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ABSTRACT

Direct preference optimization (DPO), a widely adopted offline preference opti-
mization algorithm, aims to align large language models (LLMs) with human-
desired behaviors using pairwise preference data. However, the winning response
and the losing response within pairwise data are generated isolatedly, leading to
weak correlations between them as well as suboptimal alignment performance. To
address this issue, we propose an effective framework for Bridging and Modeling
Correlations in pairwise data, named BMC. Firstly, we increase the consistency
and informativeness of the pairwise preference signals through targeted modifica-
tions, synthesizing a pseudo-winning response by improving the losing response
with the winning response as a reference. Secondly, we identify that DPO alone is
insufficient to model these correlations and capture nuanced variations. Therefore,
we propose learning token-level correlations by dynamically leveraging the policy
model’s confidence during training. Comprehensive experiments on QA, math,
and instruction-following tasks demonstrate the effectiveness of our approach,
significantly surpassing competitive baselines, including DPO. Additionally, our
in-depth quantitative analysis reveals the reasons behind our method’s superior
performance over DPO and showcases its versatility to other DPO variants.

1 INTRODUCTION

Direct preference optimization (DPO) (Rafailov et al., 2024b) has emerged as a prominent alter-
native to reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Bai et al.,
2022a; Ouyang et al., 2022) for aligning large language models (LLMs) with human values. Un-
like the traditional RLHF approach, DPO bypasses training a reward model and avoids using any
reinforcement learning algorithms. Instead, it reparameterizes the reward function to directly learn
a policy model from offline pairwise preference data, employing the Bradley-Terry ranking objec-
tive (Bradley & Terry, 1952). Since the inception of DPO, numerous studies have sought to advance
this method by refining its training objective (Wang et al., 2024). For instance, IPO (Azar et al.,
2024) introduces an alternative pairwise preference loss to mitigate overfitting to the preference
dataset, while R-DPO (Park et al., 2024) incorporates a regularization term to prevent the exploita-
tion of latent length bias in the training data.

However, relatively little attention has been given to enhancing DPO through advancements in the
quality of preference data used for training. In particular, the generation of winning and losing
responses within preference data often occurs in an isolated manner, either through human anno-
tation (Bai et al., 2022a) or automated techniques such as RLAIF (Bai et al., 2022b) and reject
sampling (Liu et al., 2024a; Pace et al., 2024). This isolation implies that winning and losing re-
sponses are produced without mutual visibility, resulting in a lack of strong correlation or relevance
between them. Consequently, the model may struggle to identify nuanced yet significant distinctions
that differentiate superior responses from inferior ones (Fiirnkranz & Hiillermeier, 2010; Wirth et al.,
2017), which can ultimately compromise optimization and alignment effectiveness.

In this work, we introduce an innovative framework, termed BMC, to Bridge and Model Correla-
tions in pairwise data for direct preference optimization. During the Bridging Phase, we enhance
correlations by increasing the consistency and informativeness of pairwise preference signals. By us-
ing the winning response as a reference, we synthesize a pseudo-winning response through targeted
modifications of the losing response. This pseudo-winning response offers two key advantages: (1)
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it preserves essential characteristics of the losing response, minimizing noise in preference signals
(conmsistency); (2) it encapsulates all human-desired values from the winning response, enabling
the model to better discern features that lead to superior performance (informativeness). The nu-
anced differences between the pseudo-winning and losing responses are indeed what we expect
the model to learn in the subsequent Modeling Phase. Nonetheless, we identify that DPO alone
is insufficient to model these correlations and capture nuanced variations. From the perspective of
the token-level Markov Decision Process (MDP) (Rafailov et al., 2024a), DPO aggregates rewards
uniformly across all tokens, assuming equal contribution to sequence quality and neglecting token-
specific importance. To address this, we adjust the emphasis on rewards of different tokens between
pseudo-winning and losing responses. Unlike previous methods (Guo et al., 2024; Cao et al., 2024;
Chan et al., 2024; Chen et al., 2024a) that assign predefined values for fine-grained guidance, our
adjustment is dynamically guided by the policy model’s confidence, i.e., the probability assigned to
generated tokens during training. This ensures the model focuses on learning challenging distinc-
tions while reinforcing known patterns, resulting in a more nuanced and robust policy.

We conduct extensive experiments across three downstream scenarios: question answering, mathe-
matical reasoning, and instruction following, utilizing a total of 10 datasets. Our results demonstrate
that our method consistently and significantly outperforms competitive offline optimization algo-
rithms across various tasks. Notably, it exceeds vanilla DPO by up to 3.8 points in question answer-
ing and by up to 6.4 points on AlpacaEval 2. Furthermore, we use in-depth analyses to elucidate
why our method outperforms DPO and show that our framework can be versatilely adapted to other
DPO variants, confirming its potential for broad application.

2 RELATED WORK

Preference optimization. Preference optimization refers to aligning large language models with
human preferences or specific desired outcomes. A well-established method for this is reinforcement
learning from human feedback (RLHF) (Christiano et al., 2017; Bai et al., 2022a; Ouyang et al.,
2022), which typically involves three stages: supervised fine-tuning, reward model training, and
policy optimization. Although RLHF produces highly capable models, its training process is often
complex and unstable (Santacroce et al., 2023), requiring the training of multiple LMs and sampling
from the LM policy. To address these challenges, direct preference optimization (DPO) (Rafailov
et al., 2024b) introduces an alternative offline algorithm to optimize the regularized expected rewards
without relying on RL. Following the introduction of DPO, several studies have sought to enhance
it in various ways. For instance, IPO (Azar et al., 2024) aims to prevent DPO from overfitting to the
preference dataset; ORPO (Hong et al., 2024) and SimPO (Meng et al., 2024) eliminate the need
for a reference model; and R-DPO (Park et al., 2024) incorporates a regularization term to prevent
exploitation based on length.

