depth prediction, image reconstruction, contrastive learning) to regularize the policy features to
prevent learning spurious features (Jaderberg et al., 2016; Srinivas et al., 2020). In this work, we
choose the auxiliary task of inverse model prediction (Agrawal et al., 2016) due to its simplicity. This
improves policy generalization. We detail this finding in Section 6.

It is well-known that choice of hyper parameters has a substantial impact on the performance of
RL agents. When it comes to policy generalization, discussions around hyperparameter selection
have been limited. We show that state-of-the-art (SOTA) methods that improve policy generalization
require careful hyperparameter selection for each task. When these methods are constrained to choose
one set of hyperparameters across tasks, they donot outperform the base PPO algorithm. We detail
this finding in Section 7.

Finally, we probe if deep RL algorithms learn spurious features that deters performance of the same
task in new environments. Our experiments reveal that visual features learned by training on a limited
set of levels of one game donot require adaption to achieve good performance on new levels. Infact,
only the layers of the policy network that convert visual features into actions require finetuning.
Details of this investigation are provided in Section 8.

In summary, our experiments on Procgen (Cobbe et al., 2019), a suite of procedurally generated
games reveal that (i) task-informed data augmentation closes the generalization gap; (ii) learning level-
invariant (or domain-invariant) features is not necessary for good generalization; (iii) regularizing
the policy features using simple auxiliary tasks can improve generalization; (iv) SOTA methods that
improve policy generalization rely on careful hyperparameter selection; (v) training on a limited
number of levels of the same game doesnot result in learning of level-specific spurious features.
When operating on new levels, good performance can be achieved by only fine-tuning two layers that
transform these features into actions.

2 RELATED WORK

Prior works (Cobbe et al., 2018; 2019; Justesen et al., 2018; Zhang et al., 2018a;b; Juliani et al., 2019;
Rajeswaran et al., 2017; Raileanu & Rocktéschel, 2020; Grigsby & Qi, 2020; Kuttler et al., 2020;
Farebrother et al., 2018) have established the problem of overfitting in reinforcement learning. In
response, multiple methods have been proposed to mitigate overfitting. (Cobbe et al., 2018; 2019)
showed that classical techniques such as dropout (Srivastava et al., 2014), L2 regularization, and
batch normalization (loffe & Szegedy, 2015) — originally developed for supervised learning — reduce
the generalization gap in RL. Other works (Michael et al., 2020; Cobbe et al., 2018; Ye et al., 2019;
Raileanu et al., 2020; Wang et al., 2020) have made use of data augmentation to learn policies that
generalize well. Another popular approach is to use representation learning techniques such as
variational information bottleneck (Igl et al., 2019) and bisimulation metrics (Agarwal et al., 2021;

Under review as a conference paper at ICLR 2022

Zhang et al., 2020) to help with the problem of overfitting in RL. (Cobbe et al., 2020; Raileanu &
Fergus, 2021) learned a separate network for policy and value function and showed that it helps
reduce the generalization gap in RL. (Sax et al., 2018) showed that using mid-level visual features
optimized for segmentation, depth, keypoints, surface normal prediction and others improve transfer.
In our work, rather than proposing a novel approach to solve overfitting, we analyze the limitations of
the current techniques and propose avanues for improvements.

3 PRELIMINARIES

We consider a distribution of Partially Observable Markov Decision Process (POMDPs) p(M) such
that M; = (S;, Oy, A;, T;, 4, R, v) ~ p(M). We can think of different M, as instances of same
task in different environments. S; is the state space, O; is the observation space, A; is the action space,
T;(s'|s, a) is the transition function, ;(0’|s, a) is the observation function, R;(s, a) is the reward
function and + is the discount factor. The goal is to find a policy 7y that maximizes the expected sum

of discounted rewards over the distribution of POMDPs, J(7) = E () [ZtT;()l Y'R;i(st,az)|.

During training, we only have access to a limited number of POMDPs M = {M,}~ . Our goal is
to find a policy 7y that generalizes to new POMDPs sampled from p(M).

3.1 ENVIRONMENT SETUP

We conduct experiments using the ProcGen suite (Cobbe et al., 2019), a collection of 16 procedurally
generated video games. Each game contains multiple levels wherein the agent needs to perform the
same task, but the environment varies due to changes in position of objects, their textures and the
background texture. We refer to variation in levels resulting solely from changes in texture of object,
agent and the background as theme variation. We collectively refer to variation in levels resulting
from changes in positions of the objects as layout variation. Figure 1 illustrates theme and layout
variation for two games, Jumper and Climber. For each game, the first and the second level differ in
theme whereas the first and the third level differ in both the theme and the layout.

3.2 METHODS

We use standard neural network architecture to represent the policy, a ~ mg(a|s), consisting of: a
visual encoder z = 75"(s) and a policy head a ~ 7r§2 (a]z) with parameters 61, 0> respectively.
Collectively, they are referred as 6 = [, 63]. The architecture of the visual encoder is borrowed
from IMPALA (Espeholt et al., 2018) and is a ResNet with 15 convolutional layers. It outputs a
flattened feature map (z) that we refer to as the visual feature. These features are passed into a two
2-layer fully-connected neural networks with 256 hidden units for predicting the actions (i.e., the
policy head) and the value function (i.e., the value head, V,}}(2)).

We analyze the generalization performance of PPO (Schulman et al., 2017) and three state-of-the-art
(SOTA) methods:

* UCB-DrAC (Raileanu et al., 2020) uses Upper Confidence Bound (UCB) to automatically
select game specific data augmentations out of eight possible ones: crop, grayscale, cutout,
cutout-color, flip, rotate, random convolution and color jitter. For brevity, we sometimes
refer to UCB-DrAC as simply DrAC.