Preference data construction. Constructing high-quality pairwise preference data is essential
for preference optimization. Given the high cost of manually curating these datasets at scale, re-
searchers have explored automated methods for producing preference data. One notable approach,
RLAIF (Bai et al., 2022b) employs LLMs to label side-by-side response pairs, eliminating the need
for human labeling. Alternatively, winning and losing responses can be generated by utilizing mod-
els of varying quality (Kim et al., 2023) or through specific prompting techniques (Yang et al.,
2023). Recently, sampling-based methods such as Statistical Rejection Sampling (Liu et al., 2024a)
and West-of-N (Pace et al., 2024) have been introduced, generating preference pairs by selecting
candidates sampled from the optimal policy. Nonetheless, these methods isolatedly generate win-
ning and losing responses without accounting for the correlations between them.

Token-level preference optimization. The majority of preference optimization strategies typi-
cally utilize trajectory-wise (sequence-level) rewards, while LM training and generation both occur
at the token level (Yang et al., 2024). To bridge this gap, FIGA (Guo et al., 2024) and DRLC (Cao
et al., 2024) exploit external LLMs to pinpoint positive and negative token segments within re-
sponses, assigning fixed reward values (e.g., +1 for positive, -1 for negative) as guidance. Mean-
while, ABC (Chan et al., 2024) and RLMEC (Chen et al., 2024a) extract fine-grained credits from
the reward model. Despite their contributions, these methods rely on predefined values for fine-
grained guidance, failing to account for the dynamic learning process of the policy model.
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3 METHODOLOGY

In this section, we present the proposed BMC approach, which bridges and models correlations in
pairwise data for direct preference optimization. As depicted in Figure 1, our BMC framework is
structured around two pivotal stages: (1) the Bridging Phase, where we enhance the correlations
between pairwise data by increasing the consistency and informativeness of pairwise preference
signals through targeted modifications (§3.1); and (2) the Modeling Phase, where we dynamically
model the correlations during the optimization process by leveraging the confidence of the policy
model (§3.2), alleviating the insufficient token-level credit assignment of DPO.

Bridging Phase

He felt pride when he looked at his new
mile time, what did he do? Options: (A)
compete against (B) tell many people about
(C) improve yourself (D) pass class
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Figure 1: Overview of our proposed BMC framework. (1) In the Bridging Phase, we utilize an off-
the-shelf LLM to make fargeted modifications of losing response y; on undesired tokens, with the
winning response ¥, serving as a reference. Therefore, the synthesized pseudo-winning response 4,
is highly correlated with y;. (2) In the Modeling Phase, we model the correlations between ¢,, and
y; by dynamically emphasizing the rewards of their varied tokens ( diff (g | y1) and diff (y; | Gw))s
leveraging the policy model confidence (numbers indicated above tokens) during training.

3.1 BRIDGING PHASE

In offline preference optimization it is commonly assumed that we have access to a static pairwise
preference dataset D = {2 y (l W 1 where y,, and y; denote the winning and losing re-
sponse, give the input prompt x. However since y,, and y; are generated isolatedly, the correlation
between y,, and y; can be weak during pairwise preference optimization. This weak correlation
poses a challenge, as the winning response ¥,, may not provide sufficiently informative gradients
for adjusting the model’s parameters in relation to y; (Fiirnkranz & Hiillermeier, 2010; Wirth et al.,
2017). Consequently, the optimization process struggles to effectively leverage the provided pair-
wise preferences to fine-tune the model, potentially resulting in suboptimal alignment performance.
To address this challenge, we enhance the alignment efficacy by improving the consistency and in-
formativeness of pairwise preference signals. As shown in the upper part of Figure 1, we utilize an
off-the-shelf LLM to make targeted modification of y; by referring to y,,:

LLM(I, 2, Y, Y1) — Guw, @))

where g, is the generated pseudo-winning response, I is the instruction (see examples in Appendix
A.2) that requires y; to be modified only on dispreferred tokens, using ¥, as a reference guidance.
In this way, y,, preserves essential characteristics of the losing response y; while encapsulating all
human-desired values in the winning response v,,. The token-level differences between y,, and
y; highlight the core human expected and unexpected behaviors by decoupling from the inherent
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linguistic style and overall semantic distribution. Thus, (¢, ;) refines the original training data
(yw, y1) for more focused learning, shifting the optimization process to concentrate on the most
critical differences in preference data. The beneﬁts of the Bridging Phase are further analyzed in

§5.2. Finally, we use the new dataset D = {z(9) ,yl )} for subsequent training.

An alternative approach that attempts to enhance the correlation between the winning and losing
responses is to degenerate y,, to ¢; via targeted modification and utilize (y,,, J;) as the preference
pair. Nevertheless, our ablation study in Table 3 reveals that LLMs encounter challenges with this
inverse operation, leading to a notable decline in performance.

3.2 MODELING PHASE

After the Bridging Phase, the token-level differences between ¢, and y; can be obtained through
dynamic programming algorithms like Levenshtein Distance (Yujian & Bo, 2007). As depicted in
the lower part of Figure 1, these nuanced variations guide LLMs to prioritize the reinforcement of
optimal actions while discouraging suboptimal ones within a single response. However, our findings
below indicate that DPO alone is insufficient for capturing the nuanced variations, highlighting the
necessity for supplementary techniques to comprehensively model these correlations.

Alternative interpretation of DPO. DPO (Rafailov et al., 2024b) introduced a novel framework
for optimizing the equivalent KL-constrained reward function as in RLHF, without the need to learn
an explicit reward model. Instead, the problem is cast as a maximum likelihood estimation for the
policy model 7y on the preference dataset D, resulting in the following training objective:

Yy x Yy X
‘CDPO(ﬂ-O; 7Tref) = _]E(w,yw,yl)ND |:10g0' (ﬂ log M - ,810 0(yl|)):| s

2
ﬂ—ref(yw | ‘r) Wref(yl ‘ 1‘) @

where 7 is the reference model, typically the supervised fine-tuned (SFT) model, and f is a regu-
larisation term corresponding to the strength of KL-regularization in RLHF.

As shown in Eq. (2), DPO was originally conceptualized as a bandit problem, where the whole
response of the model is treated as a single arm to receive a reward. More recently, Rafailov et al.
(2024a) extended the theoretical foundation of DPO, showing that it can also be derived in the
context of token-level MDP. The corresponding training objective at the token level is:

M—-1

s me(at | s
Lopo (765 Tref) = —E (7, r)~D [loga <5 Zl Wf((a’f't ~-B Z log o( z | s7) >] 7

=0 =0 WTEf (af | 57)
3)

where 7, and 7; denote the win trajectory and the lose trajectory, respectively. a indicates the action
(current generated token), and s signifies the state (all tokens generated so far).

Our solution. It can be inferred from Eq. (3) that DPO, redefined as a token-level MDP, assigns

rewards to each token generation by (3 log #AE%, and simply add up the rewards of all tokens as

the accumulated reward of the trajectory. This uniform aggregation assumes that each token con-
tributes equally to the overall quality of the sequence, without considering the varying importance
of each token (timestep). Therefore, nuanced differences between g, and y; that significantly influ-
ence the overall meaning or quality of the response might not be adequately emphasized (refer to
Figure 6), leading to suboptimal performance. To this end, we propose to emphasize the rewards
of critical tokens, i.e., nuanced differences between y,, and y;. The magnitude of the emphasis is
determined dynamically by the policy model’s confidence, which refers to the probability assigned
to the generated token during training. Below, we detail our design choices for the pseudo-winning
response and losing response, respectively.

* For varied tokens in the pseudo-winning response ¥,,, we adapt the reward factor based on the
learning process of the policy model. Lower policy confidence indicates underdeveloped learning
of the target behavior, signaling the need for additional focus to help the model better capture
these nuances. Consequently, we adjust the reward factor to be inversely proportional to the policy
model’s confidence, as formalized in Eq. (5).
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Figure 2: We aggregate varied tokens in g, or y; into more coarser-grained spans. During the DPO
training on D, we compute the averaged — log(p) of tokens in different positions of spans.

* For varied tokens in the losing response y;, we carefully adjust the reward factor by reinforcing
already learned patterns of the policy model. Intuitively, tokens in y; with higher confidence from
the policy model may reflect inaccurate preference learning and therefore warrant stronger pe-
nalization. However, our analysis reveals a distinct pattern of the policy model when processing
y; compared to g,,. Specifically, when grouping varied tokens in g; into coarser-grained spans,
the model’s confidence is significantly influenced by the token’s position within these spans, as
illustrated in Figure 2. We observe that the probabilities assigned to the initial token of incorrect
spans in y; are typically low, whereas the probabilities for subsequent tokens within the same span
are notably higher. Prior studies have identified token probability as a critical signal for detect-
ing anomalous behaviors (Xiao & Wang, 2021; Fadeeva et al., 2024) and assessing generation
quality (Yuan et al., 2021; Fu et al., 2024). Consistent with these findings, our results indicate
that during training, the policy model can effectively recognize the onset of undesired spans by
assigning low probabilities to initial tokens. Nonetheless, due to the autoregressive dependencies,
subsequent tokens within these spans receive higher probabilities, reflecting the contextual coher-
ence established by preceding tokens, even when the span as a whole is incorrect. Thus, while it is
crucial to penalize initial tokens, applying equally strong penalties to subsequent tokens might be
suboptimal, as they often maintain local coherence within the flawed span. Therefore, we adjust
the reward factor to also be inversely proportional to the policy model’s confidence in Eq. (6).

In a nutshell, our approach dynamically modulates the emphasis placed on critical tokens based on
the policy model’s confidence. This adaptive reward mechanism ensures that the model focuses on
learning challenging distinctions while reinforcing already learned patterns, ultimately fostering a
more nuanced and robust policy (see our analysis in §5.2). The formalization of our approach is
encapsulated in Eq. (4), where Az and /\th adjust dynamically based on the policy’s confidence,
ensuring a tailored emphasis on critical tokens to improve the overall model performance.

_ B 7o (Y1 | T’ > )
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The sg denotes the stop-gradient operator, the 4 is an upper limit threshold that controls the emphasis
on the rewards of the critical tokens, preventing overly aggressive updates. The diff (9., | v;) and
diff (y; | §w) signify using the Levenshtein Distance algorithm to find the varied tokens in ¢,, and
Y1, respectively. In Appendix C, we provide a gradient analysis of DPO-BMC. Unlike DPO, our
approach harmonizes both sequential and token-level perspectives, effectively optimizing the
overall sequence structure alongside crucial token choices for the desired outcome.
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4 EXPERIMENTAL SETUP

We conduct a comprehensive evaluation across three downstream scenarios, including question an-
swering (QA), mathematical reasoning, and instruction following (IF). The detailed data statistics
as well as the evaluation metrics are listed in Table 6 of Appendix A.1.

Models and training settings. For the QA and mathematical reasoning setup, we utilize Llama2-
7B-base (Touvron et al., 2023) in our experiments. Dealing with these tasks necessitates LLMs to
possess domain-specific knowledge and engage in systematic, step-by-step reasoning to reach the
ultimate answer. Therefore, following prior works (Chen et al., 2024a;b), we fine-tune Llama2-7B-
base on the training set of ECQA (Aggarwal et al., 2021) and QASC (Khot et al., 2020) for QA, and
fine-tune Llama2-7B-base on MetaMathQA (Yu et al., 2024) for mathematical reasoning. We denote
the fine-tuned LLM as SFT and use it as the backbone for preference optimization. In line with prior
research (Chen et al., 2024a;b), we construct preference pairs (y.,, y;) based on the training data, by
using the ground truth as y,, and the SFT model’s inference output as ;.

For the instruction following setup, we utilize Llama3-8B-base (Dubey et al., 2024) and Mistral-
7B-Base (Jiang et al., 2023) in our experiments. Following the training pipeline of Zephyr (Tun-
stall et al., 2023) and SimPO (Meng et al., 2024), we train a base model on the UltraChat-200k
dataset (Ding et al., 2023) to obtain an SFT model. Then, we use the SFT model as the starting point
and perform preference optimization on the UltraFeedback dataset (Cui et al., 2023), where y,, and
y; are collected from LLMs of varying quality.