* DAAC (Raileanu & Fergus, 2021) trains two separate networks for representing the policy
and the value function. The intuition is that in POMDPs, the value network will overfit, but
the policy can still generalize. The seperation of networks prevents interference in visual
features learned for representing the value function and the policy. PPG (Cobbe et al., 2020)
also trains separate networks for actor and critic but mainly focuses on improved training of
policies and not their generalization performance.

* iDAAC (Raileanu & Fergus, 2021) adds an auxiliary loss to the training objective of
DAAC to encourage domain invariance.

Under review as a conference paper at ICLR 2022

DrAC + FT
—— DrAC+TR
—— DrAC
---- PPO-fixed train
— PPO-fixed eval

1 1 1
Steps le7 Steps le7 Steps le7 Steps le7

(a) BigFish (b) StarPilot (c) FruitBot (d) BossFight

Reward

1 1 1 1
Steps le7 Steps le7 Steps le7 Steps le7 Steps le7

(e) Ninja (f) Plunder (g) CaveFlyer (h) CoinRun (1) Jumper

1 1
Steps le7 Steps le7 Steps le7 Steps le7

(k) Climber (1) DodgeBall (m) Heist (n) Leaper
10 § 0.75
10 = 4
1 N —nen
@ 6 5 g 025 /f/ — DraC
E
4 T T T T T T Z 000 T T !
0 1 2 0 2 0 1 2
Steps le7 Steps le7 Steps le7
(o) Maze (p) Miner (q) Mean Normalized Score

Figure 2: UCB-DrAC with theme randomization (DrAC-TR) gets close to the test performance of
DrAC-FT on games with fixed themes indicating that it learned theme invariant features. Thus, it
outperforms UCB-DrAC implying the need for better domain randomization and data augmentation.
Black horizontal lines are the performance of a PPO baseline trained with fixed texture. Dashed line
is training performance.

We use PPO’s pytorch implementation (Kostrikov, 2018), the official implementation for UCB-
DrAC (Raileanu et al., 2020), and the official implementation for DAAC/iDAAC (Raileanu & Fergus,
2021). See Appendix B for the hyperparameters used.

3.3 EVALUATION METRICS

Different procgen games have different score ranges which makes it difficult for us to average the
scores across games. Recent works (Raileanu et al., 2020; Raileanu & Fergus, 2021) used percentage
improvement over PPO for averaging across games. However, this metric doesn’t properly take
reward range of a game into account and is also biased by PPO’s performance on that game, thereby
being more susceptible to large variations. To remedy this, as suggested in (Cobbe et al., 2019), we
use the normalized score % to compute mean scores (MNS) across games. Here Roas
and R,,;, are game-dependent constants provided in (Cobbe et al., 2019). To calculate the final train
and test performances of a policy, we evaluate the policy 100 tlmes on train levels (1-200) and test
levels for each game. We report the mean and standard deviation of final train and test performances
computed across 5 different seeds. We train the policy on the first two hundred levels and evaluate it
on a subset of remaining levels (i.e. approximately two million unique levels).

Under review as a conference paper at ICLR 2022

Table 1: Performance of level classifier trained on the encoder features of policies learned with PPO
on 200 levels, with PPO on 100k levels, with DAAC on 200 levels, and with iDAAC on 200 levels,
averaged across all procgen games.

PPO (200) PPO (100k) DAAC iDAAC

Train 0.95+0.1 0.96 £0.1 0.95+0.1 0.94 £0.11
Test 091+0.16 0.87+0.18 0.89+£0.12 0.87+0.13

4 INVESTIGATING POLICY GENERALIZATION WITH DATA AUGMENTATION

A policy can fail to generalize to a new level due to inability to deal with either: (i) layout variation or
(ii) theme variation. To tackle the second issue, prior work (Raileanu et al., 2020; Michael et al., 2020)
has employed data augmentation. If these methods are successful at achieving theme in-variance,
then their performance on test-levels should be same as a policy that is trained and evaluated on
ProcGen games with fixed themes. To test if this is true, we trained UCB-DrAC, a state-of-the-art
data augmentation method on ProcGen games with fixed themes. We refer this to oracle method as
DrAC+FT, where FT stands for fixed theme. Results in Figure 2 show a significant test performance
difference between UCB-DrAC and DrAC+FT which suggests that UCB-DrAC does not achieve
theme invariance. Moreover, as shown in Figure 3, UCB-DrAC does not outperform a well-tuned
PPO baseline when averaged across all the games.

The above results raise a question: is it possible to close the generalization gap by adopting a better
data augmentation scheme? To answer this, we constructed game levels that had a fixed layout,
but varied only in theme. We refer to a PPO agent trained on this baseline as DrAC-TR for theme
randomization. Our intent is to use this domain randomization scheme, that makes use of privileged
access to the game engine, as a proxy of better data augmentation schemes. Figure 2 shows that
DrAC+TR greatly improves over UCB-DrAC and gets closer to the test performance of DrAC+FT.
Our result demonstrates the viability of pushing for stronger data augmentation schemes for producing
theme invariance and thus policy generalization. We hope to encourage the development towards this
venue of research with our reported findings.

5 INVESTIGATING POLICY GENERALIZATION WITH DOMAIN CONFUSION

Another way to learn generalizable policies is by using domain confusion (Tzeng et al., 2014; 2015;
Hoffman et al., 2013) which discourages policies from predicting task irrelevant properties of the
environment, thereby encouraging them to focus on task relevant properties. In addition to separating
the policy and the value network, (Raileanu & Fergus, 2021) used this technique to prevent the
policy from learning level-specific features and obtained SOTA results. Given these findings, we
might think that we should make policies level invariant to obtain better generalization. However, a
level (in a game) is not only defined by its theme but also by its layout which contains task relevant
information. Therefore, learning level-invariant policies might remove layout features important for
solving the task and thus hurt the performance of these policies. Hence, it’s not clear if the policies,
that generalize well, are independent of level-specific features.