During our Bridging Phase, we utilize gpt-4-0125-preview for targeted modification to obtain
U, based on the prompt template in Appendix A.2. We also demonstrate in Appendix B that a less
powerful LLM, such as Llama3-70B-Instruct, can acquire comparable results. During our
Modeling Phase, we list the implementation details in Appendix A.3 for reproducibility.

Evaluation benchmarks. In question answering, we adopt the test splits of ECQA (Aggar-
wal et al., 2021), QASC (Khot et al., 2020), OpenbookQA (Mihaylov et al., 2018), and Strate-
gyQA (Geva et al., 2021) for evaluation. In mathematical reasoning, we conduct the evaluation on
four challenge datasets including GSM8k (Cobbe et al., 2021), MATH (Hendrycks et al., 2021),
MAWPS (Koncel-Kedziorski et al., 2016), and TabMWP (Lu et al., 2023). In instruction following,
We assess our models using two of the most popular open-ended instruction-following benchmarks:
AlpacaEval 2 (Li et al., 2023) and Arena-Hard v0.1 (Li et al., 2024). Both benchmarks evaluate
the models’ versatile conversational abilities across a diverse set of queries. For each query, the
evaluated model’s response and the reference model’s response are compared head-to-head using an
auto-evaluator. We use the officially recommended configurations' during the evaluation.

Baselines. We compare our approach with various powerful offline preference optimization meth-
ods, including FIGA (Guo et al., 2024), DPO (Rafailov et al., 2024b), and DPO variants (IPO (Azar
etal., 2024), KTO (Ethayarajh et al., 2024), ORPO (Hong et al., 2024), TDPO (Zeng et al., 2024), R-
DPO (Park et al., 2024), and SimPO (Meng et al., 2024)). The training objectives of these methods
are listed in Table 7.

5 EXPERIMENTAL RESULTS

In this section, we present the main results of our experiments, showcasing the superior performance
of our method across various benchmarks and ablation studies (§5.1). Next, we conduct in-depth
quantitative analyses to elucidate why our method outperforms DPO (§5.2 and §5.3). Furthermore,
we demonstrate the versatility of our framework by adapting it to other DPO variants (§5.4).

5.1 MAIN RESULTS AND ABLATIONS

Our method consistently and significantly outperforms baselines. As presented in Table 1, our
model DPO-BMC consistently achieves state-of-the-art results across all evaluated QA and math

'AlpacaEval: https://github.com/tatsu-lab/alpaca_eval. Arena-Hard v0.1: https://
github.com/lm-sys/arena-hard-auto.
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Table 1: Experimental results (based on Llama2-7B-base) on question answering tasks and mathe-
matical reasoning tasks. “Avg.” is the average accuracy of all sub-tasks. In each column, the highest
score is bolded and the second-highest is underlined.

Method Question-Answering Tasks Mathematical Reasoning Tasks

ECQA QASC OBQA StrategyQA Avg. GSM8k MATH MAWPS TabMWP Avg.
SFT 72.8 54.5 51.8 56.9 59.0 55.8 11.6 80.3 42.8 47.6
FIGA 70.3 52.5 51.7 48.6 55.8 54.1 9.8 75.5 39.0 44.6
IPO 71.5 58.9 53.6 58.4 60.6 57.2 12.1 82.2 425 48.5
KTO 71.6 56.5 52.8 56.0 59.2 56.4 12.0 80.1 425 47.8
OPRO 69.8 55.1 51.4 57.2 58.4 56.0 12.4 80.8 41.3 47.6
TDPO 74.4 58.2 54.8 59.1 61.6 57.3 12.2 81.6 432 48.6
R-DPO 73.5 59.5 55.4 58.8 61.8 56.9 12.0 81.9 422 48.2
SimPO 71.9 56.7 522 55.4 59.1 57.5 12.7 81.8 43.5 48.9
DPO 73.1 58.8 55.6 57.8 61.3 56.3 12.3 81.2 434 483
DPO-BMC 759 63.0 60.4 61.0 65.1 58.4 13.0 83.1 43.8 49.6
DPO-BC 757 62.0 56.0 60.1 63.4 57.6 12.7 82.8 434 49.1
DPO-MC 74.8 60.0 56.4 58.8 62.5 57.2 125 82.4 43.0 48.8

Table 2: Experimental results on instruction-following tasks. “LC” is the length-controlled win rate,
and “WR” is the raw win rate. “Avg. len” denotes the average number of tokens in the responses.

Llama3-8B-Base Mistral-7B-Base
Method AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) Avg.len WR (%) Avg.len LC(%) WR (%) Avg.len WR (%) Avg.len

SFT 75 4.7 956 2.6 414 8.1 5.9 998 22 454
FIGA 8.4 42 1,199 5.1 416 7.0 4.9 1,378 2.5 461
IPO 134 9.8 1,430 14.0 477 12.5 10.8 1,588 8.5 522
KTO 13.7 12.2 1,633 12.9 547 133 10.6 1,487 8.2 543
ORPO 12.5 11.4 1,793 11.7 573 14.5 11.5 1,630 9.4 566
TDPO 16.5 15.3 1,766 16.4 564 14.8 12.8 1,740 11.2 551
R-DPO 17.1 14.4 1,801 17.6 582 16.0 12.3 1,521 10.4 529
SimPO 213 18.9 1,718 26.6 562 16.8 144 1,906 184 615
DPO 16.0 14.8 1,713 17.6 559 15.1 13.3 1,657 13.6 540
DPO-BMC 22.4 16.8 1,285 18.1 406 20.8 16.6 1,317 17.6 488
DPO-BC 20.6 14.4 1,269 16.8 422 18.6 13.8 1,489 159 502
DPO-MC 17.7 15.2 1,890 17.9 579 16.4 14.3 1,712 15.4 551

benchmarks. Specifically, DPO-BMC outperforms DPO by 3.8 absolute points on QA tasks and by
1.3 points on math tasks. Additionally, on instruction-following tasks (refer to Table 2), DPO-BMC
secures the highest length-controlled win rate, surpassing DPO by over 5 points across various set-
tings. The length-controlled win rate (Dubois et al., 2024) serves as a robust metric that mitigates the
effects of length bias, thereby providing a more reliable evaluation of LLM-based auto-annotation.
Notably, DPO-BMC generates responses that are significantly more concise than other base-
lines. As highlighted in Table 2, the average response length of DPO-BMC and DPO-BC is ap-
proximately 75% of that produced by DPO and DPO-MC. This attribute of length normalization
is credited to the correlated preference data we constructed, which directs optimization towards
critical desired behaviors rather than verbosity. A detailed case study, shown in Table 10, further
underscores the effectiveness and robustness of our approach.