To answer this, we first take the policies trained by PPO on 100k levels, by DAAC on 200 levels and
by iDAAC on 200 levels on different games of procgen. All these policies have good generalization
capabilities. We want to test if the visual features coming from these policies contain level-specific
features. Therefore, we collect 1 trajectory with random exploration for each level from 1 to 200
(per game) and label each state in the trajectory with the corresponding level id. We then mix all
the (state, level id) tuples in the collected trajectories and call the resulting dataset D. The first 80%
of D is labelled as train set and the remaining as the test set. For each of the policies described
above, we use the train set to learn a linear level classifier on top of their visual features and evaluate
the performance of the learned classifier on the test set. Table 1 shows that each of the classifier
learned obtained a good train and test performance averaged across all games. We further provide
the performance of these classifiers on individual games in the Appendix. This implies that all the
above mentioned policies, with good generalization capabilities, contain level-specific features. To
further bolster our claim, we use the train set to learn a linear classifier on top of visual features of

Under review as a conference paper at ICLR 2022

—— PPOinv.m
—— DrAC
DAAC
iDAAC
=== PPO-fixed train
— PPO-fixed eval

1 1
Steps le7 Steps le7 Steps le7 Steps le7

(a) BigFish (b) StarPilot (c) FruitBot (d) BossFight

Steps
(j) Chaser (m) Heist (n) Leaper
) 0.75
o
0 50 — PPO
- = . PPO inv_m
g .UNJ NS N
g S 025 Yy DrAC
n: E /;/ DAAC
/ 2 0.00 iDAAC
0 i 2 0 i 2 0 i 2
Steps le7 Steps le7 Steps le7
(0) Maze (p) Miner (q) Mean Normalized Score

Figure 3: PPO with inverse model regularization (PPO inv m) is competitive (in terms of test
performance) against UCB-DrAC, DAAC and iDAAC in the ProcGen domain despite being a much
simpler method. Black horizontal lines are the test performance of a PPO baseline. Dashed line is
training performance.

policies trained by PPO on 200 levels and evaluate its performance on the test set. We see that its
performance is similar to that of the previous classifiers. This shows that policies have level specific
features regardless of whether it generalizes or not.

DAAC/IDAAC (Raileanu & Fergus, 2021) performs well due to less overfitting as a result of
separation of policy and value networks and the regularization of policy features from its auxillary
losses. However, the insight that these methods don’t learn level-specific features and discouraging
the policies to learn level-specific features leads to better generalization, isn’t empirically grounded.

6 INVESTIGATING POLICY GENERALIZATION WITH AUXILIARY TASKS

Data augmentation and domain confusion can be thought of as two separate methods of constraining
the learned visual features to potentially improve generalization. A third way to constrain features is to
optimize them for auxiliary objectives in addition to the policy and value prediction losses. (Jaderberg
et al., 2016) showed that depth prediction improves both data efficiency and the generalization of
learned policies on first-person navigation tasks. However, depth is an additional sensory modality
that is not always available.

Therefore, we propose a simpler auxiliary task of encouraging the visual features coming from two
consecutive states to predict the corresponding action. This inverse model regularization has been
shown to be an effective regularization technique in prior works (Agrawal et al., 2016; Pathak et al.,
2017;2018). Let 2p = mg¢(s¢). If fy is the inverse model and (s, at, s¢+1) is the state action state

Under review as a conference paper at ICLR 2022

o 1.00
3
3075 — PPO
B PPO inv_m
R 0.50
= P DrAC
é 025 /2—// — DAAC
S iDAAC
Z 0,007 - T

0 1 2

Steps le7

(b)

Figure 4: We compare PPO, PPO with inverse model regularization (PPO inv m), UCB-DrAC, DAAC,
and iDAAC on test levels (a) when using different hyperparameters for each game and (b) when using
a single set of hyperparameters across all games

tuple, then this regularization minimizes CE(ay, f (24, z1+1)) where CE is the cross-entropy loss.
Figure 3 shows that this regularization is competitive with UCB-DrAC in terms of test performance
despite being simpler.

7 EFFECTS OF HYPERPARAMETER SELECTION ON POLICY GENERALIZATION

Until now we have investigated several methods for learning policies that generalize across levels.
However, with exception of UCB-DrAC, we found that all the other methods (PPO inv m, DAAC,
iDAAC) require careful hyperparameter selection to improve over the base PPO algorithm. To
quantify the impact of careful hyperparameter selection, we chose a single set of hyperparameters
for each method that maximizes the mean normalized score (MNS) evaluated on validation levels
201 — 400. We then compare these policies on the test levels. Figure 4 shows that average test
performance across games of all methods is similar to PPO. Additional details about hyperparameter
selection are provided in Appendix B. These results suggest that improvements over PPO heavily
depends on careful hyperparameter selection on each game. One could argue that different games
require different hyperparameters due to their unique properties. However, careful hyperparameter
tuning on each game is compute-intensive, and there’s no guidance on how to set these hyper-
parameters other than performing a grid search. Hence, automated tuning of hyperparameter to save
compute costs is an important avenue for future research.

8 INVESTIGATING POLICY ADAPTATION TO NEW LEVELS

Until now we have investigated zero-shot evaluation of policies on test levels. The other possibility is
to finetune the policies on new levels.

First, we train a policy on a limited number of levels (i.e., levels 1 —200). However, rather than directly
evaluating the trained policy, we finetune the trained policy on new levels (i.e., levels 201 — 400)
to achieve the train-time performance quickly. In this setting, it is natural to wonder if finetuning
of the entire policy is required to achieve the train-time performance on new levels. To answer this
question, we fix the visual encoder 75" of a policy trained using PPO on levels 1 — 200 of a game

and finetune only the policy head wgz (as well as the value head V,;) on levels 201 — 400 of the game.
If finetuning the entire policy on levels 201 — 400 is required to achieve the train-time performance,
then finetuning only the policy head on those levels should lead to a sub-optimal performance.