Both key designs in BMC are crucial. In Table 1 and Table 2, we additionally present results
from ablating each key design element of DPO-BMC:

* DPO-BC: Training using DPO’s original objective on our constructed preference data.
* DPO-MC: Training using our proposed objective in Eq. (4) on the original preference data.
Our examination reveals several key findings: (1) enhancing the correlation between preference pairs

remarkably boosts model performance; (2) even when using the same training preference data, our
designed optimization objective outperforms DPO, highlighting its superior ability to model fine-
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Table 3: Ablation study on diverse data synthe-
sis methods in the Bridging Phase. The average
accuracy is presented for QA and Math. LC on
AlpacaEval 2 is reported for instruction following
(IF), based on Llama3-8B.
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grained correlations; and (3) combining our constructed data with our designed objective yields the
best results, affirming the inseparability of the Bridging Phase and the Modeling Phase.

Influence of data synthesis method. Table 3 shows the effects of various data synthesis strategies
during the Bridging Phase. When generating %,, without referring to v,,, LLMs potentially make
erroneous modifications that misalign with the intended target, leading to a performance drop. An
alternative approach that attempts to enhance the correlation between winning and losing responses
is to degenerate ¥, to ¢; and utilize (y.,, §;) as the preference pair. However, this approach also falls
short, yielding significantly lower results. Our analysis suggests that LLMs struggle with this inverse
operation, resulting in g; failing to accurately capture the error patterns present in the original ;.

Influence of 5. We conduct an ablation study to examine the influence of the threshold ¢ in the
DPO-BMC objective on model performance, as shown in Figure 3. Setting § = 1.0 reduces our
method to one that assigns fixed token-level rewards, leading to suboptimal accuracy. As J increases,
the model performance improves, with the optimal setting observed around 6 = 3.0. However,
further increasing d results may degrade model performance due to excessively aggressive gradient
updates on certain tokens. Notably, across all tested values of §, our method consistently outperforms
the DPO baseline, indicating its robustness and effectiveness in stabilizing the learning process.

5.2 QUANTITATIVE ANALYSIS OF BRIDGING AND MODELING PHASE

To rigorously assess the effectiveness of the two pivotal phases in our framework, we seg-
ment the 60k training data of UltraFeedback into six equal-sized splits, ordered by increas-
ing edit distance between winning and losing responses. For each split, we also con-
struct its corresponding (7,,y;) pair data through our Bridging Phase. We then train four
models—(a) DPO, (b) DPO-MC, (c) DPO-BC, and (d) DPO-BMC—on each split based on
Llama3-8B, and report LC on AlpacaEval 2 and the average gradient norm during training.
All models are trained with identical hyperparam-

eters to ensure consistency and comparability. It 04
can be observed from Figure 5 that the Bridging ——bpo
. . —— DPO-MC
Phase successfully decreases the edit distance be- 03 DPO-BC
—— DPO-BMC

tween pairwise data through targeted modification,
shifting the optimization process to concentrate on
the most critical differences in preference data. The
results underscore the efficacy of the Bridging Phase
in consistently enhancing the performance across all
splits, signifying its role in refining the training data

for more focused learning. Another notable obser- 008 160 260 300 400
vation is the behavior of the average gradient norm Training step

during the training of DPO, which exhibits an in-
creasing trend as the edit distance between pairwise
data enlarges. This trend highlights the sensitivity
of DPO’s training process to individual data points,

KL divergence on y,,
I
N

©
-

Figure 4: KL divergence from the policy
model to the reference model on winning re-
sponses of the held-out set of UltraFeedback.



Under review as a conference paper at ICLR 2025

Yw, Y1) Edit Distance LC (%) Grad Norm Ow Y1) Edit Distance LC (%) Grad Norm
split 1 057 7.68 3.31 split 1 | g 9.40 5.70
split 2 070 1 9.49 4.85 split 2 070 ] 12.49 8.39
split 3 vk 10.50 4.86 split 3 073 ] 13.27 8.66
split4  INOTE | 10.01 5.33 split4  WENOT76 | 11.47 9.03
split 5 | onkE| 8.57 6.31 split 5 |k 9.81 8.44
split 6 0.95 1 7.91 13.00 split 6 0.95 9.90 9.04

(a) DPO (b) DPO-MC

Ow: YD) Edit Distance LC (%) Grad Norm Vw, Y1) Edit Distance LC (%) Grad Norm
split 1 | 0.45 10.82 3.47 split 1 | 0.45 NEDT 5.26
split2  EET052 10.87 4.80 split2  EETT052 11.49 7.33
split3 056 12.54 5.20 split3  METT056 11.47 7.70
split4 061 14.34 5.39 split4  WET0.61 14.38 8.17
split 5 EN0770 1 13.24 6.98 split 5 HE070 1 15.28 7.65
split 6 | x| 10.59 9.67 split 6 | orv | 12.29 8.75

(c) DPO-BC (d) DPO-BMC

Figure 5: We segment the 60k training data of UltraFeedback into six equal-sized splits based on
increasing edit distance between winning and losing responses. For each split, we report LC on
AlpacaEval 2 and the average gradient norm during training.

which can potentially lead to a large variance of gradient norm and inefficient learning. However,
the proposed learning objective in our Modeling Phase effectively mitigates the variance through
a dynamic training process that adjusts according to the policy model’s confidence. This adaptive
mechanism not only ensures that the model places greater emphasis on learning challenging distinc-
tions but also reinforces the patterns that have already been acquired, culminating in a more nuanced
and robust policy. Such an approach is crucial in achieving a balanced optimization landscape with
diverse training data, leading to superior generalization and performance in downstream tasks.

In Figure 4, we present the KL divergence between the policy model trained with DPO, DPO-MC,
DPO-BC, and DPO-BMC with identical hyperparameters and the reference model, measured on the
winning responses from a held-out set of UltraFeedback during training. The results also validate
our above analyses: (1) the Bridging Phase fosters tailored learning toward critical differences in
preference data, resulting in more efficient and “sharp” training with a larger KL divergence; (2) our
meticulously designed loss function in the Modeling Phase effectively moderates the optimization
intensity across diverse training data, thereby achieving a more controlled and steady KL divergence.

5.3 QUANTITATIVE ANALYSIS OF CREDIT ASSIGNMENT

‘We compare the token-level and sequence-level credits assigned by DPO and DPO-BMC, assessing
how well their final learned rewards align with preference labels on a held-out set of UltraFeedback.

Analysis on token-level reward. Figure 6 depicts the token-level reward assignment for DPO
and DPO-BMC on a response pair consisting of a winning response ¥,, and a losing response ;.

t <t
mo(y'ly~",x)
() From the figure, we

observe that: (1) DPO assigns nearly uniform rewards across tokens, failing to differentiate the
importance of tokens to the overall response quality; and (2) although DPO can identify and assign
lower rewards to several erroneous tokens in the losing response (e.g., “13”), it struggles to capture
subtle distinctions between the winning and losing responses. In contrast, DPO-BMC assigns higher
rewards to critical tokens (e.g., “descending order”) and effectively penalizes incorrect tokens in
the losing response. These results demonstrate DPO’s limitations in providing precise token-level
preferences on sentence quality, and our method can effectively alleviate this issue.

The reward of each token is computed as rg(z,y') = Slog

Analysis on sequence-level reward. For a rigorous comparison, we calculate the sequence-level

DPO reward expression by rg(z,y) = Slog :af((zlé))

present the results in Table 4. The reward margin is determined by 74 (x, Y., ) — 76 (, y;). Reward ac-
curacy is defined as the percentage of preference pairs where the winning response achieves a higher
reward than the losing response, i.e., 79(x, yw) > ro(x, ;). Our findings demonstrate that DPO-
BMC outperforms DPO in terms of average reward margin and reward accuracy. This enhancement
validates the superior ability of our method to discern subtle differences between preference pairs,
thereby facilitating more effective generalization.

(with the partition function excluded) and
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winning response winning response

: " 0.05
The numbers arranged in descending order would be 99 , The numbers arranged in descending order would be 99 ,

0.00

22, 13, 5, and 1. The first numberin the new 22, 13, 5, and 1. The first numberin the new
arrangement is 99 . arrangement is 99 . -0.05 °
losing response losing response -0.10 %
The numbers arranged in descending order would be : 22 The numbers arranged in descending order would be : . -0.15 &
13, 99, 5, 1. So, the first numberin the , 13, 99, 5, 1. S0, the first numberin the —0.20
new arrangement is 1 . new arrangement is 1 . —0.25
(a) DPO (b) DPO-BMC

Figure 6: Visualization of token-level rewards assigned by DPO and our method. The preference
pair is sampled from the held-out set of UltraFeedback, whose input prompt is “Arrange the numbers
5, 13,99, 1, and 22 in descending order. What is the first number in the new arrangement?”

Table 4: Sequence-level reward margin and reward accuracy of DPO and DPO-BMC. The results
are computed on the held-out validation set (2,000 samples) of UltraFeedback.

Method Avg. Reward Margin Reward Accuracy (%)
DPO 0.54 72.19
DPO-BMC 0.74 73.60

5.4 VERSATILITY OF OUR FRAMEWORK

Our BMC framework is versatile and can be applied to
various DPO variants. Table 5 shows the performance
comparison between the original XPO and XPO-BMC

Table 5: Versatility of our framework
across various XPOs. The average accu-
racy is presented for QA and Math, while

methods. Given that KTO only requires a binary signal
to indicate whether an output is desirable or undesirable

LC on AlpacaEval 2 is reported for IF.

for a given input, and TDPO is based on token-level Method QA Math IF
MDP, we exclude these from our consideration. The SFT 565 476 15
results indicate that XPO-BMC variants generally sur-
. . . PO 60.6 483 134
pass their corresponding XPO methods across various IPO-BMC 641 486 157
tasks. Specifically, [PO-BMC, ORPO-BMC, R-DPO-
. . ORPO 584 476 125
BMC, and DPO-BMC achieve higher average accura- ORPO-BMC 623 484  15.7
cies in QA and Math, as well as superior LC scores on RDFO 68 482 171
AlpacaEval 2 for IF. However, SimPO-BMC does not R-DPO-BMC 653  49.5  20.0
outperform SimPO on the IF task, showing a slight de- SimPO so1 489 213
crease from 21.3 to 19.7. These findings underscore the SimPO-BMC ~ 61.6 490 197
robustness and efficacy of our BMC approach in en- DPO 613 483 160
hancing the performance of different DPO methods, af- DPO-BMC 65.1 496 224

firming its potential for broad application.

6 CONCLUSION

In this work, we propose BMC, an effective framework for bridging and modeling correlations in
pairwise data for direct preference optimization. BMC equips LLMs with better human value align-
ment through a two-phase process: a Bridging Phase that enhances correlations between pairwise
data by explicitly manifesting fine-grained preference signals via targeted modifications, and a Mod-
eling Phase that learns token-level correlations by dynamically leveraging the the policy model’s
confidence during training. Our framework exhibits superior performance in question-answering,
mathematical reasoning, and instruction-following tasks, consistently surpassing the baseline DPO
by a significant margin. Extensive analysis highlights that the key designs in BMC are crucial and
validates the effectiveness and versatility of BMC.
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APPENDICES

A DETAILED EXPERIMENTAL SETUP

A.1 DATA STATISTICS AND EVALUATION METRICS USED FOR EXPERIMENTS

We list the detailed data statistics and evaluation metrics of our experiments in Table 6. Our experi-
ments comprise both closed-ended evaluation (QA and math) and open-ended evaluation (instruction
following).