Figure 5 shows that the average returns of the policy on levels 201 — 400 become similar to the average
returns of the policy on levels 1 — 200 after finetuning the policy head. Furthermore, finetuning
the entire policy on levels 201 — 400 levels gives a similar average return. These observations
imply that finetuning only the policy head (on levels 201 — 400) is sufficient to recover the average
return of levels 1 — 200. Additionally, we see that end-to-end training of policy from scratch on
levels 201 — 400 is less sample-efficient than finetuning the policy head as well as finetuning the
entire policy. Moreover, training of policy head with randomly initialized visual encoder as well as
imagenet (Krizhevsky et al., 2012) trained visual encoder on levels 201 — 400 leads to poor average
returns. These observations show that the visual encoder features learned from levels 1 — 200 are
meaningful and help finetune both the policy head and the entire policy. Overall, this implies that
the visual features learned on training levels (1 — 200) are meaningful and can be kept fixed when

Under review as a conference paper at ICLR 2022

—— Head-only
— Full

—— From Scratch
—— Head (Random)
—— Head (ImageNet)
Steps le7 - [1-200]

(d) BossFight

Reward

Steps le7

(a) BigFish

1
Steps le7 Steps le7

(e) Ninja (f) Plunder (g) CaveFlyer (h) CoinRun (1) Jumper

Reward

1
Steps le7

(j) Chaser (k) Climber

(n) Leaper

— Full
,,,,,,,,,,,,,,,,,,,,,,,,,,,, —— Head-only
From Scratch
—— Head (Random)
—— Head (ImageNet)

- [1-200]

Normalized Score
s
=

1 2
Steps le7 Steps le7 Steps le7

(0) Maze (p) Miner (q) Mean Normalized Score

Figure 5: Transfer: We compare fine-tuning the policy head (Head-only) versus the entire policy
network (Full) on new levels (201 — 400). The policy is trained on 200 levels. Fine tuning just the
policy head allows us to recover this performance on the training levels ([1 - 200]), showing that
the visual features only require a small number of training levels to generalize. We additionally
include the learning curve of a policy trained from scratch (From Scratch), a policy head trained on
a randomly initialized visual encoder (Head (Random)), and a policy head trained on a imagenet
pretrained visual encoder (Head (ImageNet)) to show the importance of using learned visual features.

o 100 1.00 1.00 1.00
o
075 075 075 075 Head-only
2 el — Full
S 0.50 0.50 0.50 Py
3 e —— From Scratch
g 025 025 0.25 Head (Random)
Z 0,001 i T 0.00 T T 0.00 T T 0.00 T T —— Head (ImageNet)
0 1 2 0 1 2 0 1 2 0 1 2
Steps le7 Steps 1e7 Steps le7 Steps le7 === [1-200]
(a) 200 Levels (b) 1k Levels (c) 10k Levels (d) 100k Levels

Figure 6: We compare fine-tuning the policy head (Head-only) versus the entire policy network (Full).
The policy is trained on 200 training levels ([1 - 200]), and fine-tuned on (a) 200, (b) 1k, (c) 10k, and
(d) 100k new test levels. We additionally include the learning curve of a policy trained from scratch
(From Scratch), a policy head trained on a randomly initialized visual encoder (Head (Random)), and
a policy head trained on a imagenet pretrained visual encoder (Head (ImageNet)) to show the ability
for the visual features to transfer. The plots show the normalized reward averaged across all games
(see results on individual games in Appendix C).

Under review as a conference paper at ICLR 2022

adapting to new levels (201 — 400). Instead, it is the policy head feature that fails to transfer to new
levels and requires further finetuning.

However, the strategy of training a policy on training levels (1 — 200) and then finetuning the policy
head on new levels has limitations. As the number of new levels increases, it becomes harder to
finetune the policy head on those levels and recover the average policy returns of the training levels.
From Figure 6, we can see that finetuning the policy head on 200 and 1k new levels recovers the
average policy returns of the training levels. But, it fails to do the same for 10k and 100k new levels.

9 DISCUSSION

How to use visual features? Most of the work on visual transfer in RL has focused on learning
generalizable visual features. However, another related problem setting is policy adaptation to new
levels. Section 8 shows that visual features learned by PPO can be kept fixed when adapting to new
levels but the policy head, tasked to combine visual features to predict actions, requires finetuning on
new levels. This suggests a fruitful avenue for future work: instead of learning better visual features,
focus on how to leverage the learned features to solve a new task.

Towards better data augmentation. UCB-DrAC performs similar to PPO baseline when averaged
across all the games and doesn’t fully address the problem of learning invariant features. Specifically,
it is significantly worse as compared to training PPO with fixed texture. This indicates that better data
augmentation techniques are required to make the policy invariant to irrelevant visual appearances. We
show that one way to overcome this challenge is by combining UCB-DrAC with theme randomization.
However, theme randomization requires task-specific knowledge of how the theme varies across
different variants of the task. In general, such knowledge may not available to the agents. An exciting
area of future investigation is to develop data augmentation method that can automatically discover
task-relevant augmentations.

Further investigation of auxiliary losses. We show PPO, with inverse model regularization, signifi-
cantly improves upon PPO despite being a simple change. Similarly, iDAAC made use of auxiliary
losses to focus on task-relevant features of the environment. This indicates the need for further
investigation into auxiliary losses for better policy generalization.

Towards compute-efficient hyperparameter tuning. We show that state-of-the-art (SOTA) meth-
ods that improve policy generalization heavily rely on careful hyperparameter selection for each game.
However, hyperparameter tuning via grid search on each game is compute-intensive. Therefore,
automatically tuning hyperparameters in a compute-efficient manner is a fruitful avenue for future
works.