Table 6: Statistics of the training and evaluation datasets.

Task Train/ Test Dataset Number Evaluation Metric
. ECQA 7,598
Train QASC 8.134
QA ECQA 2,194
QASC 926
Test OBQA 500 Accuracy
StrategyQA 687
Train MetaMathQA 40,000
GSMS8k 1,319
Math Test MATH 3,000 Accurac
MAWPS 2,065 y
TabMWP 1,000

Train UltraFeedback 61,135

AlpacaEval 2 805
Arena-Hard 500

IF

Test Win rate against GPT-4 Turbo

A.2 PROMPT TEMPLATE FOR TARGETED MODIFICATION

We demonstrate the prompt template of targeted modification for question answering and mathemat-
ical reasoning tasks in Figure 7. Since the SFT model has been fine-tuned on the ground truth y,, for
QA and math tasks, the inferred output y; may be quite approximate to y,, in some circumstances.
Therefore, we require the off-the-shelf LLM to filter out preference pairs where y; is good enough.
Finally, we filtered out 31% data and 43% data for the QA task and math task, respectively. Note
that for the training data of our baselines like DPO, we also use the filtered (y,,, y;) pairs for a
fair comparison. For instruction-following tasks, the prompt template we use is shown in Figure 8.

A.3 IMPLEMENTATION DETAILS

Our implementation is based on the alignment-handbook repo® using 4xA800 GPUs. To ensure
a fair comparison, we conduct thorough hyperparameter tuning for all methods compared in our
experiments.

SFT training hyperparameters. We train SFT models using the following hyperparameters: a
learning rate of 2e-5, a batch size of 128, a max sequence length of 2048, and a cosine learning rate
schedule with 10% warmup steps. For QA and instruction-following tasks, we train the model for
1 epoch, whereas for mathematical tasks, we extend the training to 2 epochs. All the models are
trained with an Adam optimizer (Kingma & Ba, 2014).

Preference optimization training hyperparameters. During preference optimization, we per-
formed initial experiments to determine the optimal batch sizes in [32, 64, 128] and training epochs

https://github.com/huggingface/alignment-handbook
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Prompt Template for Question Answering and Mathematical Reasoning Tasks

**Task:**

Given the Problem, the Correct Answer, and the Prediction, identify and correct any mistakes in the Prediction to
align the Correct Answer. Three rules you must obey:

1. Make the minimal modifications necessary (changing the fewest words) to correct the Prediction.

2. Only output the complete Corrected Prediction without saying anything else.

3. If the Prediction is already good enough, simply output 'None'.

**Problem:**

{x}

**Correct Answer:**
{yw}

**Prediction:**
{vi}

**Corrected Prediction:**

Figure 7: Prompt template of targeted modification for question answering and mathematical rea-
soning tasks.

Prompt Template for Instruction Following Tasks

Task:**

Below is a question followed by two responses. Response 1 is more preferred by humans than Response 2. Please
make the minimal necessary changes to Response 2 to improve it, referring to Response 1. Maintain as much of
the correct parts of Response 2 as possible. Output only the complete Revised Response 2.

**Problem:**

{x}

**Response 1:**
{yw}

**Response 2:**
{i}

**Revised Response 2:**

Figure 8: Prompt template of targeted modification for instruction-following tasks.

in [1, 2, 3]. Our results indicate that using a batch size of 128 and a single training epoch consis-
tently produces the best outcomes across all methods. Consequently, we adopted these parameters
for all subsequent preference optimization experiments. We also configured the maximum sequence
length to 2048 and employed a cosine learning rate schedule with a 10% warmup period for training
on the preference optimization dataset. For method-specific training hyperparameters, we individ-
ually search the learning rates in the range of [3e-7, 5e-7, 6e-7, 1e-6] for each method. Besides,
we conduct a grid search according to Table 7 and report the best performance. Table 8 shows the
hyperparameters of our method used under each setting.
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Table 7: Various preference optimization objectives and hyperparameter search range.

Method Objective Hyperparameter
P log mo (g, | G5t, ) a €10.5,1.0,1.5]
FIGA Zywedlff(ywlyz) alogmo\Yy, w s ’
+Zy{ediﬁ(yl\gw)ﬂlog7fe(yf |y1<t71’) B €[05,1.0,1.5]
2
o (Yw|z) o (yi]z) 1
PO (log Zeltels) —tog et _ L) 7€[0.01,0.1,0.5,1.0]
KTO Mo (108 ZEEE — ) + Mo (2nr — Blog TR ) A=A = 1.0
where zier = E(; )~ [BKL (g (y]2) || mrer (y]2))] f€[0.01,0.05,0.1]
L o C pelywl®) o pe(wmle)
ORPO log po(yw|z) — Mog o <log Tops Gty — 108 1_pa(yl‘m)> , A€ [0.1,05,1.0,2.0]
where pg(y|z) = exp (M log ﬂe(y\x))
7o (Yuw|T) o (Y1)
TDPO ~logo (Blog el — Blog Feie) p < {8'5710636%50’ (1)17]
_a(/BDSquL(I7yl77TrefH7T€) - Sg(ﬁDSquL(Ivyw§7rrefH7T9))) o
7o (Yuw | T T o€ 00501.05.10
R-DPO ~logo (/3 log Zeiteits — Blog Z2iEh — (alyu| - “‘?ﬂ')) Be {0.01,0.05,0.1] ]
i € |2.0,2.5
SimPO —logcr(ly | logwe(yw\£) \yt\ logm;(yl\x) 7) 56 {03705]10 1.2 1.4,1.6]
DPO ~logo (Blog Zeeleh — glog Ze(ule)) 5 € [0.01,0.05,0.1]
~ w0 (G| 5" )
logo (5 gt ¢ g AL, 108 T,cf(lg;,\g )
oY lY
B2 ey Aut 108 ch(yilﬂylf',z)) » Where 5 €[0.01,0.05,0.1]

DPO-BMC
1 et (s 6 €[1.5,2.0,2.5,3.0,3.5
Ajr = 1+ min (sg <ﬂe(%\@7$t@)) ’6> A5 € diff (G | 1) [ )
1, otherwise

1, otherwise

I { 1+ min (sg (m) 75) Jif yp € diff (v | Gw)

Table 8: Hyperparameter values for diverse training settings in DPO-BMC.

Task Model Learning Rate 6
QA Llama2-7B-base 5e-7 0.05 3.0
Math Llama2-7B-base Se-7 0.05 25
IF ngma3-8B-base 5e-7 0.01 2.0
Mistral-7B-base Se-7 0.01 20

B IMPACT OF LLMS ON TARGETED MODIFICATION IN THE BRIDGING
PHASE

In Table 9, we explore the impact of LLMs on targeted modifications during the Bridging Phase.
Our findings indicate that substituting the gpt-4-0125-preview model with a less powerful
yet open-source alternative, such as Llama3-70B-Instruct, yields comparable performance
while significantly surpassing vanilla DPO. Numerous studies have highlighted the superior text
modification capabilities of LLMs. For example, LLMs have been effectively employed in synthe-
sizing high-quality data (Wang et al., 2023; Liu et al., 2024b). Additionally, Ji et al. (2024) show that
LLMs can transform initial outputs from upstream models into more helpful and benign responses,
thereby aligning generated content with human intentions. In conclusion, our framework demon-
strates robustness in leveraging diverse LLMs for targeted modifications, confirming its adaptability
and effectiveness.
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Table 9: Ablation study on diverse LLMs for targeted modification in the Bridging Phase. The
average accuracy is presented for QA and Math. LC on AlpacaEval 2 is reported for instruction
following (IF), based on Llama3-8B.

Method LLM for Targeted Modification QA Math IF

SFT - 569 476 7.5

DPO - 61.3 483 160
DPO-BMC Llama3-70B-Instruct 646 494 21.8
DPO-BMC gpt-4-0125-preview 65.1 496 224

C GRADIENT ANALYSIS

For a mechanistic understanding of our method, we examine the gradients of the loss function Lppo
in Eq. (2) and Lppo.gmc in Eq. (4). Their gradients with respect to the parameters 6 can be written
as:

Vo Lppo(T9; Tret) = —PE(z,y0,y)~p |0 (A1) | Vologmg(yw | ) — Vologmg(yi | ) | |,

increase likelihood of y,,  decrease likelihood of y;

mo(yi|z) o (Ywl|T)
Tret (Y1 | ) flog Tret (Yoo | ) ©

where A1 = Slog

VoLoro-smc(To; Trer) = —PE(, 5w hop [0 (A2) | Vologme(Gu | 2) — Vologme(y: | )

increase likelihood of ¢, decrease likelihood of y;

~t ~<t t <t
+ > (Age, — DVelogma (il | Gt ) — ) (Ayr = 1)Vglogma(yy, | ;" @)
7, € diff (Juwlyr) yi €diff (yi]Fw)
increase likelihood of desired tokens of g, decrease likelihood of undesired tokens of y;

t), <t ~t | ~<t
where Ay = 8 Zy;Eyl )\y; log 7; if((zal/lfllzlf*:?) - B ngﬂ i Agt log 722%2'@“&?)
In contrast to vanilla DPO, which emphasizes sequence-level optimization exclusively, our pro-
posed method integrates both sequence-level and token-level perspectives. (1) At the sequence
level, we promote preferred completions while penalizing those that are disfavored. (2) At the token
level, we further refine the rewards of critical desired and undesired tokens of ¥,, and y;, respec-
tively. This dual consideration ensures that both the overall sequence structure and the critical token
choices are optimized for the desired outcome.

D CASE STUDY

In this case study, we analyze the performance of various methods, all based on the Llama3-8B-base
model, using a sample instruction from AlpacaEval 2. Table 10 displays the responses generated by
four different methods. The SFT model produces a concise and factually accurate answer, although it
lacks detail and context regarding the name change. In contrast, models further trained with SimPO
and DPO yield incorrect responses, asserting that Facebook Corporation did not change its legal
name and providing an inaccurate account of the rebranding process. Our proposed method, DPO-
BMC, demonstrates a notable improvement by providing a response that is both factually accurate
and comprehensive. Additionally, the response generated by our method is significantly shorter than
those produced by DPO and SimPO. This combination of detail, accuracy, and brevity highlights
the superiority of our approach in delivering informative and precise answers.
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Table 10: Generated responses from different methods for a sampled instruction in AlpacaEval 2.

Instruction

Did Facebook corporation change its name?

SFT

Yes, Facebook Corporation changed its name to Meta Platforms, Inc. In 2021.

SimPO

No, the Facebook Corporation did not alter its legal name. Despite the fact that the company
has introduced a diverse array of products and services beyond its primary social networking
platform, which includes popular applications such as Instagram, WhatsApp, Messenger,
and various others, the official name of the corporation continues to be Facebook, Inc.
Nevertheless, in October 2021, Facebook made an announcement indicating their intention
to modify their corporate brand name to better reflect their expanding range of offerings. As
of now, the new brand name has not been disclosed to the public, and it is anticipated that
the complete transition to this new name will require a significant amount of time.

DPO

No, Facebook Corporation did not change its name. Facebook Corporation, also known as
Facebook, Inc., is the parent company of the Facebook social media platform, and it has
not gone through any significant name change. The company holds other online platforms
and services such as Instagram and WhatsApp, but the name Facebook Corporation remains
the same. There have been some changes in the branding, such as the rebranding of What-
sApp and Facebook Messenger with the Meta logo, but the parent company’s name has not
changed. The announcement made by Facebook in October 2021 about rebranding its parent
company as Meta did not materialize, and Facebook Corporation still holds the name Face-
book Corporation.

DPO-BMC

Yes, Facebook Corporation changed its name to Meta Platforms, Inc. In October 2021.
The rebranding aims to reflect the company’s expanded focus beyond social media and into
building the “metaverse,” a virtual space where people can interact and communicate in
immersive, 3D environments. The new name ”"Meta” represents the company’s ambition to
drive breakthroughs in areas such as virtual and augmented reality. Despite the name change,
Facebook remains the name of the company’s flagship social network.
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