REFERENCES

Rishabh Agarwal, Marlos C. Machado, P. S. Castro, and Marc G. Bellemare. Contrastive behavioral
similarity embeddings for generalization in reinforcement learning. 2021.

Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by
poking: Experiential learning of intuitive physics. arXiv preprint arXiv:1606.07419, 2016.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397-422, 2002.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

K. Cobbe, J. Hilton, O. Klimov, and John Schulman. Phasic policy gradient. ArXiv, abs/2009.04416,
2020.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taechoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Under review as a conference paper at ICLR 2022

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and Alexei A Efros. Investigating
human priors for playing video games. arXiv preprint arXiv:1802.10217, 2018.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, lain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Jesse Farebrother, Marlos C. Machado, and Michael H. Bowling. Generalization and regularization
in dqn. ArXiv, abs/1810.00123, 2018.

Jake Grigsby and Yanjun Qi. Measuring visual generalization in continuous control from pixels.
ArXiv, abs/2010.06740, 2020.

Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, and Kate Saenko. Efficient learning of
domain-invariant image representations. arXiv preprint arXiv:1301.3224,2013.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. In Advances in Neural Information Processing Systems, pp. 13956-13968,
2019.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ArXiv, abs/1502.03167, 2015.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, J. Harper, Hunter Henry, Adam Crespi,
J. Togelius, and D. Lange. Obstacle tower: A generalization challenge in vision, control, and
planning. ArXiv, abs/1902.01378, 2019.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. arXiv preprint arXiv:1806.10729, 2018.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch—-a2c-ppo—acktr—-gail, 2018.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Heinrich Kuttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktidschel. The nethack learning environment. ArXiv, abs/2006.13760,
2020.

Laskin Michael, Lee Kimin, Stooke Adam, Pinto Lerrel, Abbeel Pieter, and Srinivas Aravind.
Reinforcement learning with augmented data. ArXiv, abs/2004.14990, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778-2787.
PMLR, 2017.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In

Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.
2050-2053, 2018.

10

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Under review as a conference paper at ICLR 2022

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement
learning. arXiv preprint arXiv:2102.10330, 2021.

Roberta Raileanu and Tim Rocktidschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. ArXiv, abs/2002.12292, 2020.

Roberta Raileanu, M. Goldstein, Denis Yarats, Ilya Kostrikov, and R. Fergus. Automatic data
augmentation for generalization in deep reinforcement learning. ArXiv, abs/2006.12862, 2020.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham M. Kakade. Towards generaliza-
tion and simplicity in continuous control. ArXiv, abs/1703.02660, 2017.

Alexander Sax, Bradley Emi, Amir R Zamir, Leonidas Guibas, Silvio Savarese, and Jitendra Ma-
lik. Mid-level visual representations improve generalization and sample efficiency for learning
visuomotor policies. arXiv preprint arXiv:1812.11971, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. ArXiv, abs/2004.04136, 2020.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:
1929-1958, 2014.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE international conference on computer vision, pp.
4068-4076, 2015.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaé€l Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

K. Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement learning
with mixture regularization. ArXiv, abs/2010.10814, 2020.

Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang. Unsupervised embedding learning via
invariant and spreading instance feature. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6203-6212, 2019.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. ArXiv, abs/1806.07937, 2018a.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau,
Yarin Gal, and Doina Precup. Invariant causal prediction for block mdps. arXiv preprint
arXiv:2003.06016, 2020.

Chiyuan Zhang, Oriol Vinyals, Rémi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. ArXiv, abs/1804.06893, 2018b.

11

Under review as a conference paper at ICLR 2022

A PPO WITH INVERSE MODEL REGULARIZATION

PPO (Schulman et al., 2017) is an actor-critic algorithm that alternates between sampling data with
environment interaction and optimizing objective function with stochastic gradient descent. Let the
policy being optimizes be 7y and the associated value function be V4 ,,. PPO maximizes

Jrpo = Jry — a1y 4+ a2 S,

where S, is the entropy for aiding exploration,

Sry = Esen,, l— Z mo(als) log ﬂg(as)l

acA

Jy 1is the value function loss,
Tv = Esery,, [(Vop(s) = V)]
and J;, is the policy objective term
Iy =]E(Sva)eﬂeom min(rgfl, clip(rg,1 —¢, 1+ 6)A):|
o (als)

T Oo1d (als)

Ay, (s,a) is estimated advantage function for g, using returns and value function V., (s).

Here, 79 = is the importance weight for estimating the advantage function and A=

We make use of inverse models to regularize policy features for improved performance and better
generalization. Let z; = 757"“(s;). If f, is the inverse model and (s, ay, 5¢41) is the state action
state tuple coming from 7y, then this regularization minimizes Ji,y = CE(ay, fo(2t, 2141)) Where
CE is the cross-entropy loss. Overall, PPO with inverse model regularization maximizes

JPPO = Jﬂ'g - ale + a25ﬂ9 - aianinv

where q;y,y is the regularization constant associated with inverse model regurlarization loss.

B HYPERPARAMETERS

We use the default hyperparameters from PPO (Schulman et al., 2017), UCB-DrAC (Raileanu
et al.,, 2020) and DAAC/iDAAC (Raileanu & Fergus, 2021). DrAC-FT and DrAC-TR uses same
hyperparameters as UCB-DrAC (DrAC). PPO with inverse model regularization only introduces an
extra hyperparameter a;,,. We write all the hyperparameters in table 2 and 3. While table 2 describes
the best single set of hyperparameters for different methods selected using validation levels 201 — 400,
table 3 details game-specific changes to some of those hyperparameters for improved performance.

C PROCGEN RESULTS

Table 4 and 5 describe scores on train levels (1-200) and test levels across all procgen games for
PPO, UCB-DrAC, DrAC-FT (UCB-DrAC with fixed theme games), DrAC-TR (UCB-DrAC with
randomized theme games), DAAC, iDAAC, and PPO inv-m (PPO with inverse model regularization).
Figure 7 places games next to the RL algorithm on which they perform the best. Some games are
excluded as they perform the best on two or more RL algorithm. Figures 8, 9, and 10 show the
learning curves for finetuning the policy head as well as the full policy on 1k, 10k and 100k new
levels respectively. The policy was originally trained on levels 1-200 with PPO. End-to-end training
of policy and training of policy head with randomly initialized visual encoder on new levels are also
included as baselines. Finally, table 6 and 7 give train and test accuracy of level classifier trained
on the encoder features of policies learned with PPO on 200 levels, with PPO on 100k levels, with
DAAC on 200 levels, and with iDAAC on 200 levels on all procgen games.

12

Under review as a conference paper at ICLR 2022

DAAC/iDAAC
Bigfish Bossfight Climber Plunder
15)
Q
PPO invm
Caveflyer Leaper
UCB-DrAC

Dodgeball Maze

Figure 7: Visualization of games placed next to the RL algorithm on which they perform the best.
Some games are excluded as they perform the best on two or more RL algorithms.

13

Under review as a conference paper at ICLR 2022

—— Head-only
— Full
—— From Scratch

—— Head (Scratch)
T T 0,047 . ;
!] 7 T 1 Head (ImageNet)
Steps le7 Steps le7 ~- [1-200]
(c) FruitBot (d) BossFight

1 1 1
Steps le7 Steps le7 Steps le7 Steps le7

(e) Ninja (g) CaveFlyer (h) CoinRun (1) Jumper

Es. 3 6
z
g
~ 2 4 4
| ' v T T T 14 T T T T T T T T
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
Steps le7 Steps le7 Steps le7 Steps le7 Steps le7
(j) Chaser (k) Climber (1) DodgeBall (m) Heist (n) Leaper
— Full
L
3 0.6 — Head-only
//“"’——- @ From Scratch
10 -qf)] 0.4 —— Head (Scratch)
| —— Head (ImageNet)
5 £02 - [1-200]
2z
0.0
r T T T T T
0 1 2 0 1 2 0 1 2
Steps le7 Steps le7 Steps le7
(o) Maze (p) Miner (q) Mean Normalized Score

Figure 8: Transfer: We compare fine-tuning the policy head (Head-only) versus the entire policy
network (Full) on 1k new levels. The policy is trained on 200 levels. Fine tuning just the policy head
allows us to recover this performance on the training levels ([1 - 200]). We additionally include the
learning curve of a policy trained from scratch (From Scratch), a policy head trained on a randomly
initialized visual encoder (Head (Random)), and a policy head trained on a imagenet pretrained visual
encoder (Head (ImageNet)) to show the importance of using learned visual features.

14

Under review as a conference paper at ICLR 2022

15 * —— Head-only
20 —— Full
0 —— From Scratch
—— Head (Scratch)
) i T —— Head (ImageNet)
Steps le7 Steps 17— [1-200]
(a) BigFish (d) BossFight

Steps le7

(e) Ninja (f) Plunder

2

25| X

T T T

2

0 2 1
Steps le7

1 1
Steps le7 Steps le7

(j) Chaser (k) Climber (1) DodgeBall (m) Heist (n) Leaper
— Full
L
7777777777777777777777777777 3061 o e —— Head-only
L — a v From Secratch
10 -qf)] 04| I —— Head (Scratch)
| —— Head (ImageNet)
s £02 [1-200]
o
| : ; ; : :
0 1 2 0 1 2 0 1 2
Steps le7 Steps le7 Steps le7
(o) Maze (p) Miner (q) Mean Normalized Score

Figure 9: Transfer: We compare fine-tuning the policy head (Head-only) versus the entire policy
network (Full) on 10k new levels. The policy is trained on 200 levels. Fine tuning only the policy
head fails to recover the performance on the training levels. We additionally include the learning
curve of a policy trained from scratch (From Scratch), a policy head trained on a randomly initialized
visual encoder (Head (Random)), and a policy head trained on a imagenet pretrained visual encoder
(Head (ImageNet)) to show the importance of using learned visual features.

15

Under review as a conference paper at ICLR 2022

510 —— Head-only
g —— Full
& s —— From Scratch
—— Head (Scratch)
7 i T —— Head (ImageNet)
Steps le7 Steps 17— [1-200]
(a) BigFish (b) StarPilot (c) FruitBot (d) BossFight

1 2
Steps le7 Steps le7

(e) Ninja (f) Plunder (g) CaveFlyer (h) CoinRun

T T T T T T

0 1 2 0 1 2 0 1 2
Steps le7 Steps le7 Steps le7
(j) Chaser (k) Climber (1) DodgeBall (m) Heist (n) Leaper
— Full
L
7777777777777777777777777777 3 0.6 —— Head-only
\/_/__,_,_,.————- @ From Scratch
0 e -q‘ri)] 0.4 —— Head (Scratch)
| —— Head (ImageNet)
5 g02 - [1-200]
2z
0.0
T \ : T T ,
0 1 2 0 1 2 0 1 2
Steps le7 Steps le7 Steps le7
(o) Maze (p) Miner (q) Mean Normalized Score

Figure 10: Transfer: We compare fine-tuning the policy head (Head-only) versus the entire policy
network (Full) on 100k new levels. The policy is trained on 200 levels. Fine tuning only the policy
head fails to recover the performance on the training levels. We additionally include the learning
curve of a policy trained from scratch (From Scratch), a policy head trained on a randomly initialized
visual encoder (Head (Random)), and a policy head trained on a imagenet pretrained visual encoder
(Head (ImageNet)) to show the importance of using learned visual features.

16

Under review as a conference paper at ICLR 2022

Table 2: Best single set of hyperparameters for PPO, UCB-DrAC, DAAC and iDAAC selected using
validation levels 201 — 400.

Hyperparameter Value
¥ 0.999
A 0.95
timesteps per rollout 256
epochs per rollout 3
minibatches per epoch 8
entropy bonus (a2) 0.01
value loss coefficient (1) 0.01
clip range 0.2
reward normalization yes
learning rate Se-4
workers 1
environments per worker 64
total timesteps 25M
optimizer Adam
LSTM no
frame stack no
Qliny 0.4
UCB augmentation coefficient (o) 0.1
UCB exploration coefficient (c) 0.1
UCB window length (K) 10
DAAC/iDAAC actor epochs per rollout 1

DAAC/IDAAC value epochs per rollout (ve) 9

DAAC/iDAAC value update frequency (vy) 1

DAAC/iDAAC advantage loss coefficient () 0.25
iDAAC order loss coefficient (c;) 0.001

Table 3: Game-specific changes to some hyperparameters for improved performance

Hyperparameter ve vy Qg o Qliny
plunder 1 8 0.3 0.1 0.4
chaser 1 0.15 0.001 0.1
miner 9 32 025 0.1 1
climber 9 1 005 0.001 001
bigfish 9 32 005 o0.01 0.1
dodgeball 9 32 025 0.001 0.1

maze 9 1 025 0.001 0.01
leaper 9 1 025 0.001 0.4
fruitbot 9 1 025 0.001 0.04

bossfight 9 1 025 0.001 0.1
jumper 9 1 025 0.001 0.1
ninja 9 1 025 0.001 0.4
starpilot 9 1 025 0.001 0.1
coinrun 9 1 025 0.001 0.004
heist 9 1 025 0.001 0.4
caveflyer 9 1 0.25 0.001 1

17

Under review as a conference paper at ICLR 2022

Table 4: Procgen scores on train levels (1-200) after training on 25M environment steps. MNS is
shorthand for median normalized score across games. The mean and standard deviation are computed
using 5 different seeds.

Game | PPO UCB-DrAC DrAC-FT DrAC-TR DAAC iDAAC PPO inv-m
bigfish 5.3+£1.2 19.3£1.2 272415 24.24+2.0 20.1+1.6 21.8+1.8 17.3+£6.9
bossfight 8.2+04 8.1+0.8 11.0+0.7 8.8+ 0.5 10.0£ 0.4 104+04 9.0+ 0.6
caveflyer 7.8+0.4 72104 9.2+1.1 8.2+1.3 5.8+0.4 6.2+ 0.6 9.4+0.3
chaser 6.2+1.0 71+1.0 6.9£0.7 7.6+0.6 6.9+£1.2 7.51+0.8 6.6 £0.7
climber 8.4+0.4 8.6 +0.3 11.9+0.2 9.5+0.8 10.0£0.3 10.2 £ 0.7 8.8+ 0.3
coinrun 9.5+0.2 8.4+14 8.0£1.2 9.3£0.1 9.8+0.0 9.8+0.1 9.7+0.1
dodgeball 4.3+04 9.0+1.0 12.1+£0.5 10.2+1.3 52+04 49+0.3 8.3+0.8
fruitbot 30.2+0.5 292+1.1 31.0£0.5 30.3+0.6 29.7+0.4 29.1£0.7 30.5£0.4
heist 70+1.1 6.9+ 0.6 7.0+04 71+£1.0 52+0.7 4.5+0.3 71+£0.5
jumper 8.9+0.1 8.1£0.2 9.2£0.1 8.8+£0.3 8.6 0.3 8.7£0.2 9.1+0.1
leaper 6.1+1.1 4.1+£20 6.1+1.2 5.0£27 8.0x1.1 8.3+0.7 9.1+1.3
maze 9.5£0.2 8.8£0.3 9.0£0.3 94+£04 6.6 £0.4 6.44+0.5 9.7+0.2
miner 12.7+£0.1 12.2+£04 12.8£0.0 12.6 £0.1 11.3+0.9 11.5+0.5 12.8 £0.1
ninja 7.7£0.3 6.7£0.6 9.7£0.1 9.2+0.1 8.84+0.2 8.9+0.3 9.2+0.3
plunder 5.5+0.8 7.1+£2.0 16.0 £ 3.3 9.5+2.8 22.5+£2.8 246 £1.6 9.0+ 3.8
starpilot 30.3+1.5 325+£3.9 40.3 £ 3.0 343+19 38.0+2.6 38.6 £ 2.2 36.6 £ 2.1
MNS | 0.57£0.05 0.55+£0.09 0.72+£0.07 0.66+£0.08 0.62+£0.06 0.63+£0.05 0.69=*0.06

Table 5: Procgen scores on test levels after training on 25M environment steps. MNS is shorthand
for median normalized score across games. The mean and standard deviation are computed using 3
different seeds.

Game \ PPO UCB-DrAC DrAC-FT DrAC-TR DAAC iDAAC PPO inv-m
bigfish 1.74+0.3 15.1 +£3.8 26.2 £ 2.2 20.9 + 2.7 178 +1.4 185+1.2 12.3+6.2
bossfight 7.8+ 1.1 7.3+0.2 11.2+0.6 9.7+ 0.8 9.6 +0.5 9.8 +0.5 8.6 1.1
caveflyer 6.0+ 0.7 5.0£0.1 70+£1.5 6.9+1.2 4.6 £0.2 5.0£0.2 7.0£0.2
chaser 57+1.0 7.14+0.3 6.4+ 0.8 6.9+1.2 6.6 1.2 6.8+1.2 2.7+0.2
climber 5.7+£0.7 6.9+0.4 11.24+0.2 82+1.1 7.8 £0.2 83+0.2 59+1.2
coinrun 89+0.2 7.6+04 73+14 8.4+0.3 9.24+0.2 9.44+0.2 9.1+0.1
dodgeball 1.54+04 6.0 £0.7 9.4+£0.2 7.7+£0.9 3.3+0.5 3.2+0.5 3.8+ 0.8
fruitbot 25.1£1.0 25.6 £0.2 27.8+1.3 279+ 1.7 28.6 £0.6 27.9+0.6 27.0+1.1
heist 2.7+0.4 3.2+1.1 3.6 £2.3 3.1+14 3.3+0.2 3.54+0.2 3.6+0.5
jumper 59404 5.54+0.3 7.7+0.5 7.1+04 6.5+0.4 6.3+0.4 6.31+0.3
leaper 6.4+1.1 4.0+ 1.6 6.0+ 1.7 5.5+24 73+1.1 7T7T+£1.1 8.7+0.6
maze 6.2 +0.5 6.9+ 0.5 8.14+0.2 7.1+1.3 5.5+0.2 5.6 0.2 6.0 +0.7
miner 9.0+0.7 9.1+0.3 11.24+04 10.0 £ 0.9 8.6 0.9 9.54+0.9 10.14+04
ninja 6.2 +0.5 5.04+0.3 9.34+0.3 8.6 +0.4 6.8 +0.4 6.8 +0.4 6.9+ 0.4
plunder 4.7+ 0.5 6.0 0.9 13.6 £ 2.1 8.6 £2.0 20.7 £ 3.3 23.3+3.3 8.3+3.2
starpilot 28.8 £3.8 31.5+4.3 42.1 +£3.5 35.0%+1.6 36.4+£2.8 37.0£2.3 36.7 £ 3.0
MNS \ 0.36 £0.06 0.37+0.1 0594+0.10 0.51+£0.11 0.48=+0.06 0.504+0.06 0.47+0.07

18

Under review as a conference paper at ICLR 2022

Table 6: Train accuracy of level classifier trained on the encoder features of policies learned with
PPO on 200 levels, with PPO on 100k levels, with DAAC on 200 levels, and with iDAAC on 200
levels on all procgen games.

PPO (200) PPO (100k) DAAC iDAAC

bigfish 1.00£0.01 1.00+0.00 1.00£0.00 1.004+0.00
bossfight 1.00£0.01 0.99+£0.01 1.00£0.00 1.00=+£0.00
caveflyer 1.00£0.00 1.00+0.00 0.98+0.03 1.00=£0.00
chaser 1.00+£0.00 1.00+£0.00 1.00£0.00 1.00=+£0.00
climber 0.97£0.02 0.95£0.01 0.97+£0.00 0.97+0.01
coinrun 0.67+0.14 0.66£0.27 1.00£0.00 0.98+0.02
dodgeball 1.00£0.00 1.00+0.00 1.00+£0.00 1.00=+0.00
fruitbot 0.97£0.00 0.90£0.01 0.70£0.07 0.66 £0.03

heist 1.00£0.00 1.00£0.00 1.00£0.00 1.00=£0.00
jumper 1.00£0.00 1.00£0.00 1.00£0.00 0.99=£0.01
leaper 1.00£0.00 1.00+0.00 1.00+£0.00 1.00=+0.00
maze 0.99+0.01 1.00£0.00 1.00£0.00 1.00=0.00
miner 0.924+0.03 1.00£0.00 0.82£0.02 0.78+0.03
ninja 0.75+0.02 0.83+£0.04 0.74£0.07 0.73+0.03

plunder 1.00£0.00 1.00£0.00 0.99+£0.01 0.99=£0.00
starpilot 1.00£0.00 1.004£0.00 1.00£0.00 1.0040.00

Table 7: Test accuracy of level classifier trained on the encoder features of policies learned with PPO
on 200 levels, with PPO on 100k levels, with DAAC on 200 levels, and with iDAAC on 200 levels
on all procgen games.

PPO (200) PPO (100k) DAAC iDAAC

bigfish 0.94+0.04 0.74+£0.12 0974+0.01 0.97+0.01
bossfight 0.78 £0.03 0.69+£0.02 0.78£0.04 0.76 +0.02
caveflyer ~1.00£0.00 0.944+0.02 0.82+£0.03 0.80=£0.03
chaser 1.00+£0.00 0.96+0.01 0.89+0.03 0.85+0.02
climber 0.93£0.02 0.72£0.02 0.85£0.05 0.79=£0.03
coinrun 0.38£0.10 0.35£0.22 0.95£0.03 0.92=£0.03
dodgeball 1.00+0.00 1.00+=0.00 1.00+£0.00 0.99+0.01
fruitbot 0.92£0.01 0.79£0.02 0.57£0.06 0.54=£0.03
heist 1.00+£0.00 1.00+£0.00 0.99+0.00 0.99+0.00
jumper 1.00+£0.00 0.99+0.00 0.88+£0.04 0.89+£0.04
leaper 1.00+£0.00 1.00+£0.00 0.99+0.01 0.98+0.00

maze 0.96+0.02 0.99+£0.00 1.00£0.00 1.0040.00
miner 0.92+0.03 1.00£0.00 0.81£0.01 0.78+0.03
ninja 0.70+0.04 0.74+£0.03 0.71£0.06 0.69=+0.03

plunder 1.00£0.00 1.00£0.00 0.99+£0.02 0.99=+0.00
starpilot 1.00£0.00 1.00+0.00 1.00+£0.00 1.00=+0.00

19

	Introduction
	Related Work
	Preliminaries
	Environment Setup
	Methods
	Evaluation Metrics

	Investigating policy generalization with data augmentation
	Investigating policy generalization with domain confusion
	Investigating policy generalization with auxiliary tasks
	Effects of hyperparameter selection on policy generalization
	Investigating policy adaptation to new levels
	Discussion
	PPO with Inverse Model Regularization
	Hyperparameters
	Procgen Results

